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Abstract 
The route guidance system, which provides driving advice based on traffic information 

about an origin and a destination, has become very popular along with the advancement of 
handheld devices and the global position system. Since the accuracy and efficiency of route 
guidance depend on the accuracy of the traffic conditions, the route guidance system needs to 
include more variables in calculation, such as real time traffic flows and allowable vehicle 
speeds. As variables considered by the route guidance system increase, the cost to compute 
multiplies. Since handheld devices have limited resources, it is not feasible to use them to 
compute the exact optimal solutions in real time systems by some well-known algorithm, such 
as the Dijkstra’s algorithm, which is usually used to find the shortest path with a map of 
reasonable numbers of vertices.  

To solve this problem, we propose to use the genetic algorithm to alleviate the rising 
computational cost.  We use the genetic algorithm to find the shortest time in driving with 
diverse scenarios of real traffic conditions and varying vehicle speeds. The effectiveness of 
the genetic algorithm is clearly demonstrated when applied on a real map of modern city with 
very large vertex numbers. 
 
1. Introduction 

It has become a common practice to use PDAs as route guidance [1-2]. Usually, the 
shortest path is provided by route guidance systems to advise traffic users how to reach the 
destination from the origin. Depending on the real time situations on the suggested route, 
including traffics congestions, road conditions, speed limits, and behaviors of the drivers, the 
traveling time might be saved or not. 

 The shortest path route provided by route guidance systems is not necessarily the optimal 
path since it is computed mainly based on the shortest distance, but other variables, for 
example, traffic congestions, driving speed limits might have significant effects and need to 
be included in the computation. The incurred computational cost by taking many traffic 
variables into consideration might consume too much time and resources of handheld devices. 
In general, the computing power and memory of handheld devices are limited. One method to 
solve this dilemma is to do all the computations in a host server, but once the communication 
between handheld devices and the host server is disrupted, so is the route guidance 
application. The alternative method is to use some algorithm that can provide approximate 
answers with relatively lower computational cost. In this paper, we propose to use genetic 
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algorithm to find the optimal path. Because we take the allowable vehicle speeds into 
consideration, the shortest time instead of the shortest path is used for route guidance. 

The rest of this paper is organized as follows. In Section 2, the background information is 
given. In Section 3, the shortest driving time problem is defined. Experimental settings and 
simulation results will be shown in Section 4. Section 5 concludes this paper. 
 
2. Background 
 
2.1. Shortest Path Problem 

In graph theory, the shortest path problem can be generalized as the single-source shortest 
path problem, in which the shortest path from a source vertex and all other vertices in the 
graph is found. The well-known algorithms for this include the Dijkstra’s algorithm and 
Bellman-Ford algorithm.  

Dijkstra’s algorithm solves the shortest paths problem when the edge weights are 
nonnegative, which are applicable to the conditions of route guidance systems. We will use 
the Dijkstra’s algorithm to find the shortest driving time when the vertex number is not too 
large. The running time of implementing the Dijkstra’s algorithm by storing vertices in an 
ordinary linked list is of O(|V|2+|E|), where |V| is the number of vertices and |E| is  the number 
of edges. The running time might be unacceptable when the vertex numbers become too 
large. In this situation, other alternative methods can be used to find approximate solutions. 
The genetic algorithm is one of them.  

 
2.2. Genetic Algorithm 

The genetic algorithm is a search technique to find exact or approximate solutions [3-10]. 
It has its origin from the theory of evolution in nature. In 1975, John H. Holland worked out 
the genetic algorithm in a book called “Adaptation in Natural and Artificial Systems”.  The 
genetic algorithm has on a wide scope of applications, including genome biology, economics, 
game theory, pattern recognition, neural networks, fuzzy theory, etc.     

Figure 1 show Steps of the genetic algorithm, which are described as follows: 
 Initialization of  population 
 Choice of fitness function and evaluation of fitness of each individual in the 

population 
 Selection of best ranked part to reproduce 
 Breeding new generation by crossover or mutation and giving birth to offspring 
 Replacement of worst ranked part of population with the offspring 
 Repeating this generational process until a termination condition has been reached. 

