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Abstract 
 

Conference keys are secret keys used by a group of 
users commonly with which they can encipher (or 
decipher) messages such that communications are 
secure. Based on Diffie and Hellman’s PKDS, a 
conference key distribution scheme is presented in this 
paper. A sealed lock is used to lock the conference key 
in such a way that only the private keys of the invited 
members are matched. Then the sealed lock is thus 
made public or distributed to all the users, only 
legitimate users can disclose it and obtain the 
conference key. In our scheme, the construction of a 
sealed lock is simple and the revelation of a conference 
key is efficient as well.  
Keywords and phrases: public key distribution, 
Diffie-Hellman’s scheme, conference key, sealed lock 

 
1. Introduction 
 

In the age of computers and communications people 
in different places far away from each other can have a 
secure conference just by sitting in the front of their 
own computers via the Internet. A common key, called 
a conference key, is used to encrypt and decrypt 
messages which communicate among members 
participating in the conference. Before a conference is 
to be held, a conference key has to be generated and 
distributed safely to members in the conference. The 
main problem is how this conference key is packed and 
distributed in such a way that only the legitimate 
(invited) members can disclose it. 

In this paper, we propose a conference key 
distribution system suitable for broadcast channel. A 
broadcast channel is characterized that a single 
transmission from a source user may be received 
simultaneously by many destination users. The concept 
of locking, called a sealed lock [15], is used to lock a 
secret conference key, from which only legitimate 
users can open it. There is no constraint on the 
structure of user stations in our system. Moreover, the 
proposed system has the following properties. First, for 
a subgroup of users, only one common secret key is 
required. Second, the conference key can be changed 
randomly without changing a ciphering key of any 
user. 

The proposed scheme is based on Diffie and 
Hellman’s PKDS [5]. The construction of a sealed lock 
is straightforward and the revelation of a conference 
key is simple. In Section 2, we present a brief review 
of a conference key distribution scheme. Section 3 will 
describe the overview of our approach and give an 
example. In Section 4, we analyze the security of the 
proposed scheme. According to our analysis, the 
conference key distribution scheme is presented in 
Section 5. Finally, we have a conclusion. 

 
2. Conference Key Distribution 
 

Diffie and Hellman proposed a public key 
distribution system (PKDS) based on the one-way 
function F(X)=ZX mod p, where p is a large prime 
number and Z is a primitive element in Galois field 
GF(p). Here a one-way function means that there exists 
a fast algorithm for computing F(X) from any given X; 



 

however, the computation of X from F(X) is infeasible 
within a reasonable time limitation [4]. Their PKDS 
works as follows. Users A and B choose randomly the 
integers Xa and Xb, respectively, from numbers in the 
range [1, p-1]. Users A and B keep secretly Xa and Xb 
and compute the corresponding public keys Ya and Yb 

Ya = (Z)Xa mod p, and         
Yb =(Z)Xb  mod p.    (2.1) 

Ya and Yb are placed in a public directory or 
interchanged between users A and B. Then users A and 
B can compute their common secret key Kab and 
follows: 
       Kab = (Yb)Xa mod p, 
         = (Z)XbXa mod p,          (2.2) 
         = (Ya)Xb mod p. 
This enables users A and B to communicate using 
encrypted messages by applying any cryptosystem 
with the key Kab. 

We can see that it is very straightforward to 
compute the common key Kab. Each user needs at most 
log2p multiplications over GF(p). On the contrary, if 
user A (or user B) intends to expose the private key Xb 
(or Xa) of his partner, he has to compute discrete 
logarithms. From the result of Pohlig and Hellman 
[17], computing discrete logarithms over GF(p) is 
considered to be a rather difficult problem if p-1 has at 
least one large prime factor. Therefore, Eq(2.1) is a 
one-way function on which the PKDS based. 

However, PKDS can serve only for two users to 
have a session key. If three or more users want to have 
a conference in common, a conference key is needed, 
each pair of the users have to keep one secret key. 
Therefore, in order to communicate with each other 
among any subgroup of users in the system, we need to 
derive a common secret key. In addition, for 
communicating a message to several users, the sender 
has to perform different encryptions and transmit the 
ciphertexts several times separately. Clearly, it is very 
inefficient to use this approach for a conference. 

