東海大學生命科學系

碩士論文

指導教授:江智民 博士 Chiang, Jyh Min, Ph.D

不同程度的擾動環境下森林生態系樹形與林冠特徵之分化

Differentiation of tree architectural and crown traits in two hardwood forests under distinct disturbance regimes

研究生:陳思瑋 Chen, Szu Wei

中華民國 101 年 2 月 10 日

東海大學生命科學系碩士論文

不同程度的擾動環境下森林生態系樹形與林冠特徵之分化

Differentiation of tree architectural and crown traits in two hardwood forests under distinct disturbance regimes

研究生:陳思瑋 Chen, Szu Wei 指導教授:江智民 博士

Chiang, Jyh-Ming, Ph.D.

中華民國 101 年 2 月 10 日 January, 2012

東海大學生命科學系 碩士論文學位考試審定書

生命科學系碩士班研究生 陳思瑋 君所撰寫之論文

(中文)

不同程度的擾動環境下森林生態系樹形與林冠特徵之分化

(英文)

Differentiation of tree architectural and crown traits in two hardwood forests under distinct disturbance regimes

經本委員會審定通過,特此證明。

委

學位考試委員會

召集人 (簽名) 員 江福

中華民國 |0 | 年 1 月 13日

致謝

時光荏苒,東海大學五年半的求學生涯即將隨著論文的付莘而告一段落。從 懵懵懂懂、翹課、打電動、打球的死大學生,變成在茫茫書(paper)海中,一步一 步織出一個有趣又富含邏輯的故事的研究生,這段過程要感謝許多人的幫忙。

首先感謝我的父母,在這段求學過程中一路的支持與鼓勵,你們無私的奉獻 是我能順利完成學業的最大推手。

接著感謝實驗室的助理阿超,除了一流的植物辨識能力之外,積極迅速的工 作態度也讓我獲益良多。另外感謝 lulu 及竹晏,處理實驗室大大小小的雜事,讓 我不用因為一些雜務而勞心勞力。實驗室的成員及小幫手們:大象、噹、肉鬆、 浩之、哲遠、永錚、婉玲、育誠,謝謝你們對於野外工作、室內測量、或是實驗 方法的情義相挺。

感謝同樣身為苦命研究生的彭博,從大學時代就是組員兼損友的你,雖然研 究所的領域不同,但是不時的彼此叮嚀、加油打氣、軟體程式教學、研究進度報 告、八卦分享等,佔了研究生涯的一大半,也特別感謝你在百忙之中陪我上陡峭 的蓮華池,幫助我測量特徵。同樣身為苦命研究生的小雅,我們的實驗樣區重疊, 方法類似,唸的文章、處理的資料也類似,常常的討論及野外的彼此幫忙也是能 完成研究的重要幫手,在此一併感謝。

感謝生科系排,提供我抒發研究壓力的管道。與球隊的大家共同為了目標而 努力也為我在求學生涯中增添了不少色彩。也感謝東海生科第51 屆還留在台中 的哲嘉、老大、小芽、摟雷、阿品、阿罵、張元、芭辣、大姊、小孩,不時的聚 餐,東南西北天地閒聊,彼此的近況分享,彼此的加油鼓勵。

特別感謝江智民老師,將我從對於植物一竅不通的蜘蛛人,訓練成對植物略 懂的植物人,一路上不管是對英文的要求、R 語言的教學、邏輯的訓練及文獻的 選讀,老師非常有耐心的一步一步教導我。我很喜歡老師說的一句話:『研究所 與大學最大的不同點,在於研究所的是自己決定要唸的,是靠著自己培養出解決 問題的能力,最後才能拿到的』。口試委員林登秋老師、林宜靜老師及孫義方老 師一針見血的意見也是論文能夠完成的重要關鍵,在此一併感謝。

文末,特別特別感謝胡懷云,從大學末期的一路相隨,大大小小的研討會、 meeting、seminar、口試、趕論文、邏輯思辨等等等,總是能在我躊躇不前、迷 惘的時候指引我的方向,不論心情好壞,都能用很多古靈精怪、無俚頭的方式, 替彼此苦悶的研究生涯注入愉快的氣氛,感謝之詞難以用文字表達,相信妳會懂 得。

最後一句:謝謝一路上所有幫助過我的有名/無名氏,我畢業了!!!

中文摘要

擾動如何影響生態系的特性是近年來生態研究者所關注的議題。颱風為影響 臺灣森林生態系重要的擾動因子之一。過去 20 年颱風侵襲的資料顯示台灣不同 地區長期以來累計不同程度的颱風擾動,這提供了良好的環境來探討不同程度的 長期擾動環境對森林結構及植物適應策略的影響。近年來,研究者以植物的功能 特徵作為探討大尺度生態問題的工具。植物功能特徵為相對易於廣泛量測的特徵 如比葉面積、樹高、木質密度等。這些特徵可反映植物生長與生存的權衡。本研 究比較颱風擾動頻繁與相對不頻繁的福山及蓮華池森林動態樣區內植物功能特 徵組成,以三個層次探討長期颱風擾動環境對於森林生態系結構及植物適應策略 的影響:(1) 物種層次:兩樣區之共同樹種是否因長期擾動環境不同而有特徵的 分化?(2) 樣方層次:兩樣區之冠層高度是否因長期擾動環境不同而隨著地形有 特定的空間分布?(3) 樣區層次:兩樣區之特徵組成是否因長期擾動環境不同而 有不同的分化?本研究於兩個25公頃樣區內(每樣區含有625個20×20m之樣 方)各選出重要指標累計前 70%的物種,每種約 40 棵,測量樹冠特徵(冠幅面積、 長度及深度)和樹形結構(樹高、第一枝條高、木質密度)。以最大概似估計法推算 特徵間的異速生長函數,使用共變數分析(Analysis of covariance)、最小化平方法 (Generalized least square)及主成分分析(Principal component analysis)檢定特徵是 否因長期擾動環境不同而有分化。結果顯示:(1)相同胸徑下位於福山的共同樹 種有較矮的樹高,相同樹高下,位於福山的共同樹種有較大的冠幅。(2) 福山樣 區的平均冠層高度小於蓮華池樣區,福山的冠層高度與地形凹凸度呈顯著負相關, 蓮華池樣區的冠層高度與海拔高度呈顯著正相關。(3) 福山傾向於形成較大的冠 幅及較矮胖的樹型,蓮華池的功能特徵組成則較為多樣。綜觀以上所述,植物為 適應長期颱風擾動頻繁的福山樣區可能發展出的適應策略為:隨著地勢高低形成 矮且一致的冠層高度,降低強風的傷害,因為沒有突出的樹冠及較為矮胖的樹型 而形成寬廣的冠幅以提升光的攔截率。植物適應長期颱風擾動較不頻繁的蓮華池 樣區所發展的策略較為多樣:如木質密度小、最大樹高高且細長的樹型,或木質 密度大、較深的冠幅但較矮胖的樹型。此研究顯示,在不同程度的擾動環境下, 種內特徵的分化、林冠結構的變化以及多樣化的群聚功能特徵組成能反映出森林 面對不同擾動程度的適應策略。

關鍵字:擾動特性、異速生長函數、森林動態樣區、植物功能特徵、功能特徵組 成

ABSTRACT

The impact of disturbance on the ecosystem characteristics has been an important topic in ecological studies. In Taiwan, typhoons are perhaps the most important disturbance agent in forest ecosystems. The meteorological records of typhoon raid during past 20 years show distinct typhoon disturbance regime in different regions of Taiwan. Such heterogeneity in disturbance regime provides ideal environment for investigating the importance of typhoon disturbance in shaping the community structure of forests. Recently, various plant functional traits are widely measured for investigating the large-scale ecological questions. Functional traits are generally easy to measure and thus make extensive measurements possible. Some common traits include specific leaf area, tree height and wood density. These traits can reflect trade-offs of various strategies for the growth and survival of plants. In order to understand how typhoons influence the structure of forest ecosystem, I will compare functional traits related to wind disturbance in two Forest Dynamics Plot (FDP): one at FuShan (FS) which has frequent typhoon disturbance and the other at LienHuaChih (LHC) where typhoon disturbance is relatively infrequent. My research questions are organized into: (1) Species level: are there any differentiations of functional traits between shared species of two plots under different disturbance regimes? (2) Quadrat level: do canopy heights of two sites exhibit differentiations that reflect different level of wind disturbance? (3) Site level: is there any difference in functional composition between two different disturbance regimes? I used the importance value (IV; %) to selected the most important species for each of the two 25ha plots (each plot has $625\ 20 \times 20$ m quadrates) that constitute 70% of the total IV. For each species I selected approximately 40 trees to measure crown and architectural traits (e.g. crown area, crown depth, tree height and wood density). I used Maximum Likelihood method to model the allometric relationships between different trait values. Analysis of covariance (ANCOVA), generalized least square (GLS) model and principal component analysis (PCA) were used to test whether there were trait differentiations under different disturbance regimes. The results showed: (1) At a given diameter at breast height (DBH), shared species tended to have lower tree height in FS. At a given tree height, shared species tended to have greater crown area in FS. (2) Mean canopy height in FS was significantly lower than in LHC. Canopy height was negatively correlated with convexity in FS, but positively correlated with elevation in LHC. (3) FS tended to form higher maximum tree height and slender trunk, but functional composition in LHC was more diverse than in FS. The adaptation strategies in frequently disturbed FS tended to be conservative: lower but

consistent canopy height can reduce the damage from high wind blow, and wider crown area can compensate the relatively low light condition. The adaptation strategies in less frequently disturbed LHC were diverse: ranging from lower wood density with slender tree form to higher wood density with greater crown depth, shorter and thicker tree form. This research indicated intraspecific trait differentiations, variation of canopy structure and diversity of functional composition can reflect different adaptation strategies between distinct typhoon disturbance regimes.

