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Abstract

Let G be a connected multi-graph with vertex set V (G) and edge set E(G).

If there exists an edge labeling function f : E(G) → {1,−1}, such that the

difference of numbers of edges labeled 1 and -1 is at most one, then we call

such f an equitable labeling and G an equitable signed graph. An

equitable edge labeling induces a vertex labeling in the following way. For

vertices incident with more 1-edges than (-1)-edges, we label them 1. For

vertices incident with more (-1)-edges than 1-edges, we label them -1. For

vertices incident with the same number of (-1)-edges and 1-edges, we label

them 0. Then the edge-majority index is defined as the absolute difference

of the number of 1-vertices and the number of (−1)-vertices with respect to

an equitable edge labeling. The set of all possible edge-majority indices of G

with respect to all possible equitable labelings is called the edge-majority

index set of G. Given an equitable edge labeling f of a graph with all

odd degrees(all even degrees), we show that all even numbers(all numbers)

less than certain edge-majority index with respect to f may be realized by

continuously switching edge labels.
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Chapter 1

Introduction

1.1 Definitions

All graphs G(V,E) considered in this thesis are finite, undirected, connected

with vertex set V and edge set E, with possibly parallel edges. An edge

labeling of a graph is a function f : E → A ⊆ Z, from the edge set to the

set of integers. Signed graphs are graphs with signatures over edges, which

are represented by an edge labeling with 1 and −1 respectively. In this case

of a signed graph, the edge labeling function is from E to A = {1,−1}.
Let E(v) be the set of all incident edges of the vertex v. An edge labeling

f induces a vertex labeling, via abusing the language, which can be treated

as a function f from V to {1, 0,−1} defined by

f(v) =


1, if Σe∈E(v)f(e) ≥ 1
0, if Σe∈E(v)f(e) = 0
−1, if Σe∈E(v)f(e) ≤ −1

For a signed graph G, let ef (i) the cardinality of {e ∈ E(G) : f(e) = i}
where i = 1,−1. An edge labeling f is called equitable if |ef (1)−ef (−1)| ≤
1, and we say G is an equitable signed graph . For an equitable labeling

f , we denote vf (i) = |{v ∈ V (G) : f(v) = i}|, where i = 1, 0,−1. We define

|vf (1)−vf (−1)| to be an edge-majority index of G with respect to f . The

set of all edge-majority indices of G with respect to all possible equitable

labeling is called the edge-majority index set of G, and is denoted by

EMI(G).
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1.2 Background

A labeling of a graph is called an edge labeling if it is a function from E

to A ⊆ Z. There are many different types of labelings such as graceful

labelings[5], harmonious labeling, magic labelings, antimagic labelings, and

graph coloring. Signed graphs is a graph in which each edge is assigned a

positive or negative sign, were first introduced by F. Harary to handle a

problem in social psychology[1].

The definitions in this article are the same in [3]. Equitable edge labeling

are also called edge friendly labeling[4], and edge-majority index set may be

called edge-balance index set in different articles like [6][7][8]. Even use the

same definitions, they may focus on different things, for example, unlabeled

vertices in[4] and 0-vertices are the same in definitions.

The following are some preliminary examples as in [2] and [3]:

Example 1.1. The edge-majority index set EMI(nK2) of n isolated K2 is

{0} if n is even, and is {2} if n is odd.

Example 1.2. The edge-majority index set EMI(St(n)) of the star graph

St(n) with n pendant edges is {0} if n is even, and is {2} if n is odd.

Example 1.3. The edge-majority index set EMI(Cn) of the graph Cn with

n pendant edges is {0} if n is even, and is {1} if n is odd.

Example 1.4. The edge-majority index set EMI(Pn) of paths Pn on n ver-

tices is

EMI(Pn) =



{2}, n = 2,

{0}, n = 3,

{1, 2}, n = 4,

{0, 1}, n ≥ 5 is odd,

{0, 1, 2}, n ≥ 6 is even.
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In the following are some previous results of equitable edge labelings.

