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Abstract

In 1926, Hopf proved that any compact, simply connected Riemannian manifold with
constant curvature 1 is isometric to the standard sphere. Motivated by this result, Hopf
posed the question whether a compact, simply connected manifold with suitably pinched
curvature is topologically a sphere. Similarly, in 1951, Rauch also ask some questions about
"pinching".

In this paper, we give a survey of various sphere theorems in geometry. These include
the classic sphere theorem, the diameter sphere theorem, the Ricci comparison sphere the-
orem, and the sphere theorem with positive curvature. These theorems employ a variety
of methods, including geodesic, variations of energy, and tensor analysis. Finally, we use a

table to list all of the sphere theorems.
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Chapter 1

Introduction

One of the most beautiful theorem in global differential geometry is the sphere theorem.
In 2-dimensional, the simplest case of sphere theorem is Gauss — Bonnect Theorem,

which states is

Theorem 1.0.1. (Gauss — Bonnet Theorem [3])

Let M be a compact 2-dimensional surface equipped with a metric. Then

Kdvol = 2mx (M),
M

where K denotes the Gaussian curvature of M, dvol denotes the induced area measure on

M, and x (M) denotes the Fuler characteristic of M.

In this paper, we investigate the classic topological sphere theorem in Riemannian
geometry and its generalizations

The sphere theorem is also known as the quarter-pinched sphere theorem, which deter-
mines the topology of manifolds admitting metrics with a particular curvature bounded.

The statement of the theorem is

Theorem 1.0.2. (classic sphere theorem)(M. Berger [J|; W. Klingenberg [34]] 1960)
If M™ is a compact, simply connected Riemannian n—manifold with sectional curvature

K satisfies



Then it is homeomorphic to S™.

The sphere theorem has a long history. In 1951, the sphere theorem was proved for the
first time by Rauch [39] for h < K <1 and h ~ 3. A fundamental contribution was made
by Klingenberg [33] who introduced the problem by the consideration of "cut locus". In
the case of a manifold with even dimension, Klingenberg [33] obtained an estimate for the
distance from a point to its "cut locus" and he proved the theorem for h < K < 1 and

h ~ 0.55. Using Toponogov triangle comparison theorem and the estimation mentioned

1
1

above, Berger [4] obtained the theorem, still in the case of even dimension, with h =
Finally, Klingenberg [34] and Berger [4] extended his estimation from even dimension to
odd dimension. the classic sphere theorem as stated above.

In Chapter 2, we review some basic definitions and theorems in Riemannian Geometry.
The content of this chapter contains Riemannian manifold, geodesic, curvature, Rauch
comparison theorem, Toponogov’s triangle comparison theorem, Hopf-Rinow theorem etc.

In Chapter 3, we present the classic sphere theorem in Riemannian geometry, diam-
eter sphere theorem, Ricci comparison sphere theorem, and sphere theorem of positive
curved with nontrivial Killing field. Moreover, we introduce some other topological sphere

theorems in the last section of chapter 3. Finally, we use a table to list all of the sphere

theorems.



Year

Table 1.1: The Chronology of Topological Sphere Theorem

Theorem

Mathematician

1951

M™: compact, simply connected
condition: h < K <1 and h ~ %

conclusion: it is homeomorphic to S™

H.E. Rauch

1960

M™: compact, simply connected
condition: % <K<1

conclusion: it is homeomorphic to S™

M. Berger & W.Klingenberg

M™: compact, n > 5, n € odd

.. . . . 7L_3 _ .
condition: positive 7-—% — pinched

conclusion: by =0

M'n: .

M. Berger

1975

: complete

condition: Ric > (n— 1)k > 0 and diam(M) = v/
conclusion: it is isometric to S™

S.Y. Cheng

1977

M™: compact, n > 4
condition: K > 1 and diam (M) > 5

conclusion: it is homeomorphic to S™

Grove & Shiohama

1988

M™: compact, simply connected
condition: positive isotropic curvature

conclusion: it is homotopic to S™

M. Micallef & J.D. Moore

1989

M*: 4-dimensional orientable complete positive curvature
condition: nontrivial Killing field

conclusion: it is homeomorphic to S*or CP?

Wu-Yi Hsiang & Bruce Kleniner

M™: compact, orientable, n = 4
condition: J-pinched in the global sense and § ~ 0.188

conclusion: it is homeomorphic to S*or CP?

W. Seaman & M.Ville

1993

M™: compact, n >4, n € even
condition: positive isotropic curvature

conclusion: by = 0

M. Micallef & M. Wang

1997

M™: compact, n > 2, ¥(n) € (0,1)

condition: Ric > (n—1)g and vol(M, g) > (1 — ¥ (n))vol(S™(1))

conclusion: it is diffeomorphic to S™

J. Cheeger & T. Colding




Chapter 2

Preliminaries

In this chapter, we review some consequences in Riemannian geometry.

2.1 Introduction to Riemannian geometry

Let M be a differentiable manifold. A Riemannian manifold is a differentiable manifold
M equipped with a Riemannian metric g(-,-) denoted by the pair (M, g).

Given a function f: M — R. Define (M )={all vector fields of class C* in M} and
D(M)—={all real-valued functions of class C* in M}.

Definition 2.1.1. [22] An affine connection V on a differentiable manifold M is a bilinear

mapping
V(M) x (M) — (M)

defined by (X,Y) — VxY and satisfing the following properties:
1. V is linear in the first variable and second variable.
2. V(fY) = fUxY + X(f)Y,

in which X, Y € (M) and f € D(M).

If an affine connection V on M satisfies symmetric and compatible with the Rieman-

nian metric, then V is called the Levi — Civita(or Riemannian) connection on M.



Let M be a differentiable manifold with an affine connection V. A vector field V' along
a curve ¢ : I — M is called parallel when % =0,tel.
We will introduce the geodesic on a Riemannian manifold. A geodesic is a generaliza-

tion of the notion of a "straight line" to "curve space".

Definition 2.1.2. [22] A parametrized curve v : I — M is a geodesic for t € I if

%(i—l)z()fortel.

We shall define the exponential map. Let T'M be the tangent bundle, the tangent

bundle of M is the disjoint union of the tangent space T,M of p € M.

Definition 2.1.3. [22] Let U = {(q,w) € TM|q € M,v € T,M,|v| < ¢} C TM be an

open set. Then the map exp : Y — M given by

(%

exp(q,v) =v(1,q,v) =~v(Jv|, ¢, =), (g,v) € p,
v

is called the exponential map on U

The exponential map is a generalize the ordinary exponential function of mathematical

analysis to a differentiable manifold with an affine connection.

Definition 2.1.4. [22] The Riemannian curvature operator R of a Riemannian manifold
M is a correspondence that associate to every pair X,Y € (M) a mapping R(X,Y) :
(M) — (M) defined by

R(X, Y)Z =VyVxZ —-VxVyZ + V[Xy]Z

where Z € (M) and V is the Riemannian connection of M.
From now on, we shall write g(R(X,Y)Z,T) = R(X,Y, Z,T).

Definition 2.1.5. [22] Given a point p € M and a two-dimensional subspace o C T, M.

Then
R(X,Y, X)Y)

B X Y) = 100) = o gV ¥) — (XY

is called the sectional curvature of o at p, where {X,Y} is any basis of o.

3



We are going to introduce the Ricci curvature and scalar curvature on a Riemannian
manifold M. Ricci curvature is the average of the Riemannian curvature, and Scalar

curvature is the average of the Ricci curvature. The concise definitions are as following:
Definition 2.1.6. [22] Let {e1,...,e,} be an orthonormal basis. Then

(1) Ricy(x) = ﬁ ZQ(R(I, e, ei), i=1,2,...,n—1,

(2) Sca(p) = %; Ricy(e;) = m Z_ng(R(ei, ej)eie), j=12,...n

Then the expression (1) is called the Ricci curvature in the direction = at p and (2) is

called the scalar curvature at p, respectively.

We shall introduced the Rauch comparison theorem. The Rauch comparison theorem
is the fundamental result which relates the sectional curvature of a Riemannian manifold
to the rate at which geodesics spread apart. Here a Jacobi field means a vector field J
along a geodesic v and satisfies

D*J
dt?

