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- 摘 要 -

在1926年，Hopf 證明了任意 compact，simply connected 且具有常數曲率的 Rieman-

nian manifold 會跟標準的球保距。根據這個結果，Hopf 提出了一個問題 : 在曲率的條件為多少

時，一個 compact，simply connected 的 Riemannian manifold 會是一個拓樸上的球 ? 同樣

地，在1951年，Rauch 也提出了一個類似的問題。

在本論文中，我們將討論幾何中的拓樸球定理。包括古典球定理，diameter 球定理，

Ricci comparsion球定理以及具有正取率的球定理。證明這些定理會運用多種方法，包括 測地

線，變分法以及張量分析。最後，我們會使用表格將一些拓樸球定理列出來。



Abstract

In 1926, Hopf proved that any compact, simply connected Riemannian manifold with

constant curvature 1 is isometric to the standard sphere. Motivated by this result, Hopf

posed the question whether a compact, simply connected manifold with suitably pinched

curvature is topologically a sphere. Similarly, in 1951, Rauch also ask some questions about

"pinching".

In this paper, we give a survey of various sphere theorems in geometry. These include

the classic sphere theorem, the diameter sphere theorem, the Ricci comparison sphere the-

orem, and the sphere theorem with positive curvature. These theorems employ a variety

of methods, including geodesic, variations of energy, and tensor analysis. Finally, we use a

table to list all of the sphere theorems.
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Chapter 1

Introduction

One of the most beautiful theorem in global di�erential geometry is the sphere theorem.

In 2-dimensional, the simplest case of sphere theorem is Gauss − Bonnect Theorem,

which states is

Theorem 1.0.1. (Gauss−Bonnet Theorem [3])

Let M be a compact 2-dimensional surface equipped with a metric. Then

�
M

Kdvol = 2πχ(M),

where K denotes the Gaussian curvature of M, dvol denotes the induced area measure on

M, and χ(M) denotes the Euler characteristic of M.

In this paper, we investigate the classic topological sphere theorem in Riemannian

geometry and its generalizations

The sphere theorem is also known as the quarter-pinched sphere theorem, which deter-

mines the topology of manifolds admitting metrics with a particular curvature bounded.

The statement of the theorem is

Theorem 1.0.2. (classic sphere theorem)(M. Berger [4]; W. Klingenberg [34] 1960)

If Mn is a compact, simply connected Riemannian n−manifold with sectional curvature

K satis�es
1

4
< K ≤ 1.
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Then it is homeomorphic to Sn.

The sphere theorem has a long history. In 1951, the sphere theorem was proved for the

�rst time by Rauch [39] for h < K ≤ 1 and h ∼ 3
4
. A fundamental contribution was made

by Klingenberg [33] who introduced the problem by the consideration of "cut locus". In

the case of a manifold with even dimension, Klingenberg [33] obtained an estimate for the

distance from a point to its "cut locus" and he proved the theorem for h < K ≤ 1 and

h ∼ 0.55. Using Toponogov triangle comparison theorem and the estimation mentioned

above, Berger [4] obtained the theorem, still in the case of even dimension, with h = 1
4
.

Finally, Klingenberg [34] and Berger [4] extended his estimation from even dimension to

odd dimension. the classic sphere theorem as stated above.

In Chapter 2, we review some basic de�nitions and theorems in Riemannian Geometry.

The content of this chapter contains Riemannian manifold, geodesic, curvature, Rauch

comparison theorem, Toponogov's triangle comparison theorem, Hopf-Rinow theorem etc.

In Chapter 3, we present the classic sphere theorem in Riemannian geometry, diam-

eter sphere theorem, Ricci comparison sphere theorem, and sphere theorem of positive

curved with nontrivial Killing �eld. Moreover, we introduce some other topological sphere

theorems in the last section of chapter 3. Finally, we use a table to list all of the sphere

theorems.
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Table 1.1: The Chronology of Topological Sphere Theorem

Year Theorem Mathematician

1951

Mn: compact, simply connected

condition: h < K ≤ 1 and h ∼ 3
4

conclusion: it is homeomorphic to Sn

H.E. Rauch

1960

Mn: compact, simply connected

condition: 1
4 < K ≤ 1

conclusion: it is homeomorphic to Sn

M. Berger & W.Klingenberg

Mn: compact, n ≥ 5, n ∈ odd

condition: positive n−3
4n−3 − pinched

conclusion: b2 = 0

M. Berger

1975

Mn: complete

condition: Ric ≥ (n− 1)k > 0 and diam(M) = π√
k

conclusion: it is isometric to Sn

S.Y. Cheng

1977

Mn: compact, n ≥ 4

condition: K ≥ 1 and diam(M) > π
2

conclusion: it is homeomorphic to Sn

Grove & Shiohama

1988

Mn: compact, simply connected

condition: positive isotropic curvature

conclusion: it is homotopic to Sn

M. Micallef & J.D. Moore

1989

M4: 4-dimensional orientable complete positive curvature

condition: nontrivial Killing �eld

conclusion: it is homeomorphic to S4or CP2

Wu-Yi Hsiang & Bruce Kleniner

Mn: compact, orientable, n = 4

condition: δ-pinched in the global sense and δ ∼ 0.188

conclusion: it is homeomorphic to S4or CP2

W. Seaman & M.Ville

1993

Mn: compact, n ≥ 4, n ∈ even

condition: positive isotropic curvature

conclusion: b2 = 0

M. Micallef & M. Wang

1997

Mn: compact, n ≥ 2, ψ(n) ∈ (0, 1)

condition: Ric ≥ (n− 1)g and vol(M, g) ≥ (1− ψ(n))vol(Sn(1))

conclusion: it is di�eomorphic to Sn

J. Cheeger & T. Colding
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Chapter 2

Preliminaries

In this chapter, we review some consequences in Riemannian geometry.

2.1 Introduction to Riemannian geometry

Let M be a di�erentiable manifold. A Riemannian manifold is a di�erentiable manifold

M equipped with a Riemannian metric g(·, ·) denoted by the pair (M, g).

Given a function f : M → R. De�ne =(M)={all vector �elds of class C∞ in M} and

D(M)={all real-valued functions of class C∞ in M}.

De�nition 2.1.1. [22] An a�ne connection∇ on a di�erentiable manifoldM is a bilinear

mapping

∇ : =(M)×=(M)→ =(M)

de�ned by (X, Y )→ ∇XY and satis�ng the following properties:

1. ∇ is linear in the �rst variable and second variable.

2. ∇X(fY ) = f∇XY +X(f)Y,

in which X, Y ∈ =(M) and f ∈ D(M).

If an a�ne connection ∇ on M satis�es symmetric and compatible with the Rieman-

nian metric, then ∇ is called the Levi− Civita(or Riemannian) connection on M .
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LetM be a di�erentiable manifold with an a�ne connection ∇. A vector �eld V along

a curve c : I →M is called parallel when DV
dt

= 0, t ∈ I.

We will introduce the geodesic on a Riemannian manifold. A geodesic is a generaliza-

tion of the notion of a "straight line" to "curve space".

De�nition 2.1.2. [22] A parametrized curve γ : I → M is a geodesic for t ∈ I if

D
dt

(dγ
dt

) = 0 for t ∈ I.

We shall de�ne the exponential map. Let TM be the tangent bundle, the tangent

bundle of M is the disjoint union of the tangent space TpM of p ∈M.

De�nition 2.1.3. [22] Let U = {(q, w) ∈ TM |q ∈ M, v ∈ TqM, |v| < ε} ⊂ TM be an

open set. Then the map exp : U →M given by

exp(q, v) = γ(1, q, v) = γ(|v|, q, v
|v|

), (q, v) ∈ µ,

is called the exponential map on U

The exponential map is a generalize the ordinary exponential function of mathematical

analysis to a di�erentiable manifold with an a�ne connection.

De�nition 2.1.4. [22] The Riemannian curvature operator R of a Riemannian manifold

M is a correspondence that associate to every pair X, Y ∈ =(M) a mapping R(X, Y ) :

=(M)→ =(M) de�ned by

R(X, Y )Z = ∇Y∇XZ −∇X∇YZ +∇[X,Y ]Z

where Z ∈ =(M) and ∇ is the Riemannian connection of M .

From now on, we shall write g(R(X, Y )Z, T ) = R(X, Y, Z, T ).

De�nition 2.1.5. [22] Given a point p ∈ M and a two-dimensional subspace σ ⊂ TpM.

