Tunghai Science Vol. 14: 26-45

June, 2012

Global Stability for the Leslie-Gower Predator-Prey
System with Time-Delay

Chao-Pao, Ho! Liang Chia-Ling

Abstract

In this paper, we are concerned with the dynamical behavior of the Leslie-Gower
predator-prey system with time delay. First of all, we discuss the global stability
for the Leslie-Gower predator-prey system without time delay. Next, we study the
change of the global stability for the Leslie-Gower predator-prey system with time

delay. Finally, we illustrate our results by some examples.
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1 Introduction

One of the most interesting topics in a Predator-Prey system is the global stabil-
ity of the Predator-Prey system. The global stability analysis for the Predator-Prey
system without delay has been done by many authors. Most of them use the follow-
ing methods to prove global stability of a Predator-Prey system without delay. The
first method is to construct a Lyapunov function [1, 2, 6, 7, 8, 10, 13, 14, 21, 23, 28|.
The second method is to employ the Dulac Criterion to eliminate the existence of
periodic orbits and then use the Poincaré-Bendixson Theorem to analyze the global
stability of the unique positive equilibrium [8, 10, 12, 13, 14, 15, 17]. The third
method is the comparison method. In [4, 10, 11, 17, 22], the authors obtain an
auxiliary system by “mirror” reflection, analyze the global stability of the auxiliary
system, then compare the trajectories of the system with those of the auxiliary
system. The fourth method is the limit cycle stability analysis [3, 4, 10, 11, 12, 17].
The method is to prove there is no periodic orbit in the system by contradiction.
Suppose there exists a periodic orbit, and prove that all periodic orbits are orbitally
asymptotically stable. Then we are able to interpret the uniqueness of the limit
cycle. If the positive equilibrium is locally asymptotically stable, then we obtain
the contradiction. That is, there is no periodic orbit for the system and the positive

equilibrium is globally asymptotically stable.

In recent years, many authors extended their research to discussing a delayed
Predator-Prey system. In [5, 9, 19, 20, 26, 30, 31], the global stability of the

system with time-delay is analyzed by constructing a Lyapunov functional. Sanyi
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[27] employ the theory of competitive systems, compound matrices, and stability

of periodic orbits. Yasuhisa [25] used the extended LaSalle’s invariance principle.

In this paper, we were concerned about the Leslie-Gower Predator-Prey system.
For this system without delay, references [16] and [11] analyzed the global stability
by constructing a Lyapunov functional or Comparison method, respectively. We
extend this to analyze the global stability of the Leslie-Gower Predator-Prey system
with a single delay by constructing a Lyapunov functional, and we illustrate our

results by some examples.

2 The model without delay

Consider the Leslie-Gower predator-prey system without time delay modeled
by

Zi(t) = x(t)[r1 — 51961(75() )* a1z2(t)] 1)
. xo(t 2.1
To(t) = xa(t) |12 — a2 $j(t):|

with the initial condition
x1(0) > 0, 22(0) >0 (2.2)

where 71,72, a1, a2, and by are positive constants, and x1 and x2 denote the densities

of prey and predator population, respectively.

~

Clearly, E = (r1/b1,0) is an equilibrium point and E* = (27, z}) is the unique
positive equilibrium point in the first quadrant for the system (2.1) with the initial

condition (2.2), where

* r1az * r1r2
| =—"F", Tyg=—"" 2.3
1 aire + azb; 2 aire + azb; (2:3)
It follows from (2.3) that
rox] = asxy, a1xy+ bix] =1 (2.4)

Firstly, we discuss the local behavior of equilibrium points of the system (2.1)
with the initial condition (2.2) by the Hartman-Grobman Theorem. The Jacobian
matrix of the system (2.1) takes the form

r1 — 2b1x1(t) — ayza(t) —az1(t)
J = B0 g — 20222(0)
7(0) =)

The Jacobian matrix of the system (2.1) at E is

airi
by
0 9

-7

j:
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Since det(J) = —ryry < 0, the equilibrium point E of (2.1) is a saddle point and
the stable manifold is

[y = {(z1,22)|r1 > 0, 22 =0}

On the other hand, the Jacobian matrix of the system (2.1) at E* is

bz}  —a1x]

T=1 @)

) _2

@2 o

Therefore,

(23)°
det(J*) = bla2x§+a1a2 ){

* * a’z‘r;

trace(J*) = —bix] — —=

1

Since det(J*) > 0 and trace(J*) < 0, the equilibrium point E* of (2.1) is locally
asymptotically stable.