!

+R(y (1), J(1)7'(t) = 0.

Two points p and g are conjugate along a geodesic v if there exists a non-zero Jacobi field

along v that vanishes at p and gq.

Theorem 2.1.7. (Rauch comparison theorem [3])

Let v : [0,a] — M™ and 7 : [0,a] — M™% k > 0, be geodesics with the same velocity
(i.e.,|y (t)] = |7 (t)|), and let J and J be Jacobi fields along v and 7, respectively, such
that

Assume that 7 does not have conjugate points on (0,a] and that, for all t and all x €

Ty(M), & € Ty (M), we have



where K (z,y) denotes the sectional curvature with respect to the plane generated by x and
y. Then
I <[J].

In addition, if for some ty € (0,a], we have |J(to)| = |J(to)|, then K(J(t),7 (t)) =
K(J(#),~'(t)), for all t € [0,1)].

And then, we shall introduce an application of the Rauch comparison Theorem, the

Toponogov triangle comparison theorem. The concise statement is as following:

Theorem 2.1.8. (Toponogov triangle comparison theorem [3])

Assume that the sectional curvature of a Riemannian manifold M satisfies
K>6>0.

1. Let {p,q,r} be any triangle in M and in S™(0) take some triangle {p',q ,v'} such
that the corresponding side from p and p have equal lengths and equal angles at p

and p'. Then

dM(q7 T) < dS”(5) (q/a 7"/>.

Where S™(0) is the space form of dimension n and sectional curvature k. (see Figure

2.1.1

2. Given any triangle with vertices p,q,v € M, it follows that the interior angles are

larger than the corresponding interior angles for a comparison triangle in S™(9).

(see Figure[2.1.3)
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Figure 2.1.2: The Toponogov triangle comparison theorem.

Hopf-Rinow theorem is one of the most important theorem for the complete mani-
folds, which state any two points in a complete manifold admits a minimizing geodesic

joining these two points.

Theorem 2.1.9. (Hopf-Rinow theorem [22])

Let M be a Riemannian manifold and let p € M. The following assertions are equivalent:
(a) exp, is defined on all of T,M.

(b) The closed and bounded sets of M are compact.

(¢c) M is complete as a metric space.

(d) M is geodesically complete. In addition, any of the statements above implies that

(e) For any q € M there exists a geodesic v joining p to q with I(y) = d(p, q).



We shall define the formula for the first and second variation. A prop variation is
a variation with the same initial point and endpoint. Let ¢ : [0,a] — M be a piecewise
differentiable curve in M and f : (—¢,€)x[0,a] — M be a variation of ¢ with f(0,t) = ¢(t).

We define E(s) be energy function by

/ s, 0Pd, s (—ee).

Proposition 2.1.10. (variation formulas [22])
Let ¢ : [0,a] — M be a piecewise differentiable curve. Let f : (—e,€) x [0,a] — M be a
proper variation of ¢, and let E : (—e,€) — R be the energy of f. Then

(first variation formula)

2B 0) = = 7 9(VD), 35)dt
=i g (V) 5 (67) = %)
—g9(V(0), %(0)) +g(V(a), (a))

where V(1) = %(Oj) is the variational field of f, and

de . dc de, de

tF —(t;) = lim —
a) = i ) = i

(second variation formula)

1 @ D2V d’y d’}/ DV

_E - — ( t’— )dt_ ( 7:’ t+ tA_>7

70 == [Co(VO T+ RO )= ) - ()
where V (t) = %(O,t) is the variation field of f, R is the Riemannian curvature operator
of M and

Z(#) = lim — () = lim —
) =lm—l, () = lm =L

t—t;



Corollary 2.1.11. [22] If the variation is not proper, then we obtain following expression:

—Jo 9 (V) G + R(G
-V, dt< -
—9(V(

+9(2 5 @) 0,

V)G )dt

N |+

BEt) —9(2%.9)(0,0)
0), Z(0)) + g(V(a), B¢ ().

We shall introduce some concepts of classical Morse theory. Let f be a smooth real-

value function on a manifold M. A point p € M is called a critical point of f if the

induced map f, : T,M — TR is zero. (i.e. é;9—9501(]9) = aa—gg;(p) == %(p) = 0, where
(x1,...,2,) is a local coordinate system in a neighborhood U of p.) The real number f(p)

is called a critical value of f. A critical point p is called non — degenerate if and only if

A= <8:(:8fo]- (p))

the matrix

is non-singular, (i.e. det(A) # 0.)

Lemma 2.1.12. (Morse Lemma [57])
Let p be a non-degenerate critical point for f. Then there is a local coordinate system

(Y1,Y2, "+ ,Yn) in a neighborhood U of p with y;(p) = 0 for all i and such that the identity

f=fp) =)= = W)+ () + o+ ()’

holds throughout U, where X is the index of f at p.

We shall introduce the cut locus C,(p) with p € M. It is roughly the set of all other
points for which there are multiple minimizing geodesics connecting them from p. We
know that exp, is an injective mapping to an open ball B, (p) if and only if the radius r is
less than or equal to the minimizing distance from p to C,,(p). In the following, we shall

define injectivity radius of M.

Definition 2.1.13. [22] We define the injectivity radius of M by

i(M) = inf d(p, Cp(p)).

peEM
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In the following, we shall introduce the fundamental tensor analysis. A tensor S of
order r on a Riemannian manifold is a functional linear mapping. Then we can define a

covariant derivative tenser VS by
VS(X,Y) = (Vx9)(Y)=Vx(SY)) — S(VxY).
More generally, define

VS(X,YI,...,Y;«) == (VXS)(Yl,,K)
=Vx(S(Y1,....Y;)) =Y _S(Vi,...,VxYi,.... ;).

=1

If f: M — R is asmooth function, then we already have V f defined as the vector

field satisfying
9(Vf,v) =Dyf =df(v).

We will define the Hessian of f and Laplacian of f :

Definition 2.1.14. [38] The Hessian Hessf is defined by
Hessf(X,Y) = g(5(X),Y).

Where S(X) = VxVf be self-adjoint (1,1)—tensor.

Let M be a Riemannian manifold, X,Y € (M) and f € D(M). Define the divergence
of X as a function divX : M — R given by divX (p) = tr(Vy X (p)), p € M.

Definition 2.1.15. [38] Let M be Riemannian manifold. Define the Laplacian operator
A D(M)— D(M) by
Af = divVf,

where f € D(M).

We will define the killing field on a Riemannian manifold. A vector field X on a

Riemannian manifold (M, g) is called a Killing field if the local flows generated by X

11



act by isometries. The concise definition is as following:

Definition 2.1.16. [38] A vector field X on a Riemannian manifold (M, g) is a Killing
field if and only if Lxg = 0. (i.e. ¢(Vy X, Z)+g(VzX,Y) =0, for all Y, Z € S(M).)

The vector field on a circle that points clockwise and has the same length at each
point is a Killing vector field, since moving each point on the circle along this vector field

simply rotates the circle.

Figure 2.1.3: The killing vector field on a circle.

12



2.2 Introduction to algebraic topology

In this section, we shall introduce the fundamental property of algebraic topology. Include
homotopy group, n—connection, universal covering, homology group, and Betti number
etc.

We are going to introduce the homotopy group, which is two continuous functions
from one topological space to another. If one can be "continuous deformed" into the
other, then such a deformation being called a homotopy between the two functions.

We next introduce the definition of the homotopy group and fundamental group as
following:

By a path in a topological space X we mean a continuous map f : I — X where [ is
the unit interval [0, 1]. A homotopy of paths in X is a family f,: I — X, 0 <t < 1, such

that
1. The endpoint f;(0) =z and f;(1) = x; are independent of .
2. The associated map F': [ x [ — X defined by F(s,t) = fi(s) is continuous.

When two paths fy and f; are connected in this way by a homotopy f;, they are said to
be homotopic. The notation for this is fo ~ f.
The relation of homotopy on paths with fixed endpoints in any space is an equivalence

relation. An equivalence class will be denoted [f] and called the homotopy class of f.