Keywords: disturbance regimes, allometric function, forest dynamic plot, plant functional trait, functional composition

CONTENTS

致谢I
中文摘要II
ABSTRACT III
CONTENTSV
INTRODUCTION
METHODS
Study sites, topography and typhoon characteristics
Tree selection and traits measurement
The analytical procedures for establishing of trait allometric relationships 6
Statistical analysis7
RESULTS
Allometry
Species level: comparison of plant functional traits between two plots
Quadrat level: the spatial patterns of quadrat-based canopy height in two plots 10
Site level: patterns of functional composition in two plots
DISCUSSION
Species level: the intraspecific trait differentiations between two plots 10
Quadrat level: the spatial pattern of canopy height can reflect the conditions in
wind exposure 12
Site level: different functional compositions may reflect different adaptation
strategies under different disturbance regimes
The possibility of monsoon effect
CONCLUSION
REFERENCES
FIGURES
TABLES
APPENDIX

1 INTRODUCTION

The composition and functioning of many forest ecosystems are largely 2 shaped by their disturbance regimes (Chapin et al. 1996). For example, 3 different type of disturbance history such as clear cut or fire, may change 4 5 the moisture and temperature regimes that influence the amount of carbon released by decomposition in temperate boreal forest (Hagemann et al. 6 2010). The spruce beetle can infect trees and become more susceptible to 7 damages by windblown or fire burn, then cause the outbreak of tree death 8 9 (Berg et al. 2006). Anthropogenic disturbance, such as trampling, may also alter the vegetation composition and characteristics, leading to plant 10 community with high resistance and resilience to trampling disturbance 11 (Bernhardt-Römermann et al. 2011). In subtropical region, typhoon is an 12 important factor that alters the forest ecosystem community composition 13 and functioning. The strong winds and heavy rains brought by typhoon 14 may alter the forest canopy height (de Gouvenain and Silander 2003) and 15 the nutrient cycling (Lin et al. 2003). Recently, Lin et al. (2011) found 16 that forest in northeastern Taiwan, perhaps due to long history of frequent 17 typhoon disturbance, has strong resistance and fast resilience to typhoon 18 disturbance (Lin et al. 2011). Disturbance regimes of these ecosystems 19 20 are important legacies that determine the current ecosystem structure and function. 21

22

Recently, plant functional traits have been widely used to link plant 23 population dynamics, forest community composition and ecosystem 24 25 functioning (Beale et al. 2010, Cornelissen et al. 2003, Swenson and Enquist 2007, Westoby et al. 2002). Plant functional traits are used to 26 classify plant functional groups, predict ecosystem responses to 27 environments and infer their impacts to ecosystem processes (Díaz et al. 28 29 2007, de Bello et al. 2010), most of the traits are relatively easy to measure and thus ecological questions of broader scales can be addressed 30 through this approach (Cornelissen et al. 2003, Schwilk and Caprio 2011). 31 Some of the commonly used traits are specific leaf area (SLA; cm^2/g), 32 wood density, crown area, crown depth, tree height, and seed mass. 33 These laminose, architectural and reproductive traits can reflect the 34 trades-off between plant growth, survival, and reproduction (Cornelissen 35

et al. 2003, Falster and Westoby 2003, Lambers et al. 2008). For example, 36 plants with greater SLA have faster photosynthetic rate but with lower 37 leaf life span and are susceptible to herbivores (Reich et al. 1997). 38 Understory shade tolerant species may have dense branches with high 39 wood density which facilitate the formation of wider and deeper crown to 40 increase light interception. In contrast, although tall trees can sufficiently 41 use canopy light, their mortality can be increased due to frequent and 42 43 strong wind (Aiba and Nakashizuka 2009, Sterck et al. 2006). Wood density can reflect the trade-off between structural stability versus water 44 transport efficiency (Preston et al. 2006, Wright et al. 2006). Furthermore, 45 wood density is also considered a proxy trait for estimating growth, 46 mortality, and photosynthetic rate (Chao et al. 2008, Chave et al. 2009, 47 48 Ishida et al. 2008, Wright et al. 2006). Plant height is an integrative trait that reflects strategies of carbon allocation, reproduction, competition 49 against its neighbors (Moles et al. 2009). Height of plant is allometrically 50 correlated with other plant function traits such as wood density, relative 51 growth rate, crown area, leaf arrangement, leaf area ratio, time to 52 reproduction and seed mass (Poorter et al. 2008). These traits determine 53 the way plant lives, grows, and reproduce. 54

55

In ecosystem or landscape ecology, functional traits can also be used as a 56 tool to understand the community compositions and dynamics. By 57 quantifying the spatial distribution of functional trait values, the opposing 58 theories of species coexistence: the environment filtering vs. niche 59 partitioning hypotheses are also examined (Ackerly and Cornwell 2007, 60 Kraft et al. 2008). Plant functional traits can also be used to explain the 61 variation of ecosystem processes (Berg et al. 2006). For example, 62 community-weighted leaf traits such as SLA, leaf dry matter content 63 (LDMC) and leaf nitrogen content (LNC) exhibited significant 64 correlation with aboveground net primary productivity and litter 65 decomposition (Vesk and Westoby 2004). Recent studies use plant 66 functional traits to map the distribution of ecosystem services on the 67 landscape to provide the land use and conservation planning (Lavorel et 68 al. 2011, Lytle and Merritt 2004). 69

70

71 Taiwan is located in Northwest Pacific Ocean, which experience more

72 tropical cyclones (category 3 or higher on the Saffir-Simpson scale) than

other regions in the world (Lin et al. 2011). There are about 3.5 typhoons

per year landed on Taiwan over the past 100 years. Most of the typhoon 74 paths followed Southeast to Northwest direction. The central Mountain 75 Range covers more than 50% of land area in Taiwan with more than 100 76 peaks higher than 3000 m above sea level. It forms the barrier for major 77 typhoon paths and, as a result, spatial heterogeneity in typhoon 78 disturbance regimes within the land area of Taiwan is formed and can 79 greatly influence the structure of forests (Forsyth 2006). Previous studies 80 have shown the spatial pattern of tree damage after hurricane strike is 81 related to site exposure to hurricane and plant height (Flynn et al. 2010, 82 Foster and Boose 1992, Xi et al. 2008). The complicated topography in 83 Taiwan provides an ideal environment to investigate the relationship 84 between plant adaptation strategies and disturbance regimes. 85 86 This study used plant functional traits (tree height, first branch height, 87 wood density, crown area, crown depth and crown length) as indicators to 88 reveal the differentiations of plant adaptation strategies in two forest 89 ecosystems under distinct disturbance regimes in Taiwan. I organized our 90 questions as follows: (1) are there any differentiations of functional traits 91 between shared species under two disturbance regimes? (2) do canopy 92 height of two sites exhibit differentiations that reflect different levels of 93 wind disturbance? (3) is there any difference in functional groups 94 between two different disturbance regimes. I expected that (1) at species 95 level: shared species in frequently disturbed forest have conservative 96 traits such as lower tree height or shallower crown area to reduce the 97 impact of frequently disturbed; (2) at quadrat level: canopy height is 98 lower at frequently disturbed forest, and canopy height will accompany 99 with topographic factors to form sheltered and protected canopy.; (3) at 100 site level: protective and less variable traits associations should be more 101 important in FS to reduce frequently disturbed. 102

103 METHODS

104 Study sites, topography and typhoon characteristics

- 105 This study was conducted at forest dynamic plots which experienced
- 106 different disturbance regime in different place of Taiwan (FIGURE 1).
- 107 Both plots are dominated by broad-leaved evergreen forest. Fushan forest

dynamic plot (FS; $24^{\circ}45'40''N$, $121^{\circ}33'28''E$) is a 25 ha ($500 \times 500 m$) 108 permanent plot which located in northeastern Taiwan. The elevation in FS 109 110 ranges from 600 to 733 m above sea level, the average annual temperature and precipitation are 18.2° and 4271 mm respectively. 111 According to meteorological records in FS whether station (24°45'19.4"N, 112 $121^{\circ}35'45.3''E$, elevation = 634 m above sea level) from 1988 to 2009, the 113 monthly mean of maximum wind speed and solar radiation are 11.8 m/s 114 and 300 MJ/m² (Appendix 1), respectively. The first and second tree 115 censuses were completed in 2004 and 2009, respectively. Each woody 116 plants of which diameter at breast height (DBH; cm) greater than 1 cm 117 were tagged, mapped and DBH measured. A total of 111,851 stems 118 comprising 110 woody species were recorded in the second census. The 119 120 vegetative type in FS can be categorized as the *Machilus-Castanopsis* zone of broadleaf forests in Taiwan (Su 1984). The most dominate canopy 121 122 species in FS include *Limlia uraina*, *Castanopsis cuspidata*, *Engelhardia* roxburghiana, Machilus thunbergii and Meliosma squamulata (McEwan 123 et al. 2011, Su et al. 2007). 124

125

LienHuaChih forest dynamic plot (LHC; 23°54'49"N, 120°52'43"E) is 126 located in central Taiwan. The elevation in LHC ranges from 667 to 841 127 m above sea level, the average annual temperature and precipitation are 128 129 21° and 2211 mm, respectively. According to meteorological records in 130 LHC whether station $(23^{\circ}56'N, 120^{\circ}54'E, \text{elevation} = 666 \text{ m above sea})$ level) from 1969 to 2007, the monthly mean of maximum wind speed and 131 solar radiation are 3.2 m/s and 360 MJ/m² (Appendix 4). The first tree 132 census was completed in 2008. All woody plants with DBH greater than 1 133 cm has been tagged, mapped and DBH measured. There were 144 woody 134 species and 153,484 stems in LHC. The vegetative type in LHC is 135 considered to be a Lauro-Fagaceous zone of broadleaf forests in Taiwan 136 (Su 1984). The most dominate canopy species in LHC include 137 Cryptocarva chinensis, Schefflera octophylla, Pasania nantoensis, 138 139 Engelhardia roxburghiana, and Cyclobalanopsis pachyloma (Chang et al. 2010, McEwan et al. 2011). 140 141 The measurement of four topographic variables (elevation, convexity, 142

- slope and aspect) was completed at 2004 and 2008 in FS and LHC,
- 144 respectively. The elevation in each quadrat was calculated by the mean of
- 145 four corners within each quadrat. The convexity was calculated by the

difference between focal quadrat and eight neighboring quadrats exceptfor the quadrats on the edge of plots (Harms et al. 2001, Valencia et al.

