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Abstract

In this paper, we are concerned with the dynamical behavior of the Leslie-Gower

predator-prey system with time delay. First of all, we discuss the global stability

for the Leslie-Gower predator-prey system without time delay. Next, we study the

change of the global stability for the Leslie-Gower predator-prey system with time

delay. Finally, we illustrate our results by some examples.
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1 Introduction

One of the most interesting topics in a Predator-Prey system is the global stabil-

ity of the Predator-Prey system. The global stability analysis for the Predator-Prey

system without delay has been done by many authors. Most of them use the follow-

ing methods to prove global stability of a Predator-Prey system without delay. The

first method is to construct a Lyapunov function [1, 2, 6, 7, 8, 10, 13, 14, 21, 23, 28].

The second method is to employ the Dulac Criterion to eliminate the existence of

periodic orbits and then use the Poincaré-Bendixson Theorem to analyze the global

stability of the unique positive equilibrium [8, 10, 12, 13, 14, 15, 17]. The third

method is the comparison method. In [4, 10, 11, 17, 22], the authors obtain an

auxiliary system by “mirror” reflection, analyze the global stability of the auxiliary

system, then compare the trajectories of the system with those of the auxiliary

system. The fourth method is the limit cycle stability analysis [3, 4, 10, 11, 12, 17].

The method is to prove there is no periodic orbit in the system by contradiction.

Suppose there exists a periodic orbit, and prove that all periodic orbits are orbitally

asymptotically stable. Then we are able to interpret the uniqueness of the limit

cycle. If the positive equilibrium is locally asymptotically stable, then we obtain

the contradiction. That is, there is no periodic orbit for the system and the positive

equilibrium is globally asymptotically stable.

In recent years, many authors extended their research to discussing a delayed

Predator-Prey system. In [5, 9, 19, 20, 26, 30, 31], the global stability of the

system with time-delay is analyzed by constructing a Lyapunov functional. Sanyi
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[27] employ the theory of competitive systems, compound matrices, and stability

of periodic orbits. Yasuhisa [25] used the extended LaSalle’s invariance principle.

In this paper, we were concerned about the Leslie-Gower Predator-Prey system.

For this system without delay, references [16] and [11] analyzed the global stability

by constructing a Lyapunov functional or Comparison method, respectively. We

extend this to analyze the global stability of the Leslie-Gower Predator-Prey system

with a single delay by constructing a Lyapunov functional, and we illustrate our

results by some examples.

2 The model without delay

Consider the Leslie-Gower predator-prey system without time delay modeled

by
ẋ1(t) = x1(t)[r1 − b1x1(t)− a1x2(t)]

ẋ2(t) = x2(t)

[
r2 − a2

x2(t)

x1(t)

]
(2.1)

with the initial condition

x1(0) > 0, x2(0) > 0 (2.2)

where r1, r2, a1, a2, and b1 are positive constants, and x1 and x2 denote the densities

of prey and predator population, respectively.

Clearly, Ê ≡ (r1/b1, 0) is an equilibrium point and E∗ ≡ (x∗1, x
∗
2) is the unique

positive equilibrium point in the first quadrant for the system (2.1) with the initial

condition (2.2), where

x∗1 =
r1a2

a1r2 + a2b1
, x∗2 =

r1r2
a1r2 + a2b1

(2.3)

It follows from (2.3) that

r2x
∗
1 = a2x

∗
2, a1x

∗
2 + b1x

∗
1 = r1 (2.4)

Firstly, we discuss the local behavior of equilibrium points of the system (2.1)

with the initial condition (2.2) by the Hartman-Grobman Theorem. The Jacobian

matrix of the system (2.1) takes the form

J =

 r1 − 2b1x1(t)− a1x2(t) −a1x1(t)

a2
x22(t)

x21(t)
r2 −

2a2x2(t)

x1(t)


The Jacobian matrix of the system (2.1) at Ê is

Ĵ =

 −r1 −a1r1
b1

0 r2


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Since det(Ĵ) = −r1r2 < 0, the equilibrium point Ê of (2.1) is a saddle point and

the stable manifold is

Γ1 = {(x1, x2)|x1 > 0, x2 = 0}

On the other hand, the Jacobian matrix of the system (2.1) at E∗ is

J∗ =

 −b1x
∗
1 −a1x

∗
1

a2
(x∗2)

2

(x∗1)
2

−a2x
∗
2

x∗1


Therefore,

det(J∗) = b1a2x
∗
2 + a1a2

(x∗2)
2

x∗1

trace(J∗) = −b1x
∗
1 −

a2x
∗
2

x∗1

Since det(J∗) > 0 and trace(J∗) < 0, the equilibrium point E∗ of (2.1) is locally

asymptotically stable.