To overcome the above problems, Ingemarsson, 
Tang, and Wong [8] proposed an elegant scheme 
named conference key distribution system (CKDS) for 
any subgroup of m users to share the same encryption 
and decryption keys in a network with n users, where 
2 ≤ m ≤ n. Conditionally, these m participants users 
have to be connected in a ring structure first before the 
progress of work follows. Within the ring structure, 
each user has to process and transmit the message 
received from his previous user station. Under this 
sequential order of message processing m-1 times, and 
finally the common conference key can be derived. 
However, an attacker may intercept the message 
transmitted along the ring. By putting the intercepted 

message together, a threat of wiretapping to the keys 
thus exists.  

Generally, the CKDS can be classified into two 
categories: one is the non-ID-based type [3, 8, 13, 16, 
19] and the other is the ID-based type [2, 14, 11, 12]. 
Unfortunately, most of the published ID-based CKDS 
are shown to be insecure [11, 12, 18, 20]. Therefore, in 
this paper, we focus our attention on the non-ID-based 
CKDS. In the following, we are going to review a 
practical non-ID-based CKDS [16]. 

In 1988, Lu, et al. [16] proposed a conference key 
distribution system based on the Lagrange 
interpolating polynomial. Let us briefly describe their 
method as follows. As indicated in Diffie and 
Hellman’s PKDS, each user possesses a private key Xi 
and makes the key Yi public. Now we assume that 
there are r users, namely U1, U2, …, and Ur, being 
invited to the conference by the chairman U0. First, a 
conference key α is chosen by U0 and 2r numbers are 
computed, which are {K01, K02, …, K0r} and {k’01, K’02, 
…, K’0r}, such that K0i=(Yi)X0 mod p = (Y0)Xi mod p, 
for 1 ≤ i ≤ r. 

Secondly, U0 construct a Lagrange interpolating 
polynomial L(x) as follows. 
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In other words, L(x) is a polynomial with degree r-1 
passing the r points (K0i, αK’0i), 1 ≤ i ≤ r. Then L(x) is 
transmitted to users participating in the conference. 
Now the conference key α is hidden in L(x). Here we 
also like to point out that from Diffie and Hellman’s 
formula, Eq(2.2), we have K0i=(Yi)X0

 mod p=(Y0)Xi 
mod p. Therefore, on receiving L(x), an invited user Ui 
can evaluate the polynomial L(K0i) and would obtain 
the value αK’0i; i.e., he obtain L(K0i)= αK’0i. 
Furthermore, he can obtain the conference key by the 
following.  
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Where (K’0i)-1 indicates the multiplication inverse of 
(K’0i) with modulus p. However, each time when a 
conference is to be held, a Lagrange interpolating 
polynomial has to be constructed. Moreover, every 
invited user must evaluate L(x) to obtain conference 
key α. 

In the next section, we present a new conference 
key distribution scheme. By using our scheme, 
interpolating polynomials are constructed just once and 
for all. 

 



 

3. Background of Our Scheme 
 

Imagine that there is a group G containing n+1 
users, denoted by U0, U1, U2,…, and Un, in a 
networking system. Let G’ indicate a nonempty 
subgroup of m users within G, where 1 ≤ m ≤ n. 
Suppose that, initially, each user Ui keeps secret a 
private key Xi, chosen randomly by Ui from numbers 
in the range [1, p-1], where p is a large prime number, 
and publishes the associated public key Yi=(Z)Xi mod 
p, where Z is a primitive element in the GF(p), where 
GF(p) indicates the Galois field over p. Without loss of 
generality, assume that U0 is the chairman and U1, U2, 
…,Ur are users invited to the conference; i.e., G’={U1, 
U2, …,Ur}. In order to hold a secure conference among 
the users in G’, a secret conference key, denoted by α, 
has to be created by the chairman for the conference. 
Note that α is also chosen in GF(p). 

We can see that if there is a secure method which 
can conceal the conference key α then the corns of the 
conference key distribution system can be solved. 
Since the conference key is enciphered, only one copy 
is needed to be sent in a broadcast system. Further, 
since the conference key is generated when a 
conference is going to be held, no extra key has to be 
kept in secret. Based upon these ideas, a new approach 
is proposed. A lock, called the sealed lock, is created 
and applied to lock the conference key. Note that the 
concept of a sealed lock for conference key distribution 
was proposed by Lin, et al. [15]. The sealed lock only 
matches the private keys of users in G’. 

