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COMMENTS ON SAEEDNIA’s IMPROVED SCHEME FOR THE
HILL CIPHER
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ABSTRACT

In 2000, Saeednia proposed a new scheme to make the Hill cipher secure. The
author makes use of permutations of columns and rows of a matrix to get a different
key for encrypting each message. This paper shows that the cipher key H, can be
obtained by parameter u. Besides, the Saeednia’s scheme costs a lot of time in matrix
computation. To overcome the drawbacks of Saeednia’s scheme, a more secure
cryptosystem with a one-way hash function is proposed.
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I. INTRODUCTION

The Hill cipher is a famous symmetric
cryptosystem from the early days, which was invented
by Lester S. Hill (1929: 1931). The cryptosystem is
a simple linear transformation XH (mod p), where the
key is an mxm nonsingular matrix H with h;e Z,,, for
a fixed p>1, and such that ged(det H (mod p), p)=1,
X is a Ixm plaintext message, and p is a selected posi-
tive integer. The plaintext X is encrypted as Y=XH
(mod p), and the ciphertext Y is obviously decrypted
as X=YH' (mod p).

The following example shows how the Hill ci-
pher works.

Let p=7. the plaintext message X=[3 5], the ci-

pher key H:[g '%l and H"':‘i ;l
The ciphertext

Y=XH (mod p)=[0 6],

the plaintext message can be decrypted by
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X=YH"' (mod p)=[3 5].

The weakness of the Hill cipher is that the
cryptosystem can be broken under the known-
plaintext attack (Denning, 1982; Evertse, 1987; Yeh
et al., 1991). An analyzer knows only m pairs of
plaintext-ciphertext, the cipher key H can be deter-
mined by solving the equations

H=X"'Y.

4 4

For example, assume the key H= 6 3 and let

p=26, if we have two pairs of plaintext-ciphertext,
X,=[29]. Y,=[10 9] and X>=[3 5], Y>=[16 1], then we
can compute the cipher key H by

-1
’;‘l [2 (mod p)

_[15 25][10 9 _[4 4

=17 6HI6 1_| {niod 26}_!6 3]'

To overcome the weakness, Saeednia (2000)
proposed a method, which uses random permutations
of columns and rows of the key matrix. But the ma-
trix multiplications are used many times in this
method: it costs a lot of time to compute the matrix
multiplication when the size of the matrix is too large.
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We propose a new scheme that uses a one-way hash
function to solve existing problems in Saeednia’s
scheme.

II. SAEEDNIA’S SCHEME

When Alice and Bob want to communicate
securely, first, they share an mxm nonsingular ma-
trix H as the cipher key with hye Z,, for a fixed p>1,
and such that ged(det H (mod p), p)=1.

If Alice wants to encrypt a plaintext message X,
she chooses a vector £ (t;€ Z,) at random and using a
predetermined permutation algorithm performs simul-
taneous permutations of the rows and columns of H,
according to ¢, to produce the new key H, (that may
be seen as H=P, ' HP,, where P, is the mxm permu-
tation matrix associated to f). Using the key H, to
encrypt the message X as

Y=H,X (mod p),
besides. computing a parameter u by

u=Ht (mod p),
then sends the pair (Y, u) to Bob.

In order to decrypt the ciphertext, Bob starts to
compute the permutation vector ¢ by

t=H'u (mod p),

and uses ¢ to obtain (H™"), form H™'. Then he can
recover the plaintext message X by computing

X=(H"),Y (mod p).

[t is easy to see that (H")=(H,)', because
(H,)"' is existent. Here we would note that since H,=
P 'HP, we have

(H)'=(P,'HP) =P 'H"'P, (1)
on the other hand,

HN=P 'HP, (2)
from (1) and (2), we can see that (H,)'=(H"),.

III. TWO COMMENTS ON SAEEDNIA’S
SCHEME

In the following, two comments on Saeednia’s
scheme are presented. The first comment shows that
Saeednia’s scheme has a weakness of the parameter
u. The second comment shows that Saeednia’s
scheme is not efficient enough.

Comment 1

From the parameter u=Ht (mod p), a
cryptanalyst is able to determine the matrix H with
known-plaintext attack. This is the same problem as
in the original Hill’s method. By collecting m pairs
of (t, u), a cryptanalyst can obtain the key H. Further,
the cryptanalyst can obtain the permutation matrix P,
associated to f. Therefore, he can compute the ci-
pher key H; by

H=P 'HP,.

If ¢ can not be obtained, then the cryptanalyst
can collect m pairs of (X, Y) to obtain H,, where
Y=H,X (mod p). Besides, the cryptanalyst knows that
u=Ht (mod p) and H=P; "HP,, so he can obtain the
following relations:

H=[U][T]"", where [Ul=[u, u, - u,,] and
[T)=[t, t5 - t,,] are mxm matrices (3)
H=P 'HP,&H=PH P ' 4)

from (3) and (4), the equations can be rewritten as

-t =P.H B

n

[WIT ' =P, H, P,

[UNT ' =P, H, P,

Assume that the predefined function (=P, is
known and [T]' exists, and then the parameter # can
be obtained by solving the above m equations. It
means that the cryptanalyst can collect m pairs of pa-
rameters to solve the equations [U][T]":P,‘ H,NP,;'
and m pairs to obtain each H, from Y=H X (;tlod P).
Finally, we can obtain the key H by m* know-plaintext
pairs (u, X, Y).