Definition 2.2.1. [30] Given two path f,g : I — X such that f(1) = ¢(0), there is a

composition or product path f-g¢g that traverses first f and then g, defined by the formula:

f(25)7 s1 € [07 %]
g(2s—1) s €[5,1]

(f-9)(s) =

This product operation respects homotopy classes. Above homotopy classes form a group,

these groups are called fundamental groups, denoted by (X, o).

Definition 2.2.2. [30] Let I"™ be the n-dimensional unit cube, the product of n copies of

the interval [0, 1]. The boundary 0I™ of I"™ is the subspace consisting of points with at least

13



one coordinate equal to 0 or 1. For a space X with basepoint xq € X, define m, (X, zg) to
be the set of homotopy classes of maps f: (I",0I") — (X, xo), where homotopies f; are

required to satisfy f;(0I") = x for all t. The definition extend to the following case:

1. When n = 0, by taking I° to be a point and 9I° to be empty, so m(X,x¢) is just

the set of path-components of X.

2. When n > 2, a product operation in m,(X, zy), generalizing the composition oper-

ation in 7, is defined by

f(2817527 T 7Sn)7 51 € [07 %]

(f'g)(31,327"' 7871) =
9(251 - 1752a"' 7571)7 s1 € [%’1]

It is evident that this sum is well-defined on homotopy classes. Above equivalence

classes form a group, these groups are called homotopy groups.

We mention the application of homotopy group, namely, n—connected, N-connectedness

is a way to say that a space vanishes.

Definition 2.2.3. [30] A space X is a topological space with basepoint x, is said to be

n-connected if m;(X, z¢) = 0 for i < n.

Thus, 0-connected means path-connected and 1-connected means simply-connected.

We are going to introduce the universal cover space.
Definition 2.2.4. [30] Let X be the topological space. A covering space of a space X is
a space C together with a continuous surjective map

p:C—X

satisfies the following condition: There exists an open cover {U,} of X such that for each
a, p~1(U,)(the inverse image of U under p) is a disjoint union of open sets in C, each of
which is mapped homeomorphically onto U by p.

A connected covering space is a universal covering if it is simply connected.

14



We shall define the two important topological properties, namely, homology group and

Betti number. The concise definition is as following:

Definition 2.2.5. [40] Let X be the topological space. The k—th homology group of X

is defined to be the quotient group

Hy (M) = Zpy(M)/B(M)

where Z;(M) is a closed k—chain group defined by Zy(M) = {cx|0c, = 0} and Bi(M) is
a boundary k—chain group defined by By(M) = {by = Ocxs1|ck+1 € Crr1(M)}. Here the
Oci = 0 is called a closed k—chain, the by, = Ocyyq is called the boundary chain and ¢ is

the continuous k—chain.

Definition 2.2.6. [40] Let X be the topological space. The rank of the the k—dimensional

homology group Hy(M) of X is called the Betti number of order k, denoted by

b, = dim(Hy(M)).

15



Chapter 3

The Topological Sphere Theorem and

Its Generalizations

The topological sphere theorem is a beautiful theorem in Riemannian geometry, which has
a long history, dating back to s paper by H.E. Rauch in 1951. In that paper [39], Rauch
posed the question of whether a compact, simply connected Riemannian manifold M with
sectional curvature lie in the interval (%, 1] is necessarily homeomorphic to the sphere.

Around 1960, M.Berger and W.Klingenberg gave an certain answer to this question:

Theorem 3.0.7. (M. Berger [4; W. Klingenberg [34|] 1960)
Let M be a compact, simply connected Riemannian manifold whose sectional curvatures

lie in the interval (3,1]. Then M is homeomorphic to S™.

In this chapter, we shall introduce the topological sphere theorems in Riemannian
geometry, and shall discuss the relations under the different curvature conditions. In
section 1, we are going to introduce the classic sphere theorem in Riemannian geometry.
In section 2, we shall replace the curvature condition to K > 1 and diam(M) > 7. Then
M is still homeomorphic to S™. In section 3, similarly, we are going to replace the curvature
condition to Ric > (n — 1)k, where k is any positive constant, and diam(M) = - Then
M is isometric to S™. In section 4, we consider positive curved manifold M which has
nontrivial killing field. Then M is homeomorphic to S* or CP2. In section 5, we consider

a Riemannian manifold with positive isotropic curvature, and shall discuss other sphere

16



theorems in Riemannian geometry.

3.1 The sphere theorem in Riemannian geometry

In this section, we shall discuss the classic sphere theorem in Riemannian geometry. We

are going to introduce the Bonnet-Myers theorem.

Theorem 3.1.1. (Bonnet — Myers Theorem [22])
Let M™ be a complete Riemannian manifold. Suppose that the Ricci curvature of M
satisfies

1
Ric,(v) > —

3 > 0,

for allp € M and for allv € T,M. Then M is compact and the diameter diam(M) < 7r.

Proof.

Let p, ¢ be any two point in M. Since M is complete, by Hopf-Rinow Theorem
there exists a minimizing geodesic «y : [0, 1] — M joining p to ¢. (i.e. () = d(p,q)) Then
we claim that [(v) < 7r, because M is bounded and complete, therefore M is compact;
besides, if [(v) < 7r, then d(p, q) < mr, for all p, ¢ € M which implies diam(M) < 7r and
we complete this proof.

If not, suppose that [(y) > =nr. Consider parallel fields e;(t),... e,—1(t) along v be
orthonormal, for each t € [0,1] and {e;(),... e,_1()} € {y(t)}*. Let e,(t) = 78 and

l

let V; be vector field along v given by
Vi(t) = (sinmt)e;(t), j=1,...,n—1

Clearly, V;(0) = V;(1) = 0, therefore V; can construct a proper variation of -, whose

energy function denote by E;.

17



By second variation formula [2.1.10/and e;(t) is parallel, (i.e. €;(t) = 0) we have

32100 == [ a(ViO. V0 + RO 0.1,0)7 ()t -

k

=1

—— [ a(v0.V 0+ RE O.0)1 0)

o(Vi(0), 22 (67)

DV
dt

(

t

)

_ /01 g((Sin wt)e;(t), 72(—sin mt)e;(t) + R((l . en(t)), (Simrt)ej(t)> (l . en(t))>dt

_ /0 1(sin t)2n2g (ej(w, ej(t)>dt + /0 1 12(sin 7Tt)2g<ej(t), R(en(t), ej(t))en(t))dt

= /Ol(sin mt) 2l dt — /01 [*(sin wt)QK(en(t),ej(t))dt
= /Ol(sin27rt) <7T2 — PK (en(t), ej(t»)dt

where K (e, (%), e;(t)) is sectional curvature at v(t) with respect to the plane generated by

en(t), €j(t). Summing on j and by definition of Ricci curvature, we obtain

% jZ;EE;(O) = 7;2;;1/01(81112 t) (7r2 — ZQK(en(t), ej (t)))dt

= /Ol{sin2 7Tt<(n - =12 nz_:l K (en(t), ej(t))> pdi

= /0 {sin® Wt((n — 1)m* — (n — V)P Ricy (en(t)))}dt.

Since Ricy)(en(t)) > & > 0 and [ > 7r, which implies

(n — 1)I*Ricyi(en(t)) > (n — 1)a(r* - T_lz) = (n—1)7%,

hence,

%Z E;-/(O) < /01 sin’mt((n — 1)7* — (n — 1)7?)dt = 0.

As a result, there exists an index j such that E;/(O) < 0, which implies E;(s) is strictly

decreasing at zero. Since E;(s) has local minimum at zero, there exists a curve c in this

variation such that E(y) = I(7)? < I(c)?> < E(c). Therefore, we know that c is the minimal
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geodesic. Which is a contradiction. Hence [ < 7r. [ |

We mention the classic sphere theorem as following:

Theorem 3.1.2. (classic sphere theorem)(M. Berger [J|; W. Klingenberg [34]] 1960)
Let M™ be a compact simply connected, Riemannian manifold, with sectional curvature
K satisfing

1
-<K<I1
1 =

Then M 1is homeomorphic to a sphere. If K = }1, then M is isometric to a symmetric

space.
To prove this theorem, we need the following two important lemmas.