Lemma 2.1 All solutions (z1(t),xz2(t)) of the system (2.1) with the initial condi-

tion (2.2) are positive and bounded.

Proof. Firstly, we want to show that all solutions (x1(t), z2(t)) of the system (2.1)
with the initial condition (2.2) are positive. That is, if (x1(0), 22(0)) is in the first
quadrant, then (z1(¢),z2(t)) is also in the first quadrant for all ¢ > 0. Divide the

first quadrant into four regions I-IV which are defined as:

I = {(x1,22)|r1 —bixy —a1za > 0,7921 — agxe > 0,21 > 0,29 > 0}
II = {(z1,22)|7r1 —bix1 — a129 < 0,791 — agwy > 0,21 > 0,29 > 0}
I = {(z1,2z2)|7r1 — bix1 — a1x9 < 0,791 — agwe < 0,21 > 0,292 > 0}
IV = {(z1,z2)|7m1 — biz1 — a1x2 > 0,7r221 — agxra < 0,21 > 0,22 > 0}

See Figure 2.1. Consider the following two cases:
(a) (21(0),22(0)) is near the positive z-axis;
(b) (21(0),22(0)) is near the positive xs-axis;

In case (a), the initial point (x1(0), z2(0)) is in region I or II. Since &5 is positive
in region I or II, the solution (z1(t), z2(¢)) with the initial point (z1(0), z2(0)) will

run away along the positive zj-axis. In case (b), the initial point (x1(0),z2(0)) is
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Figure 2.1. Schematic diagram for the proof of Lemma 2.1, where L = n
a1

in region III or IV. Since #; is positive in region IV, the solution (x1(t), z2(t)) with
the initial point (x1(0),x2(0)) will run away along the positive zs-axis. Now, we
want to show that if the initial point (z1(0),z2(0)) starts in III, then the trajectory
of the solution (z1(t),z2(t)) will go into region IV. That is, the trajectory of the
solution (x1(t),z2(t)) will not stay in region III nor go to the xs-axis. Suppose
that the trajectory finally stays at some point (Z1,%2) in region III, then (T, 7T2)
will be an equilibrium point of the system (2.1). This is contradictory. Therefore
any solution (x1(t),z2(t)) which starts in region III will not stay in it. On the
other hand, if the trajectory in region III approaches the xs-axis, then #7; — 0 and
&9 — —oo as x1 — 0. Hence there is a t; > 0 such that (z1(t),z2(t)) is in region
IV whenever t > t1. Therefore, by the above discussion, we know that all solutions

(z1(t), x2(t)) are positive.

Secondly, we want to show that all solutions (x1(t), z2(t)) of the system (2.1)
with the initial condition (2.2) are bounded. We know #; < 0 for x; > r1/b; and
xg > 0. Hence for solutions (z1(t),xz2(t)) of the system (2.1) with the initial point
(x1(0),22(0)) and x1(0) > r1/b1, there exists a 17 > 0 such that z1(t) < ri/b; for
t > Ty. Suppose that zo > L = max{ri/ai, rira/az2bi} and x; < r1/b1. Now we
want to show that there exists a T5 > 0 such that x4(t) < L for ¢ > T, whenever
x1(0) < r1/b; and x2(0) > L. If L = ry/ay, then x9 > 7r1/a1 > rire/azb; and

