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Abstract

We consider tachyons in five-dimensional spacetime with the canonical met-
ric and the conformally-flat metric respectively. The four-dimensional effective
cosmological constant Λ is calculated. The modified Newton’s gravitational force
law is different from that of slower-than-light particles. The vacuum instability
is also discussed.
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1 Introduction

Recently it has been argued that tachyons (faster-than-light particles) might be as a
possible source of dark energy in cosmological models[1]. In addition, tachyons may
have a role in gravitational Cherenkov radiation [2], elementary-particle interactions
and brane dynamics [3]. In the theory of special relativity, objects having a relative
velocity greater than light speed imply the violation of causality. Whereas in general
relativity, velocity is a local notion, so velocity calculated using comoving coordinates
does not have a simple relation to velocity calculated locally. Rules that apply to
relative velocities in special relativity may not apply to relative velocities in comoving
coordinates which are often describes in terms of the expansion between distant galaxies.
So in general relativity might allow the space between distant galaxies to expand in a
way that they have a velocity exceeds the speed of light. Another phenomenon predicted
by general relativity is the travelable wormhole. Traveler moving through the wormhole
would not locally move faster than light which travels through the wormhole alongside
them, but they would be able to reach their destination faster than light traveling
outside the wormhole.

In this paper we investigate tachyons in five-dimensional spacetime with the canon-
ical metric and the conformally-flat metric respectively. To get notation right, let us
start from the special relativity and consider the motion of a particle described by the
four-vector coordinate xµ(τ), µ = 0, 1, 2, 3 and τ is the proper time. For a free particle
moving in a straight line with velocity v one has,

xµ(τ) = (γτ, γvτ). (1)

Defining ẋµ = dxµ/dτ , we calculate

ẋµẋµ = ηµν ẋµẋν = γ2(1− v2) = Q, (2)

where the signature of the Minkowski space metric ηµν is (+,−,−,−) and γ ≡ 1/
√
|1− v2|

is always a real number. The speed of light is c ≡ 1. The value of Q is +1 for normal
(slower-than-light) particles, 0 for light, and −1 for tachyons.

For the case of general relativity[4], the invariant can also be written similarly as

gµν ẋµẋν = Q. (3)

The Schwarzschild metric, for example, is

Qds2 = (1− rs
r

) dt2 − dr2

(1− rs
r

)
− r2dθ2 − r2sin2θ dφ2, (4)

where the Schwarzschild radius rs = 2GM . From the geodesic equation in this metric
one can obtain

(1− rs
r

)
dt

ds
= K, r2 dφ

ds
= h, (1− rs

r
)−1 {(dr

ds
)2 −K2}+

h2

r2
= −Q, (5)

where K and h are constants of integration. For normal particles (Q = +1), these will
give the Kepler orbits for r > rs, along with some relativistic corrections. For tachyons
(Q = −1), these do not give localized orbits but scattering states.
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2 Five-Dimensional Spacetime

The five-dimensional line element including the scalar field Φ and the electromagnetic
gauge potential Aµ has the usual form [5]

ds̄2 = ds2 + εΦ2(dx4 + Aµdx
µ)2, (6)

where ε = ±1, both are allowed by the mathematics, determines whether the extra
dimension is spacelike or timelike. The four-dimensional interval is ds2 = gαβdx

αdxβ.
Now let us incorporate tachyons into (6) and the line element can be rewritten as

ds̄2 = Q gαβ(xγ, l)dxµdxν + εΦ2(xγ, l)dl2. (7)

In this we have set the electromagnetic potential Aµ to zero, but the remaining degree
of coordinate freedom are preserved. l ≡ x4 is the fifth coordinate of the spacetime.
Then the components of the five-dimensional Ricci tensor for metric (7) are

R̄αβ = Rαβ −
1

Φ
Φ,α;β +

εQ
2Φ2
{Φ,4gαβ,4

Φ
− gαβ,44

+gλµgαλ,4 gβµ,4 −
1

2
gµνgµν,4 gαβ,4} (8)

R̄4α =
Φ

2
{(g

βλgαλ,4
Φ

),β − (
gµνgµν,4

Φ
),α}

+
1

4
gµβgµβ,λ g

λσgσα,4 +
1

4
gσλ,αgσλ,4 (9)

R̄44 = −εQΦ2Φ− 1

2
(gλβgλβ,4),4

+
1

2Φ
Φ,4g

λβgλβ,4 +
1

4
gµσ,4gµσ,4. (10)

Here a comma denotes the ordinary partial derivative, a semicolon denotes four-dimensional
covariant derivative, 2Φ ≡ gµνΦ,µ;ν .