Lemma 3.1.3. [22] Let M™ be a compact, simply connected Riemannian manifold with
sectional curvature K satisfing

1

and let p,q € M be such that d(p,q) = diam(M). Then M = B,(p) U B,(q), where
B,(p) C M denotes the open geodesic ball of radius p and center p € M and p is such

thatﬁg<p<7r.

Proof. If not, suppose that there exists v € M such that d(p,r) > p, d(q,7) > p.
Without lose of generalization, we can assume that d(p,r) > d(q,7) > p.

There is a minimizing geodesic from ¢ to v intersects 9(B,(q)) in a point ¢ & B,(p).
On the other hand, by Bonnet-Myers theorem , diam(M) < \/lg < 2p. Therefore,
if ¢" is a point of intersection of the minimizing geodesic from ¢ to p with 0B,(q), then
q € B,(p).

Since 0B,(p) and 0B,(q) are path connected (because 0B,(p) and 0B,(q) are homeo-
morphic to Euclidean ball), this implies 0B,(p) N 0B,(q) # 0, hence there exists ro € M

such that d(rg,p) = d(ro,q) = p.

Next, we consider a minimizing geodesic A joining p to ry, by Berger’s Lemma [4].

There exists a minimizing geodesic v from p to ¢ with (7/(0), \'(0)) > 0. (see Figure

19



B®

Figure 3.1.1:

3.1.1)) Let s be a point of 7 such that d(p,s) = p. From Rauch comparison theorem, the
angle <rops < 7 and d(rg, s) < O/
Since d(rg,p) = d(r9,q) = p and there exists a point sy of v such that d(ro, so) < p,

the distance from ry to « is realized by a point sq in the interior of 4. The minimizing

geodesic from r to sy is perpendicular to v and

v
d(ro,7y) = d(ro, 50) < —=.

20

Since d(p,q) = diam(M) < 2=, we have either d(p, sp) < === or d(gq,sy) < In

V5 25 = 25"
either case, since d(rg, o) < 575 and <psoro = 7, we have d(p,r9) < 55 < P» by applying

Rauch comparison theorem [2.1.7] This contradicts the fact that d(p, ) = p. |
Lemma 3.1.4. [22] Under the conditions of Lemma on each geodesic of length p

starting from p there exists a unique point m such that

d(p,m) = d(g,m) <p
Similarly, on each geodesic starting from q of length p there exists a unique point n equidis-
tant from p and q.

Proof. First, we prove the existence. Let v(s) be a geodesic with (0) = p and

consider



Then f is continuous and f(0) = d(p,q) > 0. Let s be such that v(sg) is a cut point of p
along . Then d(p,v(sp)) > 7 > p. From Lemma|3.1.3, we have d(g,7(so)) < p. Therefore,

f(s0) = d(q,7(s0)) — d(p,7(s0)) <O.

By the intermediate value theorem, there exists s; € (0, so) such that f(s;) = 0. Choose
m = ~y(s1) such that d(p, m) = d(q,m) < p.
We prove uniqueness by contradiction. Suppose that there exist m; # mso and both

equidistant from p to g. We can assume that m; is between p and ms. Then

d(q,ms) = d(p,mz2) = d(p, m1) + d(mq, ms) = d(q, m1) + d(my, ms).

Hence q € v and m, # msy. Therefore p = ¢, which contradicts the hypothesis. [ |
Finally, we prove the classic sphere theorem as following:
Proof of classic sphere theorem. Let p,q € M such that diam(M)=d(p,q). Let
Dy and Dy be subsets of M determined by all geodesic segments pm and gn respectively,
where the points m and n are given by Lemma [3.1.4] By continuity of m and n, we have

Dy and D, are closed subset of M. To prove this theorem, we follow the following steps:
step (1) Prove that Dy U Dy = M and 0D, = 0Dy = Dy N Ds.

step (2) Construct the mapping ¢ : S™ — M™ by

p(1(s)) = epr(s%d(p,m)(z' o r’(()))), 0<s<7T
o) =exp, (2= Z)dlg,m)V),  F<s<n

step (3) Check that @1 : N° — D¢ is bijective, o : S° — D3 is bijective and 3 : E —
0D1 = 0Dy = Dy N Dy, where N is intrinsic of northern hemisphere N and S° is

intrinsic of southern hemisphere S.

proof of step (1):
First, we know that D; U Dy C M, so we will show that D; U Dy D M. Let r € M. By

Lemma either d(p,r) < p or d(q,r) < p. We only consider the first case, since the
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second is analogous.
Suppose d(p,r) < p. Since d(p,Cy,(p)) > 7® > p, there exists a unique minimizing
geodesic v passing through p and r. Then d(p,m) = d(p,r) + d(r,m). By Lemma [3.1.4]

there exists a unique point m on v such that d(p,m) = d(¢, m) < p. Hence
(a) If d(p,r) < d(q,r), then r € pm (i.e. r € Dy).
(b) If d(p,r) = d(q,r), by uniqueness, we have r = m (i.e. 7 € 9Dy or r € 9Dy).
(c) If d(p,r) > d(q,r), then d(q,r) < p and hence r € gn (i.e. r € Dy).

Therefore » € Dy U Ds.

If r € Dy N Dy, then d(p,r) = d(g,7) and hence r = m =n (i.e. » € 0D,(0D2)). This
complete the proof of step (1).

proof of step (2):
Fixed a point N € S™ associate p, and to its antipodal point S € S™ associate ¢q. Choose a
linear isometry mapping ¢ : Ty S™ — TpM. For each point e of the equator F of S™ relative
to the north pole N, consider the geodesic v(s) of S, 0 < s < m, given by vy(0) = N,
v(%) = e. Let m be the point given by Lemma on the geodesic of M which pass

2

through p with i(r'(0)). Define:

<

IR

2(1(s)) = exp, (s2d(p.m) (i o ¥'(0)), 0

<s
p(r(s) =exp, (2= Z)dlg,m)V),  F<s<m

ol

where V' is the unit tangent vector at ¢ of the unique minimizing geodesic from ¢ to m.
proof of step (3):
Clearly, it is easy to check ¢; : N° — Df is bijective, o : S° — D is bijective and
w3 : B — 0Dy = 0Dy = D1 N Dy, where N° is intrinsic of northern hemisphere N and S°
is intrinsic of southern hemisphere S.
By step (2) and step (3), the mapping ¢ : S™ — M is homeomorphism. The proof is

complete. ]
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3.2 The diameter sphere theorem

In this section, we shall discuss the diameter sphere theorem proposed by Grove and
Shiohama. The argument presented here relies on the variation theory for geodesics and

the Morse theory. The statement is as following:

Theorem 3.2.1. (diameter sphere theorem)(Grove, Shiohama [27] 1977)
Let (M, g) be a compact Riemannian manifold of dimension n > 4 with sectional curva-

ture K > 1 and diam(M) > 5. Then M is homeomorphic to S™.
Before the proof of the diameter sphere theorem, we need the following two lemmas:

Lemma 3.2.2. [16] Let (M, g) be a complete Riemannian manifold and let q be a point in
M. Suppose that v : (—,0] — M is a smooth path satisfying d(v(s),q) > d(~(0),q) + ps,
Vs € (—¢,0]. Then there exists a vector v € T, (M) such that exp. g (v) = ¢, |v] =
4(+(0),0), and <+ (0),0 >> o]

Proof. Since (M, g) is complete, by Hopf-Rinow theorem [2.1.9 there exists a vector
v € Ty0)(M) such that exp,)(v) = ¢ and [v] = d(7(0),q). If v = 0, then we are done.
Hence it is suffices to consider the case v # 0. Define a smooth map « : [0, 1] x (—¢,0] - M
such that a(0,s) = 7(s), a(l,s) = ¢ for all s € (—¢,0] and «a(t,0) = exp,g)(tv) for all

t € [0,1]. Then fix s and let t change. We obtain

L(a(s)) = d(v(s),q) = d(~(0),q) + ps
for all s € (—¢,0]. By the formula for the first variation of arc-length [2.1.10} thus
L 0,0 5= LL((s)) lsmo= 1