148 2004). Slope and aspect was measured by the mean angular deviation

149 from the horizontal and vertical plane, respectively, of each of the four

150 triangular planes by connecting three out of the four corners in one

- 151 quadrat.
- 152

I used typhoon warning period officially issued by the Central WeatherBureau of Taiwan to choose the typhoons of which storm radius come

across FS and LHC. Two respective weather stations closest to FS and

156 LHC, YiLan (24°46'56"N, 121°44'53"E) and SunMoonLake (23°53'00"N,

157 120°54'29"E) were selected. Meteorological data when typhoon stroke

between 1958 to 2011 were analyzed. The number of typhoons stroke two

159 plots of which intensities greater than category 1 on the Saffir-Simpson

scale (Simpson and Richel 1981) were 1.722 and 1.815 typhoons per year

161 in FS and LHC, respectively. Although less typhoon strokes were found

in FS than in LHC, the mean of daily rainfall and maximum wind speed

163 during typhoon stroke were both greater in FS than in LHC (Appendix 5).

164 The respective means of daily rainfall during typhoon strokes were 44.04

and 41.08 mm/day in FS and LHC, while the means of maximum wind

speed were 16 and 10.42 m/s in FS and LHC. Thus, different typhoon

167 disturbance regimes were found in FS and LHC.

168 **Tree selection and traits measurement**

In order to investigate forest characteristics and adaptation strategies
under different disturbance regimes, I selected species that add up to top

170 accumulated Importance Value (IV) in both plots (11 and 23 species

in FS and LHC, respectively). I measured tree architectural and crown

173 traits of 40 trees for each species. Architectural traits include tree height,

174 first branch height and wood density. Crown traits include crown area and

- 175 crown depth. I used telescopic measuring pole and laser rangefinder to
- measure tree height (the distance from the ground to the top leaf), first
- branch height (the height of first branch which diameter greater than 1cm
- and above ground than 1.3m) and the height of the lowest leaf. The height
- 179 of the lowest leaf was used to further calculate the crown depth by the
- 180 difference between tree height and lowest leaf height. The procedures for
- 181 measuring wood density followed CTFS wood density protocol
- 182 (http://www.ctfs.si.edu/data///documents/Wood_density_draft.pdf). I

- 183 randomly selected 5 stems of each species then use increment borers to
- 184 extract the wood cores. I used water displacement method to measure
- 185 fresh wood volume, later I oven-dried the wood cores to constant weight
- at 80°C. The wood density was calculated by the dry weight divided by
- 187 wood volume then weighted by wood segments length. The Crown area
- 188 was determined by measuring the crown radii of 4 principal directions
- 189 (north, east south and west). The north-south (d_1) and east-west (d_2)
- 190 directions of projected crown length was used to calculate crown area by
- 191 $0.25 \pi d_1 d_2$ (Poorter et al. 2006).

The analytical procedures for establishing of trait allometric relationships

194 The DBH-height relationship has been identified as asymptote (Poorter et

al. 2006). In order to know whether there is trait differentiation under

196 different disturbance regimes, I used maximum likelihood method (Goffe

197 et al. 1994) to fit the allometric function of DBH and tree height (TH). I

used the following function to fit the DBH-TH allometric relationship

199 (Poorter et al. 2006),

200
$$H = H_{max} \times (1 - \log_{e}(-a \times DBH^{b})) \dots \text{ eqn } 1$$

where H is tree height, DBH is tree diameter at breast height, H_{max} is the 201 modeled maximum tree height, variables a and b are parameters derived 202 by model fitting procedure. After fitting species-specific DBH-TH 203 allometric relationship, slenderness (SLD) of each species was defined as 204 the tree height at DBH = 15 cm (Aiba and Nakashizuka 2009). 205 Topographic factors, especially convexity, influence vegetative type and 206 canopy height very well (Noguchi 1992, Su et al. 2010). In order to 207 estimate the canopy height precisely, the allometric functions were 208 developed separately for concave and convex quadrats. Species-specific 209 and topography specific allometric functions were used to estimate the 210 tree height of each individual stems of selected species under specific 211 topography (convex or concave quadrate). The mean of 5 tallest trees of 212 selected species in each quadrat was calculated to represent the canopy 213 height of each quadrat in both plots. Quadrat-based canopy height was 214 used to test whether the spatial pattern of canopy height can reflect the 215 216 functional adaptation of plants under different disturbance regimes. 217

218 The fitting of TH-crown area (CA) allometric relationship was based on a

- power function: $CA = aH^b$. CA and H denote crown area (m²) and tree
- 220 height (m), respectively. Parameters a and b are species-specific constants
- 221 derived from model fitting procedure. After fitting species-specific tree
- height-crown area allometric relationship, I defined the crown area at TH
- $223 = 10 \text{ m as a species-specific and size-corrected traits (CA₁₀) for further$
- analysis. The fitting of TH to first branch height (FBH) and crown depth
- (CD) were both based on a linear function: FBH (and CD) = aH+b.
- 226 Parameters a and b are species-specific fitting constants. I also defined
- standardized FBH and CD at TH = 10 m (FBH₁₀ and CD₁₀, respectively)
- 228 of each species for further analysis.

229 Statistical analysis

- 230 I compared the species-specific allometric functions of shared species in
- two plots to test whether there was trait differentiation of the same
- species under two different disturbance regimes. To test whether there
- 233 were significant differences in tree height-DBH function and crown
- area-DBH function, variables were log-transformed to approach linearity.
- Analysis of Covariance (ANCOVA) was then used to test the effects of
- 236 DBH, site, and DBH \times site interaction. The correlation between

functional traits and topographic factors (elevation, slope, aspect, and 237 convexity) were tested using Generalize Least Squares (GLS) model 238 based on exponential method to account for spatial autocorrelation 239 (Pinheiro and Bates 2000). For analyses at the site level, I used Principal 240 Component Analysis (PCA) to investigate the trait associations, and 241 Analysis of Similarities (ANOSIM) to test whether the functional 242 compositions were different in two plots. Five functional traits for each 243 individual species, including: H_{max}, tree height corrected crown area 244 (CA_{10}) , tree height corrected crown depth (CD_{10}) , wood density (each 245 species we calculated mean wood density of 5 stems as species-specific 246

- wood density; WD) and slenderness (height at DBH = 15cm; SLD) were
- incorporated in PCA and ANOSIM. All statistical analyses above were
- 249 performed using R program (R version 2.10.1; R Development Core
- 250 Team 2009).

251 **RESULTS**

252 Allometry

The allometric relationship in DBH-tree height was well-fitted in FS (R^2 253 ranged from 0.75 to 0.94; median = 0.84) and LHC (\mathbb{R}^2 ranged from 0.44 254 to 0.96; median = 0.85). This gives a reliable prediction in tree 255 slenderness and H_{max}. Tree slenderness (SLD) ranged from 8.5 (Schefflera 256 octophylla) to 14.6 m (Machilus zuihoensis var. mushaensis) in FS and 257 from 9.1 (Syzygium buxifolium) to 14.1 m (Mallotus paniculatus) in LHC 258 (shrub species, including Blastus cochinchinensis, Psychotria rubra and 259 *Euonymus laxiflorus* were not include in the analysis). H_{max} ranged from 260 10.8 (Helicia formosana) to 23 (Machilus thunbergii) m in FS and from 261 4.6 (Pasania konishii) to 23.2 (Schefflera octophylla) m in LHC. 262 263 The fitting results in tree height-crown area, tree height-first branch 264 height and tree height-crown depth relationships were quite variable. The 265 results of tree height-crown height allometric relationship in FS (\mathbb{R}^2 range 266 from 0.31 to 0.93; median = 0.63) and LHC (R^2 range from 0.06 to 0.96; 267 median = 0.56) are quite variable. The crown area at tree height = 10 m268 ranged from 16.4 (Helicia formosana) to 30 (Litsea acuminata) m² in FS 269 and from 4.8 (Tricalysia dubia) to 29 m² in LHC (Pasania 270 nantoensis). The results of tree height-first branch height allometric 271 relationship in FS (\mathbb{R}^2 range from 0.33 to 0.91; median = 0.67) and LHC 272 (R^2 range from 0.11 to 0.9; median = 0.58) were quite variable. The first 273 branch height at tree height = 10 m ranged from 3.6 (*Limlia uraiana*) to 274 5.4 m (Pyrenaria shinkoensis) in FS and from 2.6 (Helicia formosana) to 275 5.3 m (Ardisia quinquegona) in LHC. The results of tree height-crown 276 depth allometric relationship in FS (\mathbb{R}^2 range from 0.04 to 0.85; median = 277 0.72) and LHC (R^2 range from 0.49 to 0.91; median = 0.71) were also 278 variable. The crown depth at tree height = 10 m ranged from 4.0279 (Machilus zuihoensis var. mushaensis) to 6.1 (Helicia formosana) m in 280 FS and from 3.9 (Ardisia quinquegona) to 7.1 (Helicia formosana) m in 281 LHC. 282

283 Species level: comparison of plant functional traits between two plots

284 We found some trait differentiations of shared species between two plots.

vs. tree height and tree height vs. crown area were log-transformed to 286 attain linearity (TABLE 1). The allometric relationship of traits between 287 shared species in two plots showed that species in FS tend to have lower 288 tree height, wider crown area, lower first branch height and shallower 289 crown depth than in LHC (FIGURE 2A). Among four allometric 290 relationships, the interaction effect of $\ln(DBH) \times \text{plot}$ and $\ln(\text{tree height})$ 291 292 × plot can significantly explain the variation of tree height and crown area between two plots. Take one shared species, *Schefflera octophylla*, as 293 example, in DBH-tree height relationship, we found at a given DBH, tree 294 height is greater in LHC than in FS (FIGURE 3A). For the analysis 295 separated by species, three of seven shared species (Limlia uraiana, 296

For the overall ANCOVA model of which all species were pooled, DBH

296 separated by species, three of seven shared species (*Limita uratana*,

297 *Litsea acuminata* and *Schefflera octophylla*) showed significant plot ×

- 298 ln(DBH) interaction effect, which indicated significantly different slope
- of the allometric equation between two plots (TABLE 2).
- 300

285

301 For the analysis separated by species in tree height-crown area

302 relationship, none of the selected species showed significant effect

- 303 (TABLE 2). Nevertheless, take *Limlia uraiana* species as example, we
- 304 still found a tendency that at a given tree height, crown area is greater in

305 FS than LHC (FIGURE 3B). In TH-FBH relationship, the only significant

306 plot \times tree height interaction effect was found in *Schefflera octophylla*

307 species (TABLE 2). At a given tree height of *Schefflera octophylla*, the

308 first branch height tended to be greater in FS than in LHC (FIGURE 3C).

