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Abstract

When a government office O delivers a batch of
documents to a remote government office R, for security
consideration, R has to verify whether the documents
received are those originally sent by O or not. To do so,
we need a security mechanism to perform the verification.
That is, before sending the documents, the mailroom of O
encrypts them with a private key, i.e., a digital signature.
On receiving the documents, the mailroom of R decrypts
them as a verification test with the corresponding public
key. However, verifying the signatures of the documents
received one by one is a crucial and inefficient work. In
fact, if we can treat the documents received as a whole,
and verify their signatures simultaneously, the verification
efficiency will be higher. Therefore, a batch verification
approach, a method simultaneously verifying a batch of
signatures as a whole, was then proposed. In literatures,
some batch verification schemes cannot efficiently and
effectively identity bad signatures existing in a set of given
signatures. The Small Exponent Test, a popular batch
verification method, has its own problems, e.g., after a test,
bad signatures still exist with some escape probability. In
this paper, we propose a batch verification approach, called
Matrix-Detection Algorithm (MDA for short), with which
when the number of bad signatures in a batch of signatures
is less than four, the batch cannot pass the MDA verification
test. Analytical results show that the MDA is more secure
and efficient than the SET.

Keywords: Homeland security/defense, Batch verification,
Small exponent test, Matrix-Detection
algorithm, Escape probability.

1 Introduction

Currently, many government offices or private
companies electronically exchange their documents
through the Internet to speed up the document delivery
[1]. Basically, if the two offices/companies have strong
business relationship between them, it is very often that
many documents will be sent from one office/company to
another at the same time [1-2]. For security consideration,
it would be better if these documents are first encrypted by
the document creators beforehand to avoid the exposure
of the document contents. On the other hand, during
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the document delivery, if we can provide a verification
mechanism to further protéct the delivery of the documents
[3-5], either encrypted or unencrypted, the security level of
the document exchange system will be higher, particularly
for those documents needed to be securely delivered. For
example, a land office after finishing land sale/purchase
transactions sends the information of the transactions as a
backup copy to the local government, or a travel agency
delivers the entrance application forms to the immigration
office of a country for foreigners wishing to enter the
country before the foreigners start for the country.

That means the keys used to encrypt/decrypt delivered
documents are different from those employed by document
creators to protect their document contents. Before sending
a document to its destination, the sender will encrypt the
document again by using the private keys for verification.
Then, the receiving side needs to crucially decrypt them
one by one. This is an inefficient work [3][6]. Therefore,
a security scheme, called the digital-signature batch
verification system (the batch verification system for short),
is then proposed.

The batch verification scheme, first proposed by
Naccache [3] in 1994, treats a batch of documents/
signatures as a whole, and verifies them simultaneously.
In real applications, the efficiency of a batch verification
scheme is higher than that of a conventional verification
method when verifying a large number of signatures signed
individually [7]. However, batch verification schemes
might be vulnerable to forged signature attacks, also called
bad-signature attacks or dirty-signature attacks, i.e., due
to exploiting the vulnerabilities of the batch verification
schemes, a batch of signatures that contains bad signatures
generated by hackers may pass the verification test.

Lim and Lee [8], Boyd and Pavlovski [9], and Hwang
et al. [10] introduced several attack methods for existing
batch verification schemes. Bellare et al. [7] and Hwang
et al. [10] proposed verification methods to enhance the
security of batch verification schemes. Nevertheless, with
either Bellare’s or Hwang’s method, bad signatures can still
pass the verification test with some escape probabilities.

In this paper, we propose a novel batch verification
method, called Matrix-Detection Algorithm (MDA
for short), with which when a batch of signatures that
contains less than four bad signatures cannot pass the
MDA verification test. Let P, be the maximum escape
probability of the MDA verification test, then P, decreases
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as the number of digital signatures or the number of bad
signatures increases where the escape probability is the
probability that bad signatures can pass a batch verification
test. Analytical results show that the MDA is more secure
and efficient than a state-of-the-art verification method, the
Small Exponent Test (SET for short). In the following, we
use message and documents interchangeably since we treat
a document delivered as a message.

The rest of this paper is organized as follows. Section
2 describes the background and related work of the study.
Section 3 introduces the proposed method. Analytical
results are presented and discussed in Section 4. Section 5
concludes this paper and outlines our future research.