A graph is called an edge-balanced graph if |ef (−1) − ef (0)| ≤ 1 and

|vf (−1)− vf (0)| ≤ 1 and a graph is called strongly edge-balanced graph

if |ef (−1)− ef (0)| = 0 and |vf (−1)− vf (0)| = 0.

Theorem 1.1. (Chen, Huang, Lee, and Liu [2])

If G is a connected multigraph with an odd number of edges, then G is an

edge-balanced graph if and only if G is neither K1,2m+1 nor K2(2m+1), where

K2(2m+ 1) is a multigraph with two vertices joined by 2n+ 1 parallel edges.

Theorem 1.2. (Chen, Huang, Lee, and Liu [2])

If G is a multigraph, then G is an edge-balanced graph if and only if G is

neither K1,2m+1 nor
⋃2t+1

i=1 K2(2ni + 1), where ni ≥ 0 and t ≥ 0.

Theorem 1.3. (Wang, Lin, Cozzens [3])

Let G be a graph with at least p ≥ 4 vertices, then the upper bound of EMI(G)

is p− 2.

Theorem 1.4. (Wang, Lin, Cozzens [3])

Let G be a cubic graph with p vertices with a perfect matching M . Then every

even number strictly less than the upper bound 2d3p
4
e − p can be realized as

an edge-majority index of G. That is,

{0, 2, 4, · · · , 2d3p
4
e − p− 2} ⊆ EMI(G).

Theorem 1.5. (Chopra, Lee and Su [6])

EMI(Wn) = {0, 2, ..., 2i, ..., n− 2} for n is even,

EMI(Wn) = {1, 3, ..., 2i + 1, ..., n− 2}
⋃
{0, 1, 2, ..., n−1

2
} for n is odd.

Theorem 1.6. (Kropa, Lee and Raridan [4])

For odd integers n ≥ 7, there exists an edge-friendly labeling of Kn such that

all the vertices are labeled (not 0-vertex).
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1.3 Motivation

Let Gi be the edge induced subgraph of G obtained from G and an equitable

labeling f by deleting (−i)-edges, where i = 1,−1. We denote pk(Gi) to be

the number of vertices of degree k in Gi for k = 0, 1, 2, 3 and i = 1,−1.

In [3], we know that a cubic graph G with order p have a expected

maximum number 2d3p
4
e − p for EMI(G), which mean max(EMI(G)) ≤

2d3p
4
e − p and the equality holds if and only if

p0(G1) = p− d3p
4
e, p1(G1) = 0, p2(G1) = d3p

4
e, p3(G1) = 0

if and only if G1 is a disjoint union of cycles with possibly isolated vertices.

Then we want to know can every even number strictly less than the upper

bound be realized as an edge-majority index of a cubic graph? If a cubic

graph achieve the upper bound 2d3p
4
e − p, if only if G1 is a disjoint union of

cycles with possibly isolated vertices, pick any vertex v with degG1(v) = 2

,and there are vertices u1, u2 and u3 which are adjacent to v, say vu1 and vu2

in G1, delete one of those two from G1 and let vu3 in , then, we get one of

those possibly edge labelings that the edge-majority index is 2d3p
4
e − p − 2

(no matter what shape G1 is). So, if the edge-majority indices of a cubic

graph can achieve a certain number, Does it achieve the lower one ?

By degree formula and the system of linear equations, we describe those

relations between vertex degrees in G1:{
p1(G1) + 2p2(G1) + 3p3(G1) = 2d3p

4
e

p2(G1) + p3(G1) = d3p
4
e − k
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where

{
k = 0, 1, . . . , dp

4
e − 1 if p mod4 ≡ 2

k = 0, 1, . . . , dp
4
e if p mod4 ≡ 0

and p1(G1), p2(G1), p3(G1) ∈ N.

Actually, when k → dp
4
e(ordp

4
e−1), combinations of (p1(G1), p2(G1), p3(G1))

cannot be minor. For example, let p = 10.