Then

Kp(X, Y ) = Kp(σ) =
R(X, Y,X, Y )

g(X,X)g(Y, Y )− g(X, Y )2

is called the sectional curvature of σ at p, where {X, Y } is any basis of σ.

5



We are going to introduce the Ricci curvature and scalar curvature on a Riemannian

manifold M. Ricci curvature is the average of the Riemannian curvature, and Scalar

curvature is the average of the Ricci curvature. The concise de�nitions are as following:

De�nition 2.1.6. [22] Let {e1, . . . , en} be an orthonormal basis. Then

(1) Ricp(x) = 1
n−1

∑
i

g
(
R(x, ei)x, ei

)
, i = 1, 2, . . . , n− 1,

(2) Sca(p) = 1
n

∑
j

Ricp(ej) = 1
n(n−1)

∑
ij

g
(
R(ei, ej)ei, ej

)
, j = 1, 2, . . . , n.

Then the expression (1) is called the Ricci curvature in the direction x at p and (2) is

called the scalar curvature at p, respectively.

We shall introduced the Rauch comparison theorem. The Rauch comparison theorem

is the fundamental result which relates the sectional curvature of a Riemannian manifold

to the rate at which geodesics spread apart. Here a Jacobi field means a vector �eld J

along a geodesic γ and satis�es

D2J

dt2
+R(γ

′
(t), J(t))γ

′
(t) = 0.

Two points p and q are conjugate along a geodesic γ if there exists a non-zero Jacobi �eld

along γ that vanishes at p and q.

Theorem 2.1.7. (Rauch comparison theorem [3])

Let γ : [0, a] → Mn and γ̃ : [0, a] → M̃n+k, k ≥ 0, be geodesics with the same velocity

(i.e.,|γ′(t)| = |γ̃′(t)|), and let J and J̃ be Jacobi �elds along γ and γ̃, respectively, such

that

J(0) = J̃(0) = 0, < J
′
(0), γ

′
(0) >=< J̃

′
(0), γ̃

′
(0) >, |J ′(0)| = |J̃ ′(0)|.

Assume that γ̃ does not have conjugate points on (0, a] and that, for all t and all x ∈

Tγ(t)(M), x̃ ∈ Tγ̃(t)(M), we have

K̃(x̃, γ̃
′
(t)) ≥ K(x, γ

′
(t)),
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where K(x, y) denotes the sectional curvature with respect to the plane generated by x and

y. Then

|J̃ | ≤ |J |.

In addition, if for some t0 ∈ (0, a], we have |J̃(t0)| = |J(t0)|, then K̃(J̃(t), γ̃
′
(t)) =

K(J(t), γ
′
(t)), for all t ∈ [0, t0].

And then, we shall introduce an application of the Rauch comparison Theorem, the

Toponogov triangle comparison theorem. The concise statement is as following:

Theorem 2.1.8. (Toponogov triangle comparison theorem [3])

Assume that the sectional curvature of a Riemannian manifold M satis�es

K ≥ δ > 0.

1. Let {p, q, r} be any triangle in M and in Sn(δ) take some triangle {p′ , q′ , r′} such

that the corresponding side from p and p
′
have equal lengths and equal angles at p

and p
′
. Then

dM(q, r) ≤ dSn(δ)(q
′
, r
′
).

Where Sn(δ) is the space form of dimension n and sectional curvature k. (see Figure

2.1.1)

2. Given any triangle with vertices p, q, r ∈ M, it follows that the interior angles are

larger than the corresponding interior angles for a comparison triangle in Sn(δ).

(see Figure 2.1.2)
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Figure 2.1.1: The Toponogov triangle comparison theorem.
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Figure 2.1.2: The Toponogov triangle comparison theorem.

Hopf -Rinow theorem is one of the most important theorem for the complete mani-

folds, which state any two points in a complete manifold admits a minimizing geodesic

joining these two points.

Theorem 2.1.9. (Hopf -Rinow theorem [22])

Let M be a Riemannian manifold and let p ∈M . The following assertions are equivalent:

(a) expp is de�ned on all of TpM .

(b) The closed and bounded sets of M are compact.

(c) M is complete as a metric space.

(d) M is geodesically complete. In addition, any of the statements above implies that

(e) For any q ∈M there exists a geodesic γ joining p to q with l(γ) = d(p, q).
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We shall de�ne the formula for the �rst and second variation. A prop variation is

a variation with the same initial point and endpoint. Let c : [0, a] → M be a piecewise

di�erentiable curve inM and f : (−ε, ε)×[0, a]→M be a variation of c with f(0, t) = c(t).

We de�ne E(s) be energy function by

E(s) =

� a

0

|∂f
∂t

(s, t)|2dt, s ∈ (−ε, ε).

Proposition 2.1.10. (variation formulas [22])

Let c : [0, a] → M be a piecewise di�erentiable curve. Let f : (−ε, ε) × [0, a] → M be a

proper variation of c, and let E : (−ε, ε)→ R be the energy of f. Then

(first variation formula)

1
2
E
′
(0) = −

� a
0
g
(
V (t), D

dt
dc
dt

)
dt

−
∑k

i=1 g
(
V (ti),

dc
dt

(t+i )− dc
dt

(t−i )
)

−g
(
V (0), dc

dt
(0)
)

+ g
(
V (a), dc

dt
(a)
)

where V (t) = ∂f
∂s

(0, t) is the variational �eld of f , and

dc

dt
(t+i ) = lim

t→t+i

dc

dt
,

dc

dt
(t−i ) = lim

t→t−i

dc

dt
.

(second variation formula)

1

2
E
′′
(0) = −

� a

0

g
(
V (t),

D2V

dt2
+R(

dγ

dt
, V )

dγ

dt

)
dt−

k∑
i=1

g
(
V (ti),

DV

dt
(t+i )− DV

dt
(t−i )

)
,

where V (t) = ∂f
∂s

(0, t) is the variation �eld of f , R is the Riemannian curvature operator

of M and
DV

dt
(t+i ) = lim

t→t+i

DV

dt
,

DV

dt
(t−i ) = lim

t→t−i

DV

dt
.
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Corollary 2.1.11. [22] If the variation is not proper, then we obtain following expression:

1
2
E
′′
(0) = −

� a
0
g
(
V (t), D

2V
dt2

+R(dγ
dt
, V )dγ

dt

)
dt

−
∑k

i=1 g
(
V (ti),

DV
dt

(t+i )− DV
dt

(t−i )
)
− g
(
D
ds
∂f
∂s
, dγ
dt

)
(0, 0)

+g
(
D
ds
∂f
∂s
, dγ
dt

)
(0, a)− g

(
V (0), DV

dt
(0)
)

+ g
(
V (a), DV

dt
(a)
)
.

We shall introduce some concepts of classical Morse theory. Let f be a smooth real-

value function on a manifold M. A point p ∈ M is called a critical point of f if the

induced map f∗ : TpM → Tf(p)R is zero. (i.e. ∂f
∂x1

(p) = ∂f
∂x2

(p) = · · · = ∂f
∂xn

(p) = 0, where

(x1, . . . , xn) is a local coordinate system in a neighborhood U of p.) The real number f(p)

is called a critical value of f. A critical point p is called non− degenerate if and only if

the matrix

A =
( ∂2f

∂xi∂xj
(p)
)

is non-singular, (i.e. det(A) 6= 0.)

Lemma 2.1.12. (Morse Lemma [37])

Let p be a non-degenerate critical point for f. Then there is a local coordinate system

(y1, y2, · · · , yn) in a neighborhood U of p with yi(p) = 0 for all i and such that the identity

f = f(p)− (y1)
2 − . . .− (yλ)

2 + (yλ+1)
2 + . . .+ (yn)2

holds throughout U, where λ is the index of f at p.

We shall introduce the cut locus Cm(p) with p ∈ M. It is roughly the set of all other

points for which there are multiple minimizing geodesics connecting them from p. We

know that expp is an injective mapping to an open ball Br(p) if and only if the radius r is

less than or equal to the minimizing distance from p to Cm(p). In the following, we shall

de�ne injectivity radius of M.

De�nition 2.1.13. [22] We de�ne the injectivity radius of M by

i(M) = inf
p∈M

d(p, Cm(p)).
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In the following, we shall introduce the fundamental tensor analysis. A tensor S of

order r on a Riemannian manifold is a functional linear mapping. Then we can de�ne a

covariant derivative tenser ∇S by

∇S(X, Y ) = (∇XS)(Y ) = ∇X(S(Y ))− S(∇XY ).