2 Background and Related Work

A batch verification scheme often consists of the
signing phase and verification phase. Generally, there are
two types of currently existing signature schemes, the
DSA-type signature [11] and the RSA signature [12]. The
former is a specific type of the ElGamal signature [13], the
security of which heavily relies on the difficulty of solving
a discrete logarithm problem, whereas the security of the latter
was based on the hardness of solving the factorial problem.

2.1 DSA-type Batch Verification

The DSA-type batch verification scheme first proposed
by Naccache [3] in 1994 is defined as follows.
Parameters:

p: Alarge prime.

q: A prime factor of (p — 1).

g: An element of order ¢ in GF(p) where GF stands for
Galois Field [3].

x: The signer’s private key.

y: The signer’s public key.

In the signing phase, n signers use two equations, ;
= (¢" mod p) and 5, = (k' (m, + xr,)) mod ¢, to generate »
signatures SIG = {sig; = (r,, s;): fori =1, 2, ..., n} where
k; and m, are signer i s random number and message,
respectively. After that, SIG is sent to the verifier, which
in the verification phase employs the batch verification
equation

IT.
v
=

to simultaneously verify the signatures contained in the
received SIG. If both sides of the equation are identical, the
n signatures pass the verification, i.e., authenticated.

" mst mo " rs7 mo
gznrl %1 dqu;.-.x i dq(mod p) (1)

2.2 RSA Batch Verification
A RSA batch verification scheme proposed by Harn [12]
in 1998 is defined as follows.

Parameters:

N: The modulo of RSA.

e: The signer’s public key.

d: The signer’s private key.

In the signing phase, a set of » signatures SIG = {sig; =
s;i=1,2,...,n} is generated by using the equation s, = m/
mod N where m; is the message to be signed by signer i.

On receiving the SIG, the verifier verifies the n
signatures simultaneously by using the following equation.

(H;’:‘ s, ) =TT mmod N @)

If both sides of the equation are identical, the n signatures
are authenticated.

2.3 The Small Exponent Test (SET)

The SET {7] is an innovative method used to verify
whether bad signatures exist in a batch of signatures
or not. When the SET is invoked by a DSA-type batch
verification scheme, the signing phase is the same as that
without employing the SET. But in the verification phase,
the verifier first chooses » random numbers b, b,, ..., b,
each of which is / bits in length, and then authenticates the
signatures by using the following equation.

H" l};h, ;gz:q'""i ‘h' '“‘”d‘/yzf ',‘S; ’h, mod g (mod p) (3)
i=

If both sides of the equation are identical, the » signatures
are authenticated.

When the SET is invoked by a RSA-type batch
verification scheme, the signing phase is also the same as
that without employing the SET. In the verification phase,
the verifier also chooses »n /-bit random numbers b,, b,,

., b,, and verifies the signatures by using the following
equation.

(M.t ) =TT m modN @

If both sides of the equation are identical, the » signatures
are authenticated.

3 The Proposed Method

In this study, we collect a set of signature samples from
the given set of » signatures. In the verification phase, the
samples are verified to determine whether these n signatures
are authenticated or not.

3.1 Notations and Definitions
The notations used by the MDA, including an initial
matrix, a checking matrix, an index set, an n-batch, a
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signature sample and a decision algorithm, are as follows.
Definition 1. An initial matrix G = [g;] = [c}, ¢;, ..., ¢,] is a
binary k x n matrix in which g, =0or 1,1 <i<k, 1 <j<n,
X lap<ofc 1, and

if n is a power of 2

(5)

i (log, m)+1,
o otherwise

[logln_]a

Furthermore, ¢, = [g,;, &, ..., g, is the jth column of G,
which consists of k binary digits, and the decimal value of
¢isj,ie, (¢)=j,forj=1,2,..., n

Definition 2. A checking matrix H = [h;] is a binary k x n
matrix obtained by randomly ordering the columns of G, , .
Example 1:

G

x5 T

- O
o - O

0
1
i

o o -

1
01, and
1

[

1010
Hys=[h] =0 0 0 1
1101

[ R =]

Definition 3. An index set T, = {j: h;= 1,1 <j < n} derived
from H is the set of column indices of i's row entries, the
entry value of which is 1. We call 7, the i-th index set of H,
I<i<k