- 309 In tree height-crown depth relationship, none of the selected species
- 310 exhibited significant differentiation between plots. Nevertheless, two
- 311 species, *Limlia uraiana* and *Castanopsis cuspidata*, exhibited marginally

312 significant plot \times tree height interaction and plot effect, respectively. Take

313 *Castanopsis cuspidate* species as example, we found at a given tree

- height, crown depth was slightly shallower in FS than in LHC (FIGURE
- 315 3D).
- 316

317 We found two of seven shared species (Schefflera octophylla and Helicia

- 318 *formosana*) have significantly greater wood density in LHC than in FS
- 319 (Wilcoxon rank sum test, P = 0.007 in both species; FIGURE 4).

320 Quadrat level: the spatial patterns of quadrat-based canopy height in 321 two plots

We found a distinct spatial pattern of canopy height in FS. The canopy 322 323 height in FS was lower at the ridge top than in other flat or quadrats which located in low elevation (FIGURE 5A); however this pattern was 324 not found in LHC. Canopy height was lower in two of the valleys but 325 higher at the upper slopes near the ridge tops in LHC (FIGURE 5B). We 326 also found mean canopy height in LHC tended to be higher than in FS 327 (Wilcoxon rank sum test, P = 0.0001; FIGURE 5C), and the variation of 328 canopy height in two plots can be explained by different topographic 329 factors. Canopy height was negatively correlated with elevation in FS (P 330 = 0.001; TABLE 3 & FIGURE 6A), but was negatively correlated with 331

- convexity (P = 0.002; TABLE 3 & FIGURE 6B) and positively correlated
- 333 with slope in LHC (P = 0.024; TABLE 3 & FIGURE 6C).

334 Site level: patterns of functional composition in two plots

335 The PCA results reveal the different functional compositions in two plots

336 (FIGURE 7). Most of species in FS tended to have greater crown area

337 accompanied by stout tree form and lower wood density. Two exceptions

- 338 were found in *Machilus zuihoensis* var. *mushaensis* and *Helicia*
- 339 *formosana*. The former had slender stem with great H_{max} and the later had
- 340 deep crown, high wood density, accompanied with stout tree form. The
- 341 functional compositions in LHC are more diverse than in FS (FIGURE 7).
- 342 The functional compositions comprise traits characteristic of both pioneer
- 343 and shade tolerant species: one group of species tend to have greater H_{max}
- 344 and slender tree form, some species tend to have greater wood density
- 345 accompany with greater crown depth And other species in middle part of
- 346 PCA plot didn't show a clear trait association. The result of ANOSIM test
- 347 also indicates that the functional composition between two plots are

348 significantly different (ANOSIM test, P = 0.002).

349 **DISCUSSION**

350 Species level: the intraspecific trait differentiations between two plots

351 We found shared species in FS tend to have lower tree height, greater

crown area, higher first branch height and shallower crown depth than in 352 LHC. In DBH-tree height relationship, we found 3 of 7 shared species 353 354 (Limlia uraiana, Litsea acuminata, Schefflera octophylla) in FS had lower tree height at greater DBH. Numerous studies indicate that tree 355 height is negatively correlated with wind speed (Chao et al. 2010, Chen et 356 al. 1997). Results of this study are consistent with the previous studies 357 from which tree heights were found to be lower in forests with frequent 358 359 wind disturbance (Martin and Ogden 2006). Lower tree height is beneficial for trees at areas with frequent wind disturbance in reducing 360 the risk of bole snap, uprooting, branch damage, and so on. In tree 361 height-crown area relationship, none of shared species showed the 362 differentiation of crown area between two plots. In overall ANCOVA 363 364 model, shared species in FS tended to have greater crown area than in LHC. This unexpected result can be explained by a relatively consistent 365 and low canopy height in FS that trees can shelter each other. In addition, 366 greater crown area can compensate the relatively low incident solar 367 radiation (monthly mean = 300 MJ/m^2 in FS and 360 MJ/m^2 in LHC, 368 respectively). In tree height-first branch height relationship, only 369 Schefflera octophylla in FS have greater first branch height at greater tree 370 height, but neither interaction nor plot effect was detected in overall 371 ANCOVA model. Greater first branch height, together with orthotropic 372 growth form, larger leaves and longer petioles, are thought to be an 373 374 indicator for adaptation for low light condition (King 1998). Trees of the same species in FS where light availability is relatively low tend to have 375 greater first branch height. In overall tree height-crown depth relationship, 376 none of shared species showed the differentiation of crown depth between 377 two plots. Shared species in FS tended to have shallower crown depth, 378 379 but this differentiation was not significant in overall ANCOVA model. Shallower crown depth is thought to be an adaptation for plants to avoid 380 self-shading that can ensure sufficient light interception in a dim forest 381 (Aiba and Nakashizuka 2009, Poorter et al. 2006). 382 383 Wood density was found to be negatively correlated with annual 384 precipitation and soil fertility (Swenson and Enguist 2007, ter Steege et al. 385 2006). In this study, two of seven shared species (Schefflera octophylla 386

and *Helicia formosana*) had greater wood density in LHC than in FS.

388 This pattern might be explained by annual precipitation and soil fertility

389 because both annual precipitation and soil fertility were lower in LHC

390 than in FS, (Liao 2006, Lin 2010).

391 Quadrat level: the spatial pattern of canopy height can reflect the 392 conditions in wind exposure

The results in quadrat level were consistent with our expectation. 393 394 Typhoon occurrence is found to be negatively correlated with canopy height in a global analysis (de Gouvenain and Silander 2003). This 395 perhaps explains why the mean canopy height is lower in severely 396 disturbed FS forest than gently disturbed LHC forest. Numerous studies 397 indicate that tree height is influenced by high wind blow, especially for 398 canopy trees which have great risk in bole snap, branch damage and 399 uprooting due to wind blow (Brokaw and Grear 1991, Martin and Ogden 400 2006, Peterson 2000, Peterson and Rebertus 1997, Webb 1958). 401 According to my analysis of the meteorological records, the mean of 402 maximum wind speed in FS and LHC are 11.8 and 3.2 m/s, respectively. 403 404 The lower canopy height in FS compared to LHC was likely influenced 405 by higher mean of maximum wind speed. In addition to the difference of canopy height, we also found different spatial pattern of canopy height 406 between two plots. Canopy height was negatively correlated with 407 elevation in FS. This suggests higher canopy in low elevation quadrats 408 409 but lower in exposed ridge quadrats in FS. This result is consistent with the general findings that lower tree height may be an adaptive 410 consequence to avoid the damage from frequent wind blow (Chao et al. 411 2010, Forsyth 2006, Jaffe 1973, King et al. 2009, Lawton 1982, Martin 412 413 and Ogden 2006).

414

In LHC, canopy height was negatively correlated with convexity but
positively correlated with slope. This suggests greater canopy height in
protective concave and/or steep quadrats. The topography-driven floristic
composition (Chang, unpublished data) in LHC might have resulted in

419 the spatial pattern of the forest structure. Vegetative type at the side of

ridge top with steep and concave topography was grouped to *Schellefra*

- 421 octophylla-Cryptocarya chinensis type, which is regarded as a
- 422 pioneer-dominant vegetative type.and greater canopy height was found.
- 423 Although vegetative type at the ridge top is grouped to wind-resistant
- 424 Syzygium buxifolium Pasania nantoensis type, GLS result did not show
- 425 a positively correlated pattern between canopy height and elevation.
- 426 Vegetation types in valleys are variable and grouped as *Machilus kusanoi*

- Cryptocarya chinensis - Neolitsea konishii or Schellefra 427 octophylla-Cryptocarya chinensis-Cinnamomum subavenium-Tricalysia 428 429 dubia in LHC. Canopy height did not show a clear pattern in valleys: two of the valleys show a pattern that canopy height was positively correlated 430 with convexity (in southwest and northwest valleys); but in other valleys 431 canopy height was positively correlated with convexity (e.g. northeast 432 and southeast valleys). Rainfall with high intensity in LHC may have led 433 434 to frequent tree damage and recruitment in the valleys (Chang, unpublished data). The low canopy height at some valleys of LHC can be 435 caused by the frequent setting back of the vegetation succession due to 436 frequent small-scale landslides. Together, the ambiguous spatial pattern of 437 canopy height in LHC need more research to reveal complex interactions 438

439 between canopy height, topography and disturbance.

