

23

東海學報 42 卷(2001):23-39
中華民國九十年七月出版

On the Joint Replenishment Problem under General-Integer Policy

Ming-Jong Yao (姚銘忠) and Fang-Chuan Lee (李芳娟)

Department of Industrial Engineering and Enterprise Information

Tung-Hai University

ABSTRACT

This study performs theoretical analysis on the Joint Replenishment Problem (JRP) under General-Integer (GI)

policy. The JRP models concern how to determine lot sizes and to schedule replenishment times for products so

as to minimize the total costs per unit time. GI policy requires replenishment frequency of each product, denoted

by ki, to be a general integer, i.e., ki = 1, 2, 3, …. In this study, we utilize a 10-product example to graphically

present the curve of the optimal total cost with respect to the values of basic period. Under GI policy, we

discover an interesting property on the optimal curve for the JRP, and we prove that the optimality structure of

the JRP is piece-wise convex. By making use of the junction points in the optimality structure, we derive an

effective (polynomial-time) search algorithm to secure a global solution for the JRP under GI policy. Evidently,

we provide a numerical example to demonstrate the efficiency of the proposed algorithm.

Key words: Inventory, Scheduling, Lot size, Global optimum

1. Introduction

1.1 Background and problem description

The Joint Replenishment Problem (JRP) is concerned

with the determination of lot sizes and schedule of n

products in single-facility production/inventory

systems over an infinite (and continuous) planning

horizon.

The objective of the JRP is to minimize the

total costs incurred per unit time. The costs

considered generally include setup costs and

inventory holding costs. For each product i, its

annual demand di is fixed (and continuous), and each

unit incurs of holding cost hi each year. The JRP

assumes that the single facility has infinite capacity,

and therefore, the replenishment for each product is

instantaneous. Also, in the JRP, a product must be

packaged immediately after it is manufactured by the

production facility. Therefore, no holding cost incurs

for the raw material. On the other hand, two types of

setup costs are considered in the JRP:

1. A major setup cost, denoted by A, incurs

whenever the production facility sets up to

jointly replenish a subset of products.

2. A minor setup cost ai is incurred while

each product i is replenished

(manufactured and packaged).

We note that major and minor setup costs are

usually independent of the quantities of the products

jointly replenished.

For decision makers facing the JRP, an

intuitive move is to jointly replenish many products

in each major setup to share the major setup cost so

as to minimize the average total costs. Therefore, the

focus of the JRP is to coordinate the replenishment

schedule of each product i to economically share

major setup cost, and balance the holding costs from

24

the inventory of jointly replenished products.

In general, companies invest about 30% of

their current asset and 90% of their operational

capital on the inventories (i.e., raw materials,

purchased parts and work-in-process, etc.; see

Stevenson 1993). Major setups often incur significant

setup times and costs in certain industries; for

instance, pharmaceutical, chemical processes, and

textile companies. If the executive managers may

effectively apply the concept of the JRP in their

production/inventory systems, they could joint the

replenishment schedule of the products to

satisfactorily meet customers’ demand and

importantly, reduce significant cost in the meanwhile.

The solution approaches for the JRP usually

assume that each product i is replenished after a fixed

cycle, denoted by Ti where Ti is the length of time

between two consecutive minor setups for product i.

 Most of early studies assume that Ti is equal to

a positive integer ki times B, i.e., Ti= ki B, where B is

a basic period in the production planning horizon.

Also, it is usually assumed that the replenishment

frequency for major setup, denoted by k0, is always

set to 1 in the JRP. In order to secure the optimal

solution, one must simultaneously determine the

value of B and the set of optimal (integer) multipliers

{ki: i = 1, 2, …, n} in the JRP. One may refer to

Goyal and Satir (1989) as well as Aksoy and Erenguc

(1988) for the details on the problem definition and

the early studies of the JRP.

 Based on the assumptions discussed above, the

mathematical model for the JRP is formulated as

follows.

{ }() =BkTCMinimize iGI ,

∑∑
==

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

n

i
iii

n

i
hdkB

k
a

k
A

B i

i

110 2
1

 (1a)

subject to { } .1 ,,3,2,1 0 =∈ kki L (1b)

 The subscript GI in the objective function

TCGI({ki},B) indicates that the JRP model is

formulated under General Integer (GI) policy, which

is expressed by constraint (1b). GI policy requires

that all the ki’s must be positive integers. Therefore,

the JRP model in (1) is a nonlinear, integer problem.