The index sets derived from H; . ; shown in Example 1
are T, = {1,3}, T, = {4,5},and Ty = {1,2,4}.
Definition 4. An n-batch S = {(m,, sig): i=1,2, ..., n}
is a set of n (message, digital signature) pairs where m, is
message i and sig; is the corresponding signature. In a DSA-
type system, sig; = (r;, s5;) [3], and in a RSA-type system,
sig;=s; [12].
Definition 5. Given an wn-batch S, a signature sample S, is
a set of signatures selected from S based on index set 7,
where S, = {(m, sig): je T,1<j<n}, 1 <i<k

In Example 1, the signature samples corresponding to
the index sets of T}, T,, and Ty shown above are S, = {(m,,
sig,), (ms, sigs)}, S, = {(my, sig,), (ms, sigs)}, and S; = {(m,,
sigy), (m,, sig,), (m,, sig,)}, respectively.
Definition 6. A decision algorithm on an n-batch S, denoted
by DA(S), is a Boolean-valued function which is True if §
passes the corresponding verification test. Otherwise, DA(S)
= False.
Definition 7. Two signatures (m,, sig,) and (m,, sig,) are
distinguishable by a signature sample S, if either {(m,, sig,)
€ 8, (my, sig,) & S} or {(m,, sig,) & S, (m,, sig,) € S;}.

3.2 The Conventional Verification Scheme

Given a DSA-type n-batch S, if S passes the DSA-type
batch verification test shown in Equation (1), we call that
S passes the conventional verification scheme. Further, the
left-hand side of Equation (1) can be rewritten as

" log, { " # mod p)
”'1'7’ modp=g <L
IES

(log, ry+log, ry +..+log, ) modp

Zl] Iogy n modp -

Z"_.k,’ mod p
=g g

where k] = log, 7,, and the right-hand side can be rewritten
to

n -1 n -1
s modg _ns; modg
gz,wl / y24 1 modp

it

g[:z:;lmix," mudqﬂz:;‘r,.\f' mod g}og, u] mod p

[(}:::1 m”\fl +z:’:‘ ,w;.\‘," ) mod q} mod p

=g
[Z:’JK,"‘(HI,%X?}) mod qi mod p [Z’k: mod ‘I} mod p
= g - = g s
That is,
n 1
Z:’ﬂk"modp _ [ka: modg | modp
g . ; ki =log, 1,
-1
kj=s; (m; +xr), x=log, y (6)

Note that &/ is not necessary equal to k;'[7]. A hacker only
needs to fabricate a set of signatures S’ = {(m,, sig;) : 1 <},
Snand7=1,2,..,r} asasubset of S = {(m), sig):j=1,2, ...,
n}, r < n, making

Y k=X k modg) (mod p), & =log, 7,

k'=s."(m, +xr), x=log, y )

then, S would pass the verification test. Namely, a hacker
can penetrate the verification system by generating S’
without solving the discrete logarithm problem since the
decision algorithm for a DSA-type batch verification on S,
1.e., DA(S), only checks to see whether Equation (7) holds
or not. If DA(S) = True, then S passes the verification test.
The decision algorithm on the i-th signature sample S;
= {(m;, sig)): j € T, 1 <j < n}, called a signature sampling
test on §; (a sampling test for short) and denoted by DA(S)),
checks to see whether Equation (8) holds or not where sig;

= (15

JeT, k; - (Z_fez kj mod g) (mod p),

ki=log, r, k!'=s"(m, +x1,), x =log, y ®)

If DA(S,) = True, then S, passes the test.

Similarly, the decision algorithm designed for verifying
a RSA-type n-batch S = {(m,, sig): i=1,2, ..., n}, i.e.,
DA(S), only checks to see whether Equation (2) holds or
not. If DA(S) = True, then S passes the test, and we call that
S passes the conventional verification scheme. A hacker
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can generate S’ to penetrate the verification system without
solving the factorial problem. The decision algorithm on
the i-th signature sample S, = {(m, sig)):j € T, 1 <j<n}, i.e,
a sampling test on S, and also denoted by DA(S,), verifies

whether Equation (9) holds or not where sig; = s..

e ?

(IT,..5:) =IT,.;m, modn. ©)
If DA(S;) = True, then S, passes the test.

3.3 Batch Verification by Using a Checking Matrix

To test an n-batch S to see whether S is authenticated
or not, we first generate a k£ x n checking matrix H,, ,, and
derive its index sets and & signature samples. By testing the
k samples, bad signatures can be detected efficiently.