Hence we obtain < 7' (0),v >< |v|u. This proof is complete. |

Lemma 3.2.3. [16)] Let (M, g) be a complete Riemannian manifold and let q be a point
in M. Suppose that ~y : [0,e) — M is a smooth path satisfying d(~(s),q) < d(v(0),q) + ps,
Vs € [0,¢). Then there exists a vector v € T, (M) such that exp, o (v) = ¢, |v] =

d(7(0),9), and <~'(0),v >> —pulv].
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Proof. First, define

1 1

s = inf{s € 10,6) | d(1(5),0) < d3(0),0) + (u+ )5 — 25

where k large enough. Clearly, s, € (0, %] Moreover, we have

Ax(s),0) > dr(se), ) + o+ ) (s — )

for all s € [0, sg]. By Lemma there exists a vy, € T(s,)M such that exp.,)(vi) = ¢,
log| = d(v(sk),q), and < v (sp),vp >> —(p + 2)|uk|. This proof is complete, when we
choose the limit £ — oo. |
We prove the diameter sphere theorem as following:
Proof of diameter sphere theorem. We claim that M is (n — 1) — connected and
prove it by contradiction. Suppose this false. There exists an integer k € {1,...,n — 1}
such that m, (M) # 0. Let us fix two points p,q € M such that d(p, q) = diam(M) > 7.

Then we follow the following steps:

step (1) Prove that if v : [0,1] — M is a geodesic satisfying v(0) = (1) = p, then 7 has

Morse index at least n — 1

step (2) Show that there exists a geodesic v : [0,1] — M such that v(0) = (1) = p and

ind(y) < k, where ind(~y) denotes the index of v

proof of step (1):
By assumption, we have d(y(s),q) < d(v(0),q) for all s € [0,1]. By Lemma there
exists v € T, M such that exp, = ¢, |[v| = d(p,q), and < 7' (0),v >> 0.

Next, we claim that L(v) < m. To prove this, we argue by contradiction. If L(vy) < m,
then the Toponogov’s theorem implies that

i

cos(d(7(1), q)) = cos(L()) cos(d(7(0), q)) + sin(L(7)) sin(d(v(0), ¢)) cos(<(y (0),v)).

By assumption, we have L(vy) € (0,n] and d(vy(0),q) € (5, 7]. Moreover, the inequality
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<(7(0),v) > 0 implies cos(<t(v'(0),v)) > 0, we obtain

cos(d(7(1), q)) = cos(L(7)) cos(d(7(0), ¢))-

Hence, we get cos(d(y(1),q)) # cos(d(v(0),q)), which contradicts to the fact that v(0) =
7(1) = p. Consequently, we have L(vy) > 7.
Let k be the space of all vector fields of the form V(s) = sin(ws)X(s), where X is a

parallel vector field along + satisfying < 4'(s), X(s) >= 0 for all s € [0, 1]. Then
DaDaV(s) = —n’sin(rs)X(s) = -1V (s).
Let I denote the index form associated with the second variation of arclength. Then

/ (IDLV($)E = R (5). V(). (5), V(s)) ) ds
:/0 <7r2|V (7/(8),Sin(ﬂ'S)X<S),’7,(S),SiIl(TFS)X(s)))dS

Il
LS~

— (sin(ns)) R(yl(s),X(s),’y/(s),X(s)))ds
s/o V() — (L)) |V (s)ds

— (2~ L(v)?) / V(s)2ds

where V(s) € k. Since L(v) > 7 implies —L(vy)? < —n?, therefore
IV,V) < (m / 1V (s)|*ds < 0.

Hence the restriction of I to the vector space k is negative definite. This implies ind(y) >
dimk =n — 1.
To prove step (2), we need the following some tools. We say that a critical point

p € M for a smooth function f : M — R has index > m if the Hessian of f is negative
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definite on a m—dimensional subspace in 7}, M. Define

Qap(M) ={y:[0,1] = M]r(0) € A,7(1) € B}

where v is a geodesic on M. If A, B C M are compact, then the energy functional

E:Qup(M)—[0,00)

is reasonably nice in the sense that it behaves like a proper smooth function on a manifold.
If in addition A and B are submanifolds then the variational fields for variations in
Q4 p(M) consist of fields along the curve that are tangent to A and B at the endpoint.
Therefore, critical points are naturally identified with geodesic that are perpendicular to
A and B at the endpoints. We say that the index of such a geodesic > k if there is a
k—dimensional space of fields along the geodesic such that the second variation of the
these fields is negative.

proof of step (2):
Logically, the step (2) is equivalent to "Let A C M be a compact submanifold. If every
geodesic in Qa a(M) has index > k, then A C M is k — connected."
Identify A = E~1(0) and use the above as a guide for what should happen. This shows

that A C Q4 4(M) is (k — 1)—connected. Next we note that

m(Qaa(M), A) = 11 (M, A).

This gives the result.
By step (1) and step (2), this is contradiction. Hence, we have 7, (M) = 0, and M is
(n — 1) — connected. Which implies that M is a homotopy sphere. Therefore, by result of

Freedman|23] and Smale[42] that M is homeomorphic to S™. |
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3.3 The sphere theorem of Ricci curvature comparison

In this section, we shall prove some fundamental results for manifolds with lower Ricci
curvature bounds.

Let r(z) = d(x, p) be the distance function.

Theorem 3.3.1. (the Ricci comparison sphere theorem)(S.Y. Cheng [20] 1975)

If (M, g) is a complete Riemannian manifold with Ric > (n—1)k > 0 and diam(M) = 7,

then M is isometric to S}.
To prove this theorem, we need the following two important lemmas.

Lemma 3.3.2. (the Ricci comparison result) [38]
Suppose that (M, g) has Ric > (n — 1)k for some k € R. Then

sin;,c (r)

Ar < (n- 1)Sink(r)7

dvol < dvoly,

where dvoly 1s the volume form in constant sectional curvature k.

Lemma 3.3.3. (relative volume comparison [38])

Suppose (M, g) is a complete Riemannian manifold with Ric > (n — 1)k. Then

vol B(p, )
v(n, k,r)

is a nonincreasing function and its limit is 1 as r — 0, where v(n, k,r) denotes the volume

of a ball of radius r in the constant curvature space form S}.

Next, we present the proof of Ricci comparison sphere theorem.
Proof of Ricci comparison sphere theorem. Fix p,q € M such that d(p,q) = \/LE

Define r(x) = d(x,p), 7(z) = d(z, q) and sing(r) = % We claim that
step (1) r+7 =d(p,z) +d(z,q) = d(p,q) = Jp, v € M.
step (2) r,7 are smooth on M — {p, q}.
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/

step (3) Hessr = (22%)ds?_,.

sing n

step (4) g = dr? + sin} ds?

n—1

We know that step (3) implies step (4) and that step (4) implies M must be isometric to
Sy
proof of step (1):

We prove it by contradiction. The triangle inequality shows that

L —dp,q) < d(p,z) +d(z, q).

Vk

Hence it suffices to show that d(p,q) > d(p,x) + d(z,q) by contradiction. Suppose that
d(p,q) < d(p,z)+ d(x,q). we can find € > 0 such that (see Figure [3.3.1])

T
2t + —= =2=+d(p,q)

vk

=2 +d(p,p) +d(q,q)
=d(p,p)+d(p,z) +d(z,q)+d(q,q)

=d(p,z)+d(z,q).