1.2 Literature survey

Arkin, Joneja, and Roundy (1989) proved that the

JRP is a NP-hard problem, i.e., the JRP is not

solvable by polynomial-time algorithms. The JRP

has been studied for some thirty years. Extensive

research efforts have been addressed to attempt

efficient heuristics for solving the JRP.

Early, Shu (1971), Nocturne (1973) and Goyal

(1973a) pioneered the research for the JRP. They

solved the JRP by simply dividing the products into

only two groups. Shu (1971) and Nocturne (1973)

solved the JRP using graphical heuristics. Goyal

(1973a) introduced another simple heuristic that tries

to secure B*, the optimal value of B, by the first

derivative of TCGI({ki},B) and used simple rule to

decide k1
* and k2

* where k1
* and k2

* are the optimal

replenishment frequencies for those two groups.

 Goyal (1973b) initiated the research to derive

heuristics for the JRP that divide n products into

more than two groups. Goyal (1974a, b) proposed an

enumeration approach, and he claimed that it always

secure a global optimal solution (though without

proof). The essence of his enumeration approach is as

follows. Enumerate B and ki for each product i so as

to satisfy both of the following conditions:

TCGI (ki(B),B) ≤ TCGI (ki(B)+1,B) (2a)

25

TCGI (ki(B),B) < TCGI (ki(B)-1,B). (2b)

Later, Goyal (1988) and van Eijs (1993)

presented examples that showed that the conditions

in (4) are not sufficient conditions for securing a

global optimal solution for the JRP. Meanwhile, van

Eijs (1993) derived another algorithm that improves

efficiency of Goyal’s (1974b) algorithm. The

shortcoming for this category of solution approaches

is that one needs tremendous search efforts to

enumerate between the upper and lower bounds on B.

The run time of these approaches grows

exponentially with the number of products. If there

are more than 10 products in the JRP, extremely long

run time make these enumeration approaches

impractical. To address to this concern, Viswanathan

(1996) derived some theoretical results that shorten

the range between the upper and lower bounds on B.

Viswanathan also presented an efficient algorithm

that usually secures a “reasonable good” solution

with a very shorter run time.

 Another category of the solution approaches

for the JRP are non-iterative procedures. First, Silver

(1976) derived some analytical properties for the JRP

under the assumption that all the ski
' are

continuous variables. Then, he solved the optimal

multipliers *
ik ’s in closed-form. The three steps in

Silver’s procedure are: (1) Set as product number 1

for the product with the minimal value of .
ii

i
dh

a (2)

Secure *
ik by (a) computing a value of ki by

1

11
aA
hd

hd
a

i ii

ik += , and (b) rounding the value of ki to

the nearest positive integer. (3) Secure the optimal

value of B using the { *
ik } secured from the second

step. Goyal and Belton (1979) suggested to improve

Silver’s procedure by changing the criterion value (of

picking product 1) from
ii

i
hd

a to
ii

i

hd
aA+ . They

provided an example that shows their modified

procedure secures a better solution than Silver’s

procedure. Later, Kaspi and Rosenblatt (1983)

brought another example to demonstrate that Goyal

and Belton’s procedure secures a poorer solution than

Silver’s. In order to improve Goyal and Belton’s

solution, Kaspi and Rosenblatt (1983) suggested to

recalculated {ki} and B after Goyal and Belton’s

procedure secures its solution. Based on similar

philosophy, Jackson, Maxwell and Muckstadt (1985)

derived some interesting theorems on the optimal

grouping for the products using
ii

i
hd

a as the criterion

value.

1.3 The motivation to study the JRP

under PoT policy

In literature, few research efforts have been

addressed to explore the optimal structure of the JRP

in literature. And, to the best of the authors'

knowledge, no solution approach is able to guarantee

to secure an optimal solution for the JRP.

Before our study, we found only two papers

that tried to explore the optimal structure of the JRP.