Lemma 2.1 All solutions (x1(t), x2(t)) of the system (2.1) with the initial condi-

tion (2.2) are positive and bounded.

Proof. Firstly, we want to show that all solutions (x1(t), x2(t)) of the system (2.1)

with the initial condition (2.2) are positive. That is, if (x1(0), x2(0)) is in the first

quadrant, then (x1(t), x2(t)) is also in the first quadrant for all t ≥ 0. Divide the

first quadrant into four regions I-IV which are defined as:

I = {(x1, x2) | r1 − b1x1 − a1x2 > 0, r2x1 − a2x2 > 0, x1 > 0, x2 > 0}

II = {(x1, x2) | r1 − b1x1 − a1x2 < 0, r2x1 − a2x2 > 0, x1 > 0, x2 > 0}

III = {(x1, x2) | r1 − b1x1 − a1x2 < 0, r2x1 − a2x2 < 0, x1 > 0, x2 > 0}

IV = {(x1, x2) | r1 − b1x1 − a1x2 > 0, r2x1 − a2x2 < 0, x1 > 0, x2 > 0}

See Figure 2.1. Consider the following two cases:

(a) (x1(0), x2(0)) is near the positive x1-axis;

(b) (x1(0), x2(0)) is near the positive x2-axis;

In case (a), the initial point (x1(0), x2(0)) is in region I or II. Since ẋ2 is positive

in region I or II, the solution (x1(t), x2(t)) with the initial point (x1(0), x2(0)) will

run away along the positive x1-axis. In case (b), the initial point (x1(0), x2(0)) is
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Figure 2.1. Schematic diagram for the proof of Lemma 2.1, where L =
r1
a1

.

in region III or IV. Since ẋ1 is positive in region IV, the solution (x1(t), x2(t)) with

the initial point (x1(0), x2(0)) will run away along the positive x2-axis. Now, we

want to show that if the initial point (x1(0), x2(0)) starts in III, then the trajectory

of the solution (x1(t), x2(t)) will go into region IV. That is, the trajectory of the

solution (x1(t), x2(t)) will not stay in region III nor go to the x2-axis. Suppose

that the trajectory finally stays at some point (x1, x2) in region III, then (x1, x2)

will be an equilibrium point of the system (2.1). This is contradictory. Therefore

any solution (x1(t), x2(t)) which starts in region III will not stay in it. On the

other hand, if the trajectory in region III approaches the x2-axis, then ẋ1 → 0 and

ẋ2 → −∞ as x1 → 0. Hence there is a t1 > 0 such that (x1(t), x2(t)) is in region

IV whenever t ≥ t1. Therefore, by the above discussion, we know that all solutions

(x1(t), x2(t)) are positive.

Secondly, we want to show that all solutions (x1(t), x2(t)) of the system (2.1)

with the initial condition (2.2) are bounded. We know ẋ1 < 0 for x1 ≥ r1/b1 and

x2 > 0. Hence for solutions (x1(t), x2(t)) of the system (2.1) with the initial point

(x1(0), x2(0)) and x1(0) ≥ r1/b1, there exists a T1 > 0 such that x1(t) < r1/b1 for

t > T1. Suppose that x2 ≥ L ≡ max{r1/a1, r1r2/a2b1} and x1 < r1/b1. Now we

want to show that there exists a T2 > 0 such that x2(t) < L for t > T2 whenever

x1(0) < r1/b1 and x2(0) ≥ L. If L = r1/a1, then x2 ≥ r1/a1 > r1r2/a2b1 and

ẋ2 = x2

[
r2 −

a2x2
x1

]

≤ x2

[
r2 −

r1r2
b1x1

]
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= x2

[
r2(b1x1 − r1)

b1x1

]
< 0

See Figure 2.1. On the other hand, if L = r1r2/a2b1, then x2 ≥ r1r2/a2b1, and

ẋ2 < 0. See Figure 2.2. Hence, by the above discussion, we know that for solutions

(x1(t), x2(t)) of the system (2.1) with the initial point (x1(0), x2(0)) and x1(0) <

r1/b1, x2(0) ≥ L, there exists a T2 > 0 such that x2(t) < L for t > T2. So

x1(t) < r1/b1 and x2(t) < L for t > T ≡ max{T1, T2}. That is, all solutions

(x1(t), x2(t)) are bounded. �
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Theorem 2.2 The unique positive equilibrium point E∗ of the system (2.1) is glob-

ally asymptotically stable.