When r; < d(p,x),ry <d(q,z) and ri + 1y = \/lg, the metric balls B(p,r1), B(q,m2) and

B(z,¢e) are pairwise disjoint. Thus,

~ wolM - vol B(z,€) + vol B(p,r1) + vol B(q, r3)

~ wolM ~ vol M
U(n,k,f—:) + v(n7karl) + 'U(TL,]{?,T'Q)

v(n,k, 72)  v(n,k, 72) v(n, k, )
_v(n,k,e)
v(n, k, \/LE)

1

+1,

which is a contradiction.
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Figure 3.3.1:

proof of step (2):

If x € M —{p, q}, then x can be joined to both p and ¢ by segments o1, 05. The previous
statement says that if we put these two segments together, then we get a segment from p
to ¢ through x. Such a segment must be smooth, and thus o1 and o5 are both subsegments
of a larger segment. This implies from our characterization of when distance functions
are smooth that both r and 7 are smooth at x € M — {p, ¢}.

proof of step (3):

We have r(z) + 7(x) = d(p,q) = 7> thus Ar = —A7. On the other hand, by Lemma
3.3.2]

@w@smﬂdw)zﬁm@
= —Ai(z)
-5
O e
e

29



This implies,

Ar(z)=(n—-1
(z) =( sing (T(az))
Hence,
A in,
Hessr = ! Gr = S?nkgr
n—1 siny

[

The conditions in theorem require lower bounds for the Ricci curvature and the
diameter of (M, g). It is natural to ask whether these assumptions can be replaced by
lower bounds for the Ricci curvature and volume of (M, g). An important result is as

following:

Theorem 3.3.4. (J. Cheeger, T. Colding [19] 1997)
For each integer n > 2, there exists a real number (n) € (0,1) with the following
property: if (M, g) is a compact Riemannian manifold of dimension n with Ric > (n—1)g

and vol(M, g) > (1 — ¢(n))vol(S™(1)), then M is diffeomorphic to S™.
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3.4

The sphere theorem with positive curvature

In this section, we shall introduce the sphere theorem of the positively (sectional) curved

manifolds. We denote a compact positively curved manifolds by CPCM. First, we will

introduce the Weinstein and Synge theorem.

Theorem 3.4.1. (Weinstein and Synge theorem [22])

Let f be an isometry of a compact oriented Riemannian manifold M"™. Suppose that M

has positive sectional curvature and that f preserves the orientation of M if n is even, and

reverses it if n is odd. Then f has a fized point, i.e., there exists p € M with f(p) = p.

We are going to introduce the Synge’s theorem as following.

Theorem 3.4.2. (Synge theorem [22])

Let M™ be a compact manifold with positive sectional curvature.

(a) If M™ is orientable and n is even, then M is simply connected.

(b) If n is odd, then M™ is orientable.

Proof.

()

Let m : M — M be the universal covering of M. Introduce on M the covering
metric, and orient M in such a way that 7 preserves the orientation. Because M is
compact and has positive curvature, we must have K > ¢ > 0. From the fact that =
is a local isometry, the same curvature condition holds on M. Since M is complete,
so M is compact. Let k : M — M be a covering transformation of M, that is,
7(k) = 7. Then k is an isometry of M, from the way that we oriented M, preserves
the orientation. Because n is even, we can use the theorem ro conclude that & has
a fixed point. But a covering transformation which has a fixed point is the identity.
It follows that the group of covering transformations of M reduces to the identity.

Therefore M is simply connected.

We prove it by contradiction. Suppose that M is not orientable, and consider

the orientable double cover M of M. Where M = {(p,0,)|p € M,0, € O,} and
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O, € O, will be called an orientation. We introduce on M the covering metric.
Since M is the double cover of a compact manifold, M is compact. Let k be a
covering transformation of M, k # id. Because M is not orientable, k is an isometry
which reverses the orientation of M. Since n is odd, we can apply the Weinstein
Synge theorem which guarantees that k& has a fixed point. Therefore k£ = id,

which is a contradiction. [ |

Synge’s theorem [3.4.2] asserts that an even dimensional, orientable CPCM is simply
connected. This theorem together with the topological classification of compact surfaces
implies that a 2-dimensional, orientable CPCM is homeomorphic to S?. Three dimensional
CPCM’s have been determined by Hamilton [29]; they are diffeomorphic to space forms.
Hence we consider only 4-dimensional CPCM.

It is known that the existence of a nontrivial Killing vector field on a compact Rie-
mannian manifold M is equivalent to the existence of a nontrivial S'—action on M. Let
F(S', M) be the fixed point set of such an S'—action on M. An S'—Riemannian manifold
is a Riemannian manifold with a given isometric S'—action and denoted (S*, M).

Let y € M be an isolated fixed point. Let 7 : S* x M — M be the canonical surjection.
The local geometry of M near a point 7~ (y) € S x M is determined by the geometry

of the local representation at y € M. This representation is equivalent to

Gry ST X CP = C% gy [ (21, 22)] = (€21, " 2),

where 21, 2o € C and k,[ € Z with g.c.d(k,l) = 1. Let S3(1) C C? be the unit sphere and
let d: S3(1) x S3(1) — R be given by d(v,w) = Z(v,w) =the angle between v and w. Let

(X1, diy) be the orbit space of (¢, S3(1), d) with orbital distance metric dy,.

Lemma 3.4.3. [ If x1, 29, x3 are arbitrary points in Xy, then

dri(21, 22) + dig (22, x3) + d (23, 1) < .

Proof. The two great circles in S3(1) given by 2; = 0 and 2z, = 0 are orbits of

¢r, for all k,1 with g.c.d(k,1) = 1. Let Xp; = Xy — {21 = 0,2, = 0}. Xj,; consists
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of principal orbits, so we give it the Riemannian submersion metric coming form the
canonical Riemannian metric in S?(1). We will be using the fact that this Riemannian
submersion metric induces the distance function dj; on Xkyl.

In the special case where k = [ = 1, the projection 7 : S*(1) — X is the Hopf
fibration and it is easily checked that X ; is isometric to a CP! with diameter 5 (i.e., Xi1

) Q R3) Hence the inequality d171(l’1, $2)+d171(l’2, x3)+d171(x37 331) S ™

is isometric to S%(5

is obvious.

We now fix (k,1) # (1,1). The isometric T?—action
T2 x $°(1) = S°(1), (e,e™)(21,22) = (21, €™ 2,)

induce an isometric S'—action on the Riemannian manifold Xpg. Xi; is a connected

™

noncomplete surface of revolution with diameter 7, so it admits a coordinate system

(r,) : (0, g) < S = Xy,
such that the metric in these coordinate is
ds* = dr® + (f(r))*d6”

where df) is standard 1—form on S!. We can arrange that the latitude circle r = ¢ corre-

sponds to the orbit space of the torus T?(c) = T?(cos ¢, sinc) C S(1). Hence
27 f(c)(the length of a ¢, orbit in T%(c)) = 47 cos csinc.

The orbits of ¢y, all have length > 27, so f(c) < coscsine = %sin 2c. Hence there is a
length nonincreasing bijection of Xl’l onto Xk,l with same coordinates in (0, g) x S'. The
inequality

dii(x1, 22) + di (22, x3) + dip (23, 21) < 7

for 1,209,223 € )N(M now follows from the corresponding inequality already proved for
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k =1 = 1. This proof is complete. [ |
Let l;; = dist(p;, p;) and let Cj; = {7y : [0,1;;] — M|y is a minimizing geodesic segment

from p; to p;}, 1 <14,5 < 4. For each triple 1 <14,j,k <4, set
aiji = min{ Z(7;(0),7(0)|7; € Cij, v € Cix}-
Lemma 3.4.4. [31] For each triple of distinct integers 1 <1, j, k <4,
Qg T Qi + Qg > T

Proof. Assume that (i,5,k) = (1,2,3). Set 4; = § =minimum of sectional cur-
vature of M. Choose x|, Ty, 25 on S?(R) such that the spherical triangle A(z],zy, z3)
has [19, 23,131 be its three lengths. Applying Toponogov’s theorem to an arbitrary

Y12 € Cha, Y23 € Cas, v13 € C43, as its three side, one gets

£(m2(0),715(0)) = Z(ayay, 2,25),

and hence, by the definition of 93, that ayjo3 > Z(2) 25, ¥125). Therefore ayas + azio +
(231 Z Z A(.ﬁlf;,l‘;,[lfé) > . u

We prove the sphere theorem with positive curvature as following:

Theorem 3.4.5. (Wu-Yi Hsiang, B. Kleiner [31)] 1989)
Let M be J-dimensional orientable CPCM. If M has a nontrivial Killing vector field,

then M is homeomorphic to S* or CP2.