Theorem 1 shows that two different signatures in a
given n-batch § are distinguishable by at least one signature
sample of S.

Theorem 1: Two signatures (m,, sig,) and (m,, sig,)
in an n-batch S = {(m,, sig): i=1,2, ..., n}, a# b, are
distinguishable by at least one signature sample, e.g., S,, q
e {1,2,3, ..., k}, where £k is calculated based on Equation
(5).

Proof: In the checking matrix H;, , = [1,] = [c), ¢a, ..., C,],
column ¢; is corresponding to signature sig,, i=1, 2, ..., n.
Since the binary digit permutation of H, ., on all columns
are distinct, two arbitrary columns, ¢.g., ¢,and ¢;,, 1 <a, b <
n,a#b, then ¢, # ¢;. Therefore, 3¢, 1 < g <ksuchthat s, #
h,y, implying that eitherae T,,b & Tjorae¢ T,beT,ie,
((m,, sig,) € S, and (m,, sig,) & S,) or ((m,, sig,) & S, and (m,,
sig,) € §,). In other words, (m,, sig,) and (m,, sig,) can be
distinguished by signature sample S,. Q.E.D.#

The following theorem will show that when there
is only one bad signature in S, the bad signature will be
discovered by MDA (See Algorithm 1).

Theorem 2: If only one bad signature exists in an n-batch S,
then the signature will be discovered by the MDA.

Proof: For a DSA-type (a RSA-type) batch verification
scheme, DA(S) checks to see whether Equation (7)
(Equation [2]) holds or not. Let (m;,, sig,) be the bad signature
for some j, 1 <j < n. Then Equation (7) will become

> k+k EH > k,.”+k_;.'j mod qJ mod p, which can

i=liz i=lizj

further derive Equation (10).
ki = (kj modg) (mod p) (10)

Equation (10) will not hold because that (m,, sig;) is a bad
signature. Similarly, Equation (2) will reduced to

(s)° = (m;) mod N (11)

Algorithm 1: MDA algorithm /* MDA verification test
by using a checking matrix H, */
Input: An n-batch S.
Output: S is authenticated or rejected.
1 Flag=True;
2 Compute g =DA(S);
3. If 0 = Fulse, then {Flag=Fail; go to L;}
4 Generate a kX n checking matrix H,, from a
given k xn initial matrix G, ;
5. Compute the index sets T;and the signature samples Sj,

foralli, 1<i<k;

6 Fori=1,2,... .k

7. {Compute a,= DA(S));

8 If ;= False, then {Flag=Fuail; gotoL;}}

9 EndFor;

10.L: If Flag=True, the batch of n signatures is

authenticated, else reject it;

Equation (11) will not hold because that (m,, sig;) is a
bad signature. Then DA(S) is false, implying that the bad
signature (m;, sig;) can be discovered by MDA. Q.E.D.#

If S has only two bad signatures, we will prove that the
MDA can discover them.
Theorem 3: If an n-batch S has only two DSA-type bad
signatures, S cannot pass the MDA verification test.
Proof: Proof is by contradiction. Let (m,, sig,) and (m,,
sig,) be the two bad signatures in S. If they do not pass the
conventional verification scheme, DA(S) is false. Otherwise,
according to Equation (7), the equation k, + k; = ((k}, + k})
mod q) (mod p) holds where sig, = (s, r,) and sig, = (s;, ).
We claim that S cannot pass the MDA verification test since
(m,, sig,) and (m,, sig,) need to pass all the k sampling tests,
i.e., Equation (8), in the situation where ((m,, sig,) € S, and
(my, sig,) € S,) or ((m,, sig,) & S, and (m,, sig,) & S,) holds
for all ¢ = 1, 2, ..., k. However, according to Theorem 1,
the two bad signatures must be distinguishable, i.e., the
situation does not hold. Hence, the two bad signatures can
be discovered by the MDA. Q.E.D.#
Theorem 4: If an n-batch S has only two RSA-type bad
signatures, S cannot pass the MDA verification test.
Proof: If two bad signatures (m,, sig,) and (m,, sig,) in S do
not pass the conventional verification scheme, then DA(S)
is false. Otherwise, according to Equation (2), the equation
(s,5;)° = m,m, (mod N) holds where sig, = s, and sig, = s,.
We claim that no such an n-batch exists since when S is
detected by the MDA, (m,, s,) and (m,, s,) need to pass all
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the k sampling tests {(HKT: S_,») = H‘/er, m; mod N: for i
=1, 2, ..., k} (see Equation [9]) in the situation where the
two bad signatures coexist or do not exist in each of the k
sampling tests. Similarly, by Theorem 1, the situation does
not hold. Hence, the two bad signatures will be discovered.
QED#