The vacuum Einstein’s equations in five-dimensional spacetime, R̄AB = 0, can be
used to construct an induced four-dimensional Ricci tensor Rαβ, the scalar curvature
tensor R and the equation of a scalar field Φ. When the scalar component R̄44 is set to
zero in accordance with the equation (10), one will get a wave-type equation of Φ with
a source induced by the fifth dimension,

2Φ =
εQ
2Φ

(
Φ,4g

λβgλβ,4
Φ

− 1

2
gµσ,4gµσ,4 − gµσgµσ,44) (11)

When the vector components R̄4α of (9) are set to zero, one will obtain a set of con-
servation laws which resemble those found in electromagnetism and many other field
theories. They read

{ 1

2Φ
(gβσgσα,4 − δαβgµνgµν,4)}

;β
= 0 (12)
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3 Cosmological Constant and Modified Newton’s Law

Let us now focus on a special case called the five-dimensional canoical metric. [6] The
line element is given by

ds̄2 =
l2

L2
ds2 − dl2 (15)

= Q l2

L2
gαβ(xγ)dxµdxν − dl2 (16)

where L is a constant length introduced for the consistency of physical dimensions. The
induced Ricci tensor Rαβ and scalar curvature tensor R can be calculated from (13)
and (14) by setting ε = −1, Φ = 1 and making a replacement

gαβ(xγ, l)→ l2

L2
gαβ(xγ), gαβ(xγ, l)→ L2

l2
gαβ(xγ). (17)

Then we have

Rαβ =
−3Q
L2

gαβ(xγ), R =
−12Q
l2

, (18)

and the Einstein tensor

Gαβ ≡ Rαβ −
1

2
gαβ(xγ, l)R =

3Q
L2

gαβ(xγ). (19)

The induced cosmological constant Λ in four-dimensional spacetime can be read from
Rαβ = Λ gαβ(xγ) or Gαβ = −Λ gαβ(xγ),

Λ =
−3Q
L2

. (20)

Another special but physically instructive case we want to look at is the conformally-
flat metric,

ds̄2 = Q l2

L2
{f(xγ, l) ηαβ dx

αdxβ} − dl2. (21)

Here ηαβ is the metric for flat Minkowski space and the signature of ηαβ is also (+,−,−,−).
We are particularly interested in the l− dependence of f(xγ, l).

R̄αβ = 0 from (8), we will obtain the induced Ricci tensor,

Rαβ =
1

Φ
Φ,α;β −

εQ
2Φ2
{Φ,4gαβ,4

Φ
− gαβ,44 + gλµgαλ,4 gβµ,4 −

1

2
gµνgµν,4 gαβ,4}. (13)

Contracting Rαβ in (13) and then combining with (11), the scalar curvature tensor is

R =
εQ
4Φ2
{gµν ,4 gµν,4 + (gµνgµν,4)2} (14)

As for setting
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Setting ε = −1, Φ = 1 and making a replacement

gαβ(xγ, l)→ l2

L2
f(xγ, l)ηαβ, gαβ(xγ, l)→ L2

l2
f−1(xγ, l)ηαβ, (22)

The equation of scalar field (11), i.e. R̄44 = 0, becomes

2U,4 + U2 = 0 (23)

where

U ≡ f,4
f

+
2

l
. (24)

The solution for the conformal factor f is

f(xγ, l) = [1− l0(xγ)

l
]2 k(xγ), (25)

where l0(xγ) is an arbitrary length function of integration, k(xγ) is an arbitrary dimen-
sionless function. f(xγ, l) involves both arbitrary functions. However, substituing (22)
into (12), the vector component of the field equation, one will get

(
f,4
f

),α = 0 (26)

and this implies l0 is indeed a constant. Now the conformal factor becomes

f(xγ, l) = [1− l0
l

]2 k(xγ), (27)

which involves only one arbitrary function k(xγ). Using this conformal factor, the
induced Ricci tensor (13) becomes

Rαβ =
−3

L2

Q l2

(l − l0)2
gαβ, (28)

where gαβ = f(xγ, l)ηαβ. So an effective cosmological constant is given by

Λ =
−3Q
L2

(
l

l − l0
)2. (29)

Furthermore, let us assume a null 5-dimensional path and rewrite the line element (15)
as

ds̄2 = [
l2

L2
− (

dl

ds
)2] ds2 = 0. (30)