Proof. Let M be a 4-dimensional orientable CPCM. Then by Synge’s theorem [3.4.1]
M is simply connected. We will use the orbital geometry of the given S'—action to prove
that x(M) at most 3. It follows directly from the work of Freedman [23] that M is

homeomorphic to either S* or CP?. By Wu-Yi Hsiang and Bruce Kleiner’s paper [31], we
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have x(M) = x(F) and

7 X(M) isolated point.

or S?U{(x(M)—2) isolated points.}

Hence the proof of the theorem reduces to proving that F' consists of at most three isolated
points or S? plus at most one more isolated point. We will divide the proof into two cases
and we will prove each case by contradiction.
Case 1, dimF = 2. Suppose that ' = S? plus at least two isolated fixed points. Let
p,q be two isolated fixed points and let v be a minimizing geodesic in M joining p to
q. Let n be a minimizing geodesic segment from S? to S'(v), the S* orbit of 7; hence
length(n)=d (52,5 (7)), and n has endpoints A € S? and B € S'(v). We will claim the
second variation E”(0) < 0.

Suppose B lies in the interior of v. We consider the minimizing geodesic segment n
from S? to p such that 7(0) = p" and n(l) = p. Let e;(t) be a unit parallel field along 7 and
e1(0) be its tangent vector. Let 3(s),s € (—e¢,¢), be geodesic in S? such that 5(0) = p’

and 3'(0) = e;(0). Let h(s,t) be variation of 7 given by
h(s,t) = exp,(sei(t)), s € (—¢,e), te]0,l]

since h(s,0) = B(0), then h(s,[) = exp,(se1(l)) = p. Therefore

Oh 0

55(0.8) = V(1) = o expy iy (ser(t))|s=o = ex (1),

hence 22¥ = 0. Using the second variation formula[2.1.10[and the fact that 9h(0,t) = e (t),

dt?
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we obtain

SE 0= [ oV, 5+ R Vo) Mhat - o2 0 0,0
ol Wy 0,1) — g(v(0), 20)) + 9V D), (D)
=~ [ ster, RO, )
_ _/OlK(el(t),%)dt.
Because K (e;(t), %) is positive,
%E“(O) <0,

and therefore there exists a local minimum, so length(n)>d(S%,S(n)). This contradicts
the assumption that length(n)=d(S52,5'(n)).

Suppose B = p. Apply same argument. The second variation formula can now be ap-
plied to the geodesic segment 7. It is shown that length(n)>d(S?,5'(v)). This contradicts
the assumption that length(n)=d(S5?,5'(7)). The same argument rule out B = ¢. Hence
F can contain at most one isolated fixed point in addition to the S2.

Case 2, dimF = 0. Suppose that F' contains at least four isolated points, P;,1 <17 < 4.
By lemmg3.4.4] Tt follows easily that

Z Z Oéijk>471' j,k#l

1<i<4 1<j<k<4

But, on the other hand, by lemma it is easily seen that

Z ik < T Jk#i

1<j<k<4

for each 1 <7 < 4, which gives a contradiction. Hence F' contains at most three isolated

points when dimF = 0. This completes the proof of the theorem. [ |
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3.5 Other sphere theorems

In this section, we first introduce some curvature conditions. A Riemannian manifold M

is said to have positive isotropic curvature if
Ri313 + Rig14 + Ragoz + Rosos — 2R1234 > 0

for all points p € M and all orthonormal four-frames {e;, e, €3, €4} C T, M.

We say that M has nonnegative isotropic curvature if
Ry313 + Rig14 + Rozoz + Rogoq — 2R1234 > 0

for all points p € M and all orthonormal four-frames {ey, es, e3,e4} C T, M.

Next, we shall define another curvature condition. A Riemannian manifold (M, g) is
said to be weakly § — pinched in the pointwise sense if 0 < 0K (m) < K(mq) for all
point p € M and all two-dimensional planes w1, my C TpM. If the strict inequality holds,
we say that (M, g) is strictly 6 — pinched in the pointwise sense. Similarly, M is said
to be weakly 6 — pinched in the global sense if the sectional curvature of M satisfies
0 < K < 1. If the strict inequality holds, we say that M is strictly 0 — pinched in the
global sense.

Now, we are going to introduce the compact, simply connected Riemannian manifold
with positive isotropic curvature. M. Micallef and J.D. Moore obtained the following

result:

Theorem 3.5.1. (M. Micallef, J.D. Moore [35] 1988)
Let M be a compact simply connected Riemannian manifold with positive isotropic cur-

vature. Then M s a homotopy sphere and hence M is homeomorphic to S™.

Next, we describe sufficient conditions for the vanishing of the second Betti number.
M. Berger [5] proved that the second Betti number of a manifold with pointwise }l—pinched
sectional curvatures is equal to 0. In even dimensions, the same result holds under the

weaker assumption that M has positive isotropic curvature:
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Theorem 3.5.2. (M. Michallef, M. Wang [36] 1993)
Let M be a compact Riemannian manifold of dimension n > 4. Suppose that n is even

and M has positive isotropic curvature. Then the second Betti number of M wvanishes.
In odd dimensions, The following result was established by M.Berger.

Theorem 3.5.3. (M. Berger [5] 1960)

Let M be a compact Riemannian manifold of dimension n > 5. Suppose that n is odd

n—3 _
4n—9

and M has pointwise pinched sectional curvatures. Then the second Betti number of

M wvanishes.

Finally, we mention a result concerning the topology of four-manifolds with positive

sectional curvature.

Theorem 3.5.4. (W. Seaman [41f, M. Ville [{{|] 1989)
Let (M, g) be a compact, orientable Riemannian manifold of dimension 4 which is 0-

pinched in the global sense (§ ~ 0.188). Then (M, g) is homeomorphic to S* or CP?.
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Table 3.1: The figure of Topological Sphere Theorem

M™ :Compact, simply connected

Mathematician

i — pinched sectional curvature

M™ is homeomorphic to S™

1960, M. Berger & W.Klingberg

positive isotropic curvature

1. M™ is homotopic to S™

2. n >4, M™ is homeomorphic to S™

1988, M. Micallef & J.D. Moore

M™ :Compact, n >4 | M™Compact, n > 5

Mathematician

positive isotropic curvature b2 =0 (n € even) 1993, M. Micallef & M. Wang
4’;__39 —pinched sectional curvature bz =0 (n € odd) 1960, M. Berger
M™ :Compact,orientable Mathematician

§—pinched in the global sense(§ ~ 0.188) | M™ is homeomorphic to S* or CP? 1989, W. Seaman & M. Ville

1. positive sectional curvature

2. nontrivial Killing field

M™ is homeomorphic to §4 or CP?

1989, Wu-Yi Hsiang & B. Kleniner

M™ :Compact

Mathematician

1. sectional curvature K > 1

2. diam(M) > %

M™ is homeomorphic to S™

1975, S.Y. Cheng

1. Ricz (n—1)g
2. vol(M, g) > (1 — §(n)vol(S™(1))

M™ is diffeomorphic to S™

1997, J. Cheeger & T. Colding
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Chapter 4

Conclusion

The sphere theorem is determined by the topology of the manifold with curvature condi-
tion. For example, in 2-dimensional, we have the Gauss — Bonnet theorem.

We introduce the classic sphere theorem in Riemannian geometry. The first natural
question is if it is possible to replace "homeomorphic" by "diffeomorphic" in the state-
ment of the sphere theorem. Observe that the homeomorphism of the sphere theorem is
obtain by "glueing" two discs along their boundaries. Such a construction may lead to a
differentiable structure on M distinct from the usual structure of the sphere. Therefore,
the proof of the sphere theorem presented here is not sufficient to establish a diffeomor-
phism.

So, we introduce another sphere theorem. The hypothesis of ”%—pinched” is replaced
by a hypothesis on the diameter: I f M is compact, K > 1, and diam(M) > 5 then M
is homeomorphic to a sphere. The case diam(M) = 7 (where the theorem is false, as
shown by the example of real projective space) was essentially classified by Gromoll and
Grove [25].

From Myer’s diameter estimate [3.1.1] it is natural to ask what happens if the diameter
attains it maximal value. Hence we introduce the Ricci comparison theorem.