Chang et al. proposed a genetic algorithm to solve for the shortest path problem in 2002[6].  
The problem is described as follows: 

The multi-hop network can be defined as a directed graph G = (N, A), where N denotes the 
set of n nodes (vertices) and A denotes the set of edges. The cost matrix is denoted as C = 
[Cij], where Cij associates the cost from node i to node j. The origin is S and the destination is 
D. The link indicator, Iij, indicates whether a route exists between node i and node j. If there is 
a route, then Iij = 1, otherwise, Iij = 0. 

They show that by using the genetic algorithm, after nine generational processes, the 
optimal solution is found for a network with 20 nodes. The genetic algorithm converges fast 
and it needs just a few generational processes to find the optimal solution.  As the number of 
nodes increases more than 20, the computing time by adopting the genetic algorithm is less 
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than that by adopting the Dijkstra’s Algorithm. So, it is more feasible to use the genetic 
algorithm to find the optimal path in a complicated real life map with thousands of nodes on 
handheld devices with constrained resource. 

 

 
 

Figure 1. Schematic genetic algorithm  
 

2.3. Intelligent Transportation System (ITS) 

The Intelligent Transportation System (ITS) provides drivers with route guidance and map 
information, and it can be used to support the intelligent driving system by sensing 
technologies or by the driving information feedback from the users [11][12][15]. As shown in 
Figure 2, the intelligent driving system guides the driver to the destination by updating the 
optimal traveling route according to real time traffic information.   

 
 

Figure 2. The intelligent driving system 
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3. Shortest Driving Time 

The Shortest Driving Time (SDT) problem can be formulated into an integer programming 
model. The notation list of its mathematical model is given as follows: 
Problem parameters: 
N set of all nodes 
A set of all links 
S source node,  N∈
D destination node,  N∈
i,j index of node, i,j ,  N∈
<i,j> node i to node j, directional 
Eij link node i to node j 
dij distance of node i to node j 
vij velocity of node i to node j 
 
Problem decision variables: 
Tij cost time of node i to node j, +∈ R  
Uij binary, 1 if the link from node i to 

node j exists in the routing path, 0 
otherwise 

t total drive time,  +∈ R
 
3.1. Shortest Driving Time 

In the traditional shortest path problem, the cost between node i and node j is the distance 
dij. By including the speed limits, vij, which is the highest driving speed from node i to node j, 
the cost of time can be denoted as  Tij = dij / vij. By replacing the cost of distance with the cost 
of time, we can use Dijkstra’s algorithm to find the shortest driving time as follows: 
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To find the shortest driving time, we also use the following steps based on the genetic 
algorithm proposed by Chang et al.: [6][13][14] 

 
Step 1. Genetic Representation:  
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Chromosomes with various lengths are used. The maximum length is N, which can be set 
first. Chromosomes start at S and end at D. For example, we can represent a route as 
chromosome (S → N1→N2 → … → Nk-1 → Nk → D). 
 

Step 2. Population Initialization:  
Chromosomes of the first generation are produced by considering the population size and 
the procedure to initialize the population. The heuristic initialization or random 
initialization is adopted. 
 

Step 3. Fitness Function: 
The fitness function is defined as 

∑
=

ijij vd
f

/
1     

Where f represents the fitness value of the chromosome, dij, the distance of node i to node 
j, and vij, the allowable velocity on the edge of node i to node j. 
 

Step 4. Selection: 
Pair-wise tournament selection without replacement is used.   
 

Step 5. Crossover: 
The crossover is done by randomly finding the crossover point in two chromosomes. 
 

Step 6. Mutation: 
The probabilities of mutation are set at a range of 5% to 10%. It is used to produce new 
route. 
 

Step 7. Termination: 
Repeating the generational processes until a termination condition is achieved. 

 
4. Experimental Settings and Results 

We used ARM 9 S3C2410 embedded system as the portable device, and a desktop PC as 
the ITS server, which provide allowable driving speeds according to traffic conditions. We 
performed two sets of experiments, one on a virtual square matrix map and one on a real city 
map. 