Comment 2

Saeednia uses many matrix multiplications to
encrypt and to decrypt a message in his scheme; like
the cipher key H, is produced by H,=P; ' HP,. When
the size of matrix H is too large, it requires a lot of
time to compute the matrix multiplication and
inversion. We will analyze the complexity in Sec-
tion VI.

IV. THE PROPOSED SCHEME

To overcome the weakness of Saeednia’s
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Table 1 The time comparison of the cryptosystem

Saeednia’s scheme

Our scheme

Encryption
Decryption

1 TM__:Nv+2(!?I:‘+m2)TMUL‘FZ(HIE—IH]T,\DD
2TMJNV'FZ(I?’IA+H12)TM{”_+2(RI3—H’I)TADD

(m*+m) Ty +(m-n*+m) Ty pp+(m+ 1) T
L T vt (m+m) Ty +(mP—m*+m) Tapp+(m+1) T,

scheme, we use two encryption parameters (h;. V) in
the proposed scheme, where h;; is picked up in
random, and V is generated from h;; with a one-way
hash function.

Suppose that two people, Alice and Bob, want
to communicate securely. First, they share a com-
mon cipher key H, which is a mxm nonsingular ma-
trix with h;e Z,, for a fixed p>1, and satisfies ged
(det H (mod p), p)=1. In order to encrypt a plaintext
message X, X=[x, x; - x,,]. Alice chooses a random
integer a let O<a<p, and uses a one-way hash func-
tion f(x), e.g. SHA (FIPS 180-2, 2002), to computes
the parameter b b)’ b;f((‘”hl]”h!2||"‘||h{jll'““hurm)v
where hyy, hya, -, hyjy -+, By are the elements of H.

s ath

Using b to pick up the ij" element hj; from H

(that may be seen as i=(|b,_,, ]| (mod m))+1, j=b-

lQ;TI-}Xm. where m is the dimension of the matrix

H). Then she uses h; to generate an element of vec-
tor V=[v| v5 ... v,,] for m times, where the elements
are

vi=f(h;;) (mod p)
va=f(vy) (mod p)=f*(h;) (mod p)

va=f(va) (mod p)=f’(h;;) (mod p).

Vp=f(vy1) (mod p)=f"(hy) (mod p).

Then, she encrypts the plaintext message X as

Y=h;XH+V (mod p), where p is a prime number,
and sends the pair (Y, a) to Bob.

In order to decrypt the ciphertext ¥, Bob first
computes b by b=flallhy|lhiall-- Al [fpm), and uses
b to pick up the ij element hy; from H. He also gen-
erates each element vy (1<k<m) of V from hy; the same
way as in the encryption scheme.

Finally, he can recover the plaintext message by
computing

X=h;-1H'](Y+V) (mod p).

V. ANALYSIS OF KNOWN-PLAINTEXT
ATTACK

In the original Hill cipher, an analyzer can use

known-plaintext attack to obtain the cipher key H.
However, in our system, it is hard to use known-
plaintext attack for the following reason:

Due to the ciphertext ¥Y=(CXH+V) (mod p),
where the parameters C;=(h;); described in previous
section, the equations can be written as

Yl:C|X|H+V| (mod p)

Y3:C2X3H+ V: ( mod .?J]

Y,=C, X, H+V, (mod p).

Although the analyzer knows m pairs of (X, Y;)
(1<i=m), the cipher key H and two encryption param-
eters C and V are unknown. It means that m equa-
tions can’t be used to solve an mxm nonsingular ma-
trix H and 2m unknown parameters. Therefore, the
analyzer can’t use the known-plaintext attack to break
our scheme.

VI. PERFORMANCE ANALYSIS

We define some notations as follows.

Tyyr - the time for the scalar modular multiplica-
tion.

Typp :the time for the scalar modular addition.

Ty gy : the time for the modular inversion of a mxm
matrix.

Thasn  : the time taken by the hash function f(x)

We use an mxm nonsingular matrix as the ci-
phering key and obtain the results shown in Table 1.
In Table 1, those operations of the modular inversion
of a mxm matrix, which are equal to (2m’) times the
scalar modular multiplication and (2m’-2m?) times
the scalar modular addition (Using the Gaussian
elimination method). On the other hand, we know
that operations of the one-way hash function are much
faster than modular matrix inversion, so our scheme
is more efficient.

VII. CONCLUSION

The Hill cipher is a famous cryptosystem, which
is efficient and easy to implement. However, it is
easy to break by known-plaintext attack. In this
paper, we have presented an improved scheme to
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make the Hill cipher secure. The characteristics of
our scheme are more security and efficiency than
Saeednia’s scheme.

NOMENCLATURE

allb the concatenation of a and b

det H the determinant of a matrix H

SHA  secure hash algorithm

o the set of positive integers: {0, 1, 2, ..., p—1}
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