440 Site level: different functional compositions may reflect different 441 adaptation strategies under different disturbance regimes

442 PCA and ANOSIM results indicate that trait associations were different between FS and LHC. Most of the species in FS (8 of 10) tended to have 443 greater crown area, shallower crown depth and lower wood density 444 accompany with stout tree form and greater H_{max} . In order to be well 445 adapted to the wet, humid, high wind blow and low-light conditions of 446 the FS forest, species expand their crown horizontally rather than 447 vertically to increase light interception rate and avoid self-shading. This 448 finding is consistent with previous studies that species live in a low light 449 condition tend to form single layer of tree crown to increase light 450 interception without the risk of self-shading (Horn 1971, Poorter 1999). 451 Stout tree forms, lower canopy height while accompanied with greater 452 H_{max} can increase tree survival under high wind blow. A pioneer species 453 Machilus zuihoensis var. mushaensis with slender tree form and greater 454 H_{max} and *Helicia formosana* with greater wood density and crown depth 455 accompanied with stout tree form were also well adapted in FS. These 456 two species were widespread in a wet, humid and foggy environment. 457 The generalist habits of the two species may contribute to the possession 458 of traits not fully consistent with other coexisting species. 459 460

- 461 The trait associations in LHC were more diverse than in FS. Functional
- 462 trait associations ranged from fast growing pioneer species to slow
- 463 growing shade tolerant species. Pioneer species in LHC such as *Mallotus*

464 *paniculatus*, *Cinnamomum subavenium* and *Schima superba* have low

- wood density that facilitates fast growth to reach the top of canopy, hence
- 466 pioneer species in LHC have slender tree form with great H_{max} . Shade
- 467 tolerant species such as *Tricalysia dubia*, *Pasania konishii* and *Syzygium*
- *buxifolium* have high wood density accompanied with deep crown can
- increase the light interception in understory. Denser wood is associated
- 470 with lower growth rate (Chave et al. 2009), hence shade tolerant species
- 471 with greater wood density and crown depth have stout tree form.

472 The possibility of monsoon effect

Besides the stochastic wind blow caused by typhoon disturbance, chronic 473 and predictable wind blow from northeastern monsoon can potentially 474 affect forest structures in Taiwan. For example, the vegetation at the 475 Kenting dynamic plot in southern Taiwan is characterized by short and 476 dense stems (Wang et al. 2004). Although this study contains only two 477 sites from which the determination of the wind disturbance modes 478 (typhoon vs. monsoon) cannot be made, the seasonal patterns of litterfall 479 can perhaps imply their relative importance in affecting the canopy 480 structure. In Kenting plot, a distinct peak of litterfall was found in winter 481 when northeastern monsoon was prevailing (Liao et al. 2006). FS is 482 located in northeastern Taiwan, which experience typhoon disturbance in 483 summer and constant wind blow from northeastern monsoon in winter. 484 The seasonal pattern of litterfall in FS did not show a distinct peak in 485 winter (Lin 2009), Indicating relatively limited impact of monsoon in 486 shaping the canopy structure in FS. In LHC, neither summer nor winter 487 exhibited peaks of litterfall (Chiang and Lin unpublished data), indicating 488 insignificant effect of wind disturbance from typhoons and monsoon. 489

490 CONCLUSION

- 491 We suggest the difference of plant functional composition between two
- 492 plots may reflect different adaptation strategies under distinct typhoon
- 493 disturbance regime. Functional composition is simple in severely
- 494 disturbed FS where species tend to form lower tree height and consistent
- 495 canopy height. In order to compensate the light interception, species form
- 496 wider but shallower crown to increase light interception without
- 497 self-shading. Due to lower and consistent canopy height, trees would

- 498 shelter each other to avoid the damage from high wind blow. The greater 499 potential tree height (H_{max}) of species in FS also indicates that squatter 500 tree form and wider but shallower crown might imply structural
- adaptation for in frequently disturbed forest.
- 502

LHC forest experienced different disturbance regimes from FS. Unlike 503 FS, the spatial pattern of canopy height in LHC show a ambiguous 504 505 pattern that canopy height was higher in most of the concave quadrats but lower in two of the valleys. Unlike FS where strong winds may have 506 caused the under-dispersion of function traits, more diverse functional 507 composition, consisting both pioneer species (lower wood density and 508 crown area with slender tree form) and shade tolerant species (greater 509 510 wood density and crown area with stout tree form) were found in LHC. It is unlikely that the relatively mild wind disturbance experienced in LHC 511 had strong effects on trait dispersion. 512 513 In this study, we demonstrated complex interactions between functional 514 traits, topography, and disturbance regimes. Much uncertainty remains 515 and can potentially be reduced by incorporating more functional traits, 516

517 such as leaf traits, vessel area, vessel density, regeneration traits (e.g. seed

518 mass, seed number), and demography data, and more abiotic factors such

as soil water content, organic carbon. Such comprehensive dataset will be

- 520 required to achieve mechanistic understandings of plant adaptation
- 521 strategies under heterogeneous and frequently disturbed environment.
- 522

REFERENCES

524	Ackerly, D. D. and W. K. Cornwell. 2007. A trait-based approach to community
525	assembly: partitioning of species trait values into within- and
526	among-community components. Ecology Letters 10:135-145.
527	Aiba, M. and T. Nakashizuka. 2009. Architectural differences associated with adult
528	stature and wood density in 30 temperate tree species. Functional Ecology
529	23 :265-273.
530	Beale, C. M., J. J. Lennon, J. M. Yearsley, M. J. Brewer, and D. A. Elston. 2010.
531	Regression analysis of spatial data. Ecology Letters 13:246-264.
532	Berg, E. E., J. D. Henry, C. L. Fastie, A. D. De Volder, and S. M. Matsuoka. 2006.
533	Spruce beetle outbreaks on the Kenai Peninsula, Alaska, and Kluane National
534	Park and Reserve, Yukon Territory: relationship to summer temperatures and
535	regional differences in disturbance regimes. Forest Ecology and Management
536	227 :219-232.
537	Bernhardt-Römermann, M., A. Gray, A. J. Vanbergen, L. Bergès, A. Bohner, R. W.
538	Brooker, L. De Bruyn, B. De Cinti, T. Dirnböck, U. Grandin, A. J. Hester, R.
539	Kanka, S. Klotz, G. Loucougaray, L. Lundin, G. Matteucci, I. Mészáros, V.
540	Oláh, E. Preda, B. Prévosto, J. Pykälä, W. Schmidt, M. E. Taylor, A.
541	Vadineanu, T. Waldmann, and J. Stadler. 2011. Functional traits and local
542	environment predict vegetation responses to disturbance: a pan-European
543	multi-site experiment. Journal of Ecology 99:777-787.
544	Brokaw, N. V. L. and J. S. Grear. 1991. Forest structure before and after hurricane
545	Hugo at three elevations in the Luquillo mountains, Puerto Rico. Biotropica
546	23 :386-392.
547	Chang, L. W., J. L. Hwong, S. T. Chiu, H. H. Wang, K. C. Yang, H. T. Chang, and C.
548	F. Hsieh. 2010. Species composition, size-class structure, and diversity of the
549	Lienhuachih forest dynamics plot in a subtropical evergreen broad-leaved
550	forest in central Taiwan. Taiwan Journal of Forest Science 25:81-95.
551	Chao, K. J., O. L. Phillips, E. Gloor, A. Monteagudo, A. Torres-Lezama, and R. V.
552	Martínez. 2008. Growth and wood density predict tree mortality in Amazon
553	forests. Journal of Ecology 96:281-292.
554	Chao, W. C., G. Z. Song, K. J. Chao, C. C. Liao, S. W. Fan, S. H. Wu, T. H. Hsieh, I. F
555	Sun, Y. L. Kuo, and C. F. Hsieh. 2010. Lowland rainforests in southern Taiwan
556	and Lanyu, at the northern border of Paleotropics and under the influence of
557	monsoon wind. Plant Ecology 210:1-17.
558	Chapin, F. S., M. S. Torn, and M. Tateno. 1996. Principles of ecosystem sustainability.

559	American Naturalist 148:1016-1037.
560	Chave, J., D. Coomes, S. Jansen, S. L. Lewis, N. G. Swenson, and A. E. Zanne. 2009.
561	Towards a worldwide wood economics spectrum. Ecology Letters 12:351-366.
562	Chen, Z. S., C. F. Hsieh, F. Y. Jiang, T. H. Hsieh, and I. F. Sun. 1997. Relations of soil
563	properties to topography and vegetation in a subtropical rain forest in southern
564	Taiwan. Plant Ecology 132:229-241.
565	Cornelissen, J. H. C., S. Lavorel, E. Garnier, S. Diaz, N. Buchmann, D. E. Gurvich, P.
566	B. Reich, H. ter Steege, H. D. Morgan, M. G. A. van der Heijden, J. G. Pausas,
567	and H. Poorter. 2003. A handbook of protocols for standardised and easy
568	measurement of plant functional traits worldwide. Australian Journal of
569	Botany 51 :335-380.
570	Díaz, S., S. Lavorel, F. S. Chapin, P. A. Tecco, D. E. Gurvich, and K. Grigulis. 2007.
571	Functional diversity – at the crossroads between ecosystem functioning and
572	environmental flters. Pages 81-91 in J. Canadell, D. E. Pataki, and L. F.
573	Pitelka, editors. Terrestrial Ecosystems in a Changing World. Springer-Verlag,
574	Berlin, Germany.
575	de Bello, F., S. Lavorel, S. Díaz, R. Harrington, J. Cornelissen, R. Bardgett, M. Berg,
576	P. Cipriotti, C. Feld, D. Hering, P. Martins da Silva, S. Potts, L. Sandin, J.
577	Sousa, J. Storkey, D. Wardle, and P. Harrison. 2010. Towards an assessment of
578	multiple ecosystem processes and services via functional traits. Biodiversity
579	and Conservation 19:2873-2893.
580	de Gouvenain, R. C. and J. A. Silander. 2003. Do tropical storm regimes influence the
581	structure of tropical lowland rain forests? Biotropica 35 :166-180.
582	Falster, D. S. and M. Westoby. 2003. Plant height and evolutionary games. Trends in
583	Ecology & Evolution 18 :337-343.
584	Flynn, D. F. B., M. Uriarte, T. Crk, J. B. Pascarella, J. K. Zimmerman, T. M. Aide, and
585	M. A. Caraballo Ortiz. 2010. Hurricane disturbance alters secondary forest
586	recovery in Puerto Rico. Biotropica 42:149-157.
587	Forsyth, E. 2006. Patterns of typhoon damage in two subtropical forests. Bachelor
588	Degree. Center for Environmental Studies. Brown University, USA.
589	http://envstudies.brown.edu/theses/elizabethforsyththesis.pdf.
590	Foster, D. R. and E. R. Boose. 1992. Patterns of forest damage resulting from
591	catastrophic wind in central New England, USA. Journal of Ecology 80:79-98.
592	Goffe, W. L., G. D. Ferrier, and J. Rogers. 1994. Global optimization of statistical
593	functions with simulated annealing. Journal of Econometrics 60 :65-99.
594	Hagemann, U., M. T. Moroni, J. Gleißner, and F. Makeschin. 2010. Disturbance
595	history influences downed woody debris and soil respiration. Forest Ecology
596	and Management 260 :1762-1772.

