
International Journal of Security and Its Applications

Vol. 6, No. 2, April, 2012

341

A Semantic Rule-based Detection Scheme against Flooding Attacks

on Cloud Environment

Chu-Hsing Lin
1
, Chen-Yu Lee

2
, Shin-Pin Lai

1
 and Wei-Shen Lai

3

1
Department of Computer Science, Tunghai University, Taichung, Taiwan,

2
Department of Computer Science, National Chiao Tung University, Hsinchu, Taiwan

3
Department of Information Management,

Chienkuo Technology University, Taichung, Taiwan

{chlin,g99350002}@go.thu.edu.tw, chenyu@cs.nctu.edu.tw, weishenlai@gmail.com

Abstract

With the progress the Internet, more and more applications provide Web services. The

presentation of web page has evolved to be dynamic. You also can interact with the web page.

Some malicious users have malicious browsing behaviors, such as flooding attack, to waste

the resources and bandwidth of the host for web page. Nowadays, more and more web

services are developed on cloud computing. Flooding attack on the application layer has no

ability to cause denial of service to a Web server on cloud computing. But resources on cloud

mean cost. Any waste of resource will cause unnecessary cost. Therefore, in this paper we

analyze PHP dynamic pages. According to analysis, we propose a method based on semantic

concept to formulate rules to indentify malicious browsing behaviors in order to slice the cost.

Keywords: Clouds, Flooding attack, Web service, Semantic web

1. Introduction

Dynamic web page servers face all kind of users and browsing behaviors and among these

browsing behaviors some are malicious, such as flooding attack [1, 2]. The flooding attack is

easy to detect on the network layer but is harder to detect when occurring on the application

layer. Flooding attack on the application layer usually makes normal connection with web

page server, and then through browsing behaviors, it wastes the resources of web page, such

as CPU time, memory, and bandwidth. It is not easy to cause total denial of service on web

page servers built on the cloud by way of flooding attack on the application layer, since this

time the attackers are faced with high computation power and high bandwidth web page

servers as following development of cloud computing technology [3, 4]. But continuous

waste of web page server resources due to attackers will become unnecessary cost that cannot

be overlooked by enterprise.

In this paper, we grouped the attacks into five types: group, forward sequence, backward

sequence, login, and refresh. Further we proposed three algorithms and semantic policies to

identify malicious users by figuring out some characteristics of malicious users and to

evaluate the cost of each critical page with the thresholds to determine whether the attacks

occur in real time.

2. Threats on the Cloud Web Service

Many web sites have moved to cloud platforms as following development of Cloud

Computing [5, 6, 7, 8]. Web sites built on the cloud platform still suffer from HTTP Flooding

attack, which will not break down the web page system completely but will still cause waste

and extra cost on the system resources.

International Journal of Security and Its Applications

Vol. 6, No. 2, April, 2012

342

2.1 Cloud computing environment: We mainly focus on web page service on the cloud

platform, of which web servers and application servers are constructed via the virtualization

method.

2.2 Attack model: A web site breaks down under attacks such as HTTP Flooding attack. It

is due to the facts of resource limitations of computing power and processing ability of the

host servers. We grouped all the threats into three types:

a) Computation: attackers cause the system to perform substantial operations by sending

specific request packets to increase the computation cost of servers.

b) Communication: attackers download large files repetitively from the web server to

waste its network bandwidth.

c) Security: many threats, such as SQL Injection, XSS, and password guessing attacks

belong to this type.

3. Methodology

Here we define grammar for the web page: G = {V, T, S, P}, where V={S}, S representing

the start symbol, T={a, b, c, d, e, f, g, h, i, k} represents the set of terminal symbols. P is the

set of production rules and P is expressed as Table 1.

We define deterministic finite automatons (DFA) to describe six malicious characteristics:

A. Forward Sequence: Malicious user browse web page from first page to last page step by

step as table 1.

B. Backward Sequence: Malicious user browse web page from last page to first page step by

step as table 1.

C. Login: Malicious user try to login in and guess the password illegally as table 1.

D. Back and Forth: Malicious users browse only two web pages and change web page

continuously in a short time as table 1.