. asx2
T2 = T2 (T2 —
1
T17T2
< xg |12 —
bixq



B ra(biry —71)
= X9 |:b1$1 :| <0

See Figure 2.1. On the other hand, if L = r1ry/agb;, then xo > rire/agby, and
9 < 0. See Figure 2.2. Hence, by the above discussion, we know that for solutions
(z1(t), z2(t)) of the system (2.1) with the initial point (z1(0),z2(0)) and z1(0) <
r1/b1, x2(0) > L, there exists a T > 0 such that z2(t) < L for ¢ > T5. So
x1(t) < r1/by and zo(t) < L for t > T = max{Ty,T>}. That is, all solutions

(1(t), z2(t)) are bounded. |
)
172 l l l l
abi | D e
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by
Figure 2.2. Schematic diagram for the proof of Lemma 2.1, where L = %
az01

Theorem 2.2 The unique positive equilibrium point E* of the system (2.1) is glob-
ally asymptotically stable.

Proof. Consider

1
H(l’l,l'g): , 1 >0, z2>0
12
Then
0 9 z
V-(Hf) = Er {H - [z1(r1 — biz1 — a122)]} + s {H |:5U2 (Tz - a2mj>] }
T
= _T(rl — b1 —a1x2) + (r1 — 2b121 — a1x2)
T1T2 T1T2
9 < x2> 1 < 2a2x2)
—— 5 |\r2—a— |+ r2 —
T125 T T1x2 T
b1 a2
= - 0
2 €y

Hence by Dulac’s Criterion, there is no closed orbit in the first quadrant. From

above, we see that E* is locally asymptotically stable. By Lemma 2.1 and the
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Poincaré-Bendixson theorem, it suffices to show that the unique positive equilib-

rium point £* is globally asymptotically stable in the first quadrant. |

Remark 2.3  a) In [16] the same result with Theorem 2.2 was obtained via the

Lyapunov functional

b) We also can use the method: “Stable limit cycle analysis” to prove this theo-

rem.

3 The model with delay

Consider the Leslie-Gower predator-prey system with time delay 7 modelled by

Z1(t) = z(t)[r1 —bix1(t — 1) — arx2(t))
o z(t) (3.1)
T2 (t) = IEQ(t) |:T‘2 — ag $1(t):|

with the initial conditions

¢(9) > O, 0 [_Ta O]v ¢ € C([_T7 O]v R)
‘ (3.2)

S
,.I'Q(O) > 0

where r{,72,a1,a2,b1, and 7T are positive constants, and x; and zo denote the

densities of prey and predator population, respectively.

Lemma 3.1 Ewvery solution of the system (3.1) with the initial conditions (3.2)

exists in the interval [0,00) and remains positive for all t > 0.

Proof. It is true because

2(t) = 21(0)exp {/Ot[rl ~ baza(s — 7) — arwa(s)] ds}

2a(t) = xg(O)exp{/ot [m—agzjg] ds}

and z;(0) > 0 for i =1, 2. [ |

Lemma 3.2 Let (z1(t), z2(t)) denote the solution of (3.1) with the initial condition
(3.2). Then
0<ai(t) < M;, i=1,2 (3.3)



eventually for all large t, where

M, = Lent (3.4)
by

My = “2a (3.5)
as

Proof. We want to show that there exists a T > 0 such that z1(¢t) < M; for
t > T. By Lemma 3.1, we know that solutions of the system (3.1) with the initial
condition (3.2) are positive, and hence, by (3.1),

IL"1 (t) = xl(t) [Tl - blxl(t — 7') — alxg(t)]
§ xl(t) [7“1 — blﬂj‘l(t — 7’)] (3.6)

Taking My = r1(1 4 k1)/b1, 0 < k1 < €7 — 1. Suppose x1(t) is not oscillatory
about M7 . That is, there exists a Ty > 0 such that either

l‘l(t) > Mf for t > 1Tj (37)
or
z1(t) < M7 for t > Ty (3.8)

If (3.8) holds, then for ¢ > Ty

14+ k
:L'l(t) S Mik _ T'l( b—f 1) < %67‘1T:M1

That is, (3.3) holds. Suppose (3.7) holds. Equation (3.6) implies that for t > To+7
i‘l(t) S xl(t) [7’1 — bl.rl(t — 7')]
< —k‘lT‘ll‘l (t)