We introduce the 4-dimensional orientable CPCM with nontrivial Killing vector field.
It is homeomorphic to S* or CP?. Therefore it is natural to ask the following question:

Question 1. A 4—dimensional C PC'M with a nontrivial Killing vector field should
be dif feomorphic to S*,RP*, or CP? ?
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Question 2. A compact, simply connected, nonnegatively curved 4 —mani fold with a
nontrivial Killing vector field should be dif feomorphic to either S*, CP? CP*4 + CP?,
or §? x 5?7

Of course, it is possible that these theorems would remain true without the assumption
on infinitesimal symmetry, but then their proofs would require completely new ideas and
techniques.

Furthermore, a much-studied problem in Riemannian Geometry is to classify all Ein-
stein manifolds satisfying a suitable curvature condition. This question was first studied

by M.Berger [6], [7], in the 1960s. Berger showed that if (M, g) is a compact Einstein man-

3n

- —pinched in the global sense, then (M, g) has

ifold of dimension n which is strictly

constant sectional curvature. In 1974, S. Tachibana [43] proved that any compact Einstein
manifold with positive curvature operator has constant sectional curvature. Furthermore,
Tachibana showed that a compact Einstein manifold manifold with nonnegative curvature
operator is locally symmetric. Other results in this direction were obtained M.Gursky and

C.LeBrun [28] and D.Yang [45].

41



Bibliography

1]
2

131
4]

[5]

[6]

17l

8]

19]

[10]

H. Abbaspour and M. Moskowitz, Basic Lie Theory, World Scientific, 2007.

B. Andrews and H. Nguyen, Four-manifolds with %—pinched Flag Curvatures, Vol.
13, No.2 (2009), 251-270.

M. Berger, A Panoramic View of Riemannian Geometry, Springer, 2000.

M. Berger, Les variétés Riemanniennes %L—pincées, Ann. Scuola Norm. Sup. Pisal4

(1960), 161-170.

M. Berger, Sur quelques variétés riemaniennes suffisamment pincées, Bull. Soc. Math.

France 88 (1960), 57-71.

M. Berger, Sur quelques variétés d’Einstein compactes, Ann. Math. Pura Appl. 53
(1961), 89-95.

M. Berger, Sur les variétés d’Einstein compactes, Comptes Rendus de la Ille Réu-
nion du Groupement des Mathématiciens d’Expression Latine (Namur 1965), 35-55,

Librairie Universitaire, Louvain (1966).

C. Bohm and B. Wilking, Manifolds with Positive Curvature Operators are Space
Forms, Ann. of Math. 167 (1960), 1079-1097.

R. Bott and L.W. Tu, Differential Forms in Algebraic Topology, Springer-Verlag,
1982.

S. Brendle and R. Schoen, Sphere Theorem in Geometry, Surveys in Differential
Geometry, Vol 13 (2009), 49-84.

42



[11]

[12]

[13]

[14]

[15]

[16]
[17]

18]

[19]

20]

[21]

[22]

23]

S. Brendle and R. Schoen, Curvature, Sphere theorem and Ricci flow, Ann. of Math,

Vol 48 (2011), 1-32.

S. Brendle and R. Schoen, Manifolds with }l—pmched Curvature are Space forms,
J.Amer. Math. Soc. 22 (2009), 287-307.

S. Brendle, A General Convergence Result for the Ricci Flow in High Dimension,
Duke Math.J. 145 (2008), 585-601.

S. Brendle, Finstein Manifold with Nonnegative Isotropic Curvature are Locally Sym-
metric, Proceedings of Conference on Complex and Differential Geometry, Han-

nover(to appear).

S. Brendle and R. Schoen, Classification of Manifolds with weakly }l—piched Curva-

ture, Acta Math. 200 (2008), 1-13.
S. Brendle, Ricci flow and the sphere theorem, American Mathematical society, 2010.
G.E. Bredon, Topology and Geometry, Springer-Verlag, 1993.

T. Broocker and T. tom Dieck, Representations of Compact Lie Groups, Springer,
1985.

J. Cheeger and T. Colding, On the structure of space with Ricci curvature bounded
below, J. Diff. Geom. 45 (1997), 406-480.

S.Y. Cheng, Figenvalue comparsion theorem and its geometric applications, Math. Z.

143 (1975), 289-297.

C.T.J. Dodson and T. Poston, Tensor Geometry, (The Geometric Viewpoint and Its
Uses), Springer, 1997.

M.P. do Carmo, Riemannian Geometry, Birkhduser, 1993.

M.H. Freedman, The topology of four-dimensional manifolds, J.Differential Geometry
17 (1982), 357-453.

43



[24] D. Gromoll, Differenzierbare Strukturen und Metriken positiver Krimmung auf

Spharen, Math. Ann. 164 (1966), 353-371.

[25] D. Gromoll and K. Grove, Rigidity of positively curved manifolds with large diameter,
Seminar of Diff. Geometry, ed. S.T. Yau, Annals of Math. Studies 102 (1982), 203-
207.

[26] M. Gromov, Curvature, diameter and Betti numbers, Comm. Math. Helvetici 56

(1981), 179-195.

[27] K. Grove and K. Shiohama, A generalized sphere theorem, Ann. of Math, 106 (1977)
201-211.

[28] M.Grusky and C. LeBrun, On Einstein manifolds of positive sectional curvature,

Ann. Global Anal. Geom. 17 (1999), 315-328.

[29] R. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geometry.

17 (1982), 255-306.
[30] A. Hatcher, Algebraic Topology, Cambridge university Press, 2002.

[31] Wu-Yi Hsiang and B. Kleiner, On The Topology of Positively Curved 4-manifold with

Symmetry, J.Differential Geometry. 29 (1989), 615-621.
[32] J. Jost, Riemannian Geometry and Geometric Analysis, Springer, 2008.

[33] W. Klingenberg, Contributions to Riemannian Geometry in the large, Ann. of Math.
69 (1959), 654-666.

[34] W. Klingenberg, Uber Riemannsche Mannigfaltigkeiten mit poistiver Krimmung,
Comment. Math. Helv. 35 (1961), 47-54.

[35] M. Micallef and J.D. Moore, Minimal two-spheres and the topology of manifolds with

positive curvature on totally isotropic two-planes, Ann. of Math, 127 (1988), 199-227.

[36] M. Micallef and M. Wang, Metrics with nonnegative isotropic curvature, Duke Math.
J. 72 3 (1993), 649-672.

44



[37] J. Milnor, Morse Theory, Ann. of Math studies, 51, Princeton University Press,

Princeton, NJ,(1963).
[38] P. Petersen, Riemannian Geometry, Springer-Verlag, 1997, p.265-272.

[39] H.E. Rauch, A contribution to differential geometry in the large, Ann. of Math, 54

(1951) 38-55.

[40] W. Rong and C. Yue, Differential Geometry and Topology in Mathematical Physics,
World Scientific, 1998.

[41] W. Seaman, A pinching theorem for four manifolds, Geom. Dedicata 31 (1989), 37-

40.

[42] S. Smale, Generalized Poncaré’s conjecture in dimensions greater than four, Ann. of

Math. 74 (1961), 391-406.

[43] S. Tachibana, A theorem on Riemannian manifolds with positive curvature operator,

Proc. Japan Acard. 50 (1974), 301-302.

[44] M. Ville, Les wvariétés Riemanniennes de dimension / %—pmcées, Ann. Inst.

Fourier(Grenoble) 39 (1989), 149-154.

[45] D. Yang Rigidity of Einstein 4-manifolds with positive curvature, Invent. Math. 142

(2000), 435-450.

45



	1 Introduction
	2 Preliminaries
	2.1 Introduction to Riemannian geometry
	2.2 Introduction to algebraic topology

	3 The Topological Sphere Theorem and Its Generalizations
	3.1 The sphere theorem in Riemannian geometry
	3.2 The diameter sphere theorem
	3.3 The sphere theorem of Ricci curvature comparison
	3.4 The sphere theorem with positive curvature
	3.5 Other sphere theorems

	4 Conclusion
	Bibliography