When k = 0, the edge-majority index is 6.{
x + 2y + 3z = 16
y + z = 8

⇒
{

y = 8
x + z = 0

⇒ (x, y, z) = (0, 8, 0)

When k = 1, edge-majority index is 4.{
x + 2y + 3z = 16
y + z = 7

⇒
{

x + z = 2
y + z = 7

⇒ (x, y, z) = (0, 5, 2), (1, 6, 1), (2, 7, 0)

When k = 2, edge-majority index is 2

⇒ (x, y, z) = (0, 2, 4), (1, 3, 3), (2, 4, 2), (3, 5, 1).

When k = 3, edge-majority index is 0

⇒ (x, y, z) = (1, 0, 5), (2, 1, 4), (3, 2, 3), (4, 3, 2), (6, 5, 0).

It seems the minor the edge-majority index is, the more combinations of

(p1(G1), p2(G1), p3(G1)) are. Then it should be easier (greater chances) to

find then the bigger number of edge-majority index?

By intuition and naive method, for any simple graph G if we want to find

its highest edge-majority index, it seem like a game using half of the edges to

make as many as possible vertices our own, so we probably first look at those

vertices that degree relatively smaller than most other vertices (since they

much easy to take over) , and see if those vertices connected to each other

by using as less edges as it can. on the other hand, If we randomly label

those edges in G, it look like it is less possible to get its potential highest

edge-majority index since it require more conditions but more likely to get

a smaller edge-majority index. So for a graph, can we translate ”finding

EMI(G)” into ”finding its highest edge-majority index”?
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Chapter 2

Edge-Majority Indices of

Odd Graphs

For an odd graph G whose vertices are all odd, we want to show that if we

find an equitable labeling function f such that x ∈ EMI(G), then by switch

of labels, create a new labeling function such that x− 2 ∈ EMI(G). Then,

by continue the process, create a series of new labeling function that make

{0, 2, . . . , x− 2, x} ⊆ EMI(G).
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2.1 Basics

Note that by interchanging the edge labels 1 and −1, we may assume without

loss of generality that vf (1) > vf (−1) with respect to f . Since we will focus

on those positive and negative edges connect with each individual vertex in

G, let deg(v+) the number of positive edge connected to v and deg(v−) the

number of negative edge connected to v.

Claim 2.1. Graph G with order n and all vertex degrees are odd. If vf (1) > n
2

and deg(v+i ) − deg(v−i ) = −1 for all vi that f(vi) = −1, then vf (1) = n
2

+ 1

and ef (1)− 1 = ef (−1).

Proof.

By degree formula, n is even since all vertex degrees are odd.

Let vf (1) = k. For a labeling function f of a graph G, which all ver-

tex degrees are odd, since v can not be 0 when degree of v is odd, let

{v1, v2, . . . , vk} = V + the vertex set of vertices labeling with 1, {vk+1, . . . , vn} =

V − the vertex set of vertices labeling with −1.

Know deg(v+i )−deg(v−i ) = −1 for all i = k+1, . . . n, then
∑n

i=k+1 deg(v+i )−∑n
i=k+1 deg(v−i ) =

∑n
i=k+1(deg(v+i )− deg(v−i )) = k − n.

Since f(vi) = 1 for i = 1, ..., k, then
∑k

i=1 deg(v+i )−
∑k

i=1 deg(v−i ) ≥ k...(*)

Know
∑k

i=1 deg(v+i ) −
∑k

i=1 deg(v−i ) =
∑n

i=1 deg(v+i ) −
∑n

i=1 deg(v−i ) −
(
∑n

i=k+1 deg(v+i )−
∑n

i=k+1 deg(v−i )) = 2ef (1)− 2ef (−1) + n− k < 2ef (1)−
2ef (−1) + k...(**)

So we can see that if ef (1) − 1 6= ef (−1) then (*)→←(**). Therefore

ef (1) − 1 = ef (−1). From (*), 2 + (n − k) ≥ k, hence k ≤ n
2

+ 1. But by

assumption, k = vf (1) > n
2
, so vf (1) = n

2
+ 1.