Proof. Consider

H(x1, x2) =
1

x1x2
, x1 > 0, x2 > 0

Then

∇ · (Hf) =
∂

∂x1
{H · [x1 (r1 − b1x1 − a1x2)]}+

∂

∂x2

{
H ·

[
x2

(
r2 − a2

x2
x1

)]}
= − x1

x21x2
(r1 − b1x1 − a1x2) +

1

x1x2
(r1 − 2b1x1 − a1x2)

− x2
x1x22

(
r2 − a2

x2
x1

)
+

1

x1x2

(
r2 −

2a2x2
x1

)
= − b1

x2
− a2

x21
< 0

Hence by Dulac’s Criterion, there is no closed orbit in the first quadrant. From

above, we see that E∗ is locally asymptotically stable. By Lemma 2.1 and the
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Poincaré-Bendixson theorem, it suffices to show that the unique positive equilib-

rium point E∗ is globally asymptotically stable in the first quadrant. �

Remark 2.3 a) In [16] the same result with Theorem 2.2 was obtained via the

Lyapunov functional

V (x1, x2) = ln
x1
x∗1

+
x∗1
x1

+
a1x

∗
1

a2

(
ln

x2
x∗2

+
x∗2
x2

)
b) We also can use the method: “Stable limit cycle analysis” to prove this theo-

rem.

3 The model with delay

Consider the Leslie-Gower predator-prey system with time delay τ modelled by

ẋ1(t) = x1(t)[r1 − b1x1(t− τ)− a1x2(t)]

ẋ2(t) = x2(t)

[
r2 − a2

x2(t)

x1(t)

] (3.1)

with the initial conditions

x1(θ) = ϕ(θ) ≥ 0, θ ∈ [−τ, 0], ϕ ∈ C([−τ, 0], R)
x1(0) > 0, x2(0) > 0

(3.2)

where r1, r2, a1, a2, b1, and τ are positive constants, and x1 and x2 denote the

densities of prey and predator population, respectively.

Lemma 3.1 Every solution of the system (3.1) with the initial conditions (3.2)

exists in the interval [0,∞) and remains positive for all t ≥ 0.

Proof. It is true because

x1(t) = x1(0) exp

{∫ t

0
[r1 − b1x1(s− τ)− a1x2(s)] ds

}

x2(t) = x2(0) exp

{∫ t

0

[
r2 − a2

x2(s)

x1(s)

]
ds

}
and xi(0) > 0 for i = 1, 2. �

Lemma 3.2 Let (x1(t), x2(t)) denote the solution of (3.1) with the initial condition

(3.2). Then

0 < xi(t) ≤ Mi, i = 1, 2 (3.3)
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eventually for all large t, where

M1 =
r1
b1
er1τ (3.4)

M2 =
r2
a2

M1 (3.5)

Proof. We want to show that there exists a T > 0 such that x1(t) ≤ M1 for

t > T . By Lemma 3.1, we know that solutions of the system (3.1) with the initial

condition (3.2) are positive, and hence, by (3.1),

ẋ1(t) = x1(t)[r1 − b1x1(t− τ)− a1x2(t)]

≤ x1(t)[r1 − b1x1(t− τ)] (3.6)

Taking M∗
1 = r1(1 + k1)/b1, 0 < k1 < er1τ − 1. Suppose x1(t) is not oscillatory

about M∗
1 . That is, there exists a T0 > 0 such that either

x1(t) > M∗
1 for t > T0 (3.7)

or

x1(t) ≤ M∗
1 for t > T0 (3.8)

If (3.8) holds, then for t > T0

x1(t) ≤ M∗
1 =

r1(1 + k1)

b1
<

r1
b1
er1τ = M1

That is, (3.3) holds. Suppose (3.7) holds. Equation (3.6) implies that for t > T0+τ