More generally, de�ne

∇S(X, Y1, . . . , Yr) = (∇XS)(Y1, . . . , Yr)

= ∇X(S(Y1, . . . , Yr))−
r∑
i=1

S(Y1, . . . ,∇XYi, . . . , Yr).

If f : M → R is a smooth function, then we already have ∇f de�ned as the vector

�eld satisfying

g(∇f, v) = Dvf = df(v).

We will de�ne the Hessian of f and Laplacian of f :

De�nition 2.1.14. [38] The Hessian Hessf is de�ned by

Hessf(X, Y ) = g(S(X), Y ).

Where S(X) = ∇X∇f be self-adjoint (1, 1)−tensor.

LetM be a Riemannian manifold, X, Y ∈ =(M) and f ∈ D(M). De�ne the divergence

of X as a function divX : M → R given by divX(p) = tr(∇YX(p)), p ∈M.

De�nition 2.1.15. [38] Let M be Riemannian manifold. De�ne the Laplacian operator

4 : D(M)→ D(M) by

4f = div∇f,

where f ∈ D(M).

We will de�ne the killing field on a Riemannian manifold. A vector �eld X on a

Riemannian manifold (M, g) is called a Killing field if the local �ows generated by X

11



act by isometries. The concise de�nition is as following:

De�nition 2.1.16. [38] A vector �eld X on a Riemannian manifold (M, g) is a Killing

field if and only if LXg = 0. (i.e. g(∇YX,Z) + g(∇ZX, Y ) = 0, for all Y, Z ∈ =(M).)

The vector �eld on a circle that points clockwise and has the same length at each

point is a Killing vector �eld, since moving each point on the circle along this vector �eld

simply rotates the circle.

Figure 2.1.3: The killing vector �eld on a circle.
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2.2 Introduction to algebraic topology

In this section, we shall introduce the fundamental property of algebraic topology. Include

homotopy group, n−connection, universal covering, homology group, and Betti number

etc.

We are going to introduce the homotopy group, which is two continuous functions

from one topological space to another. If one can be "continuous deformed" into the

other, then such a deformation being called a homotopy between the two functions.

We next introduce the de�nition of the homotopy group and fundamental group as

following:

By a path in a topological space X we mean a continuous map f : I → X where I is

the unit interval [0, 1]. A homotopy of paths in X is a family ft : I → X, 0 ≤ t ≤ 1, such

that

1. The endpoint ft(0) = x0 and ft(1) = x1 are independent of t.

2. The associated map F : I × I → X de�ned by F (s, t) = ft(s) is continuous.

When two paths f0 and f1 are connected in this way by a homotopy ft, they are said to

be homotopic. The notation for this is f0 ' f1.

The relation of homotopy on paths with �xed endpoints in any space is an equivalence

relation. An equivalence class will be denoted [f ] and called the homotopy class of f.

De�nition 2.2.1. [30] Given two path f, g : I → X such that f(1) = g(0), there is a

composition or product path f ·g that traverses �rst f and then g, de�ned by the formula:

(f · g)(s) =

 f(2s), s1 ∈ [0, 1
2
]

g(2s− 1) s1 ∈ [1
2
, 1]

This product operation respects homotopy classes. Above homotopy classes form a group,

these groups are called fundamental groups, denoted by π1(X, x0).

De�nition 2.2.2. [30] Let In be the n-dimensional unit cube, the product of n copies of

the interval [0, 1]. The boundary ∂In of In is the subspace consisting of points with at least
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one coordinate equal to 0 or 1. For a space X with basepoint x0 ∈ X, de�ne πn(X, x0) to

be the set of homotopy classes of maps f : (In, ∂In)→ (X, x0), where homotopies ft are

required to satisfy ft(∂I
n) = x0 for all t. The de�nition extend to the following case:

1. When n = 0, by taking I0 to be a point and ∂I0 to be empty, so π0(X, x0) is just

the set of path-components of X.

2. When n ≥ 2, a product operation in πn(X, x0), generalizing the composition oper-

ation in π1, is de�ned by

(f · g)(s1, s2, · · · , sn) =

 f(2s1, s2, · · · , sn), s1 ∈ [0, 1
2
]

g(2s1 − 1, s2, · · · , sn), s1 ∈ [1
2
, 1]

It is evident that this sum is well-de�ned on homotopy classes. Above equivalence

classes form a group, these groups are called homotopy groups.

We mention the application of homotopy group, namely, n−connected,N-connectedness

is a way to say that a space vanishes.

De�nition 2.2.3. [30] A space X is a topological space with basepoint x0 is said to be

n-connected if πi(X, x0) = 0 for i ≤ n.

Thus, 0-connected means path-connected and 1-connected means simply-connected.

We are going to introduce the universal cover space.

De�nition 2.2.4. [30] Let X be the topological space. A covering space of a space X is

a space C together with a continuous surjective map

p : C → X

satis�es the following condition: There exists an open cover {Uα} of X such that for each

α, p−1(Uα)(the inverse image of U under p) is a disjoint union of open sets in C, each of

which is mapped homeomorphically onto U by p.

A connected covering space is a universal covering if it is simply connected.
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We shall de�ne the two important topological properties, namely, homology group and

Betti number. The concise de�nition is as following:

De�nition 2.2.5. [40] Let X be the topological space. The k−th homology group of X

is de�ned to be the quotient group

Hk(M) = Zk(M)/Bk(M)

where Zk(M) is a closed k−chain group de�ned by Zk(M) = {ck|∂ck = 0} and Bk(M) is

a boundary k−chain group de�ned by Bk(M) = {bk = ∂ck+1|ck+1 ∈ Ck+1(M)}. Here the

∂ck = 0 is called a closed k−chain, the bk = ∂ck+1 is called the boundary chain and ck is

the continuous k−chain.

De�nition 2.2.6. [40] LetX be the topological space. The rank of the the k−dimensional

homology group Hk(M) of X is called the Betti number of order k, denoted by

bk = dim(Hk(M)).
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Chapter 3

The Topological Sphere Theorem and

Its Generalizations

The topological sphere theorem is a beautiful theorem in Riemannian geometry, which has

a long history, dating back to s paper by H.E. Rauch in 1951. In that paper [39], Rauch

posed the question of whether a compact, simply connected Riemannian manifoldM with

sectional curvature lie in the interval (1
4
, 1] is necessarily homeomorphic to the sphere.

Around 1960, M.Berger and W.Klingenberg gave an certain answer to this question:

Theorem 3.0.7. (M. Berger [4]; W. Klingenberg [34] 1960)

Let M be a compact, simply connected Riemannian manifold whose sectional curvatures

lie in the interval (1
4
, 1]. Then M is homeomorphic to Sn.

In this chapter, we shall introduce the topological sphere theorems in Riemannian

geometry, and shall discuss the relations under the di�erent curvature conditions. In

section 1, we are going to introduce the classic sphere theorem in Riemannian geometry.

In section 2, we shall replace the curvature condition to K ≥ 1 and diam(M) ≥ π
2
. Then

M is still homeomorphic to Sn. In section 3, similarly, we are going to replace the curvature

condition to Ric ≥ (n− 1)k, where k is any positive constant, and diam(M) = π√
k
. Then

M is isometric to Sn. In section 4, we consider positive curved manifold M which has

nontrivial killing �eld. Then M is homeomorphic to S4 or CP2. In section 5, we consider

a Riemannian manifold with positive isotropic curvature, and shall discuss other sphere
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theorems in Riemannian geometry.

3.1 The sphere theorem in Riemannian geometry

In this section, we shall discuss the classic sphere theorem in Riemannian geometry. We

are going to introduce the Bonnet-Myers theorem.

Theorem 3.1.1. (Bonnet−Myers Theorem [22])

Let Mn be a complete Riemannian manifold. Suppose that the Ricci curvature of M

satis�es

Ricp(v) ≥ 1

r2
> 0,

for all p ∈M and for all v ∈ TpM. Then M is compact and the diameter diam(M) ≤ πr.

Proof.

Let p, q be any two point in M . Since M is complete, by Hopf-Rinow Theorem 2.1.9,

there exists a minimizing geodesic γ : [0, 1]→M joining p to q. (i.e. l(γ) = d(p, q)) Then

we claim that l(γ) ≤ πr, because M is bounded and complete, therefore M is compact;

besides, if l(γ) ≤ πr, then d(p, q) ≤ πr, for all p, q ∈M which implies diam(M) ≤ πr and

we complete this proof.