It follows that
t . t
/ xl(s) ds < / —kiry ds = —k‘ﬂ"l(t — TO — 7')

To+T7 1'1(3) To+T1

Then 0 < z1(t) < z1(Tp + 7) e F171=T0=7) 5 0 as t — co. That is, tliglo z1(t) =0
by the Squeeze Theorem. This contradicts (3.7). Therefore, there must exist a
T1 > Ty such that x1(Th) < M. If z1(t) < M7 for all ¢ > T, then (3.3) follows.
If not, then there must exist a 75 > T3y such that 75 is the first time at which
x1(Tz) > M. Therefore, there exists a T3 > T, such that T3 is the first time
at which z1(73) < M by the above discussion. By the above, we know that
x1(Th) < M, z1(Tz) > M, and z1(T3) < M where T} < Ty < T3. Then, by the
Intermediate Value Theorem, there exist Ty and 75 such that

I‘l(T4) = Mik, T1 < T4 < T2

32



33

1‘1(T5) = Mik, T <Ty5 < Ty
and x1(t) > M7 for Ty <t < Ts. Hence there is a Ty € (T4, T5) such that zq(Ts) is
an arbitrary local maximum, and hence it follows from (3.6) that

0=211(T6) <x1 (TG)[T‘l —b121(T6 — T)]

and this implies

o1(Tg —7) < 2L
b1

Integrating both sides of (3.6) on the interval [T — 7, Tg], we have

In {xlxl(%)] = /T6 £1(s) ds < /T6 [r1 —bizi(s — 7)) ds < i

Ts-7)]  Jryrai(s) = Jrs

It follows that

I (T6) S T (T@ — T) erlT S Z—lerlT = M1
1

Since 1(Ts) is local maximum of x(¢) and x1(Ts) < Mj, x1(t) < M; where t is
near Tg. Since x1(T§) is an arbitrary local maximum of z;(t), we can conclude that
there exists a 1" > 0 such that

zi(t) < M; for t>T (3.9)

Suppose z1(t) is oscillatory about Mj7; for this case, the proof is similar to the
above one. Now, we want to show that z2(t) is bounded above by My eventually
for all large ¢t. By (3.9), it follows that for ¢t > T

. z2(1)
) = za(t)ro — a2~
o(t) z2(t)[r2 a2a:1(t)]
a
< wa(t)lr = g pwa(t)
ag
= 1 — t
rax2(t)] T2M1332( )l
z2(1)
= ram(t)[l — 57
az
Therefore, xo(t) < roMi/ag = My for ¢t > T. This completes the proof. [ ]

Lemma 3.3 Suppose that the system (3.1) satisfies
r1—a1My >0 (3.10)

where My is defined by (3.5). Then the system (3.1) is uniformly persistent. That
is, there exist my, ma, and T* > 0 such that m; < x;(t) < M; fort >T*, i=1,2.



Proof. By Lemma 3.2, equation (3.1) follows that for ¢t > T + 7
Z1(t) > xi(t)[r1 — b1 My — a1 Ms] (3.11)

Integrating both sides of (3.11) on [t — 7,t], where ¢t > T + 7, then we have

x1(t) > x(t—71) e(r—b1Mi—a1 My)r
That is,

r1(t—7) < x1(t) e"(ThMimaMa)r (3.12)
It follows from (3.1) that for ¢t > T + 7

Z1(t) = x(t)[r1 —bix1(t — 1) — arx2(t)]

Z .%'1<t) [7“1 — a1M2 — ble_(rl_blMl_alMQ)T acl(t)]

ble—(r1—b1M1—a1M2)T
= — a1 M. t) [1—- t
(r1 —a1Ma) 21(t) [ E— z1(t)]
z1(t)
= (r1 —a1Ms) z1(t) [1 — 7”1_371]\42 e(rrblMl—ale)r]
1
It follows that
. r1 — a1 Mo by My — _
liminf 21 (t) > —————= e —0Mi—aM)r — 75,
t—o00 - by

and my > 0 by (3.10). So, for large t, z1(t) > m1/2 = my > 0. It follows that

2a(t) 2 wa(t)lr2 — —=w2(t)]