In Viswanathan's (1996) paper, he implies that the

optimal objective value of the JRP is piece-wise

convex on B, though he did not bring the proof for

this assertion. Also, since his theoretical results

provide insufficient information to reveal the

overview for the optimal structure of the JRP (under

GI policy), Viswanathan's solution approach secures

only an approximate solution (that is close to the real

optimal solution.) Besides, Wildeman et al. (1997)

did some decent studies on a relaxed version of the

JRP in which they replaced ki∈ {1, 2, …} in (1b)

with 1≥ik and ℜ∈ik for all i =1, 2,… , n. By

utilizing their theoretical results, they derived tight

upper and lower bounds on the search range. They

26

proposed to use a dynamic Lipschitz optimization

procedure to secure an approximate solution. But,

neither Viswanathan (1996) nor Wildeman et al.

(1997) guarantees that their algorithm is able to

secure a global optimal solution.

To fulfill the research gap discussed above, we

would like to investigate the optimality structure of

the JRP. Also, based on the optimality structure of

the JRP, we derive an effective search algorithm that

is able to secure a global optimal solution in this

paper.

The rest of this paper is organized as follows.

In Section 2, we will present a full theoretical

analysis on the optimal cost function for the JRP.

Based on the theoretical results in Section 2, we

derive an effective search algorithm to secure a

global solution for the JRP under GI policy in

Section 3. Evidently, we provide a numerical

example to demonstrate the efficiency of the

proposed algorithm in Section 4. Finally, we address

our concluding remarks in Section 5.

2. Theoretical Analysis on the Optimal

Cost Function

In this section, we first discuss some remarks and

propositions to provide insights into the TCGI

function. Next, we introduce the “junction points” in

the curve of the TCGI function and demonstrate how

to efficiently locate the junction points of the TCGI

function. These junction points assist us in securing

the set of optimal multipliers for each given value of

B that facilitates the derivation of the search

algorithm presented in Section 3.

Under GI policy, the cost expression for a

product i, is,

TC i (ki, B) = Bkdh
Bk

a
ii

i

i

i

2
+ (3)

where ki ≥ 1 ; ki : integer, i = 1, 2, …, n. For a given

B, one may secure the optimal multiplier ki so as to

TCi(ki,B). We denote it as TCi(B), the minimum cost

function with respect to B for product i, i.e.,

TC i (B) =
ik

min {TC i (ki, B)}. (4)

2.1 Some insights into the optimal cost

function

Denote TCGI (B) as the optimal cost function of the

JRP at a given B, i.e., TCGI(B)=

∑
=

+
n

i
iGI BTC

Bk
A

1
,

0

)(where k0 =1. We use the data

in Section 4 to plot the optimal cost curve of the

TCi(B) function with respect to B for products 1 and

2 in Figure 1. Importantly, Figure 1 shows an

interesting property on the TC i (B) function as

follows. The following theoretical results provide us

some insights into the TCGI function.

27

Figure 1 : The local minimum cost function of products 1 and 2

Remark 1 TC i (B) function is piece-wise convex

with respect to B (since it is easy to verify that

0)(
2

2

>
∂

∂
B

BTCi , for a given ki.)

Remark 2 For each ki, one can secure the minimum

cost for product i, TCi (ki, B), at

B =
ii

i

i
ii dh

a
k

k 21)(=λ (5)

with the minimum cost value of

iiiiBi dhaBTC 2)}({min ==Υ . (6)

The minimum cost iΥ is exactly the EOQ foumula

and iΥ is, in fact, independent of ki and B.

The following proposition shows the optimality

structure of the JRP.

Proposition 1 The TCGI(B) function is piece-wise

convex with respect to B.

Proof. The proof is presented in Appendix 6.1. ■

Again, we employ the data in Section 4 to

demonstrate this comment in Figure 2. One may also

observe that the term raises the left-tail of TCGI(B)

function as the values of B decrease.

28

Figure 2: The optimal value for the TCGI(B) function.

2.2 The junction points on the optimal

cost function

Next, we introduce the “junction points” on the curve

of the TCGI function. Recall that the TC i (B) function

is piece-wise convex. We define a junction point for

the TC i (B) function as a particular value of B where

two consecutive convex curves concatenate. These

junction points determine at ‘what value of B’ where

one should change the multiplier of ‘what product i’

from ki (= j) to ki (= j+1) so as to secure the

minimum value for TC i (B) function.