If not, suppose that l(γ) > πr. Consider parallel �elds e1(t), . . . en−1(t) along γ be

orthonormal, for each t ∈ [0, 1] and {e1(t), . . . en−1(t)} ∈ {γ(t)}⊥. Let en(t) = γ
′
(t)
l

and

let Vj be vector �eld along γ given by

Vj(t) = (sin πt)ej(t), j = 1, . . . , n− 1.

Clearly, Vj(0) = Vj(1) = 0, therefore Vj can construct a proper variation of γ, whose

energy function denote by Ej.
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By second variation formula 2.1.10 and ej(t) is parallel, (i.e. e
′
j(t) = 0) we have

1

2
E
′′

j (0) = −
� 1

0

g
(
Vj(t), V

′

j (t) +R
(
γ
′
(t), Vj(t)

)
γ
′
(t)
)
dt−

k∑
i=1

g
(
Vj(t),

DV

dt
(t+i )− DV

dt
(t−i )

)
= −

� 1

0

g
(
Vj(t), V

′

j (t) +R
(
γ
′
(t), Vj(t)

)
γ
′
(t)
)
dt

= −
� 1

0

g
(

(sinπt)ej(t), π
2(− sinπt)ej(t) +R

((
l · en(t)

)
, (sinπt)ej(t)

)(
l · en(t)

))
dt

=

� 1

0

(sinπt)2π2g
(
ej(t), ej(t)

)
dt+

� 1

0

l2(sin πt)2g
(
ej(t), R

(
en(t), ej(t)

)
en(t)

)
dt

=

� 1

0

(sinπt)2π2dt−
� 1

0

l2(sinπt)2K
(
en(t), ej(t)

)
dt

=

� 1

0

(sin2πt)
(
π2 − l2K

(
en(t), ej(t)

))
dt

where K(en(t), ej(t)) is sectional curvature at γ(t) with respect to the plane generated by

en(t), ej(t). Summing on j and by de�nition of Ricci curvature, we obtain

1

2

n−1∑
j=1

E
′′

j (0) =
n−1∑
j=1

� 1

0

(sin2 πt)
(
π2 − l2K

(
en(t), ej(t)

))
dt

=

� 1

0

{sin2 πt
(

(n− 1)π2 − l2
n−1∑
j=1

K
(
en(t), ej(t)

))
}dt

=

� 1

0

{sin2 πt
(

(n− 1)π2 − (n− 1)l2Ricγ(t)
(
en(t)

))
}dt.

Since Ricγ(t)(en(t)) > 1
r2
> 0 and l > πr, which implies

(n− 1)l2Ricγ(t)(en(t)) > (n− 1)π2(r2 · 1

r2
) = (n− 1)π2,

hence,

1

2

n−1∑
j=1

E
′′

j (0) <

� 1

0

sin2πt((n− 1)π2 − (n− 1)π2)dt = 0.

As a result, there exists an index j such that E
′′
j (0) < 0, which implies E

′
j(s) is strictly

decreasing at zero. Since Ej(s) has local minimum at zero, there exists a curve c in this

variation such that E(γ) = l(γ)2 ≤ l(c)2 ≤ E(c). Therefore, we know that c is the minimal
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geodesic. Which is a contradiction. Hence l ≤ πr. �

We mention the classic sphere theorem as following:

Theorem 3.1.2. (classic sphere theorem)(M. Berger [4]; W. Klingenberg [34] 1960)

Let Mn be a compact simply connected, Riemannian manifold, with sectional curvature

K satis�ng
1

4
< K ≤ 1

Then M is homeomorphic to a sphere. If K = 1
4
, then M is isometric to a symmetric

space.

To prove this theorem, we need the following two important lemmas.

Lemma 3.1.3. [22] Let Mn be a compact, simply connected Riemannian manifold with

sectional curvature K satis�ng
1

4
< δ ≤ K ≤ 1

and let p, q ∈ M be such that d(p, q) = diam(M). Then M = Bρ(p) ∪ Bρ(q), where

Bρ(p) ⊂ M denotes the open geodesic ball of radius ρ and center p ∈ M and ρ is such

that π
2
√
δ
< ρ < π.

Proof. If not, suppose that there exists γ ∈ M such that d(p, r) ≥ ρ, d(q, r) ≥ ρ.

Without lose of generalization, we can assume that d(p, r) ≥ d(q, r) ≥ ρ.

There is a minimizing geodesic from q to γ intersects ∂(Bρ(q)) in a point q
′
/∈ Bρ(p).

On the other hand, by Bonnet-Myers theorem 3.1.1, diam(M) ≤ π√
δ
< 2ρ. Therefore,

if q
′′
is a point of intersection of the minimizing geodesic from q to p with ∂Bρ(q), then

q
′′ ∈ Bρ(p).

Since ∂Bρ(p) and ∂Bρ(q) are path connected (because ∂Bρ(p) and ∂Bρ(q) are homeo-

morphic to Euclidean ball), this implies ∂Bρ(p) ∩ ∂Bρ(q) 6= 0, hence there exists r0 ∈ M

such that d(r0, p) = d(r0, q) = ρ.

Next, we consider a minimizing geodesic λ joining p to r0, by Berger's Lemma [4].

There exists a minimizing geodesic γ from p to q with 〈γ′(0), λ
′
(0)〉 ≥ 0. (see Figure

19



p q

λ
γ

Bρ( )qBρ( )p

Figure 3.1.1:

3.1.1) Let s be a point of γ such that d(p, s) = ρ. From Rauch comparison theorem, the

angle ^r0ps ≤ π
2
and d(r0, s) ≤ π

2
√
δ
.

Since d(r0, p) = d(r0, q) = ρ and there exists a point s0 of γ such that d(r0, s0) < ρ,

the distance from r0 to γ is realized by a point s0 in the interior of γ. The minimizing

geodesic from r0 to s0 is perpendicular to γ and

d(r0, γ) = d(r0, s0) ≤
π

2
√
δ
.

Since d(p, q) = diam(M) ≤ π√
δ
, we have either d(p, s0) ≤ π

2
√
δ
or d(q, s0) ≤ π

2
√
δ
. In

either case, since d(r0, s0) ≤ π
2
√
δ
and ^ps0r0 = π

2
, we have d(p, r0) ≤ π

2
√
δ
< ρ, by applying

Rauch comparison theorem 2.1.7. This contradicts the fact that d(p, r0) = ρ. �

Lemma 3.1.4. [22] Under the conditions of Lemma 3.1.3, on each geodesic of length ρ

starting from p there exists a unique point m such that

d(p,m) = d(q,m) < ρ

Similarly, on each geodesic starting from q of length ρ there exists a unique point n equidis-

tant from p and q.

Proof. First, we prove the existence. Let γ(s) be a geodesic with γ(0) = p and

consider

f(s) = d(q, γ(s))− d(p, γ(s)).
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Then f is continuous and f(0) = d(p, q) > 0. Let s0 be such that γ(s0) is a cut point of p

along γ. Then d(p, γ(s0)) ≥ π > ρ. From Lemma 3.1.3, we have d(q, γ(s0)) < ρ. Therefore,

f(s0) = d(q, γ(s0))− d(p, γ(s0)) < 0.

By the intermediate value theorem, there exists s1 ∈ (0, s0) such that f(s1) = 0. Choose

m = γ(s1) such that d(p,m) = d(q,m) < ρ.

We prove uniqueness by contradiction. Suppose that there exist m1 6= m2 and both

equidistant from p to q. We can assume that m1 is between p and m2. Then

d(q,m2) = d(p,m2) = d(p,m1) + d(m1,m2) = d(q,m1) + d(m1,m2).

Hence q ∈ γ and m1 6= m2. Therefore p = q, which contradicts the hypothesis. �

Finally, we prove the classic sphere theorem as following:

Proof of classic sphere theorem. Let p, q ∈ M such that diam(M)=d(p, q). Let

D1 and D2 be subsets of M determined by all geodesic segments pm and qn respectively,

where the points m and n are given by Lemma 3.1.4. By continuity of m and n, we have

D1 and D2 are closed subset of M. To prove this theorem, we follow the following steps:

step (1) Prove that D1 ∪D2 = M and ∂D1 = ∂D2 = D1 ∩D2.

step (2) Construct the mapping ϕ : Sn →Mn by

 ϕ(γ(s)) = expp

(
s 2
π
d(p,m)

(
i ◦ r

′
(0)
))
, 0 < s ≤ π

2

ϕ(γ(s)) = expq

((
2− 2s

π

)
d(q,m)V

)
, π

2
≤ s < π

step (3) Check that ϕ1 : N o → Do
1 is bijective, ϕ2 : So → Do

2 is bijective and ϕ3 : E →

∂D1 = ∂D2 = D1 ∩D2, where N
o is intrinsic of northern hemisphere N and So is

intrinsic of southern hemisphere S.

proof of step (1):

First, we know that D1 ∪ D2 ⊂ M, so we will show that D1 ∪ D2 ⊃ M. Let r ∈ M. By

Lemma 3.1.3 either d(p, r) < ρ or d(q, r) < ρ. We only consider the �rst case, since the
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second is analogous.