E. Refresh: Malicious user browses only one page many times in a short time as table 1.

Computation: Malicious user browses any web pages randomly but changes page quickly

as Section 4.

Table 1. Parametation for Characteristics by Grammar

Characteristic Grammar

Forward Sequence abcdefghijk

Backward Sequence kjihgfedcba

Login kkkkk

Back and Forth Only two page (Ex:abababababab)

Refresh Only one page (Ex:aaaaaaaaaaaa)

Computation Random page

When a user connects to the web site, the system analyzes the browsing behavior from

user. If user changes page under limit time, the system record the pages in a database. When a

user changes page rapidly up within default times, the system derives the automaton to

analyze the browsing behaviors of the user. The browsing behavior of user is an input. The

automaton will identify the user that is malicious user or not.

4. Computation Algorithm

When the browsing behaviors of the user don’t match Forward Sequence, Backward

Sequence, Login, Back and Forth, Refresh, we compute the total score of pages that browsing

by user.

International Journal of Security and Its Applications

Vol. 6, No. 2, April, 2012

343

We use algorithm Initial Setup to define malicious threshold and score of every page. We

will determine the max request time Tmax of pages and set its score STmax as 10. Then we let the

calendar page be standard. Its score supposes 10.Scores S[i] of other pages refer the standard.

Scores of every page are 0.86, 0.65,…, 10, 0.65, 0.2. Finally, we compute the total score STotal.

Table 2. Expresstion for Every Parameter

Parameter Expression

Rst[] Static request time of every page

Tmax The max static request time of all pages

STmax Score of Tmax

S[] Score of every page

STotal Total score of all pages

S’[] The score after first update

Raverage Average request time of one page for 24 hrs

Rdt[i][] Request time of every page by user

S’’[] The score after second update

algorithm Initial_Setup ()

 begin

 Tmax = Max(Rst[i]), i =0..n-1;

 STmax = 10

 S[i] = (Rst[i] / Tmax) STmax, i= 0..n-1;

;,][

1

0

siteofsizeniSS
n

i

Total 



 end.

If user changes pages under limit time, we record the page of request by user and compute

the score and compare with STotal. If the score of user is over the STotal, we can identify the user

that is malicious.
Nowadays, there are more and more dynamic websites on the internet. We use algorithm

Update1 to update the malicious threshold and score of every page to detect SQL injection.

The SQL request times from user are dynamic. We record the dynamic request time from

userand calculate the total request time Total, average dynamic request time Raverage, and S’[i].

Now, we suppose the Raverage is 0.18 sec and the request time of every page. Scores of every

page are 1.11, 0.83,…, 0.11. Finally, we compute the total score STotal.

algorithm Update1 ()

 begin

 For i =0 to n-1

 For j = i to n

 Total = Total + Rdt[i][j];

 Number++;

 Raverage = Total / Number;

 For i =0 to n-1

;

][
][max

'

T

average

st S
R

iR
iS 

;,][
1

0

' siteofsizeniSS
n

i

Total 



 end.

Every user is interested in different pages. We use algorithm Update2 to update malicious

threshold and score of every page to avoid illegal user sending request against the page of

International Journal of Security and Its Applications

Vol. 6, No. 2, April, 2012

344

lower request time. First, we record the page from requesting by user. Then we calculate the

total request times Rtotaltimes and percent of every page P[i]. Finally, we update the scores S’’[i]

and total score STotal.

algorithm Update2 ()

 begin

 For i=0 to n-1

 Rtotaltimes = Rtotaltimes + Rtimes[i];

 For i =0 to n-1

 P[i] = Rtimes[i] / Rtotaltimes;

 For i= 0 to n-1

][][]['' ' iSniPiS 

;,][

1

0

'' siteofsizeniSS
n

i

Total 



 end.

After we finish algorithm Update1 and Update2, we use new STotal to be threshold. Then we

continually identify user malicious or not.