Then

liminf x5 (t) >
t—o00
So, for large ¢, z2(t) > ma/2 = mg > 0. Let
D = {(x1,22) |m1 < w1 < My, mg < w9 < Mo}

Then D is a bounded compact region in Ri that has a positive distance from
coordinate hyperplanes. Hence we obtain that there exists a T* > 0 such that if
t > T, then every positive solution of system (3.1) with the initial conditions (3.2)
eventually enters and remains in the region D, that is, system (3.1) is uniformly

persistent. |
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Theorem 3.4 If the delay T satisfy

r—aiMy > 0 (3.13)
hMir < 2z} (3.14)
bymiMy(r1 + bix])T < 2z](bymi — a1 Ma — a123) (3.15)

where my, M1, and Mo are defined in Lemmas 3.2 and 3.3, then the unique positive
equilibrium E* of the system (3.1) is globally asymptotically stable.

Proof. Define y(t) = (y1(¢),y2(t)) by

n) = 1T - 20 22
iy z}
From (3.1),
1(0) = 1+ u1 (O][-biztn (¢ — 7) — ar25e(0)] (3.16)
o roxiy1(t) — asw3ys(t)
ya(t) = [1 4 y2(t)] 11:{(1 n y1(t)2) (3.17)
Let
R(0) = e (n(0) — 1+ (O]} + ()~ il 4 3o(0)} - (315)

then we have from (3.16) and (3.17) that

L n@®)y() 1 ya(t)y2(t)

Vl(y(t)) - azizy 14+y(t)  ral 1+ y2(¢)
_ b _ 1 yi(t)ya(t) y3(t)
= aw;yl(t)yl(t ) x,{yl(t)yz(t)anﬂHyl(t)] zi[1+ y1(t)]
_ b Ly vt b3
= TN T o] T S+ )

by

a1x

*yl(t)y1(t—7)+ |y2(t)’y%(t) _ y%(t) (319)
2

= w0ty 0)] 20+ yi()]

By Lemma 3.3, there exists a 7% > 0 such that m; < z}[1+y;(t)] = z;(t) < M; for
t>T* i=1,2. Then (3.19) implies that

W) < Ol - )+ Ol - 550
a1Ts mi 1
< o=+ o (14 52) 0 - 350



- —af;gyl(t)[yl(t) - /t_Tyl(s) ds] + - (1 + if) yi(t) = ]\2 y3(1)

I 5
— —y5(t
Ml?JQ()

VAN
|
N
>
=
5
*
—
~_
<
Lol V]
—~
N’

bl [ il s - 1)l + awsln(@r()] ds (620

(3.21)

Vily(t) < — _ 2 ) () — — 2t
0) <~ (ks — ot = o) 20 = 5030
biM; [ ¥
[ il Ollats - 0l + sl @)l ds
a1y Ji—r
b1 Mo 1 9 1 5 bi My [biziT 4
_ _ 2 ) 2 — R '
(s~ s = ) 9300 = b0 + o |25t
bzt [, aA1T3T o aizy 1
+ yi(s —7) ds + yi(t) + y5(s) ds
2 t—r 2 2 t—7
b1 M2 bQMlT blMlT 1 1
_ —( M WMT WM L gy L
arry  miTs 2a17% 2x] mi My
b2 M, /t ) b1 M, /f 2
+ s—171)ds+ s) ds 3.22
2aras t_Tyl( ) 207 t_Tyz() (3.22)
Let
b2M1 t t
Va(yt) = 2y—71)dvyd
) = gt [ [ - i
b M t t
+ *1/ /yg(v) dy ds (3.23)
2xl t—7 Js
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then
. bEMyT b2M, [t
Va(y(t)) = = 2t —71)— L / 2(s—1)d
W) = o it-n) -5 | is-r)ds
biMiT by M, /t 5
) — —— d .24
2ot V30— o | w(s) ds (3.24)

and then we have from (3.22) and (3.24) that for t > T

b My, BMiT  biMiT 1 > )