�

As a corollary of the above Claim, while the edge-majority index is not

0(that is vf (1) > n
2
), if vf (1) 6= n

2
+ 1 or ef (1) = ef (−1), there must exist an

(−1)-vertex vs such that deg(v+i )− deg(v−i ) ≤ −3.
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Actually, More generality we have

deg v1 . . . vk vk+1 . . . vm
2ef (1)

∑k
i=1 deg(v+i )

∑m
i=k+1 deg(v+i )

2ef (−1)
∑k

i=1 deg(v−i )
∑m

i=k+1 deg(v−i )

By Handshaking lemma,∑k
i=1 deg(v+i )+

∑m
i=k+1 deg(v+i ) = 2ef (1) and

∑k
i=1 deg(v−i )+

∑m
i=k+1 deg(v−i ) =

2ef (−1).

It hold for all graph with equitable edge labeling function f with V + =

{v1, v2, . . . , vk} the vertex set of vertices labeling with 1, V − = {vk+1, . . . vm}
the vertex set of vertices labeling with −1, and V 0 = {vm+1, . . . vn} the ver-

tex set of vertices labeling with 0.

So if we know
∑k

i=1 deg(v+i )−
∑k

i=1 deg(v−i ), then we also know
∑m

i=k+1 deg(v+i )−∑m
i=k+1 deg(v−i ) = 2ef (1)− 2ef (−1)− (

∑k
i=1 deg(v+i )−

∑k
i=1 deg(v−i )) , vice

versa.
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2.2 Main Result

Define Df (v) = deg(v+) − deg(v−) with respect to f a function from V to

D(V ) ⊆ Z. When deg(v) is odd for all v, D(V ) = {. . . − 3,−1, 1, 3 . . .}.
D(v) > 0(< 0) if and only if v ∈ V +(v ∈ V −).

Theorem 2.1. For a multi-graph G that all vertex degrees are odd and or-

der n. If there exists an edge-equitable labeling f such that vf (1) > n
2

+

|ef (1) − ef (−1)|, then there exists an edge-equitable labeling g such that

vg(1) = vf (1) − 1. That is, for G size even, if x ≥ 2 ∈ EMI(G), then

x−2 ∈ EMI(G); for G size odd, if x ≥ 4 ∈ EMI(G), then x−2 ∈ EMI(G).

Proof.

Let G as in the statement of the theorem with edge-equitable labeling f

and vf (1) = k. and {v1, v2, . . . , vk} = V + the vertex set of vertices labeling

with 1, {vk+1, . . . vn} = V − the vertex set of vertices labeling with −1.

For an equitable edge labeling f , we choose one 1-edge and one (−1)-edge,

and exchanging the labels, since we didn’t change the number of 1 and −1 la-

bels, the new edge labeling is still an equitable labeling, and called it f1 , take

this edge labeling f1, we swap a pair of 1 and −1 labels of edges again, called

it f2, and so on, we get a series of equitable edge labeling (f1, f2, f3 . . . . . .),

and there is a series (
∑

vi∈V + Df1(vi),
∑

vi∈V + Df2(vi),
∑

vi∈V + Df3(vi) . . . . . .)

respect to each edge labeling.

we want to make sure that∑
vi∈V +

Dfj(vi) <
∑

vi∈V +

Dfk(vi)

and ∑
vi∈V −

Dfj(vi) >
∑

vi∈V −

Dfk(vi)

for some k and j that j > k.

because for the worst case, if D(v) = 1 for all v ∈ V + respect to edge labeling

12



fi, and
∑

vi∈V + Dfj(vi) <
∑

vi∈V + Dfi(vi) for some j > i, then efj(1) < efi(1).

Suppose V − is an empty set, then
∑n

i=1D(vi) =
∑k

i=1D(vi) = 2ef (1) −
2ef (−1), and D(v) > 0 for every v ∈ V since v is 1-vertices, therefore,

n = 2 and ef (1) = ef (−1) + 1 when G is an odd graph (or n = 1 and

ef (1) = ef (−1) + 1 when G is an even graph) , and EMI(G) = 2 for such

graph G′, such graph G is not in our discussion. Hence, there must be an

(−1)-vertices.

By claim 2.1, We choose a (−1)-edge connect to vs which D(vs) ≤ −3,

and a 1-edge connect to vx which vx ∈ V +.