ẋ1(t) ≤ x1(t)[r1 − b1x1(t− τ)]

< −k1r1x1(t)

It follows that∫ t

T0+τ

ẋ1(s)

x1(s)
ds <

∫ t

T0+τ
−k1r1 ds = −k1r1(t− T0 − τ)

Then 0 < x1(t) < x1(T0 + τ) e−k1r1(t−T0−τ) → 0 as t → ∞. That is, lim
t→∞

x1(t) = 0

by the Squeeze Theorem. This contradicts (3.7). Therefore, there must exist a

T1 > T0 such that x1(T1) ≤ M∗
1 . If x1(t) ≤ M∗

1 for all t ≥ T1, then (3.3) follows.

If not, then there must exist a T2 > T1 such that T2 is the first time at which

x1(T2) > M∗
1 . Therefore, there exists a T3 > T2 such that T3 is the first time

at which x1(T3) < M∗
1 by the above discussion. By the above, we know that

x1(T1) ≤ M∗
1 , x1(T2) > M∗

1 , and x1(T3) ≤ M∗
1 where T1 < T2 < T3. Then, by the

Intermediate Value Theorem, there exist T4 and T5 such that

x1(T4) = M∗
1 , T1 ≤ T4 < T2
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x1(T5) = M∗
1 , T2 ≤ T5 < T3

and x1(t) > M∗
1 for T4 < t < T5. Hence there is a T6 ∈ (T4, T5) such that x1(T6) is

an arbitrary local maximum, and hence it follows from (3.6) that

0 = ẋ1(T6) ≤ x1(T6)[r1 − b1x1(T6 − τ)]

and this implies

x1(T6 − τ) ≤ r1
b1

Integrating both sides of (3.6) on the interval [T6 − τ, T6], we have

ln

[
x1(T6)

x1(T6 − τ)

]
=

∫ T6

T6−τ

ẋ1(s)

x1(s)
ds ≤

∫ T6

T6−τ
[r1 − b1x1(s− τ)] ds ≤ r1τ

It follows that

x1(T6) ≤ x1(T6 − τ) er1τ ≤ r1
b1
er1τ = M1

Since x1(T6) is local maximum of x1(t) and x1(T6) ≤ M1, x1(t) ≤ M1 where t is

near T6. Since x1(T6) is an arbitrary local maximum of x1(t), we can conclude that

there exists a T > 0 such that

x1(t) ≤ M1 for t ≥ T (3.9)

Suppose x1(t) is oscillatory about M∗
1 ; for this case, the proof is similar to the

above one. Now, we want to show that x2(t) is bounded above by M2 eventually

for all large t. By (3.9), it follows that for t > T

ẋ2(t) = x2(t)[r2 − a2
x2(t)

x1(t)
]

≤ x2(t)[r2 −
a2
M1

x2(t)]

= r2x2(t)[1−
a2

r2M1
x2(t)]

= r2x2(t)[1−
x2(t)
r2M1
a2

]

Therefore, x2(t) ≤ r2M1/a2 = M2 for t > T . This completes the proof. �

Lemma 3.3 Suppose that the system (3.1) satisfies

r1 − a1M2 > 0 (3.10)

where M2 is defined by (3.5). Then the system (3.1) is uniformly persistent. That

is, there exist m1, m2, and T ∗ > 0 such that mi ≤ xi(t) ≤ Mi for t ≥ T ∗, i = 1, 2.
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Proof. By Lemma 3.2, equation (3.1) follows that for t ≥ T + τ

ẋ1(t) ≥ x1(t)[r1 − b1M1 − a1M2] (3.11)

Integrating both sides of (3.11) on [t− τ, t], where t ≥ T + τ , then we have

x1(t) ≥ x1(t− τ) e(r1−b1M1−a1M2)τ

That is,

x1(t− τ) ≤ x1(t) e
−(r1−b1M1−a1M2)τ (3.12)

It follows from (3.1) that for t ≥ T + τ

ẋ1(t) = x1(t)[r1 − b1x1(t− τ)− a1x2(t)]

≥ x1(t)[r1 − a1M2 − b1e
−(r1−b1M1−a1M2)τ x1(t)]