Suppose d(p, r) < ρ. Since d(p, Cm(p)) ≥ π > ρ, there exists a unique minimizing

geodesic γ passing through p and r. Then d(p,m) = d(p, r) + d(r,m). By Lemma 3.1.4

there exists a unique point m on γ such that d(p,m) = d(q,m) < ρ. Hence

(a) If d(p, r) < d(q, r), then r ∈ pm (i.e. r ∈ D1).

(b) If d(p, r) = d(q, r), by uniqueness, we have r = m (i.e. r ∈ ∂D1 or r ∈ ∂D2).

(c) If d(p, r) > d(q, r), then d(q, r) < ρ and hence r ∈ qn (i.e. r ∈ D2).

Therefore r ∈ D1 ∪D2.

If r ∈ D1 ∩D2, then d(p, r) = d(q, r) and hence r = m = n (i.e. r ∈ ∂D1(∂D2)). This

complete the proof of step (1).

proof of step (2):

Fixed a point N ∈ Sn associate p, and to its antipodal point S ∈ Sn associate q. Choose a

linear isometry mapping i : TNS
n → TPM. For each point e of the equator E of Sn relative

to the north pole N, consider the geodesic γ(s) of Sn, 0 ≤ s ≤ π, given by γ(0) = N,

γ(π
2
) = e. Let m be the point given by Lemma 3.1.4 on the geodesic of M which pass

through p with i(r
′
(0)). De�ne:

 ϕ(γ(s)) = expp

(
s 2
π
d(p,m)

(
i ◦ r

′
(0)
))
, 0 < s ≤ π

2

ϕ(γ(s)) = expq

((
2− 2s

π

)
d(q,m)V

)
, π

2
≤ s < π

where V is the unit tangent vector at q of the unique minimizing geodesic from q to m.

proof of step (3):

Clearly, it is easy to check ϕ1 : N o → Do
1 is bijective, ϕ2 : So → Do

2 is bijective and

ϕ3 : E → ∂D1 = ∂D2 = D1 ∩D2, where N
o is intrinsic of northern hemisphere N and So

is intrinsic of southern hemisphere S.

By step (2) and step (3), the mapping ϕ : Sn → M is homeomorphism. The proof is

complete. �
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3.2 The diameter sphere theorem

In this section, we shall discuss the diameter sphere theorem proposed by Grove and

Shiohama. The argument presented here relies on the variation theory for geodesics and

the Morse theory. The statement is as following:

Theorem 3.2.1. (diameter sphere theorem)(Grove, Shiohama [27] 1977)

Let (M, g) be a compact Riemannian manifold of dimension n ≥ 4 with sectional curva-

ture K ≥ 1 and diam(M) > π
2
. Then M is homeomorphic to Sn.

Before the proof of the diameter sphere theorem, we need the following two lemmas:

Lemma 3.2.2. [16] Let (M, g) be a complete Riemannian manifold and let q be a point in

M. Suppose that γ : (−ε, 0]→M is a smooth path satisfying d(γ(s), q) ≥ d(γ(0), q) + µs,

∀s ∈ (−ε, 0]. Then there exists a vector v ∈ Tγ(0)(M) such that expγ(0)(v) = q, |v| =

d(γ(0), q), and < γ
′
(0), v >≥ −µ|v|.

Proof. Since (M, g) is complete, by Hopf-Rinow theorem 2.1.9, there exists a vector

v ∈ Tγ(0)(M) such that expγ(0)(v) = q and |v| = d(γ(0), q). If v = 0, then we are done.

Hence it is su�ces to consider the case v 6= 0. De�ne a smooth map α : [0, 1]×(−ε, 0]→M

such that α(0, s) = γ(s), α(1, s) = q for all s ∈ (−ε, 0] and α(t, 0) = expγ(0)(tv) for all

t ∈ [0, 1]. Then �x s and let t change. We obtain

L(α(s)) ≥ d(γ(s), q) ≥ d(γ(0), q) + µs

for all s ∈ (−ε, 0]. By the formula for the �rst variation of arc-length 2.1.10, thus

− 1

|v|
< γ

′
(0), v >=

d

ds
L(α(s)) |s=0≤ µ.

Hence we obtain < γ
′
(0), v >≤ |v|µ. This proof is complete. �

Lemma 3.2.3. [16] Let (M, g) be a complete Riemannian manifold and let q be a point

in M. Suppose that γ : [0, ε)→M is a smooth path satisfying d(γ(s), q) ≤ d(γ(0), q) +µs,

∀s ∈ [0, ε). Then there exists a vector v ∈ Tγ(0)(M) such that expγ(0)(v) = q, |v| =

d(γ(0), q), and < γ
′
(0), v >≥ −µ|v|.
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Proof. First, de�ne

sk = inf{s ∈ [0, ε) | d(γ(s), q) ≤ d(γ(0), q) + (µ+
1

k
)s− 1

k2
}

where k large enough. Clearly, sk ∈ (0, 1
k
]. Moreover, we have

d(γ(s), q) ≥ d(γ(sk), q) + (µ+
1

k
)(s− sk)

for all s ∈ [0, sk]. By Lemma 3.2.2 there exists a vk ∈ Tγ(sk)M such that expγ(sk)(vk) = q,

|vk| = d(γ(sk), q), and < γ
′
(sk), vk >≥ −(µ + 1

k
)|vk|. This proof is complete, when we

choose the limit k →∞. �

We prove the diameter sphere theorem as following:

Proof of diameter sphere theorem. We claim that M is (n− 1)− connected and

prove it by contradiction. Suppose this false. There exists an integer k ∈ {1, . . . , n − 1}

such that πk(M) 6= 0. Let us �x two points p, q ∈ M such that d(p, q) = diam(M) > π
2
.

Then we follow the following steps:

step (1) Prove that if γ : [0, 1] → M is a geodesic satisfying γ(0) = γ(1) = p, then γ has

Morse index at least n− 1

step (2) Show that there exists a geodesic γ : [0, 1] → M such that γ(0) = γ(1) = p and

ind(γ) < k, where ind(γ) denotes the index of γ

proof of step (1):

By assumption, we have d(γ(s), q) ≤ d(γ(0), q) for all s ∈ [0, 1]. By Lemma 3.2.3, there

exists v ∈ TpM such that expp = q, |v| = d(p, q), and < γ
′
(0), v >≥ 0.

Next, we claim that L(γ) ≤ π. To prove this, we argue by contradiction. If L(γ) ≤ π,

then the Toponogov's theorem 2.1.8, implies that

cos(d(γ(1), q)) ≥ cos(L(γ)) cos(d(γ(0), q)) + sin(L(γ)) sin(d(γ(0), q)) cos(^(γ
′
(0), v)).

By assumption, we have L(γ) ∈ (0, π] and d(γ(0), q) ∈ (π
2
, π]. Moreover, the inequality
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^(γ
′
(0), v) ≥ 0 implies cos(^(γ

′
(0), v)) ≥ 0, we obtain

cos(d(γ(1), q)) ≥ cos(L(γ)) cos(d(γ(0), q)).

Hence, we get cos(d(γ(1), q)) 6= cos(d(γ(0), q)), which contradicts to the fact that γ(0) =

γ(1) = p. Consequently, we have L(γ) > π.

Let k be the space of all vector �elds of the form V (s) = sin(πs)X(s), where X is a

parallel vector �eld along γ satisfying < γ
′
(s), X(s) >= 0 for all s ∈ [0, 1]. Then

D d
ds
D d

ds
V (s) = −π2 sin(πs)X(s) = −π2V (s).