By equation (3), we define the difference

function),(BkiiΔ by

≡Δ),(Bkii TCi(ki+1, B) － TC,i (ki, B) (7)

= Bdh
Bkk

a ii

ii

i

2)1(
+

+
− . (8)

By Figure 1, one observes that the value of

),(BkiiΔ grows from negative to positive, and

reaches zero at

ii

i

ii
ii dh

a
kk

k 2
)1(

1)(
+

=δ (9)

where)(ii kδ is named as the junction point for the

multipliers ki and ki +1 of product i. More specifically,

)(jkii =δ is the jth junction point of product i

where +ℵ∈j . Therefore, the junction point)(jiδ

provides us the information that one should choose

jki = for B ≥)(jiδ and choose 1+= jki , vice

versa, to secure a lower value for the TCi(B) function.

In other words, if the value j is the optimal multiplier

for B ≥)(jiδ , one should replace jki = with

1+= jki as the optimal multiplier for product i at

the junction point)(jiδ if one searches from

higher values to lower values of B.

Remark 3 For a product i,

 δi(ki) = 1+i

i

k
k

λi(ki) (10)

prescribes the relation between a local minimumλ

i(ki) (defined in eq. 5) and the next junction point δi(ki)

(defined in eq. 9) belowλi(ki).

2.3 The location of the junction points

 By plugging ki (using general-integer values) in

equation (9) for all n products, one secures all the

junction points. Again, we use the 10-product

example in Section 4 to illustrate our discussion on

29

the junction points. We sort all the junction points in

descending order and list only those junction points

that are less than *
ccT =24.7009 in Table 1 where

*
ccT is expressed in eq. (11).

Table 1 in fact reveals an overview of our

proposed search scheme. It shows that one can make

use of difference calculation not only to locate all the

junction points, but also to indicate ‘which product i’

should replace its optimal multiplier ki by ki +1. The

following theoretical results on the junction points

provide strengthen foundation for such a search

scheme.

Lemma 1 Suppose that ki

(L) and ki
(R), respectively, are

the optimal multipliers of the left-side and right-side

convex curves with regard to a junction point in the

plot of the TC,i(B) function. Then, ki
(L) = ki

(R) + 1.

Proof: The proof is presented in Appendix 6.2. ■

Proposition 2 All the junction points for each

individual product i, will be inherited by the TCGI(B)

function. In other words, if w is a junction point for a

product i, w must also show as a junction point on the

piece-wise convex curve of the TCGI(B) function.

Proof: The proof is presented in Appendix 6.3. ■

Theorem 1 is an immediate result of Lemma 1 and

Proposition 2.

Theorem 1 Suppose that K(L) and K(R), respectively,

are the set of optimal multipliers for the left-side and

right-side convex curves with regard to a junction

point in the plot of the TCGI(B) function. Then, there

is one and only one product i such that ki
(L) = ki

(R)+1.

From another point of view, Theorem 1 provides an

important implication: namely, the set of optimal

multipliers for the TCGI(B) function is invariant

between each pair of consecutive junction points.

Table 1: The location of the junction points that are less than 1B
(

Obs. Where on B-axis How to change ki Obs. Where on B-axis How to change ki
0 24.4339 Tcc 23 12.3150 k7: 1 2
1 24.2091 k3: 2 3 24 11.9151 k5: 6 7
2 22.7921 k4: 6 7 25 11.8262 k4: 12 13
3 22.5374 k6: 2 3 26 11.4453 k1: 2 3
4 22.2911 k5: 3 4 27 10.9490 k4: 13 14
5 22.1313 k8: 1 2 28 10.8266 k3: 5 6
6 19.8238 k1: 1 2 29 10.3188 k5: 7 8
7 19.7386 k4: 7 8 30 10.2607 k10: 2 3
8 18.1926 k2: 2 3 31 10.1929 k4: 14 15
9 17.7721 k10: 1 2 32 10.0791 k6: 5 6

10 17.4078 k4: 8 9 33 9.9645 k2: 4 5
11 17.2666 k5: 4 5 34 9.5346 k4: 15 16
12 17.1184 k3: 3 4 35 9.1502 k3: 6 7
13 15.9364 k6: 3 4 36 9.1003 k5: 8 9
14 15.5700 k4: 9 10 37 9.0351 k8: 3 4
15 15.3188 k9: 1 2 38 8.9562 k4: 16 17
16 14.0981 k5: 5 6 39 8.8443 k9: 2 3
17 14.0836 k4: 10 11 40 8.5184 k6: 6 7
18 13.2599 k3: 4 5 41 8.4440 k4: 17 18
19 12.8641 k2: 3 4 42 8.1396 k5: 9 10
20 12.8565 k4: 11 12 43 8.1360 k2: 5 6
21 12.7775 k8: 2 3 44 8.0930 k1: 3 4
22 12.3443 k6: 4 5 45 7.9872 k4: 18 19