597	Harms, K. E., R. Condit, S. P. Hubbell, and R. B. Foster. 2001. Habitat associations of
598	trees and shrubs in a 50-ha neotropical forest plot. Journal of Ecology
599	89 :947-959.
600	Horn, H. S. 1971. The adaptive geometry of trees. Princeton University Press,
601	Princeton.
602	Ishida, A., T. Nakano, K. Yazaki, S. Matsuki, N. Koike, D. Lauenstein, M. Shimizu,
603	and N. Yamashita. 2008. Coordination between leaf and stem traits related to
604	leaf carbon gain and hydraulics across 32 drought-tolerant angiosperms.
605	Oecologia 156 :193-202.
606	Jaffe, M. J. 1973. Thigmomorphogenesis: the response of plant growth and
607	development to mechanical stimulation. Planta 114:143-157.
608	King, D. A. 1998. Influence of leaf size on tree architecture: first branch height and
609	crown dimensions in tropical rain forest trees. Trees-Structure and Function
610	12 :438-445.
611	King, D. A., S. J. Davies, S. Tan, and N. S. Md. Noor. 2009. Trees approach
612	gravitational limits to height in tall lowland forests of Malaysia. Functional
613	Ecology 23 :284-291.
614	Kraft, N. J. B., R. Valencia, and D. D. Ackerly. 2008. Functional traits and
615	niche-based tree community assembly in an Amazonian forest. Science
616	322 :580-582.
617	Lambers, H., F. S. Chapin III, and T. L. Pons. 2008. Plant physiological ecology. 2nd
618	edition. Springer Verlag, New York, USA.
619	Lavorel, S., K. Grigulis, P. Lamarque, MP. Colace, D. Garden, J. Girel, G. Pellet,
620	and R. Douzet. 2011. Using plant functional traits to understand the landscape
621	distribution of multiple ecosystem services. Journal of Ecology 99:135-147.
622	Lawton, R. O. 1982. Wind stress and elfin stature in a montane rain forest tree: an
623	adaptive explanation. American Journal of Botany 69:1224-1230.
624	Liao, J. H., H. H. Wang, C. C. Tsai, and Z. Y. Hseu. 2006. Litter production,
625	decomposition and nutrient return of uplifted coral reef tropical forest. Forest
626	Ecology and Management 235 :174-185.
627	Liao, W. C. 2006. Spatial variation of soil properties in the Fushan 25 ha Permanent
628	Research Site of Fushan Natural Broadleaf Forest. Graduate Institute of
629	Agricultural Chemistry. Master thesis. National Taiwan University, Taiwan
630	Taipei. http://tulips.ntu.edu.tw/record=b2197651*cht.
631	Lin, C. C. 2010. Spatial variation of soil properties in the lienhuachih 25 ha dynamic
632	plot in a subtropical evergreen broad-leaved forest. Department of Agricultural
633	Chemistry. Master thesis. National Taiwan University, Taiwan Taipei.
634	http://tulips.ntu.edu.tw/record=b3650315*cht.

635	Lin, K. C., S. P. Hamburg, S. Tang, Y. J. Hsia, and T. C. Lin. 2003. Typhoon effects on
636	litterfall in a subtropical forest. Canadian Journal of Forest Research
637	33 :2184-2192.
638	Lin, T. C. 2009. The litterfall in a subtropical rainforest at Fushan in northern Taiwan.
639	Master Thesis. Graduate Institute of Ecology and Evolutionary Biology
640	College of Life Science. National Taiwan University, Taipei.
641	Lin, T. C., S. Hamburg, K. C. Lin, L. J. Wang, C. T. Chang, Y. J. Hsia, M.
642	Vadeboncoeur, C. Mabry McMullen, and C. P. Liu. 2011. Typhoon disturbance
643	and forest dynamics: lessons from a northwest pacific subtropical forest.
644	Ecosystems 14:127-143.
645	Lytle, D. A. and D. M. Merritt. 2004. Hydrologic regimes and riparian forests: a
646	structured population model for cottonwood. Ecology 85:2493-2503.
647	Martin, T. J. and J. Ogden. 2006. Wind damage and response in New Zealand forests:
648	a review. New Zealand Journal of Ecology 30:295-310.
649	McEwan, R. W., Y. C. Lin, I. F. Sun, C. F. Hsieh, S. H. Su, L. W. Chang, G. Z. Song,
650	H. H. Wang, J. L. Hwong, K. C. Lin, K. C. Yang, and J. M. Chiang. 2011.
651	Topographic and biotic regulation of aboveground carbon storage in
652	subtropical broad-leaved forests of Taiwan. Forest Ecology and Management
653	262 :1817-1825.
654	Moles, A. T., D. I. Warton, L. Warman, N. G. Swenson, S. W. Laffan, A. E. Zanne, A.
655	Pitman, F. A. Hemmings, and M. R. Leishman. 2009. Global patterns in plant
656	height. Journal of Ecology 97:923-932.
657	Noguchi, Y. 1992. Hydrometeorological differences between opposite valley slopes
658	and vegetation asymmetry in Hawaii. Journal of Vegetation Science
659	3 :231-238.
660	Peterson, C. J. 2000. Catastrophic wind damage to North American forests and the
661	potential impact of climate change. The Science of the Total Environment
662	262 :287-311.
663	Peterson, C. J. and A. J. Rebertus. 1997. Tornado damage and initial recovery in three
664	adjacent, lowland temperate forests in Missouri. Journal of Vegetation Science
665	8 :559-564.
666	Pinheiro, J. and D. Bates. 2000. Mixed effects models in S and S-Plus. Springer.
667	Poorter, L. 1999. Growth responses of 15 rain-forest tree species to a light gradient:
668	the relative importance of morphological and physiological traits. Functional
669	Ecology 13 :396-410.
670	Poorter, L., L. Bongers, and F. Bongers. 2006. Architecture of 54 moist-forest tree
671	species: Traits, trade-offs, and functional groups. Ecology 87:1289-1301.
672	Poorter, L., S. J. Wright, H. Paz, D. D. Ackerly, R. Condit, G. Ibarra-Manríquez, K. E.

673	Harms, J. C. Licona, M. Martínez-Ramos, S. J. Mazer, H. C. Muller-Landau,
674	M. Peña-Claros, C. O. Webb, and I. J. Wright. 2008. Are functional traits good
675	predictors of demographic rates? Evidence from five neotropical forests.
676	Ecology 89 :1908-1920.
677	Preston, K. A., W. K. Cornwell, and J. L. DeNoyer. 2006. Wood density and vessel
678	traits as distinct correlates of ecological strategy in 51 California coast range
679	angiosperms. New Phytologist 170:807-818.
680	Reich, P. B., M. B. Walters, and D. S. Ellsworth. 1997. From tropics to tundra: global
681	convergence in plant functioning. Proceedings of the National Academy of
682	Sciences of the United States of America 94:13730-13734.
683	Schwilk, D. W. and A. C. Caprio. 2011. Scaling from leaf traits to fire behaviour:
684	community composition predicts fire severity in a temperate forest. Journal of
685	Ecology 99 :970-980.
686	Simpson, R. H. and H. Richel. 1981. The hurricane and its impact. Baton Rouge
687	(Louisiana): Louisiana State University Press.
688	Sterck, F. J., H. A. Van Gelder, and L. Poorter. 2006. Mechanical branch constraints
689	contribute to life-history variation across tree species in a Bolivian forest.
690	Journal of Ecology 94 :1192-1200.
691	Su, H. J. 1984. Studies on the climate and vegetation types of the natural forests in
692	Taiwan (II): altitudinal vegetation zones in relation to temperature gradient.
693	Quarterly Journal of Chinese Forestry 17:53-73.
694	Su, S. H., C. H. Chang-Yang, C. L. Lu, C. C. Tsui, T. T. Lin, C. L. Lin, W. L. Chiou, L.
695	H. Kuan, Z. S. Chen, and C. F. Hsieh. 2007. Fushan subtropical forest
696	dynamics plot: tree species characteristics and distribution patterns. Taiwan
697	Forestry Research Institute, Taipei.
698	Su, S. H., C. F. Hsieh, C. H. Chang-Yang, C. L. Lu, and B. T. Guan. 2010.
699	Micro-topographic differentiation of the tree species composition in a
700	subtropical submontane rainforest in northeastern Taiwan. Taiwan Journal of
701	Forest Science 25:63-80.
702	Swenson, N. G. and B. J. Enquist. 2007. Ecological and evolutionary determinants of
703	a key plant functional trait: Wood density and its community-wide variation
704	across latitude and elevation. American Journal of Botany 94:451-459.
705	ter Steege, H., N. C. A. Pitman, O. L. Phillips, J. Chave, D. Sabatier, A. Duque, JF.
706	Molino, MF. Prevost, R. Spichiger, H. Castellanos, P. von Hildebrand, and R.
707	Vasquez. 2006. Continental-scale patterns of canopy tree composition and
708	function across Amazonia. Nature 443 :444-447.
709	Valencia, R., R. B. Foster, G. Villa, R. Condit, JC. Svenning, C. Hernández, K.
710	Romoleroux, E. Losos, E. Magård, and H. Balslev. 2004. Tree species