Theorem 5 will show that when S contains three bad
signatures, it cannot pass the MDA test.
Theorem 5. If an n-batch S has only three bad signatures
(m,, sig,), (m,, sig,), and (m,, sig ), then S cannot pass the
MDA verification test.
Proof: If the three DSA-type of bad signatures pass the
conventional verification scheme, then DA(S) holds and
Equation (7) becomes:

ky+k, +k!=((k]+k, +k7)modq) (mod p) (12)

We claim that such S cannot pass the MDA verification test.
Since either one or two of the three bad signatures will be
discovered by the & sampling tests. Now, if one of the three
bad signatures is detected by one of the k sampling tests,
by Theorem 1, it will be discovered. If two of the three bad
signatures, e.g., (m,, sig,) and (m,, sig,), are detected by one
of the k sampling tests, then these two signatures may be
discovered. For the latter, Equation (7) holds and becomes:

ky+k; =((k;+k!)mod q) (mod p) (13)

When both Equations (12) and (13) hold, indicating that
(m,, sig,) is a pure signature, rather than a bad signature.
This contradicts the assumption that (m,, sig,) is a bad
signature, implying that the two equations do not hold,
simultancously. Hence, S cannot pass the MDA verification
test. Similarly, if the signatures are RSA-type, then § cannot
pass the MDA verification test. Q.E.D.#
A specific type of attacks is as follows.

Example 2. Given an 7-batch § and a 3 x 7 checking
matrix

001 1111
Hy,=1 1 0 1 1 0 0]|=[¢e,cee60]
0101010

Assume that there are 4 bad signatures in §, and they are
the fourth to the seventh signatures. The corresponding
columns in H; , ; are ¢,, ¢s, ¢ and ¢,. If S is a DSA-type
7-batch and § passes the MDA verification test, then the 4
bad signatures can result in

" ' _ . ’
my =m,+hxs,, mg=m;—hxss, m,

=m, —hxs,, m,=m, +hxs,, heR.

According to Equation (7), s, (m} + xr,) = s} (m, + xr,) + h
=k + h. Similarly, ;' (ml+xr) =k?—h, s;' (m}+xry) =k
—h, 53" (my+xr)=k!+ h.

Then DA(S) is true, and DA(S)) is true, forall i, 1 <i<
3. Also, {(mj, sigy), (m3, sig7)} generates a dirty value +h,
and {(m{, sigs), (m¢, sig¢)} generates another dirty value —
h. Hence, the sum of these dirty values is zero. Thus, {(m;,
sigy), (ms, sigl), (mg, sige), (m3, sigl)} passes the MDA
verification test and forms a self-compensating escape set
(SCE-set for short) which is a subset of S that contains
bad signatures but passes the MDA verification test by
generating dirty values which mutually compensate for
each other, thus generating a zero as the result. In Example
2, {(my, sigs), (my, sig7)} and {(m;, sigs), (m, sig)} form
two mutually compensating escape subsets (MCE-s-sets for
short).

For RSA-type of signatures, the 4 bad signatures can,
like those in Example 2, generate

m m
my=hmy,m,=—m =—>m, =hm, heR
s= PR

According to Equation (2),

4
Hm; = my-mg-my-m, :(hnu)-(—n;:i)- %)-(hmﬂ
=i 1

)

4
=My Mg Mg -, = l I m_]
i=1

implying that DA(S) is true and DA(S)) is true, for all i, 1 <
i < 3. Also, {(m}, sig}), (m}, sig})} generates dirty value 4’

1
and {(m., sig?), (m, sig¢)} generates dirty value ; Hence,

2
the product of dirty values is 1. Thus, {(my, sig,), (m:, sigl),
(m¢, sigg), (m7, sig3),} passes the MDA verification test and
forms a SCE-set. Furthermore, {(m., sig;), (m;, sig’),} and
{(mi, sigi), (m¢, sige),} form two MCE-s-sets.