Let I denote the index form associated with the second variation of arclength. Then

I(V, V ) =

� 1

0

(
|D d

ds
V (s)|2 −R

(
γ
′
(s), V (s), γ

′
(s), V (s)

))
ds

=

� 1

0

(
π2|V (s)|2 −R

(
γ
′
(s), sin(πs)X(s), γ

′
(s), sin(πs)X(s)

))
ds

=

� 1

0

(
π2|V (s)|2 − (sin(πs))2R

(
γ
′
(s), X(s), γ

′
(s), X(s)

))
ds

≤
� 1

0

π2|V (s)|2 −
(
L(γ)

)2|V (s)|2ds

=
(
π2 − L(γ)2

) � 1

0

|V (s)|2ds

where V (s) ∈ k. Since L(γ) > π implies −L(γ)2 < −π2, therefore

I(V, V ) ≤
(
π2 − L(γ)2

) � 1

0

|V (s)|2ds < 0.

Hence the restriction of I to the vector space k is negative de�nite. This implies ind(γ) ≥

dimk = n− 1.

To prove step (2), we need the following some tools. We say that a critical point

p ∈ M for a smooth function f : M → R has index ≥ m if the Hessian of f is negative
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de�nite on a m−dimensional subspace in TpM. De�ne

ΩA,B(M) = {γ : [0, 1]→M |γ(0) ∈ A, γ(1) ∈ B}

where γ is a geodesic on M. If A,B ⊂M are compact, then the energy functional

E : ΩA,B(M)→ [0,∞)

is reasonably nice in the sense that it behaves like a proper smooth function on a manifold.

If in addition A and B are submanifolds then the variational �elds for variations in

ΩA,B(M) consist of �elds along the curve that are tangent to A and B at the endpoint.

Therefore, critical points are naturally identi�ed with geodesic that are perpendicular to

A and B at the endpoints. We say that the index of such a geodesic ≥ k if there is a

k−dimensional space of �elds along the geodesic such that the second variation of the

these �elds is negative.

proof of step (2):

Logically, the step (2) is equivalent to "Let A ⊂M be a compact submanifold. If every

geodesic in ΩA,A(M) has index ≥ k, then A ⊂M is k − connected."

Identify A = E−1(0) and use the above as a guide for what should happen. This shows

that A ⊂ ΩA,A(M) is (k − 1)−connected. Next we note that

πl(ΩA,A(M), A) = πl+1(M,A).

This gives the result.

By step (1) and step (2), this is contradiction. Hence, we have πk(M) = 0, and M is

(n− 1)− connected. Which implies that M is a homotopy sphere. Therefore, by result of

Freedman[23] and Smale[42] that M is homeomorphic to Sn. �
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3.3 The sphere theorem of Ricci curvature comparison

In this section, we shall prove some fundamental results for manifolds with lower Ricci

curvature bounds.

Let r(x) = d(x, p) be the distance function.

Theorem 3.3.1. (the Ricci comparison sphere theorem)(S.Y. Cheng [20] 1975)

If (M, g) is a complete Riemannian manifold with Ric ≥ (n−1)k > 0 and diam(M) = π√
k
,

then M is isometric to Snk .

To prove this theorem, we need the following two important lemmas.

Lemma 3.3.2. (the Ricci comparison result) [38]

Suppose that (M, g) has Ric ≥ (n− 1)k for some k ∈ R. Then

4r ≤ (n− 1)
sin
′

k(r)

sink(r)
,

dvol ≤ dvolk,

where dvolk is the volume form in constant sectional curvature k.

Lemma 3.3.3. (relative volume comparison [38])

Suppose (M, g) is a complete Riemannian manifold with Ric ≥ (n− 1)k. Then

r → volB(p, r)

v(n, k, r)

is a nonincreasing function and its limit is 1 as r → 0, where v(n, k, r) denotes the volume

of a ball of radius r in the constant curvature space form Snk .

Next, we present the proof of Ricci comparison sphere theorem.

Proof of Ricci comparison sphere theorem. Fix p, q ∈M such that d(p, q) = π√
k
.

De�ne r(x) = d(x, p), r̃(x) = d(x, q) and sink(r) = sin(
√
kr)√
k

. We claim that

step (1) r + r̃ = d(p, x) + d(x, q) = d(p, q) = π√
k
, x ∈M.

step (2) r, r̃ are smooth on M − {p, q}.
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step (3) Hessr = (
sin
′
k

sink
)ds2n−1.

step (4) g = dr2 + sin2
k ds

2
n−1

We know that step (3) implies step (4) and that step (4) implies M must be isometric to

Snk .

proof of step (1):

We prove it by contradiction. The triangle inequality shows that

π√
k

= d(p, q) ≤ d(p, x) + d(x, q).

Hence it su�ces to show that d(p, q) ≥ d(p, x) + d(x, q) by contradiction. Suppose that

d(p, q) < d(p, x) + d(x, q). we can �nd ε > 0 such that (see Figure 3.3.1)

2ε+
π√
k

= 2ε+ d(p, q)

= 2ε+ d(p, p
′
) + d(q

′
, q)

= d(p, p
′
) + d(p

′
, x) + d(x, q

′
) + d(q

′
, q)

= d(p, x) + d(x, q).

When r1 ≤ d(p, x), r2 ≤ d(q, x) and r1 + r2 = π√
k
, the metric balls B(p, r1), B(q, r2) and

B(x, ε) are pairwise disjoint. Thus,

1 =
volM

volM
≥ volB(x, ε) + volB(p, r1) + volB(q, r2)

volM

≥ v(n, k, ε)

v(n, k, π√
k
)

+
v(n, k, r1)

v(n, k, π√
k
)

+
v(n, k, r2)

v(n, k, π√
k
)

=
v(n, k, ε)

v(n, k, π√
k
)

+ 1,

which is a contradiction.
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xε 
p′ ′q

Figure 3.3.1:

proof of step (2):

If x ∈M −{p, q}, then x can be joined to both p and q by segments σ1, σ2. The previous

statement says that if we put these two segments together, then we get a segment from p

to q through x. Such a segment must be smooth, and thus σ1 and σ2 are both subsegments

of a larger segment. This implies from our characterization of when distance functions

are smooth that both r and r̃ are smooth at x ∈M − {p, q}.

proof of step (3):

We have r(x) + r̃(x) = d(p, q) = π√
k
, thus 4r = −4r̃. On the other hand, by Lemma

3.3.2

(n− 1)
sin
′

k

(
r(x)

)
sink

(
r(x)

) ≥ 4r(x)

= −4r̃(x)

≥ −(n− 1)
sin
′

k

(
r̃(x)

)
sink

(
r̃(x)

)
= −(n− 1)

sin
′

k

(
π√
k
− r(x)

)
sink

(
π√
k
− r(x)

)
= (n− 1)

sin
′

k

(
r(x)

)
sink

(
r(x)

) .
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This implies,

4r(x) = (n− 1)
sin
′

k

(
r(x)

)
sink

(
r(x)

) .
Hence,

Hessr =
4r
n− 1

gr =
sin
′

k

sink
gr.

�

The conditions in theorem 3.3.1 require lower bounds for the Ricci curvature and the

diameter of (M, g). It is natural to ask whether these assumptions can be replaced by

lower bounds for the Ricci curvature and volume of (M, g). An important result is as

following:

Theorem 3.3.4. (J. Cheeger, T. Colding [19] 1997)

For each integer n ≥ 2, there exists a real number ψ(n) ∈ (0, 1) with the following

property: if (M, g) is a compact Riemannian manifold of dimension n with Ric ≥ (n−1)g

and vol(M, g) ≥ (1− ψ(n))vol(Sn(1)), then M is di�eomorphic to Sn.
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3.4 The sphere theorem with positive curvature

In this section, we shall introduce the sphere theorem of the positively (sectional) curved

manifolds. We denote a compact positively curved manifolds by CPCM. First, we will

introduce the Weinstein and Synge theorem.

Theorem 3.4.1. (Weinstein and Synge theorem [22])

Let f be an isometry of a compact oriented Riemannian manifold Mn. Suppose that M

has positive sectional curvature and that f preserves the orientation ofM if n is even, and

reverses it if n is odd. Then f has a �xed point, i.e., there exists p ∈M with f(p) = p.

We are going to introduce the Synge′s theorem as following.

Theorem 3.4.2. (Synge theorem [22])

Let Mn be a compact manifold with positive sectional curvature.

(a) If Mn is orientable and n is even, then M is simply connected.

(b) If n is odd, then Mn is orientable.

Proof.