= (r1 − a1M2) x1(t) [1−
b1e

−(r1−b1M1−a1M2)τ

r1 − a1M2
x1(t)]

= (r1 − a1M2) x1(t) [1−
x1(t)

r1−a1M2
b1

e(r1−b1M1−a1M2)τ
]

It follows that

lim inf
t→∞

x1(t) ≥
r1 − a1M2

b1
e(r1−b1M1−a1M2)τ ≡ m1

and m1 > 0 by (3.10). So, for large t, x1(t) > m1/2 ≡ m1 > 0. It follows that

ẋ2(t) ≥ x2(t)[r2 −
a2
m1

x2(t)]

= r2x2(t)[1−
a2

r2m1
x2(t)]

= r2x2(t)[1−
x2(t)
r2m1
a2

]

Then

lim inf
t→∞

x2(t) ≥
r2m1

a2
≡ m2

So, for large t, x2(t) > m2/2 ≡ m2 > 0. Let

D = {(x1, x2) |m1 ≤ x1 ≤ M1, m2 ≤ x2 ≤ M2}

Then D is a bounded compact region in R2
+ that has a positive distance from

coordinate hyperplanes. Hence we obtain that there exists a T ∗ > 0 such that if

t ≥ T ∗, then every positive solution of system (3.1) with the initial conditions (3.2)

eventually enters and remains in the region D, that is, system (3.1) is uniformly

persistent. �
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Theorem 3.4 If the delay τ satisfy

r1 − a1M2 > 0 (3.13)

b1M
2
1 τ < 2x∗1 (3.14)

b1m1M1(r1 + b1x
∗
1)τ < 2x∗1(b1m1 − a1M2 − a1x

∗
2) (3.15)

where m1,M1, and M2 are defined in Lemmas 3.2 and 3.3, then the unique positive

equilibrium E∗ of the system (3.1) is globally asymptotically stable.

Proof. Define y(t) = (y1(t), y2(t)) by

y1(t) =
x1(t)− x∗1

x∗1
, y2(t) =

x2(t)− x∗2
x∗2

From (3.1),

ẏ1(t) = [1 + y1(t)][−b1x
∗
1y1(t− τ)− a1x

∗
2y2(t)] (3.16)

ẏ2(t) = [1 + y2(t)]

[
r2x

∗
1y1(t)− a2x

∗
2y2(t)

x∗1(1 + y1(t))

]
(3.17)

Let

V1(y(t)) =
1

a1x∗1x
∗
2

{y1(t)− ln[1 + y1(t)]}+
1

r2x∗1
{y2(t)− ln[1 + y2(t)]} (3.18)

then we have from (3.16) and (3.17) that

V̇1(y(t)) =
1

a1x∗1x
∗
2

· y1(t)ẏ1(t)
1 + y1(t)

+
1

r2x∗1
· y2(t)ẏ2(t)
1 + y2(t)

= − b1
a1x∗2

y1(t)y1(t− τ)− 1

x∗1
y1(t)y2(t) +

y1(t)y2(t)

x∗1[1 + y1(t)]
− y22(t)

x∗1[1 + y1(t)]

= − b1
a1x∗2

y1(t)y1(t− τ)− y21(t)y2(t)

x∗1[1 + y1(t)]
− y22(t)

x∗1[1 + y1(t)]

≤ − b1
a1x∗2

y1(t)y1(t− τ) +
|y2(t)|y21(t)
x∗1[1 + y1(t)]

− y22(t)

x∗1[1 + y1(t)]
(3.19)

By Lemma 3.3, there exists a T ∗ > 0 such that mi ≤ x∗i [1 + yi(t)] = xi(t) ≤ Mi for

t > T ∗, i = 1, 2. Then (3.19) implies that

V̇1(y(t)) ≤ − b1
a1x∗2

y1(t)y1(t− τ) +
1

m1
|y2(t)|y21(t)−

1

M1
y22(t)

≤ − b1
a1x∗2

y1(t)y1(t− τ) +
1

m1

(
1 +

M2

x∗2

)
y21(t)−

1

M1
y22(t)
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= − b1
a1x∗2

y1(t)[y1(t)−
∫ t

t−τ
ẏ1(s) ds] +

1

m1

(
1 +

M2

x∗2

)
y21(t)−

1

M1
y22(t)