30

2.4 Locate all the junction points

Before locating all the junction points, one needs to

know how many junction points shall be located for

each product. This question leads to the problem of

finding an upper bound on ki. In fact, the lower

bound on the value of B determines the upper bound

on ki. Suppose that iv is an upper bound on the

value of ki. Then we need to locate iv junction

points for product i.

2.4.1 Find an upper bound on ki

Under GI policy, a simple upper bound on ki can be

derived from the Common Cycle (CC) approach and

the independent solution (which is denoted by IS, and

it is expressed in eq. 6).

Hanssmann (1962) proposed the Common Cycle (CC)

approach to solve the Economic Lot Scheduling

Problem (ELSP). Recall that the CC approach is a

special case in which it assumes that Ti=T (or ki=1)

for all i, i.e., all the products share the same cycle.

Graves (1979) commented that one can consider the

JRP as a special case of the ELSP where the major

setup may be regarded as an additional product 0

with no demand or production requirements.

The optimal solution of the CC approach is a

well-known upper bound on the objective function of

the conventional ELSP. Therefore, we may use the

cost of the CC approach, denoted by TCcc, as an

upper bound on the objective function of the JRP.

Denote as *
ccT the optimal solution for the CC

approach. Then, one may easily secure *
ccT by the

following expression.

}
)(2

max{

1

1*

∑

∑

=

=
+

= n

i
ii

n

i
i

cc
dh

aA
T

 (11)

Let IS(n-{i}) = ∑ ≠=
n

ijj jjj dha,1 2 Then, an upper

bound on the average cost of product i is obtained by

TCcc-IS(n-{i})- B
A , and we have

TCi(ki,B)= Bkdh
Bk

a
ii

i

i

i

2
+ ≤ TCcc-IS(n-{i})- B

A .

Thus, for a given B, an upper bound vi(B) on ki is

obtained by

vi(B)=

()
⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢

⎢

⎡ −−−−+−−−

Bdh
dhainISTCinISTC

ii

iiiB
Acc

B
Acc 2}){(}){(

2

(12)

By plugging in (12) a lower bound value on B,

denoted by Blb, one secures an upper bound iv on ki.

The next task is to determine Blb, a lower bound on B

for the search range in the JRP. Many researchers

addressed their efforts on narrowing the search range

in the solution algorithms for the JRP. (Please refer

to Section 1 for references.) van Eijs (1993) proposed

that Blb =
2A

TCU where TCU is an upper bound on

the objective value of the JRP. van Eijs derived

another upper bound on the objective value of the

JRP other than TCcc. Based on our experience, van

Eijs' bound is usually looser than TCcc, our upper

bound by the CC approach. Therefore, we secure

our lower bound on B by Blb =
2A

TCU and the upper

bound v v A
TC

i i cc= ()2
 on ki is determined

accordingly.

31

2.4.2 The junction points locating procedure

We utilize the theoretical results presented above and

propose an efficient procedure, viz., the Junction

Point (JP) Locating Procedure, to locate all the

junction points of the TCGI function as follows.

The JP Locating Procedure:

for i = 1, …, n

 Compute vi on ki by eq. (12).

 Set found = 0 and j = 0.

 while found = 0

 ki = j.

 Compute
ii

i

ii
ii dh

a
kk

k 2
)1(

1)(
+

=δ .

(refer to equation (9) for details).

j = j+1.

 if j > vi, then found = 1;

endwhile

endfor

Let vmax ≡ maxi{ iv +1}. Since the junction points are

no more than nvmax, i.e., max
1

}1{ nvv
n

i
i ≤+∑

=

.

Therefore, the complexity of the JP Locating

Procedure is bounded by O(n vmax).

By substituting ki = 1, 2, 3, ..., 6 into the eq. (9),

we enumerate the computing results for the

10-product example in Section 4 in Table 2. One may

compare Table 2 with the sorted sequence in Table 1.