- distributions and local habitat variation in the Amazon: large forest plot in
 eastern Ecuador. Journal of Ecology 92:214-229.
- Vesk, P. A. and M. Westoby. 2004. Sprouting ability across diverse disturbances and
 vegetation types worldwide. Journal of Ecology 92:310-320.
- Wang, H. H., I. F. Sun, C. T. Chien, F. J. Pan, C. F. Kuo, M. H. Yu, H. L. Ku, S. H. Wu,
 Y. P. Cheng, S. Y. Chen, and Y. C. Kao. 2004. Tree species composition and
 habitat types of a karst forest in Kenting, southern Taiwan. Taiwan Journal of
 Forest Science 19:323-335.
- Webb, L. 1958. Cyclones as an ecological factor in tropical lowland rain-forest, North
 Queensland. Australian Journal of Botany 6:220-228.
- Westoby, M., D. S. Falster, A. T. Moles, P. A. Vesk, and I. J. Wright. 2002. Plant
 ecological strategies: some leading dimensions of variation between species.
 Annual Review of Ecology and Systematics 33:125-159.
- Wright, I. J., D. S. Falster, M. Pickup, and M. Westoby. 2006. Cross-species patterns
 in the coordination between leaf and stem traits, and their implications for
 plant hydraulics. Physiologia Plantarum 127:445-456.
- Xi, W. M., R. K. Peet, and D. L. Urban. 2008. Changes in forest structure, species
 diversity and spatial pattern following hurricane disturbance in a Piedmont
 North Carolina forest, USA. Journal of Plant Ecology-Uk 1:43-57.

732 FIGURES

733	FIGURE 1. The location of Fushan (FS) and Lienhuachih (LHC) in Taiwan.
734	
735	FIGURE 2. The allometric relationship of traits between shared species in
736	two plots
737	FIGURE 3. The allometric relationship of traits between shared species in
738	two plots
739	FIGURE 4. The barplot of wood density in two plots
740	FIGURE 5. Spatial distribution of canopy height in FS and LHC 27
741	FIGURE 6. The scatter plot between canopy height and elevation in FS (A).
742	The relationship between canopy height, convexity and slope in LHC
743	were drawn in (B) and (C)
744	FIGURE 7. The PCA result of functional composition in two plots
745	
746	

749 FIGURE 1. The location of Fushan (FS) and Lienhuachih (LHC) in

- 750 Taiwan.

FIGURE 2. The allometric relationship of traits between shared species intwo plots.

Circles and triangles indicate species in FS and LHC. Each line representseach species' allometric functions between DBH and tree height (A), tree

height and crown area (B), first branch height (C) and crown depth (D) in

760 FS (solid line) and LHC (dashed line).

761

754

763

FIGURE 3. The allometric relationship of traits between shared species intwo plots.

Solid and open circles are data in FS and LHC, the lines indicate the allometric equation fitted by maximum likelihood method. (A) The relationship between DBH and tree height of *Schefflera octophylla* in FS and LHC. R^2 is 0.75 in FS and 0.96 in LHC (B) The relationship between

- tree height and crown area of *Limlia uraiana* in FS and LHC. R^2 is 0.48
- in FS and 0.85 in LHC. (C) The relationship between tree height and first
- branch height (FBH) of *Schefflera octophylla* in FS and LHC. R^2 is 0.68
- in FS and 0.65 in LHC. (D) The relationship between tree height and
- crown depth of *Castanopsis cuspidata* in FS and LHC. R^2 is 0.85 in FS
- 775 and 0.87 in LHC.
- 776

- FIGURE 4. The barplot of wood density in two plots.
- 780 Species in FS and LHC are represented with black and white bar
- respectively. Species abbreviation showed in Appendix 1. The bar showed
- the mean \pm 1 SD. The asterisk showed the significant difference
- (Wilcoxon rank sum test, P = 0.007 both in SCHEOC and HELIFO).

785 786

		·· 1 1· / ·1 /·	C I	1 • 1 / • т	
/8/	FIGURE 5. Spa	atial distribution	i of canopy I	height in F	S and LHC.

The size of each pixel is at 20 by 20 meters. Canopy height were both log

transformed in FS (A) and LHC (B). The boxplot of quadrat-based

canopy height in FS and LHC (n = 625 quadrats for each plots) is shown

791 in (C).

FIGURE 6. The scatter plot between canopy height and elevation in FS

795 (A). The relationship between canopy height, convexity and slope in LHC

796 were drawn in (B) and (C).

FIGURE 7. The PCA result of functional composition in two plots. Circle and triangle indicate species in FS and LHC. Shrub species (BLASCO in FS; Blasco, Euonla, and Psycru in LHC) were removed in this analysis. Abbreviations: SLD, slenderness; H_{max} , maximum tree height; CA₁₀, crown area at tree height = 10 m; WD, wood density; CD₁₀, crown depth at tree height = 10 m. The abbreviations of species names are shown in Appendix 1.

808 TABLES

809	TABLE 1. Four allometric relationships of shared species under ANCOVA
810	model between two plots
811	TABLE 2. Species specific allometric relationships between DBH vs. TH,
812	TH vs. CA, TH vs. FBH, and TH vs. CD
813	TABLE 3. The GLS models of canopy height in FS and LHC plots
814	
815	

- 816
- TABLE 1. Four allometric relationships of shared species under
- 818 ANCOVA model between two plots.
- 819 The numbers represent the parameter estimate value of trait effect (DBH
- to TH; TH to CA, FBH and CD), plot effect (FS and LHC) and
- interaction between trait and plot. Asterisks represent: *, P < 0.05; **, P <
- 822 0.01; ***, P < 0.001. Marginally significant effect is code as [#].

	DBH VS TH	TH VS CA	TH VS FBH	TH VS CD
trait	0.4078***	2.0784***	0.3564***	0.4932***
plot	-0.0934 [#]	0.3325	-0.2539	0.3929
interaction	0.0842***	-0.2761*	-0.0459	0.0464

- 823 DBH: diameter at breast height (cm); TH: tree height (m); CA: crown area (m²); FBH: first branch
- 824 height (m); CD: crown depth (m). *: P < 0.05; **: P < 0.01; ***: P < 0.001. #: marginally significant.

- TABLE 2. Species specific allometric relationships between DBH vs. TH,
 TH vs. CA, TH vs. FBH, and TH vs. CD.
 ANCOVA model were used to test whether there is trait differentiation
- 830 between two plots. The number represents the estimated value of plot
- 831 effect and interactions. Species abbreviations are: LIMLUR, *Limlia*
- 832 uraiana; BLASCO, Blastus cochinchinensis; CASTCU, Castanopsis
- 833 cuspidata; ENGERO, Engelhardia roxburghiana; LITSAC, Litsea
- 834 acuminata; SCHEOC, Schefflera octophylla; HELIFO, Helicia
- 835 formosana.

Species		DBH VS TH	TH VS CA	TH VS FBH	TH VS CD
	plot effect	-0.259*	0.819	-1.261	-0.108
LIMLUK	interaction	0.095*	-0.422	-0.014	$0.148^{\#}$
DIASCO	plot effect	0.259	-0.384	0.927	-1.115
DLASCO	interaction	-0.021	0.267	-0.168	0.409
CASTCU	plot effect	0.009	$0.985^{\#}$	-0.877	$1.383^{\#}$
CASICO	interaction	0.034	-0.476 [#]	0.004	-0.034
ENCEDO	plot effect	0.002	0.126	-0.964	0.547
ENGERU	interaction	0.047	-0.230	0.041	0.063
	plot effect	$-0.208^{\#}$	0.529	-0.403	-0.009
LIISAC	interaction	0.116*	-0.399	0.022	0.092
COLLOC	plot effect	-0.086	-0.079	1.275	-0.604
SCHEUC	interaction	0.149*	-0.121	-0.181*	0.106
	plot effect	0.061	-0.253	0.184	0.068
HELIFO	interaction	-0.017	0.123	-0.129 [#]	0.047

836 *: *P* < 0.05; **: *P* < 0.01; ***: *P* < 0.001. [#]: marginally significant.

TABLE 3. The GLS models of canopy height in FS and LHC plots. Value S.D. t-value *P*-value FS Elevation -0.013 0.004 -3.161 0.001 Convexity 0.043 0.030 1.433 0.152 Slope 0.007 0.006 1.218 0.223 0.342 0.427 0.799 0.424 Aspect LHC Elevation 0.003 0.004 0.700 0.484 Convexity -0.084 0.027 -3.038 0.002 Slope 0.024 0.010 2.250 0.024 Aspect -0.319 0.535 -0.595 0.551 840

APPENDIX 842

Appendix 1. The growth forms and importance values (IV) of selected 843

species in this study. The capital code means the shared species in two 844 plots.