= −
(

b1
a1x∗2

− M2

m1x∗2
− 1

m1

)
y21(t)−

1

M1
y22(t)

+
b1

a1x∗2
y1(t)

∫ t

t−τ
[1 + y1(s)][−b1x

∗
1y1(s− τ)− a1x

∗
2y2(s)] ds

= −
(

b1
a1x∗2

− M2

m1x∗2
− 1

m1

)
y21(t)−

1

M1
y22(t)

+
b1

a1x∗2

∫ t

t−τ
[1 + y1(s)][−b1x

∗
1y1(t)y1(s− τ)− a1x

∗
2y1(t)y2(s)] ds

≤ −
(

b1
a1x∗2

− M2

m1x∗2
− 1

m1

)
y21(t)−

1

M1
y22(t)

+
b1

a1x∗2

∫ t

t−τ
[1 + y1(s)][b1x

∗
1|y1(t)y1(s− τ)|+ a1x

∗
2|y1(t)y2(s)| ] ds (3.20)

(3.21)

Then for t ≥ T ∗ + τ ≡ T̂ , we have from (3.21) that

V̇1(y(t)) ≤ −
(

b1
a1x∗2

− M2

m1x∗2
− 1

m1

)
y21(t)−

1

M1
y22(t)

+
b1M1

a1x∗1x
∗
2

∫ t

t−τ
[b1x

∗
1|y1(t)||y1(s− τ)|+ a1x

∗
2|y1(t)||y2(s)| ] ds

≤ −
(

b1
a1x∗2

− M2

m1x∗2
− 1

m1

)
y21(t)−

1

M1
y22(t) +

b1M1

a1x∗1x
∗
2

[
b1x

∗
1τ

2
y21(t)

+
b1x

∗
1

2

∫ t

t−τ
y21(s− τ) ds+

a1x
∗
2τ

2
y21(t) +

a1x
∗
2

2

∫ t

t−τ
y22(s) ds

]

= −
(

b1
a1x∗2

− M2

m1x∗2
− b21M1τ

2a1x∗2
− b1M1τ

2x∗1
− 1

m1

)
y21(t)−

1

M1
y22(t)

+
b21M1

2a1x∗2

∫ t

t−τ
y21(s− τ) ds+

b1M1

2x∗1

∫ t

t−τ
y22(s) ds (3.22)

Let

V2(y(t)) =
b21M1

2a1x∗2

∫ t

t−τ

∫ t

s
y21(γ − τ) dγ ds

+
b1M1

2x∗1

∫ t

t−τ

∫ t

s
y22(γ) dγ ds (3.23)

36



then

V̇2(y(t)) =
b21M1τ

2a1x∗2
y21(t− τ)− b21M1

2a1x∗2

∫ t

t−τ
y21(s− τ) ds

+
b1M1τ

2x∗1
y22(t)−

b1M1

2x∗1

∫ t

t−τ
y22(s) ds (3.24)

and then we have from (3.22) and (3.24) that for t ≥ T̂

V̇1(y(t)) + V̇2(y(t)) ≤ −
(

b1
a1x∗2

− M2

m1x∗2
− b21M1τ

2a1x∗2
− b1M1τ

2x∗1
− 1

m1

)
y21(t)

−
(

1

M1
− b1M1τ

2x∗1

)
y22(t) +

b21M1τ

2a1x∗2
y21(t− τ) (3.25)

Let

V3(y(t)) =
b21M1τ

2a1x∗2

∫ t

t−τ
y21(s) ds (3.26)

then

V̇3(y(t)) =
b21M1τ

2a1x∗2
y21(t)−

b21M1τ

2a1x∗2
y21(t− τ) (3.27)

Now define a Lyapunov functional V (y(t)) as

V (y(t)) = V1(y(t)) + V2(y(t)) + V3(y(t)) (3.28)

then we have from (3.25) and (3.27) that for t ≥ T̂

V̇ (y(t)) ≤ −
(

b1
a1x∗2

− M2

m1x∗2
− b21M1τ

a1x∗2
− b1M1τ

2x∗1
− 1

m1

)
y21(t)

−
(

1

M1
− b1M1τ

2x∗1

)
y22(t)