(a) Let π : M̃ → M be the universal covering of M. Introduce on M̃ the covering

metric, and orient M̃ in such a way that π preserves the orientation. Because M is

compact and has positive curvature, we must have K ≥ δ > 0. From the fact that π

is a local isometry, the same curvature condition holds on M̃. Since M̃ is complete,

so M̃ is compact. Let k : M̃ → M̃ be a covering transformation of M̃, that is,

π(k) = π. Then k is an isometry of M̃, from the way that we oriented M̃, preserves

the orientation. Because n is even, we can use the theorem ro conclude that k has

a �xed point. But a covering transformation which has a �xed point is the identity.

It follows that the group of covering transformations of M̃ reduces to the identity.

Therefore M is simply connected.

(b) We prove it by contradiction. Suppose that M is not orientable, and consider

the orientable double cover M of M. Where M = {(p,Op)|p ∈ M,Op ∈ Op} and

31



Op ∈ Op will be called an orientation. We introduce on M the covering metric.

Since M is the double cover of a compact manifold, M is compact. Let k be a

covering transformation ofM, k 6= id. BecauseM is not orientable, k is an isometry

which reverses the orientation of M. Since n is odd, we can apply the Weinstein

Synge theorem 3.4.1 which guarantees that k has a �xed point. Therefore k = id,

which is a contradiction. �

Synge's theorem 3.4.2 asserts that an even dimensional, orientable CPCM is simply

connected. This theorem together with the topological classi�cation of compact surfaces

implies that a 2-dimensional, orientable CPCM is homeomorphic to S2. Three dimensional

CPCM's have been determined by Hamilton [29]; they are di�eomorphic to space forms.

Hence we consider only 4-dimensional CPCM.

It is known that the existence of a nontrivial Killing vector �eld on a compact Rie-

mannian manifold M is equivalent to the existence of a nontrivial S1−action on M. Let

F (S1,M) be the �xed point set of such an S1−action onM. An S1−Riemannian manifold

is a Riemannian manifold with a given isometric S1−action and denoted (S1,M).

Let y ∈M be an isolated �xed point. Let π : S1×M →M be the canonical surjection.

The local geometry of M near a point π−1(y) ∈ S1 ×M is determined by the geometry

of the local representation at y ∈M. This representation is equivalent to

φk,l : S1 × C2 → C2; φk,l[e
iθ(z1, z2)] = (eikθz1, e

ilθz2),

where z1, z2 ∈ C and k, l ∈ Z with g.c.d(k, l) = 1. Let S3(1) ⊆ C2 be the unit sphere and

let d : S3(1)×S3(1)→ R be given by d(v, w) = ∠(v, w) =the angle between v and w. Let

(Xkl, dkl) be the orbit space of (φkl, S
3(1), d) with orbital distance metric dkl.

Lemma 3.4.3. [31] If x1, x2, x3 are arbitrary points in Xkl, then

dkl(x1, x2) + dkl(x2, x3) + dkl(x3, x1) ≤ π.

Proof. The two great circles in S3(1) given by z1 = 0 and z2 = 0 are orbits of

φk,l for all k, l with g.c.d(k, l) = 1. Let X̃k,l = Xk,l − {z1 = 0, z2 = 0}. X̃k,l consists

32



of principal orbits, so we give it the Riemannian submersion metric coming form the

canonical Riemannian metric in S3(1). We will be using the fact that this Riemannian

submersion metric induces the distance function dk,l on X̃k,l.

In the special case where k = l = 1, the projection π : S3(1) → X1,1 is the Hopf

�bration and it is easily checked that X1,1 is isometric to a CP1 with diameter π
2
, (i.e., X1,1

is isometric to S2(1
2
) ⊆ R3.) Hence the inequality d1,1(x1, x2)+d1,1(x2, x3)+d1,1(x3, x1) ≤ π

is obvious.

We now �x (k, l) 6= (1, 1). The isometric T 2−action

T 2 × S3(1)→ S3(1), (eiθ1 , eiθ2)(z1, z2)⇒ (eiθ1z1, e
iθ2z2)

induce an isometric S1−action on the Riemannian manifold X̃k,l. X̃k,l is a connected

noncomplete surface of revolution with diameter π
2
, so it admits a coordinate system

(r, θ) : (0,
π

2
)× S1 → X̃k,l

such that the metric in these coordinate is

ds2 = dr2 + (f(r))2dθ2

where dθ is standard 1−form on S1. We can arrange that the latitude circle r = c corre-

sponds to the orbit space of the torus T 2(c) = T 2(cos c, sin c) ⊆ S3(1). Hence

2πf(c)(the length of a φk,l orbit in T
2(c)) = 4π cos c sin c.

The orbits of φk,l all have length ≥ 2π, so f(c) ≤ cos c sin c = 1
2

sin 2c. Hence there is a

length nonincreasing bijection of X̃1,1 onto X̃k,l with same coordinates in (0, π
2
)×S1. The

inequality

dk,l(x1, x2) + dk,l(x2, x3) + dk,l(x3, x1) ≤ π

for x1, x2, x3 ∈ X̃k,l now follows from the corresponding inequality already proved for
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k = l = 1. This proof is complete. �

Let lij = dist(pi, pj) and let Cij = {γ : [0, lij]→M |γ is a minimizing geodesic segment

from pi to pj}, 1 ≤ i, j ≤ 4. For each triple 1 ≤ i, j, k ≤ 4, set

αijk = min{∠(γ
′

j(0), γ
′

k(0))|γj ∈ Cij, γk ∈ Cik}.

Lemma 3.4.4. [31] For each triple of distinct integers 1 ≤ i, j, k ≤ 4,

αijk + αkij + αjki > π.

Proof. Assume that (i, j, k) = (1, 2, 3). Set 1
R2 = δ =minimum of sectional cur-

vature of M. Choose x
′
1, x

′
2, x

′
3 on S2(R) such that the spherical triangle 4(x

′
1, x

′
2, x

′
3)

has l12, l23, l31 be its three lengths. Applying Toponogov's theorem 2.1.8 to an arbitrary

γ12 ∈ C12, γ23 ∈ C23, γ13 ∈ C13, as its three side, one gets

∠(γ
′

12(0), γ
′

13(0)) ≥ ∠(x
′
1x
′
2, x

′
1x
′
3),

and hence, by the de�nition of α123, that α123 ≥ ∠(x
′
1x
′
3, x

′
1x
′
3). Therefore α123 + α312 +

α231 ≥
∑
4(x

′
1, x

′
2, x

′
3) > π. �

We prove the sphere theorem with positive curvature as following:

Theorem 3.4.5. (Wu-Yi Hsiang, B. Kleiner [31] 1989)

Let M be 4-dimensional orientable CPCM. If M has a nontrivial Killing vector �eld,

then M is homeomorphic to S4 or CP2.

Proof. Let M be a 4-dimensional orientable CPCM. Then by Synge's theorem 3.4.1

M is simply connected. We will use the orbital geometry of the given S1−action to prove

that χ(M) at most 3. It follows directly from the work of Freedman [23] that M is

homeomorphic to either S4 or CP2. By Wu-Yi Hsiang and Bruce Kleiner's paper [31], we
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have χ(M) = χ(F ) and

F =

 χ(M) isolated point.

or S2 ∪ {(χ(M)− 2) isolated points.}

Hence the proof of the theorem reduces to proving that F consists of at most three isolated

points or S2 plus at most one more isolated point. We will divide the proof into two cases

and we will prove each case by contradiction.

Case 1, dimF = 2. Suppose that F = S2 plus at least two isolated �xed points. Let

p, q be two isolated �xed points and let γ be a minimizing geodesic in M joining p to

q. Let η be a minimizing geodesic segment from S2 to S1(γ), the S1 orbit of γ; hence

length(η)=d(S2,S1(γ)), and η has endpoints A ∈ S2 and B ∈ S1(γ). We will claim the

second variation E
′′
(0) < 0.

Suppose B lies in the interior of γ. We consider the minimizing geodesic segment η

from S2 to p such that η(0) = p
′
and η(l) = p. Let e1(t) be a unit parallel �eld along η and

e1(0) be its tangent vector. Let β(s), s ∈ (−ε, ε), be geodesic in S2 such that β(0) = p
′

and β
′
(0) = e1(0). Let h(s, t) be variation of η given by

h(s, t) = expη(t)(se1(t)), s ∈ (−ε, ε), t ∈ [0, l].

since h(s, 0) = β(0), then h(s, l) = expp(se1(l)) = p. Therefore

∂h

∂s
(0, t) = V (t) =

∂

∂s
expη(t)(se1(t))|s=0 = e1(t),

hence D2V
dt2

= 0.Using the second variation formula 2.1.10 and the fact that ∂h
∂s

(0, t) = e1(t),
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we obtain

1

2
E
′′
(0) = −

� l

0

g(V (t),
D2V

dt2
+R(

dη

dt
, V (t))

dη

dt
)dt− g(

D

ds

∂h

∂s
,
dη

dt
)(0, 0)

+ g(
D

ds

∂h

∂s
,
dη

dt
)(0, l)− g(V (0),

DV

dt
(0)) + g(V (l),

DV

dt
(l))

= −
� l

0

g(e1(t), R(
dη

dt
, e1(t))

dη

dt
)dt

= −
� l

0

K(e1(t),
dη

dt
)dt.