Theorem 6 will illustrate that given S = {(m,, sig)): i =1,
2, ..., n}, when the number of the bad signatures r is larger
than 4, the escape probability of the MDA on S, denoted by
p, can be derived.
Theorem 6. If S = {(m,, sig)): i=1,2, ..., n} has r (> 4) bad
signatures, and S passes the conventional batch verification
scheme, then the r signatures can be decomposed into ¢
SCE-sets with n, + n, + ... + n, = r where n, is the number

of bad signatures in the jth SCE-set, 1< g S‘ﬁ—}, 4<n<

a4
|
r,1<j<gq.Then p= HF‘ o
nn=n-2)..{n—-r+1)
t,; is the number of possible arrangements of the n; bad
signatures.

Proof: Let S"= {(m/, sig} : j = 1, 2,..., r} be the collection

in which
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of r bad signatures in S. If S passes the conventional batch
verification scheme, then Equation (7) holds for DSA-type
and Equation (2) holds for RSA-type. Equation (7) can be
rewritten as

> K+ Y K

all pure signatures all bad signatures

=(( ) K+

all pure signatures

k") modg) modp’

all bad signatures

k'=( Z

all pure signatures

However Z

all pure signatures

then it becomes
k'=(

alf bad signatures

k" mod g) modp

k"mod ¢) mod p

all bad signatures

and can be rewritten as Zk; = (Z k; mod g)(mod p)

= =t

ki =log, r/,k} = s (m +xr]) and

. (14)
x= logg y, forj=12,...,r.

Similarly, Equation (2) can be rewritten to

(ﬁc;] sﬁm;(modN) (15)
I

J=1

Equations (14) and (15) show that the r bad signatures
are tightly bounded and need to pass the k sampling
tests, 2" <n < 2" -1, i.e., for DSA-type S, Equation (8)
holds for i = 1, 2, ..., k, and for RSA-type, Equation (9)
holds for i = 1, 2, ..., k. Theorems 2-5 show that a set of
bad signatures S’ in S cannot pass the MDA verification
test when |S'| £ 3.Therefore, the necessary condition for
S to pass the MDA verification test is |S'| = 4. Namely,
S’ can be decomposed into SCE-sets, e.g., s, with
DA(S”) is true for all §”, and S can pass the k sampling
tests, implying the number of elements in each SCE-
set is greater than or equal to 4. In other words, §’ can
be partitioned into g SCE-sets such that n, + n, + ... +
n,=r,4<m<r,1<j<gq, 1Sq$t£}. Then, the escape

t

'r1
probabilities of n,, n,, n,, ... and n, bad signatures are P

"

tr‘.Z tr,S t"vq .
P premom s e , and Py respectively.
K

1y n,

- tr.l . tr‘2 . I".S . !
Hence pP= prprom premen P""”x e S
n

N ny ,

ra4q

4q

[,

P .QED#
nn-D(n=-2)..,.n—r+1)

By Theorem 7, ! = Hf,, ; is the number of the possible

=
distributions of the » bad signatures passing the MDA
verification test. If n, = n, and j, <, then

L >l (16)

When j, < j,, n; bad signatures are arranged among the
§ before n; bad signatures. Hence, the jjth SCE-set has
many more possible positions to place its », bad signatures
than n, SCE-set does. Let P,,, is the maximum escape
probability of an n-batch §, and let P, . be the maximum
escape probability of r(1 < r < ») bad signatures in S. The
following theorem shows that P_,, of the MDA occurs at r
=4, 1.e., P =Py mox-

Theorem 7. If an n-batch § = {(m,, sig,): i=1,2, ..., n} has
r (= 4) bad signatures, then P, of the MDA is

ld.l

n(n-Dn-2)n-3)

4max T

Proof: By Theorems 2-5, P, .., = 0 when » <3. So only r >
4 are considered. When r = 4, n, = 4 is the only SCE-set in S.

t
P — 4,1
By Theorem 6, £4 ma H1—1)(n—2)(n—3)"

Similarly, When » = 5, n, = 5 is the only SCE-set in .S and
Pi max = ts‘l .
T op(n=1D....(n-4)
When r = 6, n, = 6 is the only SCE-set in S and
P =
’ n(n=1).....(n-5)