= −2x∗1(b1m1 − a1M2 − a1x
∗
2)− b1m1M1(r1 + b1x

∗
1)τ

2a1m1x∗1x
∗
2

y21(t)

−2x∗1 − b1M
2
1 τ

2x∗1M1
y22(t)

≡ −α y21(t)− β y22(t) (3.29)

Then it follows from (3.14) and (3.15) that α > 0 and β > 0. Let w(s) = N̂s2

where N̂ = min{α, β}; then w is nonnegative continuous on [0,∞], w(0) = 0, and

w(s) > 0 for s > 0. It follows from (3.29) that for t ≥ T̂

V̇ (y(t)) ≤ −N̂ [y21(t) + y22(t)] = −N̂ |y(t)|2 = −w(|y(t)|) (3.30)
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Now, we want to find a function u such that V (y(t)) ≥ u(|y(t)|). It follows from

(3.18), (3.23), and (3.26) that

V (y(t)) ≥ 1

a1x∗1x
∗
2

{y1(t)− ln[1 + y1(t)]}+
1

r2x∗1
{y2(t)− ln[1 + y2(t)]} (3.31)

By the Taylor Theorem, we have that

yi(t)− ln[1 + yi(t)] =
y2i (t)

2[1 + θi(t)]2
(3.32)

where θi(t) ∈ (0, yi(t)) or (yi(t), 0) for i = 1, 2.

Case 1 : If 0 < θi(t) < yi(t) for i = 1, 2, then

y2i (t)

[1 + yi(t)]2
<

y2i (t)

[1 + θi(t)]2
< y2i (t) (3.33)

By Lemma 3.3, it follows that for t ≥ T ∗

mi ≤ x∗i [1 + yi(t)] = xi(t) ≤ Mi, i = 1, 2 (3.34)

Then (3.33) implies that(
x∗i
Mi

)2

y2i (t) ≤
y2i (t)

[1 + θi(t)]2
< y2i (t), i = 1, 2 (3.35)

It follows from (3.31), (3.32), and (3.35) that for t ≥ T ∗

V (y(t)) ≥ 1

2a1x∗1x
∗
2

y21(t)

[1 + θ1(t)]2
+

1

2r2x∗1

y22(t)

[1 + θ2(t)]2

≥ 1

2a1x∗1x
∗
2

(
x∗1
M1

)2

y21(t) +
1

2r2x∗1

(
x∗2
M2

)2

y22(t)

≥ min

{
1

2a1x∗1x
∗
2

(
x∗1
M1

)2

,
1

2r2x∗1

(
x∗2
M2

)2
}

[y21(t) + y22(t)]

≡ Ñ |y(t)|2

Case 2 : If −1 < yi(t) < θi(t) < 0 for i = 1, 2, then

y2i (t) <
y2i (t)

[1 + θi(t)]2
<

y2i (t)

[1 + yi(t)]2
(3.36)

By (3.34), (3.36) implies that

y2i (t) <
y2i (t)

[1 + θi(t)]2
≤

(
x∗i
mi

)2

y2i (t), i = 1, 2 (3.37)
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It follows from (3.31), (3.32), and (3.37) that for t ≥ T ∗

V (y(t)) ≥ 1

2a1x∗1x
∗
2

y21(t)

[1 + θ1(t)]2
+

1

2r2x∗1

y22(t)

[1 + θ2(t)]2

>
1

2a1x∗1x
∗
2

y21(t) +
1

2r2x∗1
y22(t)

≥ 1

2a1x∗1x
∗
2

(
x∗1
M1

)2

y21(t) +
1

2r2x∗1

(
x∗2
M2

)2

y22(t)

≥ Ñ [y21(t) + y22(t)]

= Ñ |y(t)|2

Case 3 : If 0 < θ1(t) < y1(t) and −1 < y2(t) < θ2(t) < 0, then it follows from

(3.31), (3.32), (3.35) and (3.37) that for t ≥ T ∗

V (y(t)) ≥ 1

2a1x∗1x
∗
2

y21(t)

[1 + θ1(t)]2
+

1

2r2x∗1

y22(t)

[1 + θ2(t)]2

>
1

2a1x∗1x
∗
2

(
x∗1
M1

)2

y21(t) +
1

2r2x∗1
y22(t)

≥ 1

2a1x∗1x
∗
2

(
x∗1
M1

)2

y21(t) +
1

2r2x∗1

(
x∗2
M2

)2

y22(t)