For all situation we may have:

• Case. 01

Figure 1: Case.01

If vy ∈ V + and connect vx with 1-edge, and vz ∈ V − and connect vs with

(−1)-edge, switches the labels of edge vxvy and edge vzvs.

Then the new labeling f1 compared to the old edge labeling f ,
∑

vi∈V + Df1(vi) =∑
vi∈V + Df (vi)− 4 and

∑
vi∈V − Df1(vi) =

∑
vi∈V − Df (vi) + 4.

Note that there may be a vertex v is 1-vertex ((−1)-vertex) with respect

to edge labeling f , after that, v is (−1)-vertex (1-vertex) with respect to edge

labeling f1. If there exit a vertex v that Df (v)Df1(v) = −1,
∑

vi∈V + Df1(vi) =

13



∑
vi∈V + Df (vi)− 4 + 1 and

∑
vi∈V − Df1(vi) =

∑
vi∈V + Df (vi) + 4− 1.

And those vertices that may change label by switches the labels of edge

in this case are vx, vy ∈ V +, and vz ∈ V −.

• Case. 02

Figure 2: Case.02

If vy ∈ V + and connect vx with 1-edge, and vz ∈ V + and connect vs with

(−1)-edge, switches the labels of edge vxvy and edge vzvs.

Then the new labeling f1 compared to the old edge labeling f ,
∑

vi∈V + Df1(vi) =∑
vi∈V + Df (vi)− 2 and

∑
vi∈V − Df1(vi) =

∑
vi∈V − Df (vi) + 2.

And those vertices that may change label by switches the labels of edge

in this case are vx, vy ∈ V +.

• Case. 03

If vy ∈ V + and connect vx with 1-edge, and vx connect vs with (−1)-edge,

switches the labels of edge vxvy and edge vxvs.

Then the new labeling f1 compared to the old edge labeling f ,
∑

vi∈V + Df1(vi) =∑
vi∈V + Df (vi)− 2 and

∑
vi∈V − Df1(vi) =

∑
vi∈V − Df (vi) + 2.

And those vertices that may change label by switches the labels of edge

in this case are vy ∈ V +.

14



Figure 3: Case.03

• Case. 04

Figure 4: Case.04

If vz ∈ V − and connect vx with 1-edge, and vz connect vs with (−1)-edge,

switches the labels of edge vxvz and edge vzvs.

Then the new labeling f1 compared to the old edge labeling f ,
∑

vi∈V + Df1(vi) =∑
vi∈V + Df (vi)− 2 and

∑
vi∈V − Df1(vi) =

∑
vi∈V − Df (vi) + 2.

And those vertices that may change label by switches the labels of edge

in this case are vx ∈ V +.

• Case. 05

If vy ∈ V − and connect vx with 1-edge, and vz ∈ V − and connect vs with

(−1)-edge, switches the labels of edge vxvy and edge vzvs.

15



Figure 5: Case.05

Then the new labeling f1 compared to the old edge labeling f ,
∑

vi∈V + Df1(vi) =∑
vi∈V + Df (vi)− 2 and

∑
vi∈V − Df1(vi) =

∑
vi∈V − Df (vi) + 2.

And those vertices that may change label by switches the labels of edge

in this case are vx ∈ V + and vz ∈ V −.

• Case. 06

Figure 6: Case.06

If vs connect vx with 1-edge, and vz ∈ V − and connect vs with (−1)-edge,

switches the labels of edge vxvs and edge vzvs.

Then the new labeling f1 compared to the old edge labeling f ,
∑

vi∈V + Df1(vi) =∑
vi∈V + Df (vi)− 2 and

∑
vi∈V − Df1(vi) =

∑
vi∈V − Df (vi) + 2.

And those vertices that may change label by switches the labels of edge

in this case are vx ∈ V + and vz ∈ V −.

16



• Case. 07.1

Figure 7: one of cases of case.07

If vz ∈ V − and connect vx with 1-edge, and vy ∈ V + and connect vs with

(−1)-edge.

Case. 07.2

Figure 8: one of cases of case.07

If vz ∈ V − connect vx with 1-edge, and vx connect vs with (−1)-edge.