Accordingly, we may assume that the conference 
key is hidden in the sealed lock and the lock satisfies 
two requirements. First, since only users in G’ are 
invited, the lock should be opened only by the users in 
G’, not any user in G-G’. Second, the lock should be 
variant according to different conference key α. That 
is, each time we use different lock depending on 
different conference key. Briefly, a sealed lock has to 
rest functionally on not only the conference key α but 
also the ciphering keys of the users. 

Now, the remaining problem is how we can 
construct the sealed lock. Before presenting the 
method, let us describe the informal steps of the 
scheme. First, U0 chooses a n×n nonsingular matrix 
over GF(p). Let the row vectors of K be K1, K2,…, Kn. 
Let B=(b1, b2, …, bn)T, where bi’s are unknowns to be 
determined and T indicates a transpose operation on 
vectors. Let C=(c1, c2, …, cn)T, where ci=α if user Ui in 
G’; otherwise, ci=0. Since the n row vectors of K are 
linearly independent, they constitute a basis [6]. 
Therefore, corresponding to any n-tuple vector C=(c1, 

c2, …, cn)T, a unique coordinate vector B=(b1, b2, …, 
bn)T, for representing C in the basis, can be found by 
solving the following linear equations: 
    KB=C,                      (3.1) 
or equivalently B=K-1C, K-1 indicates the inverse 
matrix of K. From another point of view, it means that 
when the coordinate vector B is obtained, the ith 
component (i.e., ci) of the vector C becomes the result 
of Ki*B, where * indicates the vector product in GF(p). 
That is Ki*B =ci=α, if Ui is in G’; otherwise Ki*B=0. 

From the above statements, it is not difficult to see 
that if the chosen row vector Ki could be possessed by 
user Ui and the vector B were made public, then each 
user Ui would be able to compute the value ci by 
himself (or herself). Thus, the invited users would 
obtain ci=α, the conference key; and the uninvited 
users would obtain ci = 0. However, how can we 
distribute Ki to user Ui securely? In the following, we 
give a method to conceal the matrix K in such a way 
that only user Ui can reveal the corresponding ith row 
vector Ki.  

First, for each column of the matrix K, namely 
column j, we construct an interpolating polynomial Fj 
[1, 9, 10] with degree n-1 passing through the n points 
(IDi, (kij)P mod Q), 1 ≤ i ≤ n. Here IDi indicates the 
identification number of user Ui and Q=q1×q2 is the 
product of two large prime numbers. Note that as 
aforementioned we assume that user U0 is the chairman 
and only users U1, U2,…, and Ur are invited to the 
conference. Moreover, for each column of the matrix 
K, e.g. the jth column, we construct another 
interpolating polynomial, namely Hj, with degree n-1 
passing through the n 
points ni ≤≤1   ,  )Q modk  ,ID( p mod)(Y

iji
0X

i  The 
construction steps of an interpolating polynomial, one 
can consult [1, 9, 10]. Therefore, we obtain a set of 2n 
polynomials, namely F = {F1, F2, …, Fn, H1, H2, …, 
Hn}. Finally, the set F of polynomials are made public 
by the chairman to all the users in the system. 

Now, when the user Us, with identification IDs, 
reads the set F of polynomials, he (or she) can evaluate 
the values of polynomials Fi(IDs) for 1 ≤ i ≤ n. We can 
see that the result will be as indicated below: 
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Similarly, he can also evaluate the results of 
polynomials Hi(IDs) and has the following equalities 
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It has p mod)(Yp mod)(Y s0 X
0

X
s = and Eq(3.3) becomes: 
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Further, the key point is that how can the user Us 
deduce the corresponding row vector Ks by knowing 
Eq(3.2) and Eq(3.4). The answer will become clear 
when Theorem 3.1 is proved. 
 
Theorem 3.1 
Given b1, b2, e1, and e2 such that n modbb 1e

1 =  
and n modbb 2e

2 = , where b<n. Then br mod n can be 
easily computed if gcd(e1, e2) = r. 
Proof. Since gcd(e1, e2) = r, from Euclidean algorithm 
we can find a pair of (s1, s2) such that s1e1+s2e2 = r. 
Therefore, we have 

     

r
1 1 2 2

e1 s1 e2 s2
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1 2
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Since 1p) mod)(Y gcd(p, sX
0 = , Theorem 3.1 (by letting 

r=1) can be applied to Eq(3.2) and Eq(3.4) for solving 
Ks=(ks1, ks2, …, ksn). Moreover, with the obtained Ks 
the value cs can be derived by computing Ks*B=(ks1, 
ks2,…, ksn)*(b1, b2, …, bn)=cs. If the user Us is in G’ 
then cs=α; otherwise, he would find that cs=0, no 
information associated with the conference key is 
revealed. 