≥ Ñ [y21(t) + y22(t)]

= Ñ |y(t)|2

Case 4 : If −1 < y1(t) < θ1(t) < 0 and 0 < θ2(t) < y2(t), then it follows from

(3.31), (3.32), (3.35) and (3.37) that for t ≥ T ∗

V (y(t)) ≥ 1

2a1x∗1x
∗
2

y21(t)

[1 + θ1(t)]2
+

1

2r2x∗1

y22(t)

[1 + θ2(t)]2

>
1

2a1x∗1x
∗
2

y21(t) +
1

2r2x∗1

(
x∗2
M2

)2

y22(t)

≥ 1

2a1x∗1x
∗
2

(
x∗1
M1

)2

y21(t) +
1

2r2x∗1

(
x∗2
M2

)2

y22(t)

≥ Ñ [y21(t) + y22(t)]

= Ñ |y(t)|2

Let u(s) = Ñs2, then u is nonnegative continuous on [0,∞), u(0) = 0, u(s) > 0 for
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s > 0, and lim
s→∞

u(s) = +∞. So, by case 1 ∼ case 4, we have

V (y(t)) ≥ u(|y(t)|) for t ≥ T ∗ (3.38)

So the equilibrium point E∗ of the system (3.1) is globally asymptotically stable.�

4 Example

We present below two simple examples to illustrate the procedures of applying

our results.

Example 4.1 Consider the system

ẋ1(t) = x1(t)[1− 10x1(t)− x2(t)]

ẋ2(t) = x2(t)

[
1− 2x2(t)

x1(t)

] (4.1)

where r1 = r2 = 1, a1 = 1, a2 = 2, b1 = 10, and E∗ = (2/21, 1/21). Then

we conclude that the unique positive equilibrium point E∗ of the system (4.1) is

globally asymptotically stable by Theorem 2.2. The trajectory of the system (4.1)

is depicted in Figure 4.1.

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

x1(t)

x2
(t

)

Figure 4.1. The trajectory of the system (4.1).
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Example 4.2 Consider the system

ẋ1(t) = x1(t)[1− 10x1(t− τ)− x2(t)]

ẋ2(t) = x2(t)

[
1− 2x2(t)

x1(t)

] (4.2)

where r1 = r2 = 1, a1 = 1, a2 = 2, b1 = 10, and E∗ = (2/21, 1/21). Then

r1 − a1M2 = 0.9325 > 0

2x∗1 − b1M
2
1 τ = 0.1358 > 0

2x∗1(b1m1 − a1M2 − a1x
∗
2)− b1m1M1(r1 + b1x

∗
1)τ = 0.0239 > 0

whenever τ = 0.3. Consequently, by Theorem 3.4, we conclude that the unique

positive equilibrium point E∗ of the system (4.2) is globally asymptotically stable.

The trajectory of the system (4.2) is depicted in Figure 4.2.

0 0.05 0.1 0.15 0.2 0.25 0.3
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

x1(t)

x2
(t

)

Figure 4.2. The trajectory of the system (4.2) with τ = 0.3.

5 Conclusion

In this thesis, we obtain a sufficient condition for the global stability of the

Leslie-Gower predator-prey system with time delay. We believe that the Leslie-

Gower predator-prey system with time delay as follows will be an important topic
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for future study.

ẋ1(t) = x1(t)[r1 − b1x1(t− τ)− a1x2(t)]

ẋ2(t) = x2(t)

[
r2 − a2

x2(t)

x1(t− τ)

] (5.1)

ẋ1(t) = x1(t)[r1 − b1x1(t− τ1)− a1x2(t− τ2)]

ẋ2(t) = x2(t)

[
r2 − a2

x2(t− τ2)

x1(t− τ1)

] (5.2)
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摘要摘要摘要摘要 

本篇論文主要分析 Leslie-Gower 捕食系統的整體穩定性。首先， 

利用 Dulac’s Criterion+Poincare’Bendixon Theorem 分析未具時滯參數

之 Leslie-Gower 捕食系統的整體穩定性。緊接著，利用 Lyapunov 

Function 分析具時滯參數之 Leslie-Gower 捕食系統的整體穩定性。最

後，用實例及電腦軌跡說明之。 
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