Case. 07.3

If vs connect vx with 1-edge, and vy ∈ V + and connect vs with (−1)-edge.

17



Figure 9: one of cases of case.07

Case. 07.4

Figure 10: one of cases of case.07

If vs connect vx with 1-edge, and vx connect vs with (−1)-edge.

switches the labels of those two edges.

Then the new labeling f1 compared to the old edge labeling f ,
∑

vi∈V + Df1(vi) =∑
vi∈V + Df (vi) and

∑
vi∈V − Df1(vi) =

∑
vi∈V − Df (vi).

For any graph, if it only have such pair edges in this cases, then every

(−1)-edge connect with 1-vertex is connect to (−1)-vertex, and every 1-edge

connect with −1-vertex is connect to −1-vertex, then
∑

vi∈V + D(vi) ≤ 0 and∑
vi∈V − D(vi) ≥ 0, there is no such graph.

18



Note that, in case.05 and case.06, when Df (vx) = 1, Df (vz) = −1 in

those two cases (Df (vy) ∈ V −),
∑

vi∈V + D(vi) and
∑

vi∈V − D(vi) remain the

same even after switches the labels of edges, and f1(vx) = −1, f1(vz) = 1.

Which mean it doesn’t change much thing but the labels of two vertices,

call this situation statement.A. So We want to show that it won’t be on this

statement.A forever.

Suppose any 1-edge in graph G are like case in case 05 and case 06 ,that

is, there is no v ∈ V + that D(v) ≥ 3, and there is no (1)-edge that its

(1)-endpoints both are D(v) = 1, in addition, there is no (−1)-edge that its

(−1)-endpoints both are D(v) ≤ −3. So, all v ∈ V + is D(v) = 1 and its

1-edge connect to a (−1)-vertices.

Fix any v0 ∈ V +, its 1-edge connect to a (−1)-vertices v1, since Df (v1) ≤ 0,

the v1 have to connect with (−1)-edge, and the edge connect to vertices

v2, v22 . . . :

If there is a v2j that D(v2j) ≤ −3 for some j, we can switches the labels of edge

v0v1 and edge v1v1j , then v0 ∈ V − and
∑

vi∈V + Df1(vi) =
∑

vi∈V + Df (vi)− 1,

done; Otherwise, Df (v2i) ≥ −2 for all i.

It can’t be all v2i are Df (v2i) > 0 for all v ∈ V +, since if so, G = K2(n);

and It can’t be all v2i are Df (v2i) = −1 and deg(v2i) = 1 for all v ∈ V +, since

if so, G = St(n); Choose one of v2i that 0 ≥ Df (v2i) ≥ −1 and deg(v2i) ≥ 2

for some j, name it v2, switches the labels of edge v0v1 and edge v1v2, then

v0 ∈ V −, v2 ∈ V + and
∑

vi∈V + Df1(vi) =
∑

vi∈V + Df (vi).

Since ded(v2) 6= 1 and 0 ≥ Df (v2) ≥ −1, there v2 have to connect with

(−1)-edge, and the edge connect to vertices v31 , v32 . . . : If there exist a

v3j 6= v3−2 that ded(v2) = 1 for some j, switches back the labels of edge

v2v3j and (−1)-edge vsv for some v ∈ V −, then v2, v3j ∈ V −, v ∈ V + and∑
vi∈V + Df2(vi) =

∑
vi∈V + Df1(vi)−1 Otherwise, Df (v3i) ≤ 0 for all i, Choose

one of v3i and name it v3, and there is a (−1)-edge connect to a v3, do the

same thing above.

Suppose no matter how we switches the labels of edges like above, situa-

tion remain in statement.A, that mean for any +−+−+− . . . path star from
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v ∈ V +, vs 6= vi where i is even, therefore, if there is a vertex v that connect

to vs with (−1)-edge, then D(v) ∈ V − and deg(v) = 1 , or D(v) ∈ V +.

therefore, D(vs) ≥ −1 since |ef (1)− ef (−1)| = 1, contradiction.