It is easy to see that the sealed lock, the vector B, 
satisfies the previous two requirements. Here we would 
like to point out that to open the sealed lock in the 
conference key distribution system, one’s private key, 
not any extra key, is needed. Moreover, the conference 
key can be changed in a convenient way within the 
conference. When a suspected attack is found, the 
chairman may change the conference key as he wishes. 

 
Example 3.1 
Let the group G contain four users, denoted by U0, U1, 
U2, and U3. Let p be 11 and a primitive element Z=2 in 
GF(p). Then, each user Ui keeps secret a private key 
Xi, chosen randomly by Ui from numbers in the range 
[1, p-1] and publishes the public keys p modZY iX

i = . Let 
X0=8, X1=6, X2=9, X3=4, Y0=3, Y1=9, Y2=6, and 
Y3=5. We also let ID1=1, ID2=2, and ID3=3. Without 
loss of generality, assume that U0 is the chairman and 
U1 and U2 are users being invited to the conference; 
i.e., G’={U1, U2}. In order to hold a secret conference 
key α=7 among the users in G’, the chairman executes 
the following steps: 

1. The chairman chooses a 3×3 nonsingular matrix 
over GF(11) as 
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and computes the inverse K-1 of K 
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2. The conference key α=7, he generates the 
vector C=(c1, c2, c3)T, where ci=α if Ui is in G’; 
otherwise, ci=0. So, C=(7, 7, 0). 

3. The vector B is generated by 
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4. Selecting Q=23 × 29=667 and P=673, the 
chairman can construct six interpolating 
polynomials F1, F2, F3, H1, H2, and H3. 
According to the construction of the three 
points (ID1, k11

p mod Q),(ID2, k21
p mod Q), and 

(ID3, k21
p mod Q), which are (1, 1), (2, 47), and 

(3, 574), is 577x2-339x+436 (mod 673). 
Similarly, we have 
   F2(x)=554x2-362x+528 (mod 673) and 
   F3(x)=650x2-581x+323 (mod 673). 
In addition, polynomial Hi can be constructed. 
The polynomial H1(x), passing through the 
three points (1, 1), (2, 16), and (3, 400), is 
521x2-202x+355 (mod 673). Similarly, we have 
H2(x)=652x2-617x+646 (mod 673) and 
H3(x)=98x2-365x-379 (mod 673). 

5. Publish the set F={ F1, F2, F3, H1, H2, H3 }, Q, 
and B to all the users in G. 

Each user Ui, say U2, in the group G’ can reveal the 
conference key as follows: 

1. Compute F1(ID2) = 47, F2(ID2) = 1, 
F3(ID2)=415,    H1(ID2)=16, H2(ID2)=1, and 
H3(ID2)=629. 

2. Because p(=11) is coprime to Y0
X2 mod p(=4), 

we have (-1)‧11+3‧4=1. Therefore, the 2nd 
row vector of matrix K, namely K2=(k21, k22, 
k23), can be computed by the following 
expressions: 
k21=(47)-1(16)3 mod 667 =2, 
k22=(1)-1(1)3 mod 667=1, 
k21=(415)-1(629)3 mod 667=6. 
So, K2=(2, 1, 6). 



 

3. Reveal the conference key 

7  11 mod 
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4. Security Consideration 
 

In this section, we shall discuss the security of the 
proposed scheme. 

In the following, attacks to conference key and the 
personal private keys, are considered to demonstrate 
the security of the system. First, an intruder, namely 
Uj, not in G’, may try to find the conference key α. 
Since Uj is not in G’, he will find cj=0. Not any 
information from the lock he can get about the 
conference key. Secondly, the intruder may be a 
member in G’ itself. After knowing the conference key 
α, he tries to obtain a private key Xs of some other user 
Us in G’. With this private key Xs, he can decrypt the 
messages for Us from another conference in which he 
does not participate. Form Eq(3.2) and Eq(3.4), we 
know that the intruder can compute 2n pairs of 
numbers Fi(IDS) and Hi(IDS), 1 ≤ i ≤ n. By knowing 
these 2n pairs, to solve each ksi by the Theorem 3.1, the 
value of (Y0)Xs mod p has to be known in advance. On 
the other hand, if the value of (Y0)Xs mod p is known, it 
has still to face the discrete logarithm problem to get 
Xs. However, computing discrete logarithm has been 
seen as a difficult problem as aforementioned. 