Because K(e1(t),
dη
dt

) is positive,

1

2
E
′′
(0) < 0,

and therefore there exists a local minimum, so length(η)>d(S2,S1(η)). This contradicts

the assumption that length(η)=d(S2,S1(η)).

Suppose B = p. Apply same argument. The second variation formula can now be ap-

plied to the geodesic segment η. It is shown that length(η)>d(S2,S1(γ)). This contradicts

the assumption that length(η)=d(S2,S1(γ)). The same argument rule out B = q. Hence

F can contain at most one isolated �xed point in addition to the S2.

Case 2, dimF = 0. Suppose that F contains at least four isolated points, Pi, 1 ≤ i ≤ 4.

By lemma3.4.4, It follows easily that

∑
1≤i≤4

∑
1≤j<k≤4

αijk > 4π j, k 6= i.

But, on the other hand, by lemma 3.4.3 it is easily seen that

∑
1≤j<k≤4

αijk ≤ π j, k 6= i

for each 1 ≤ i ≤ 4, which gives a contradiction. Hence F contains at most three isolated

points when dimF = 0. This completes the proof of the theorem. �
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3.5 Other sphere theorems

In this section, we �rst introduce some curvature conditions. A Riemannian manifold M

is said to have positive isotropic curvature if

R1313 +R1414 +R2323 +R2424 − 2R1234 > 0

for all points p ∈M and all orthonormal four-frames {e1, e2, e3, e4} ⊂ TpM.

We say that M has nonnegative isotropic curvature if

R1313 +R1414 +R2323 +R2424 − 2R1234 ≥ 0

for all points p ∈M and all orthonormal four-frames {e1, e2, e3, e4} ⊂ TpM.

Next, we shall de�ne another curvature condition. A Riemannian manifold (M, g) is

said to be weakly δ − pinched in the pointwise sense if 0 ≤ δK(π1) ≤ K(π2) for all

point p ∈ M and all two-dimensional planes π1, π2 ⊂ TPM. If the strict inequality holds,

we say that (M, g) is strictly δ − pinched in the pointwise sense. Similarly, M is said

to be weakly δ − pinched in the global sense if the sectional curvature of M satis�es

δ ≤ K ≤ 1. If the strict inequality holds, we say that M is strictly δ − pinched in the

global sense.

Now, we are going to introduce the compact, simply connected Riemannian manifold

with positive isotropic curvature. M. Micallef and J.D. Moore obtained the following

result:

Theorem 3.5.1. (M. Micallef, J.D. Moore [35] 1988)

Let M be a compact simply connected Riemannian manifold with positive isotropic cur-

vature. Then M is a homotopy sphere and hence M is homeomorphic to Sn.

Next, we describe su�cient conditions for the vanishing of the second Betti number.

M. Berger [5] proved that the second Betti number of a manifold with pointwise 1
4
-pinched

sectional curvatures is equal to 0. In even dimensions, the same result holds under the

weaker assumption that M has positive isotropic curvature:
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Theorem 3.5.2. (M. Michallef, M. Wang [36] 1993)

Let M be a compact Riemannian manifold of dimension n ≥ 4. Suppose that n is even

and M has positive isotropic curvature. Then the second Betti number of M vanishes.

In odd dimensions, The following result was established by M.Berger.

Theorem 3.5.3. (M. Berger [5] 1960)

Let M be a compact Riemannian manifold of dimension n ≥ 5. Suppose that n is odd

and M has pointwise n−3
4n−9-pinched sectional curvatures. Then the second Betti number of

M vanishes.

Finally, we mention a result concerning the topology of four-manifolds with positive

sectional curvature.

Theorem 3.5.4. (W. Seaman [41], M. Ville [44] 1989)

Let (M, g) be a compact, orientable Riemannian manifold of dimension 4 which is δ-

pinched in the global sense (δ ∼ 0.188). Then (M, g) is homeomorphic to S4 or CP2.
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Table 3.1: The �gure of Topological Sphere Theorem

Mn :Compact, simply connected Mathematician

1
4
− pinched sectional curvature Mn is homeomorphic to Sn 1960, M. Berger & W.Klingberg

positive isotropic curvature
1. Mn is homotopic to Sn

2. n ≥ 4, Mn is homeomorphic to Sn
1988, M. Micallef & J.D. Moore

Mn :Compact, n ≥ 4 MnCompact, n ≥ 5 Mathematician

positive isotropic curvature b2 = 0 (n ∈ even) 1993, M. Micallef & M. Wang

n−3
4n−9

−pinched sectional curvature b2 = 0 (n ∈ odd) 1960, M. Berger

Mn :Compact,orientable Mathematician

δ−pinched in the global sense(δ ∼ 0.188) Mn is homeomorphic to S4 or CP2 1989, W. Seaman & M. Ville

1. positive sectional curvature

2. nontrivial Killing �eld
Mn is homeomorphic to S4 or CP2 1989, Wu-Yi Hsiang & B. Kleniner

Mn :Compact Mathematician

1. sectional curvatureK ≥ 1

2. diam(M) > π
2

Mn is homeomorphic to Sn 1975, S.Y. Cheng

1. Ric = (n− 1)g

2. vol(M, g) ≥ (1− δ(n)vol(Sn(1))
Mn is di�eomorphic to Sn 1997, J. Cheeger & T. Colding
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Chapter 4

Conclusion

The sphere theorem is determined by the topology of the manifold with curvature condi-

tion. For example, in 2-dimensional, we have the Gauss−Bonnet theorem.

We introduce the classic sphere theorem in Riemannian geometry. The �rst natural

question is if it is possible to replace "homeomorphic" by "di�eomorphic" in the state-

ment of the sphere theorem. Observe that the homeomorphism of the sphere theorem is

obtain by "glueing" two discs along their boundaries. Such a construction may lead to a

di�erentiable structure on M distinct from the usual structure of the sphere. Therefore,

the proof of the sphere theorem presented here is not su�cient to establish a di�eomor-

phism.

So, we introduce another sphere theorem. The hypothesis of "1
4
−pinched" is replaced

by a hypothesis on the diameter: If M is compact, K ≥ 1, and diam(M) > π
2
then M

is homeomorphic to a sphere. The case diam(M) = π
2
(where the theorem is false, as

shown by the example of real projective space) was essentially classi�ed by Gromoll and

Grove [25].

From Myer's diameter estimate 3.1.1, it is natural to ask what happens if the diameter

attains it maximal value. Hence we introduce the Ricci comparison theorem.

We introduce the 4-dimensional orientable CPCM with nontrivial Killing vector �eld.

It is homeomorphic to S4 or CP2. Therefore it is natural to ask the following question:

Question 1. A 4−dimensional CPCM with a nontrivial Killing vector field should

be diffeomorphic to S4,RP4, or CP2 ?
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Question 2. A compact, simply connected, nonnegatively curved 4−manifold with a

nontrivial Killing vector field should be diffeomorphic to either S4,CP2,CP2]±CP2,

or S2 × S2 ?

Of course, it is possible that these theorems would remain true without the assumption

on in�nitesimal symmetry, but then their proofs would require completely new ideas and

techniques.

Furthermore, a much-studied problem in Riemannian Geometry is to classify all Ein-

stein manifolds satisfying a suitable curvature condition. This question was �rst studied

by M.Berger [6], [7], in the 1960s. Berger showed that if (M, g) is a compact Einstein man-

ifold of dimension n which is strictly 3n
7n−4−pinched in the global sense, then (M, g) has

constant sectional curvature. In 1974, S. Tachibana [43] proved that any compact Einstein

manifold with positive curvature operator has constant sectional curvature. Furthermore,

Tachibana showed that a compact Einstein manifold manifold with nonnegative curvature

operator is locally symmetric. Other results in this direction were obtained M.Gursky and

C.LeBrun [28] and D.Yang [45].
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