Vi(y(®) + Va(y(t)) < — — —
1(y(®) +12(y(1) < <a1x§ mixs 2a12% 2x] mi

1 bi Myt bIMyT
(55 - ) B+ R - e

My 2x] 2a17%5
Let
b2M17' t
Va(y(t)) = = 2(s) d 3.26
() = 3ot [ i) ds (3.26)
then
b2MiT b2MiT
Vs(y(t)) = = 2(¢) — =L 2(t — 3.27
3(y(t)) Dares ) D01 yi(t—7) (3.27)

Now define a Lyapunov functional V (y(t)) as

V(y(t)) = Vily(?) + Va(y(t)) + Va(y(t)) (3.28)

then we have from (3.25) and (3.27) that for ¢t > T

Viy(t) <

by My  BIMyT WMyt 1\
arry  miTs a1y 2x] my

S ¢
<M1 2" >y2()

_21‘1‘(()17’)@1 — a1 My — alxé) — blmlMl(rl =+ bliL‘T)T 9

= yi(t)

2a1myx] T

277 — by M7

t
2xy{M1 ?/2( )

= —ayi(t) - Byt (3.29)

Then it follows from (3.14) and (3.15) that « > 0 and § > 0. Let w(s) = N g2
where N = min{a, 8}; then w is nonnegative continuous on [0, o0, w(0) = 0, and
w(s) > 0 for s > 0. It follows from (3.29) that for ¢t > T

V(y(t)) < =N [57(t) + 5(0)] = =N [y(&)]* = —w(ly(t)]) (3.30)



Now, we want to find a function u such that V(y(t)) > u(|y(t)]). It follows from
(3.18), (3.23), and (3.26) that

) <L+ () (351

V(y(®)) = {1 (t) —In[1+ 31 (0]} +

*

By the Taylor Theorem, we have that

(1) — In[1 4+ yi(¢)] = ﬂ (3.32)
where 0;(t) € (0,y;(t)) or (yi(t),0) for i =1, 2.
Case 1 : If 0 < 0;(t) < y;(t) for i = 1,2, then
2 2
y; (t) yi (1) 2
L < ! <y (t 3.33
T+ u®F = [+ a,0p <0 339
By Lemma 3.3, it follows that for ¢ > T™*
m; < xf[l + yi(t)] = xz(t) < Mz‘, 1= 1,2 (334)
Then (3.33) implies that
N 2
; 2 y; (t) 2 :
T\ 20 < 2(1), i=1,2 3.35
(55) w0 < 20 <up@, =1, (3.35)
It follows from (3.31), (3.32), and (3.35) that for ¢ > T
1 yi(t) 1 Y3 (1)
Viy(t > +
() = 2012375 [L+ 0102 2rpat [1+ 02(0)]2
1 ) ? 2 1 5 ? 2
> t t
= 2axi7d <M1> vilt) + 2rox] <M2 va(t)
. 1 31 ? 1 5 ? 2 2
> t t
= mm{2a1m’1‘x§ <M1) " 2romt (M2> i) + 42 (0)
= N[y
Case 2 : If —1 < y;(t) < 0;(t) <0 for i = 1,2, then
2 2
2 y; (1) y; (1)
S(t) < < 3.36
PO Hamp < Lt wP (33

By (3.34), (3.36) implies that

2 * 2
y2(t) < [14?{9@()75)]2 < <> y2(t), i=1,2 (3.37)
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It follows from (3.31), (3.32), and (3.37) that for ¢t > T*

1 vi(t) 1 Y5 (t)

V(y(t) > +
(y(®) = 2aqzias [+ 601(8)]2  2razt [1+ 02(¢)]?
1
2 2
> 2a1x>{m;y1< ) 2r2x,{y2( )
1 I’T 2 2 1 "I,'é ? 2
> t ¢
- 2aaiad <M1> i) + 2oy (MZ sl
> N [yi(t) +y5(1)]
= N Jy@t)P

Case 3 : If 0 < 01(t) < y1(t) and —1 < ya(t) < O2(t) < 0, then it follows from
(3.31), (3.32), (3.35) and (3.37) that for ¢t > T*

S VNS’ 0
2012y [1+01()]2  2raaf [14 62(1)]?