Note that, in case.01 and case.02, when Df (vx) = 1, Df (vy) = 1 and

Df (vz) ≤ −3 in case.01, Df (vx) = 1 and Df (vy) = 1 in case.02, the new edge

labeling g will make vx, vy change the labeling, which mean vfi+1
(1) − 2 =

vfi(1) for some i (but you can consider it if vfj+1
(1) + 1 = vfj(1) for j < i).

So we may have to change the plane.

If there is other choices then choose it, since G is an connected graph,

there must be a edge between two side.

If the edge is label with 1, switches the labels with edge vsvz
∑

vi∈V + Df1(vi) =∑
vi∈V + Df (vi)− 1, and only one 1-vertex change its label to −1.

If the edge is label with−1, switches the labels with edge vxvy
∑

vi∈V + Df1(vi) =
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∑
vi∈V + Df (vi)− 1, and only one 1-vertex change its label to −1.

Hence, We can avoid the situation that creating too many (−1)-vertices

in one time.

As long as there exist vs such that D(vs) ≤ −3, the switch of labels pro-

cess will not stop. Decreasing
∑

vi∈V + Dfj(vi) and increasing
∑

vi∈V − Dfj(vi)

while j is increasing every time by witches the labels. So We switch the la-

bels of edges of (−1)-edge connect with vs and 1-edge connect with a 1-vertex

until vfi(1) = vf (1)− 1 for some i

�

Corollary 2.1. For a connected graph G neither isomorphic to K1,2m+1 nor

K2(2m + 1) and all vertex degrees are odd. If x ≥ 2 ∈ EMI(G), then

{0, . . . , x− 4, x− 2, x} ⊆ EMI(G).

Proof.

Let G as in the statement of the theorem. By theorem2.1, theorem1.1,

for |E| is odd, |ef (1)− ef (−1)| = 1 for all edge friendly labeling f , and there

is a labeling such that |vf (−1)− vf (0)| ≤ 1, so 0 ∈ EMI(G).

�

Example 2.1. For G = Wn and n is even, we see that if the wheels are

labeling 1 and the axles labeling -1, the edge-majority index is n − 2, then

{0, 2, ..., n− 2} ⊆ EMI(Wn) by Corollary 2.1.

Actually, EMI(Wn) = {0, 2, ..., 2i, ..., n− 2} for n is even[6].
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Chapter 3

Edge-Majority Indices of

Even Graphs

3.1 Basics

For a graph G that all vertices in G is even degrees, we want to show that

if we find an equitable labeling function f such that x ∈ EMI(G), then

{0, . . . , x− 2, x− 1, x} ⊆ EMI(G). It use the same methods in Section 2.

Let |V | = m. For a labeling function f of a graph G, let {v1, v2, . . . , vk} =

V + the vertex set of vertices labeling with 1, {vk+1, . . . , vn} = V − the vertex

set of vertices labeling with −1, and V 0 = {vn+1, . . . vm} the vertex set of

vertices labeling with 0.

Claim 3.1. Graph G with order m and all vertex degrees are even. If

vf (1) ≥ bn+|ef (1)−ef (−1)|
2

c and D(vi) = −2 for all vi that f(vi) = −1, then

vf (1) = bn+|ef (1)−ef (−1)|
2

c, where n = vf (1) + vf (−1)

Proof.

Let vf (1) = k. For a labeling function f of a graph G, which all vertex

degrees are even, let {v1, v2, . . . , vk} = V + the vertex set of vertices labeling

with 1, {vk+1, . . . , vn} = V − the vertex set of vertices labeling with −1, and

V 0 = {vn+1, . . . vm} the vertex set of vertices labeling with 0.

Know D(vi) = −2 for all i = k+1, . . . n, then
∑n

i=k+1 deg(v+i )−
∑n

i=k+1 deg(v−i ) =∑n
i=k+1(D(vi)) = −2(n− k).

Since f(vi) = 1 for i = 1, ..., k and degrees are even, then
∑k

i=1 deg(v+i ) −∑k
i=1 deg(v−i ) =

∑k
i=1D(vi) ≥ 2k
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Know
∑k

i=1(D(vi)) +
∑n

i=k+1 D(vi) =
∑k

i=1(D(vi)) +
∑n

i=k+1 D(vi) +∑m
i=n+1 D(vi) = 2ef (1)− 2ef (−1), then ef (1)− ef (−1) ≥ 2k − n. Therefore

k ≤ n+ef (1)−ef (−1)
2

.