It will be not difficult to see that the chairman only 
has to publish the set F of interpolating polynomials to 
all the users just once and for all. On the other hand, a 
legitimate user can obtain the row vector 
corresponding to him by using his ID number and his 
private key. Further the conference key can thus be 
computed easily. Moreover, when different subgroup 
of users in group G are invited to hold a different 
conference, all what the chairman has to do is compute 
a new vector B and publish it. With this new vector B 
and the previously published set F, a new conference 
for another subgroup of users can be started. Besides, if 
unfortunately the conference key α is suspected to be 
under attack. The chairman can compute a new 
conference key α’ just by replacing the old vector B 
with a new vector B’ within the same conference 
without any modification to the set F. Nevertheless, 
one disadvantage is that the original matrix K-1 has to 
be kept secretly by the chairman. For security 
consideration, we suggest that matrix K-1 would be 
discarded after being transformed to the following two 
matrices.           
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for some integer s1, s2, …, sn in GF(p). When needed, 
the chairman can reconstruct the original matrix K 
from K̂  and K~  in the same way. 

 Unfortunately, this system is vulnerable to the 
following two attacks. First attack works as follows. 
Assume that it is not difficult to find out whether user 
Ui participated in a conference or not. If user Ui is not a 
legal participant in the conference j, the intruder can 
store Bj sent by the chairman and know that the 
corresponding cj is 0. He continues to store such B’s 
until he obtains a subset }B ..., ,B ,{B

1n21 jjj −
of these B’s 

that form a matrix of rank n-1. If the intruder is ever 
involved in a conference, say the nj

th conference, with 
user Ui, he will know 

nj
α and the 

njB . Now he has a 
matrix ]B ..., ,B ,[BB~

n21 jjj= . Because the system 
uses the same matrix K over and over again, the 
intruder can recover row Ki by solving the 
equation ]α ..., 0, [0,B~K

nji =∗ . Using Ki, the intruder 
can find all conference keys for conferences in which 
user 

iU  participated. Second attack like first one is 
also to recover row Ki of the user Ui. If the intruder is 
ever involved conferences j1, j2, …, and Jn with user Ui, 
he will know 

n21 jjj α and ..., ,α ,α  and Bj1, Bj2, …, and 
Bjn sent for these conference. Now he has a 
matrix ]B,...,B,[BB~

n21 jjj= . Because the system uses 
the same matrix K, the intruder can recover row Ki by 
solving the equation .]α ..., ,α ,[αB~K

n21 jjji =∗  
To eliminate these attacks, we have the detail of our 

proposed system in the next section. 
 

5. Secure Conference Key Distribution 
 

Let each user Ui have a private key Xi and a public 
key Yi as indicated in Diffie and Hellman’s PKDS. 
Now, if a nonempty subgroup G’ of users, with some 
user U0 as the chairman, will hold a conference 



 

securely. We assume that a n×n nonsingular matrix K 
over GF(p) has been generated by chairman. First, the 
user U0 selects a secret conference key α  which will 
be used to encrypt and decrypt message among users in 
G’. To avoid two attacks mentioned in Section 4, let C 
be (c1, c2, …, cn)T, where p) mod)α((Yc 0X

ii = if Ui is 
in G’; otherwise, ci is a random number such that 

p) mod)α((Yc 0X
ii ≠ . Then the user U0 computes a 

vector B by solving Eq(3.1) as mentioned previously 
and makes it public to all the users in the system. 
Further, U0 computes and publishes a set of 2n 
interpolating polynomials F={F1, F2, …, Fn, H1, H2, …, 
Hn} in which the matrix K is concealed. On the other 
hand, on receiving of F, the user Us should be able to 
compute 2n pairs of numbers Fi(IDs) and Hi(IDs), 

ni1 ≤≤ . If the users Us is in G’, an invited user, then 
by applying Theorem 3.1 he (or she) is capable of 
obtaining the row vector Ks corresponding him (or 
her). Therefore, by Ks and B, Us can compute the 
conference key 
by αp) mod)((Ycp) mod)B)((Y(K 1X

is
1X

is
00 ==∗ −− . 