Viy(®) =

2a 12725 \ My 2roxy
1 ] ? 2 1 T ? 2
> t t
— 2aq7i7) <M1> 1()+2r2x“{ Mo ya2(t)
> N [y7(t) + 3 (t)]
= N |y(t)P

Case 4 : If —1 < y1(t) < 61(t) < 0 and 0 < 02(t) < ya(t), then it follows from
(3.31), (3.32), (3.35) and (3.37) that for ¢t > T*

R
2aiziay [1+01(8)]2  2roxt [1+ 02(¢)]?

V(y(t))

1 1 xh 2

2 2 2
> t) + t
2, T 33/1() * <M2> yz()

L (oY i+ L (22) 30
2aqx7xsy \ My 4 2rox] \ Mo Y2

> N [yi(t) +y5(t)]

= Ny

Let u(s) = Ns2, then u is nonnegative continuous on [0, 00), u(0) = 0, u(s) > 0 for



s> 0, and lim u(s) = +o0. So, by case 1 ~ case 4, we have
S—00

V(y(®) = u(ly@®)]) for ¢t >T" (3.38)

So the equilibrium point E* of the system (3.1) is globally asymptotically stable.l

4 Example

We present below two simple examples to illustrate the procedures of applying

our results.

Example 4.1 Consider the system

Z1(t) = z1(t)[1 — 10z (t) — z2(t)]
2x2(t)} (4.1)

.'L:Q(t) = $2(t) |:1—

where 11 =1y =1, a1 = 1, ag = 2, by = 10, and E* = (2/21,1/21). Then
we conclude that the unique positive equilibrium point E* of the system (4.1) is
globally asymptotically stable by Theorem 2.2. The trajectory of the system (4.1)
is depicted in Figure 4.1.

0.1

0.09- 4

0.08 B

0.07 4

0.06 |-

x2(t)

0.05 4

0.04 B

0.03 q

0.02|- >
7

0.01 I I I I I I I
0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

x1(t)

Figure 4.1. The trajectory of the system (4.1).
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Example 4.2 Consider the system

fl(t) = xl(t)[l - 10$1(t - T) - .CCQ(t)]
- 2$2(t)] (4.2)

xl(t)

thg(t) = $2(t) |:1

where 11 =1y =1, a1 =1, ag =2, by = 10, and E* = (2/21,1/21). Then
r1 —a1Ms =0.9325 >0

22} — by M7T = 0.1358 > 0
2x>{(blm1 — a1 My — almg) — blmlMl(rl + blxi)T =0.0239 >0

whenever 7 = 0.3. Consequently, by Theorem 3.4, we conclude that the unique
positive equilibrium point E* of the system (4.2) is globally asymptotically stable.
The trajectory of the system (4.2) is depicted in Figure 4.2.

0.3

x1()

Figure 4.2. The trajectory of the system (4.2) with 7 = 0.3.

5 Conclusion

In this thesis, we obtain a sufficient condition for the global stability of the
Leslie-Gower predator-prey system with time delay. We believe that the Leslie-

Gower predator-prey system with time delay as follows will be an important topic



for future study.

33"1 (t) = xl(t) [7“1 — bll‘l(t — 7‘) — (11.%2(75)]
_ B za(t) (5.1)
xI9 (t) = $2(t> I:TQ — a2$1(t2—7')]
I:l (t) = xl(t) [T‘l — blﬂfl (t — Tl) — alxg(t — ’7'2)]
. . .732(25 — 7’2) (5'2)
Z'Q(t) = X9 (t) |:7“2 — a9 .fl(t—’l'l):|
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