Know k ≥ bn+|ef (1)−ef (−1)|
2

c. So, k = bn+|ef (1)−ef (−1)|
2

c.
�

3.2 Main Result

Consequently, for G size even, when k > bn
2
c, there exists an vertex vs such

that D(vs) ≤ −4; for G size odd, when k > bn+1
2
c, there exists an vertex vs

such that D(vs) ≤ −4 ;where n = vf (1) + vf (−1)

Theorem 3.1. For a multi-graph G that all vertex degrees are even and

order m. If there exists an edge-equitable labeling f such that vf (1) >

bn+|ef (1)−ef (−1)|
2

c where n = vf (1) + vf (−1), and edge-majority index equal

to x with respect to f , then there exists an edge-equitable labeling g such that

edge-majority index equal to x− 1.

Proof.

Let G with order m vertices as in the statement of the theorem with edge-

equitable labeling f , {v1, v2, . . . , vk} = V + the vertex set of vertices labeling

with 1, {vk+1, . . . , vn} = V − the vertex set of vertices labeling with −1, and

V 0 = {vm+1, . . . vn} the vertex set of vertices labeling with 0.

Define Df (v) = deg(v+)− deg(v−) with respect to f . When deg(v) is even,

D(v) = . . .− 4,−2, 0, 2, 4 . . ..

We switch of labels of (−1)-edge incident to a vertex in V −,0 = V − + V 0

and (1)-edge incident to a vertex in V + like proof in Theorem2.1 until

vfi(1)− vfi(−1) = vf (1)− vf (−1)− 1 for some i.
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Note that there may be a vertex v change its label during exchanging the

labels of edges. If v ∈ V + change its label, which mean D(v)f = 2 respect

to the old edge labeling f , and D(v)f1 = 0 respect to the old edge labeling

f1, So We don’t have to do anything else, Same for v ∈ V − change its label

to 0.

If v ∈ V 0 change its label, which mean D(v)f = 0 respect to the old

edge labeling f , and D(v)f1 = 2 respect to the old edge labeling f1, So∑
vi∈V + Df1(vi) =

∑
vi∈V + Df (vi)−C+2 and

∑
vi∈V − Df1(vi) =

∑
vi∈V + Df (vi)+

C − 2, where C = 4 or 2 depend on which cases (which two edges).

For any Case 01 to case06,
∑

vi∈V + Dfj(vi) is decreasing and
∑

vi∈V − Dfj(vi)

is increasing every time we witches the labels of edges.

We know that vf (1) − vf (−1) = |V | − vf (0) − 2vf (−1) for any edge-

equitable labeling f of G, so there is a edge-equitable labeling g such that

vg(1) − vg(−1) = |V | − vg(0) − 2vg(−1) = |V | − [vf (0) + 1] − 2[vf (−1) − 1]

or vg(1)− vg(−1) = |V | − [vf (0) + 1]− 2vf (−1), so x− 1 ∈ EMI(G).

�

Corollary 3.1. For a simple connected graph G with all vertex degrees are

even. For G size even, if x ≥ 1 ∈ EMI(G), then {0, . . . , x − 1, x} ⊆

EMI(G); For G size odd, if x ≥ 2 ∈ EMI(G), then {1, . . . , x − 1, x} ⊆

EMI(G).
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Chapter 4

Conclusion and Further Studies

In this thesis we consider edge-majority index set of all odd graphs and all

even graphs. For a graph G that is neither an odd graph nor an even graph,

since no information for which vertices will change labels during exchanging

the labels of edges, so we do not know which vertices will be even or odd,

and this is directly related to the edge-majority index. Therefore it is not

easy to calculate the edge-majority index set of general graphs.

There are a lot of problems left for further exploration. For example,

what are other obvious applications of the notion of edge-majority index and

the generalized edge-majority index?
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