5. Experiment Results

5.1 Experiment Environment

For the experiment, we analyzed our laboratory website in Department of Computer

science, Tunghai University, which is an Apache 2.0 web server with pages programed by

PHP 5.0 and MySQL 4.0 database. The browser pages are listed in Table 3. We assume these

pages a ~ k like grammar in Table 1.

Table 3. Browsing Page for Ordinary Users

Browser Page Request Time

news

lab_intro

teacher_info

members_info

equIPment_info

project_data

document

course_info

calendar

links

user_login

0.02 Sec

0.015 Sec

0.095 Sec

0.1 Sec

0.02 Sec

0.021 Sec

0.025 Sec

0.015 Sec

0.23 Sec

0.015 Sec

0.005 Sec

5.2 Scenario for Browsing Web Page

To discuss browsing behaviors of a normal user, we use the example of a graduate student

visiting the web page of a laboratory. First, he may be interested in research areas and groups

of the laboratory. Having some understanding about the laboratory, he may want to find what

expertise the supervising teachers have and what projects the laboratory members are

involved in.

Normal users would browse documents stored on the web, and their browsing behaviors

are hard to predict because the browsing path depend on their own interests, and are randomly,

slowly, and unrepetitively.

Malicious users may use web crawler tools, such as spider, to get web page response

International Journal of Security and Its Applications

Vol. 6, No. 2, April, 2012

345

messages and keep browsing the pages that the request time of pages is short and change

pages quickly and regularly.

Finally, the system could identify spider, probe attack, password guessing, DoS attacks by

the proposed five policies effectively.

6. Conclusions

In this paper, we proposed three algorithms and policies to identify malicious users by

figuring out some characteristics of malicious users and to evaluate the cost of each critical

page with the thresholds to determine whether the attacks occur in real time. For the future

work, we planned to figure out more and more characteristics to make our method completed

and to verify its efficiency, the detection rate, and the false decision rate, and to compare it

with other detection methods.

Acknowledgment

This work was supported in part by Taiwan National Science Council under grant: NSC

99-2221-E-029-039-MY3.

References

[1] H. Y. Suen, W. C. Lau and O. Yue, “Detecting Anomalous WebBrowsing via Diffusion Wavelets”, Proc.

IEEE Int’l Conference on Communications (ICC2010), Cape Town, SouthAfrica, (2010) May, pp. 1-6.

[2] C. H. Lin, J. C. Liu and C. R. Chen, “Access Log Generator for Analyzing Malicious Website Browsing

Behaviors”, 2009 Fifth International Conference on Information Assurance and Security, Xian, China, (2009)
August, pp. 126 - 129.

[3] Y. Xie and S. Z. Yu, “Monitoring the Application-Layer DDoSAttacksfor Popular Websites”, IEEE/ACM
Transactions on Networking, vol.17, no. 1, (2009) February, pp.15-25.

[4] I. W. Kim and K. H. Lee, “A Model-Driven Approach for DescribingSemantic Web Services: From UML to

OWL-S”, IEEE Transactionson Systems, Man, and Cybernetics, Part C: Applications and Reviews,vol. 39,
no. 6, (2009) November, pp.637-646.

[5] K. Xiong and H. Perros, “Service Performance and Analysis in Cloud Computing”, Proc. 2009 World
Conference on Services - I, Washington, DC, (2009), pp. 693-700.

[6] M. D. Dikaiakos, D. Katsaros, P. Mehra, G. Pallis and A. Vakali, “Cloud Computing: Distributed Internet
Computing for IT andScientific Research”, IEEE Internet Computing, vol. 13, no. 5, (2009), pp.10-13.

[7] Z. Zhang and X. Zhang, “Realization of Open Cloud ComputingFederation Based on Mobile Agent”, Proc.

2009 IEEE InternationalConference on Intelligent Computing and Intelligent Systems, vol. 3, (2009)

November, pp. 642-64.

[8] S. Subashini and V. Kavitha, “A Survey on Security Issues in Service Delivery Models of Cloud
Computing”, Journal of Network and Computer Applications, vol. 34,Issue 1, (2011) January, pp. 1-11.

International Journal of Security and Its Applications

Vol. 6, No. 2, April, 2012

346