When » =7, n, = 7 is the only SCE-set in S and
Py = e
7 on(n-1....(n—6)
When r = 8, n, = 4 and n, = 4 are the SCE-sets in S and
,X.JtX,Z

I:;lmax = 5 eees
' n(n-D(n-1)..(n-7)

Then, P, .., can be derived where

Hj‘:l L

i = ,4<r<n
T a(n=1) (n—-r+1)
Rt,max 14 1 (n - 4)
Furthermore, = > 1
}:)S(mnx tS,l
P4.max - t4‘1 (n _4)('1 - 5) N 1,
P(),ma.\ tb.l
P 1, (n=4)(n-5)(n-6
4,max - 4.1(" )( )(" ) > 1 and
E,nmx t7.l
P DAY~ )1 — 6)(n —
amay (n—4)n-35)n-6)n-17) > 1 for
PS.max t&l

ty) =1, > tg,. We can further derive that
F _ z4~1(n"4)(’7"5)...(n—r+1)

4, max

P, l lq
T, max /':1[7»]‘

<r<n.Hence P, = Py na. QED#

2 1, for all » and 4
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4 Security and Efficiency Analyses

In the following, we analyze the security and efficiency
of the MDA and compare them with those of the SET.

4.1 Security

[8-10] claimed that an n-batch S with »(r > 1) bad
signatures might pass the verification of a conventional
DSA-type or RSA-type batch verification scheme. The SET
was then proposed to test the bad signatures. However, the
escape probability that bad signatures can pass the SET is

1
p= o [7] where / is the length of a random number.

When 1 < r < 3, the bad signatures may be or may
not be discovered by the SET, however, they can be
discovered by the MDA verification tests. For r > 4, the bad
signatures may pass the SET and MDA verification tests.
By Theorems 6-7, the maximum escape probability of the
MDA verification test occurs at r =4, P, . > P, .. asr>4,

t

4.}

" n(n—-1)n-2)(n-3)
showing that when r > 4, the more the bad signatures in
an n-batch, the lower the escape probability of the MDA
verification test. Also, a larger n will result in a lower
escape probability.

The security levels of the SET and the MDA
verification tests on different cases are listed in Table 1, in
which level A, the highest, is defined as the level on which
all the bad signatures will be discovered. In levels B, C
and D, some bad signatures may not be discovered in the
situation where level C is more secure than level D. When
[ =k + 4, the MDA and the SET are of the same security
level, i.e., level B. Now we can conclude that the MDA is
more secure than the SET.

Standing on users’ viewpoint, a batch verification
scheme is suitable for use in a close environment, i.e., the
sending side S and receiving side R are strongly related to
each other in business or responsibilities. In a RSA-type
(DSA-type) batch verification scheme, only people work
for both sides, i.e., S and R, can determine the parameters,
N, e and d (p, g, g, x and y) which are used to generate a
signature s, m’ mod N for document/message mi’s. Without
these parameters, hackers cannot generate signatures for
messages/documents. Even though hackers generate a faked
massage and its signature, they cannot pass the MDA test.
Namely, we can conclude that a batch of documents passing
the RSA-type MDA test means the (m,, ) is accurate, 1 <i
<n, and (m,, r;) is safely delivered from S to R. A batch of
signatures that passes the DSA-type MDA test implies the
similar conclusion.

P,, max 0, asr < 3 and ‘Pmax = P4,max

Table 1 The Security Levels of the SET and MDA Verification Tests

r>4
r<3
[<(k+4) I=k+4) I>k+49
SET D D B C
MDA A C B D

Note. I: the length of a random variable.

4.2 Efficiency

When a checking matrix H has k rows, the possible
numbers of columns of H range from 2" to 2* — 1, i.e., 2"
<n<2'- 1. Theorem 9 will show that the number of 1’s in
H, denoted by Z, ranges between (k — 1) x 2? + 1 and k x
2°" where Z is also the times that signatures will be tested.
Theorem 8. Given a checking matrix H, , , where 2" <n <
2~ 1, then, (k— 1) x 22+ 1< Z<kx2¥",
Proof: When n = 2" — 1, each row of H has at most 2*
entries, the values of which are 1. If H has k rows, the
number of 1’s in a k x (2 — 1) checking matrix H is at most
kx 2" Let H be a (k— 1) x (2" — 1) checking matrix.
The number of 1’s in H’is (k— 1) x 24" "= (k- 1) x 2*2,
Furthermore, a k x 2°' checking matrix can be obtained by
adding a nonzero column to a (k — 1) x (2" — 1) checking
matrix. Hence the number of 1’s contained in a k x 2"
checking matrix = (the number of 1’s contained in the (k
— 1) x (2" = 1) checking matrix) + (the number of 1’s in
the added nonzero column) > (k — 1) x 27 + 1. Thus, the
number of 1°s in a k& % n checking matrix will range from
k-1 x27+1tokx2" ie, (k—1)x 22+ 1< Z<kx
2“1 Q.ED#