Otherwise, when the user Us is not in G’, he can only 
compute αp) mod)((Ycp) mod)B)((Y(K 1X

is
1X

is
00 ≠=∗ −− . 

 In the following, let us state formally the 
algorithm for the conference key distribution scheme. 

 
Algorithm 5.1: System Generation for Chairman 
Input: Identification numbers IDi’s and the public key 
Yi for users in G’ and a prime number p. 
Output: A set F of 2n interpolating polynomials and a 
number Q. 
Step1:[Construct an n×n matrix] 

Construct a nonsingular matrix K=[kij]nxn. 
Step2:[Construct n interpolating polynomials Fj’s] 

For j = 1 to n 
Compute Fj passing through the n points (IDv, 
(kvj

p mod Q))’s, nv1 ≤≤  and Q=q1q2, the 
product of two large primes. 
Next j. 

Step3:[Construct n interpolating polynomials Hj’s] 
For j = 1 to n  
Compute Fj passing through the n 
points Q)) ))mod(k ,(ID p mod)(Y

vjv
0X

v
21qqQ andn v1 =≤≤  

Next j. 
Step4:[Distribute the polynomials] 

Publish the set F = {F1, F2, …,Fn, H1, H2, …, Hn} 
and Q to all users in G. 

 
Algorithm 5.2: Constructing a Sealed Lock 
Input: The nonsingular matrix K and a subgroup of 
users. 
Output: A sealed lock B. 

Step1:[Select a conference key for users inG′] 
Select a conference key α. Let vector 
C=(c1,c2,…,cn)T, where p) mod)α((Yc 0X

ii =  if Ui is 
in subgroup; otherwise, ci is a random number 
such that p) mod)α((Yc 0X

ii ≠ . 
Step 2:[Find a vector B] 

 Compute the vector B = K-1C. Let B= (b1, b2, …, 
 bn)T and publish it. 

Step3:[Distribute the sealed lock] 
Distribute B to all the users in the system. 

Note that as indicated in the above algorithm, the 
vector B is used as sealed lock in which the conference 
key α is hidden. Now for any user Ui in G′ , he can 
reveal the conference key from the set F and the vector 
B by using his own private key Xi. The revealing 
procedure is described as follows. 

 
Algorithm 5.3: Revelation of the conference key 
Input: The set F, vector B, IDs, Y0, p, Q, and the 
private key Xs of the user Us. 
Output: The conference key α. 
Step1:[Evaluate polynomial Fj’s] 

For j = 1 to n 
Compute Fj(IDs). 
Next j. 

Step2:[Evaluate polynomial Hj’s] 
For j = 1 to n 
Compute Hj(IDs). 
Next j. 

Step3:[Obtain the sth row vector Ks] 
For i = 1 to n 
Compute the ith component of Ks, namely ksi, by 
Theorem 3.1. 
Next i. 

Step4:[Reveal the conference key] 
Compute the conference key by 

1X
0s p) mod)B)((Y*(Kα i −= . 
 

After all the users in G’ obtain the common secret 
key α, one can communicate with the others as he 
wishes. Messages are encrypted and decrypted by 
using the key α and a conference will proceed securely 
among the users. The key α may be generated at the 
beginning of the conference by the chairman and 
discarded when the conference is closed or it may be 
changed randomly within the period of time of this 
conference. From the above algorithm, in order to 
compute α, a user Us in G’ only has to reveal the vector 
Ks by using his own private key Xs. Therefore, for 
conferences among users in any nonempty subgroup of 
G, the private keys needed to be kept by each user in 
the system are still the same. 

 



 

6. Conclusions 
 
It can be foreseen that teleconferencing will play a 

more and more important role in the age of computers 
and communications. However, the key issue is how 
we can design a convenient and secure way for 
conferencing by using our computers and 
communication networks. In this paper, we have 
proposed a method to computer a sealed lock by 
communicating the encrypted messages among users in 
the computer networks. By using the sealed lock, 
secure distribution of a conference key to all the station 
nodes is feasible in the network systems. 
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