Site	Code	Scientific name	Growth	IV
			form	
FS	LIMLUR	Limlia uraiana	Canopy	15.1068
	HELIFO	Helicia formosana	Subcanopy	11.7071
	BLASCO	Blastus cochinchinensis	Shrub	7.7920
	CASTCU	Castanopsis cuspidata	Canopy	6.9355
	ENGERO	Engelhardia roxburghiana	Canopy	5.6907
	Machth	Machilus thunbergii	Canopy	4.6156
	Melisq	Meliosma squamulata	Canopy	4.5751
	Pyresh	Pyrenaria shinkoensis	Subcanopy	4.3470
	LITSAC	Litsea acuminata	Canopy	3.8337
	Machmu	Machilus zuihoensis var. mushaensis	Canopy	3.5029
	SCHEOC	Schefflera octophylla	Canopy	2.3480
			12	
LHC	Randco	Randia cochinchinensis	Subcanopy	7.1353
	Crypch	Cryptocarya chinensis	Canopy	5.5194
	BLASCO	Blastus cochinchinensis	Shrub	5.3712
	SCHEOC	Schefflera octophylla	Canopy	5.1807
	Pasana	Pasania nantoensis	Canopy	4.7689
	ENGERO	Engelhardia roxburghiana	Canopy	4.6483
	Cyclpa	Cyclobalanopsis pachyloma	Canopy	3.2339
	Cinnsu	Cinnamomum subavenium	Canopy	3.1085
	HELIFO	Helicia formosana	Subcanopy	3.1076
	Diosmo	Diospyros morrisiana	Subcanopy	2.8816
	Tricdu	Tricalysia dubia	Subcanopy	2.7813
	Schisu	Schima superba	Canopy	2.7808

Mallpa	Mallotus paniculatus	Canopy	2.7774
Psycru	Psychotria rubra	Shrub	2.6718
Euonla	Euonymus laxiflorus	Shrub	2.5876
Syzybu	Syzygium buxifolium	Subcanopy	2.4212
Castfa	Castanopsis fargesii	Canopy	2.3530
Ardiqu	Ardisia quinquegona	Shrub	2.0910
Pasako	Pasania konishii	Subcanopy	1.9231
Ormofo	Ormosia formosana	Canopy	1.9113
LIMLUR	Limlia uraiana	Subcanopy	1.0715
CASTCU	Castanopsis cuspidata	Canopy	1.1809
LITSAC	Litsea acuminata	Canopy	1.4298

Site	Code	DBH - Tree	Tree Height -	ee Height - Tree Height -	
		Height	Crown Area	First Branch	Crown Depth
				Height	
FS	BLASCO	0.78	0.31	0.33	0.04
	CASTCU	0.9	0.82	0.59	0.85
	ENGERO	0.87	0.78	0.5	0.78
	HELIFO	0.78	0.56	0.55	0.8
	LIMLUR	0.82	0.48	0.35	0.63
	LITSAC	0.83	0.57	0.67	0.79
	Machmu	0.84	0.64	0.71	0.64
	Machth	0.85	0.75	0.74	0.68
	Melisq	0.92	0.93	0.82	0.81
	Pyresh	0.94	0.63	0.91	0.72
	SCHEOC	0.75	0.39	0.68	0.49
	mean	0.843636	0.623636	0.622727	0.657273
	minimum	0.75	0.31	0.33	0.04
	maximum	0.94	0.93	0.91	0.85
	median	0.84	0.63	0.67	0.72
LHC					
	Ardiqu	0.93	0.96	0.9	0.62
	BLASCO	0.44	0.06	0.11	0.72
	CASTCU	0.84	0.76	0.66	0.87
	Castfa	0.89	0.54	0.48	0.83
	Cinnsu	0.92	0.65	0.72	0.73
	Crypch	0.88	0.83	0.82	0.88
	Cyclpa	0.89	0.6	0.61	0.88
	Diosmo	0.76	0.54	0.27	0.74
	ENGERO	0.87	0.59	0.48	0.61
	Euonla	0.72	0.42	0.61	0.52
	HELIFO	0.76	0.53	0.52	0.91
	LIMLUR	0.86	0.85	0.47	0.84
	LITSAC	0.86	0.56	0.6	0.91
	Mallpa	0.88	0.68	0.67	0.49
	Ormofo	0.95	0.65	0.83	0.7
	Pasako	0.85	0.26	0.47	0.72
	Pasana	0.84	0.63	0.37	0.9

847 Appendix 2. The fitting R^2 of allometric functions in two plots.

Psycru	0.67	0.2	0.13	0.56
Randco	0.83	0.53	0.7	0.76
SCHEOC	0.96	0.85	0.65	0.52
Schisu	0.91	0.57	0.58	0.7
Syzybu	0.73	0.31	0.17	0.71
Tricdu	0.76	0.31	0.19	0.75
mean	0.826087	0.56	0.522174	0.733478
minimum	0.44	0.06	0.11	0.49
maximum	0.96	0.96	0.9	0.91
median	0.85	0.56	0.58	0.71

Site	Code	DBH - Tree Height			Tree Height - Crown		Tree Height - First		Tree Heigh - Crown	
					Area		Branch Height		Depth	
		a	b	$H_{max}(m)$	а	b	a	b	а	b
FS	BLASCO	0.200464	0.778417	5.022293	0.36244	1.225509	0.338138	0.263537	0.170241	0.883683
	CASTCU	0.138484	0.63948	19.27863	0.00227	3.482676	0.294292	1.786282	0.510604	1.76E-73
	ENGERO	0.125409	0.725921	16.76286	0.108301	1.935517	0.319656	1.287158	0.437237	1.81E-48
	HELIFO	0.201442	0.7923	10.79427	0.223685	1.586798	0.314133	0.535396	0.610471	1.86E-116
	LIMLUR	0.115656	0.386534	20.05327	0.108067	1.936298	0.333834	0.290124	0.447736	1.46E-13
	LITSAC	0.263246	0.781992	12.61467	0.274911	1.732284	0.289092	1.125036	0.572881	2.07E-11
	Machmu	2.60E-08	10.3954	14.55821	0.046484	2.294195	0.405967	1.12602	0.389862	0.027399
	Machth	0.054367	0.526853	23.42071	0.06916	2.201791	0.364885	1.097761	0.434027	8.07E-29
	Melisq	0.035329	0.642253	21.56736	0.022763	2.609417	0.364441	0.82488	0.456483	4.98E-54
	Pyresh	0.083383	0.668107	16.61637	0.183092	1.77683	0.541625	4.50E-60	0.382881	0.141373
	SCHEOC	0.050338	0.484783	17.52411	0.552542	1.358017	0.447306	3.93E-19	0.298178	1.039449
LHC	Ardiqu	0.042557	0.649096	14.54815	0.107098	1.702766	0.533575	1.72E-29	0.318574	0.730647
	BLASCO	0.94262	1.575335	4.784259	1.029343	0.522925	0.170356	1.188949	0.53132	2.49E-27
	CASTCU	0.125175	0.661674	19.62134	0.207418	1.729712	0.297793	0.919967	0.581328	7.39E-30
	Castfa	0.13696	0.822743	16.78627	0.119313	1.963424	0.262479	1.320298	0.626856	2.96E-29
	Cinnsu	0.049965	0.636732	19.21374	0.163154	1.497886	0.384229	0.595509	0.545257	0.132451
	Crypch	0.090062	0.690153	16.08062	0.047391	2.252281	0.418272	0.125856	0.563603	0.266413

Appendix 3. The fitting result of each species' allometric function. The parameters are listed below each relationship.

Cyclpa	0.127859	0.805829	18.58443	0.014471	2.592009	0.253221	1.688039	0.609088	1.60E-85
Diosmo	0.227548	0.724544	14.16024	0.196117	1.551989	0.176731	2.544945	0.472102	1.25E-52
ENGERO	0.120079	0.774529	17.69377	0.051662	2.078525	0.361201	0.320551	0.528592	0.222516
Euonla	0.054583	0.606596	7.042138	0.198226	1.131994	0.554731	1.15E-95	0.328491	0.290656
HELIFO	0.174487	1.030043	11.63181	0.57877	1.178422	0.185701	0.709887	0.706508	9.40E-16
LIMLUR	0.063334	0.48866	19.84488	0.030647	2.407309	0.283898	0.550464	0.588123	9.00E-35
LITSAC	0.13627	0.70952	15.30595	0.235943	1.63951	0.310764	0.729766	0.692415	1.56E-84
Mallpa	0.128572	0.766379	18.80325	0.703186	1.157785	0.499455	4.10E-26	0.365335	2.35E-17
Ormofo	0.043567	0.673085	20.09043	0.646651	1.17043	0.44867	0.206446	0.599631	0.128042
Pasako	0.225143	0.966475	4.649269	0.921203	0.977418	0.262221	0.929058	0.556972	6.73E-14
Pasana	0.152833	0.6396	15.29413	0.056811	2.301967	0.156464	1.478258	0.680982	4.35E-32
Psycru	0.271804	0.436798	5.400012	0.302096	1.31063	0.2113	0.88941	0.440076	4.87E-13
Randco	0.173599	0.729933	14.06399	0.095453	1.722924	0.322967	1.198612	0.509795	2.68E-219
SCHEOC	0.072048	0.768445	23.20843	0.00049	3.632096	0.285856	1.052496	0.405371	0.42412
Schisu	0.075214	0.879377	23.08216	0.273395	1.511866	0.437998	0.028012	0.538544	0.098449
Syzybu	0.242592	0.95854	8.544595	0.372392	1.183195	0.191691	1.399044	0.556873	5.60E-115
Tricdu	0.066611	0.424535	8.246459	0.593583	0.775587	0.20858	1.537342	0.592577	7.35E-43

- Appendix 4. The meteorological data during typhoon strike from 1988 to
- 852 2007 in FS (24°45'19.4"N, 121°35'45.3"E, elevation = 634 m above sea
- level) and LHC (23°56'N, 120°54'E, elevation = 666 m above sea level)
- 854 weather stations. The mean of maximum wind speed in FS (A) and LHC
- (B) are 11.8 and 3.2 m/s, respectively. The monthly mean of solar
- radiation (C) are about 300 and 360 MJ/m² in FS (field circles with solid
- 857 line) and LHC (open circles with solid line), respectively.

- 860 Appendix 5. The meteorological data of typhoons strike during 1958 –
- 861 2011 in YiLan (24°46'56"N, 121°44'53"E; A and B) and SunMoonLake
- 862 (23°53'00"N, 120°54'29"E; C and D) weather station. The vertical line
- 863 indicate mean of daily precipitation during typhoons strike in YiLan (A)
- and SunMoonLake (C) station. The vertical line indicate mean of
- 865 maximum wind speed during typhoons strike in YiLan (A) and
- 866 SunMoonLake (C) station.