Given an n-batch S with 2" < n < 2" — 1, by Theorem
8, each row of a k x (2° - 1) checking matrix H has 2*"' 17,
and the MDA needs & (= log, (n + 1)) times of test, one
row at a time. Each time 2*"' signatures are verified, i.c., a

1
total of k2% =1

log,(n+1)~ g'logz n signatures are

verified.

Table 2 summarizes the time complexities of DSA-type
and RSA-type when the SET and MDA are individually
employed. The time complexities of the DSA-type batch
verification with the SET and the RSA batch verification
with the SET are shown in [7]. Let T,,, (T,,,) be the cost of
a modular multiplication (an exponentiation) operation. Our
test environment includes x86 PC, P4 2G CPU, 1G DDR
RAM, Multi-precision Integer and Rational Arithmetic
C/C++ Library (MIRACL), MSVC Compiler, and MS
Windows XP OS. According to our experimental results 7,,,
~ 30 T,,, rather than T, = 240 T, presented in [14]. We
adopted our results to perform the following experiment.
The computation times required by the SET and the MDA
are listed in Table 3, from which we can conclude that the
MDA is more efficiently than the SET when /> 30 and n >
512.
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Table 2 Time Complexities of DSA-type and RSA-type When the SET and MDA are Individually Employed
Methods

Time Complexity

3
DSA-type with the MDA Kgn - Z)log2 n+3n- 2} T+ QRlog,n+2)T,,

DSA-type with the SET [7]

/
(l+—%—+4n+l) T,.+t2T,,
RSA-type with the MDA

RSA-type with the SET [7]

Note. n: number of signatures given; /: number of bits of a random number used by the SET; 7,,,: computation time of a
modular multiplication; 7, ,: computation time of a modular exponentiation.

[(n—2logn +2n -] T, + (logm+ ) T,,,
@Cl+n)T,,+T,

mud exp

5 Conclusions and Future Work

The possible applications of the MDA include (1)
to effectively protect the homeland of a country, when
many foreigners, e.g., a tour team, would like to enter the
country, they often submit their entrance applications to
the immigration office of the country via a foreign travel
agency; (2) A credit card company sends the transactions
that a bank’s customers submitted to purchase something.
The receiving bank can verify the transactions as a whole
with the MDA; (3) other examples can be delivering
secret documents between two military units, between two
government offices, etc.

Compared with the MDA, the SET has two weaknesses.
The first is that the SET cannot correctly discover one, two
and three bad signatures in an n-batch S so that attackers
may penetrate the SET’s signature verification system. The
second is that the SET ignores the fact that the more the bad
signatures in S, the lower the escape probability. The escape

1
probability p of the SET is p = > [7], which is independent

from the number of bad signatures in S where / is the secure
parameter used in the SET.

However, Theorems 2-5 show that one, two, and
three bad signatures in S can be discovered by the MDA.
Theorem 7 illustrates that when the number of digital
signatures increases, the escape probability p of the MDA
is lower and the maximum escape probability of the MDA
occurs at r = 4. Theorem 6 also depicts that when the

number of bad signatures r or the number of signatures # in
S increases, p is lower, i.e., the MDA is more secure than
the SET. Also, by Theorem 8 and according to Tables 2
and 3, the MDA’s time complexity is lower than that of the
SET.

In the future, we will try to develop a method to
discover all bad signatures contained in an n-batch.
Furthermore, if the number of bad signatures in S is rare,
we would like to find an efficient method which can not
only discover bad signatures, but also point out which
signatures are bad [15-16]. We would also like to derive the
reliability model for the MDA so that users can predict the
reliability of the algorithm before using it. Those constitute
our future research.
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