Since a massive particle in spacetime has ds2 6= 0, the velocity in fifth dimension is
given by

(
dl

ds
)2 = (

l

L
)2. (31)
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Thus the solution can be obtained as

l = l0 e
±s/L, (32)

where it is natural for us to locate the big bang at the zero point of proper time and
to choose l = l0 when s = 0. The cosmological constant now yields

Λ =
−3

L2

Q
(1− e∓s/L)2

. (33)

In the case of upper minus sign, Λ decays from an unbounded value at the big bang
(s = 0) to its asymptotic value of −3Q/L2 (s→∞). Whereas in the case of lower plus
sign, Λ decays from an unbounded value at the big bang (s = 0) and approach zero
(s→∞). For normal (slower-than-light) particles, from astrophysical data, the case of
upper minus sign is the one corresponds to our universe.

From the viewpoint of general relativity, the cosmological constant has associated
with the energy density Λc4

8πG
. The cosmological constant (29), Λ = −3Q

L2 ( l
l−l0 )2, may be

identified the divergence at l = l0 with the big bang. Let us take derivatives of (29) to
obtain

dΛ = Q(
6

L2
)(l − l0)−3ll0 dl. (34)

We are mainly interested in the region near l = l0. Putting dl = l − l0 and using
l = l0e

s/L as in (32), one will get
dΛ ds2 = 6. (35)

This implies vacuum instability, [7] since dΛ→∞ for ds→ 0.
To investigate the physics further, we assume that the 5-dimensional path may be

null. The 4-dimensional part of the geodesic equation is

d2xµ

ds2
+ Γµαβ

dxα

ds

dxβ

ds
= fµ, (36)

where fµ can be identified as the force ( per unit mass) associated with 5-dimensional
spacetime. To evaluate fµ, we can differentiate

gαβ(xγ, l)uαuβ = Q (uα =
dxα

ds
) (37)

with respect to s. Using symmetries under the exchange of α and β to introduce the
Christoffel symbols Γµαβ, there comes

2gαµu
α (
duµ

ds
+ Γµβγu

βuγ) +
∂gαβ
∂l

dl

ds
uαuβ = 0. (38)

Due to the motion of 4-dimensional frame with respect to the fifth dimension is parallel
to the 4-velocity uµ , one can substitute

duµ

ds
+ Γµβγu

βuγ = βuµ (39)
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into (36) and determine the constant β , then find

fµ = −1

2

∂gαβ
∂l

dl

ds
uαuβuµ. (40)

After substituting the conformally-flat metric tensor, gαβ = (1− l0
l
)2 k(xγ) ηαβ into (38),

the result is

fµ = −Q l0
l(l − l0)

dl

ds

dxµ

ds
(41)

= −Q
L

dxµ

ds

1

(es/L − 1)
. (42)

We reintroduce conventional units for the speed of light c and the gravitational constant
G. Adding the velocity-dependent extra force f = −Q(vc/L)(es/L − 1)−1 to the usual
Newton’s law, putting s = ct in the extra force, then the Newton’s law is modified so
that the force per unit mass becomes

F = −GM
r2
− Q(

vc

L
)

1

(es/L − 1)
, (43)

where M = M(r) is the mass interior to radius r of for a system with spherical sym-
metry. The gravitational gravitational constant is modified to be

G̃ = G {1 +
Qvr2

GM
(
c

L
)

1

(ect/L − 1)
}. (44)

4 Concluding Remarks

We have considered tachyons in five-dimensional spacetime with the canonical metric
and the conformally-flat metric respectively. The four-dimensional effective cosmo-
logical constant Λ and the modified Newton’s gravitational force law obtained from
tachyons and normal ( slower-than-light) particles are different in many places by just
a sign factor Q. This means that any experiment claimed that the effects are measured
for normal particles associated with 5-dimensional spacetime might be measured for
the case of tachyons. However, it is also possible that some effects associated with
5-dimensional spacetime cannot be measured just due to the contributions of normal
particles and tachyons are canceled each other.
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五維時空五維時空五維時空五維時空的超光速粒子的超光速粒子的超光速粒子的超光速粒子 

 

劉士楙, 婁祥麟 

 

 

摘摘摘摘 要要要要 

 

我們考慮在五維時空的超光速粒子，其度量張量分別為正則和共型平坦。  

計算四維等效的宇宙常數 。修正的牛頓萬有引力公式不同於低於光速的粒子。

並討論真空不穩定性。 

 

 

 

關鍵字關鍵字關鍵字關鍵字：：：：超光速粒子、五維時空 

Λ
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