We adopted the Dijkstra’s algorithm and the genetic algorithm to compute the shortest 
driving time. But as the number of nodes increased, the memory space required by the 
Dijkstra’s algorithm went beyond the limited memory on the embedded system. So, we only 
list the experimental results by adopting the genetic algorithm. 

 
4.1. Matrix Map Case 

The virtual maps of square matrix had sizes of 4 x 4, 8 x 8, 16 x 16, and 32 x 32. 
As shown in Figure 3, the origin was at the upper left corner and the destination was at the 

lower right corner. The distances between nodes were fixed at 20. The speed limits were 
varied from 2 to 10. The probability of mutation was set to be 8 %, and the limit of 
generational processes was set at 30. All experiments are done 1,000 times. 
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Figure 3. Virtual map of Square matrix. 

 

Table 1 gives the average number of generational processes to find the shortest driving 
time. It shows that the genetic algorithm converges very fast, less than 20 generations even 
when the number of nodes growing to 1024. Also for a complex map with thousands of 
nodes, the average number of generational processes for the genetic algorithm beginning to 
converge is still small enough for real time applications. 
 

Table 1. Average generations to find optimum path 
 

Number of nodes  
16 64 256 1024 

20 3.31 5.19 9.38 13.97 
40 5.06 7.29 9.95 17.33 
60 6.33 8.18 10.59 18.21 
80 6.58 9.22 11.16 18.30 
100 6.60 10.27 12.04 18.38 
120 6.64 10.46 12.44 18.48 
140 6.71 11.64 13.27 18.77 

N
um

be
r 

of
 

ch
ro

m
os

om
e 

160 6.89 11.92 14.08 19.05 
 

Approximately optimal routes are found when the genetic algorithm begins to converge. 
Table 2 gives the average of difference of the approximate route and the exact route. It shows 
that when the number of nodes is small, 16 or 64 nodes in this example, the approximate 
solutions are very close to the exact solution, which is less than 5%. Also it helps by 
increasing the number of chromosomes. But, when the number of nodes is large, 1024 nodes 
in this example, the difference of the approximate and exact solutions grows to about 50%. 
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Table 2. Average difference of approximate and exact routes (in %) 
 

Number of nodes  
16 64 256 1024 

40 12% 34% 47% 56% 
80 3.6% 23% 44% 52% 
160 1.2% 18% 39% 51% 
320 <1% 13% 36% 51% 
640 <1% 7% 31% 49% 

N
um

be
r 

of
 

ch
ro

m
os

om
e 

1280 <1% 5% 26% 48% 
  
4.2. Real Map Case 

We used the city map of Taichung, Taiwan in real map experiments. It has 8039 nodes and 
five levels of road according to speed limits. The highways are classified as LV5 and the 
slowest speed limit roads are classified as LV1. Information of the speed limits are provided 
from the ITS server in real time. 

The experimental results are listed in Table 3. It shows that the genetic algorithm 
converges relatively fast even with large amount of data, so it is feasible to use genetic 
algorithm on handheld devices to find approximately optimal paths. It also shows that the 
number of chromosomes is critical when the number of nodes is very large. By increasing the 
number of chromosomes from 40 to 1024, the difference between approximate and exact 
solutions is cut from 223% to 48%.  
 

Table 3. Results on real map by genetic algorithm 
 

 Avg. number of generation Avg.  difference 
40 22 223% 
80 26 180% 
160 28 103% 
320 29 86% 
640 31 68% 

N
um

be
r 

of
 

ch
ro

m
os

om
e 

1280 33 48% 
 

5. Conclusions 
The route guidance system has very wide applications. An ideal route guidance system not 

only provides shortest path information based on the static information of the distance of the 
origin and the destination, but also offers dynamic solutions based on the ITS information 
collected from the sensors and the users.  The shortest driving time approach, which can be 
computed by genetic algorithm on the handheld device, is feasible to be used in the route 
guidance system. 

The computation power and memory space on the handheld devices are limited. It is not 
practical to search for the exact optimal solution on them with massive amounts of traffic 
data. The genetic algorithm that can be used to search approximate solutions is able to 
effectively find the approximately optimal path in complicated situations when many 
variables affecting the traffic are included in calculation. 
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