For example, when the search started from

w1=104.4466 where one should change k4 = 1 to k4 =

2 for product 4. The algorithm continues its search

and changes k4 = 2 to k4 = 3 at the next junction point

B = 60.3023.

2.5 The K-GI Search Procedure

In this section, we present an efficient procedure to

secure the set of optimal multipliers at a given value

of B, which is denoted as KGI(B). Proposition 2

provides an easier way to secure each ki ∈KGI(B) by

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

−
≤<

+

>
=

ii

i

ii

i

ii

i

i

dh
a

mm
B

dh
a

mm
m

dh
aB

Bk
2

)1(
12

)1(
1,

,1
)(

(13)

Therefore, for any B, one can secure KGI(B) using the

K-GI Search Procedure as follows.

The K-PoT Search Procedure:

for i = 1, ..., n

Set found = 0 and m = 1.

 if B >
ii

i

dh
a

, then found = 1.

 while found = 0

 m ← m+1.

 if B >
)1(

1
+mm ii

i

dh
a2

, then found = 1.

 endwhile

 Set ki(B) = m.

endfor

32

 Table 2: The junction points for the TCGI function in the example

3. A Global Optimum Search Algorithm
In this section, we present a search scheme which

secures the global optimal solution for the JRP. The

search scheme secures the global optimum since it is

able to locate all the local minima (which, in turn,

depends on the junction points) of the TCGI(B)

function. Recall that Blb =
2A

TCcc is the lower bound

on the value of B for the JRP. (Please refer to §2.4.1.)

The overview of our search scheme is summarized as

follows.

1. Secure all the junction points, and sort them in a

descending order.

2. Utilize *
ccT in eq. (11) as the first upper bound

of the search range.

3. Secure the set of optimal multipliers for each

convex interval in (Blb,
*

ccT).

4. Utilize the derivative information on the TCGI (B)

to further shorten the search range, and secure a

pair of tighter upper and lower bounds of the

search range, which are denoted by μB and λB ,

respectively.

5. Secure the local optimum (if it exists) for each

convex interval in the search range [λB , μB] .

6. A global optimal solution is secured by picking

the best solution among all the local minima

secured in [λB , μB] .

We have detailed discussion on each step of our

search scheme in the following subsections.

3.1 The JP Sorting Procedure

Recall that each junction point δi(ki) provides the

information that one should change the optimal

multiplier of item i from ki to ki +1 at δi(ki) to secure

the optimal value for the TCi(B) function. We show

the JP Sorting Procedure as follows.

The JP Sorting Procedure:

1. Input all the junction point {δi(ki)|i=1,…,n} of the

TCGI(B) function (secured by the JP Locating

Procedure).

2. Generate an array of ordered pairs by inputing the

first element of each order pair is the location (i.e.,

the value of B) of the junction point and the

second element is the identity of the product i.

3. Use the location as the key field, and sort the

ordered-pair array secure in Step 2 in descending

order.

Denote by {wj} the sequence of junction points

generated by the JP Sorting Procedure where wj+1 <

wj, j =1, 2,···. Another sequence of product indices,

denoted by {ιj(wj)}, is generated accordingly to

correspond to the wj’s. We now have in hand an array

of (sorted) pairs {(wj, ιj(wj))}.

Product i ki = 6 ki = 5 ki = 4 ki = 3 ki = 2 ki = 1
1 4.3259 5.1185 6.2688 8.0930 11.4453 19.8238
2 6.8761 8.1360 9.9645 12.8641 18.1926 31.5104
3 9.1502 10.8266 13.2599 17.1184 24.2091 41.9314
4 22.7921 26.9680 33.0289 42.6401 60.3023 104.4466
5 11.9151 14.0981 17.2666 22.2911 31.5244 54.6019
6 8.5184 10.0791 12.3443 15.9364 22.5374 39.0360
7 2.6873 3.1797 3.8943 5.0276 7.1101 12.3150
8 4.8295 5.7143 6.9985 9.0351 12.7775 22.1313
9 3.3428 3.9553 4.8442 6.2539 8.8443 15.3188

10 3.8782 4.5887 5.6200 7.2554 10.2607 17.7721

33

Since the JP Sorting Procedure sorts all the

junction points, of which there are at most nvmax, its

complexity is bounded by O(nvmaxlog nvmax).

3.2 The first upper bound

Recall that the search scheme needs to locate all the

local minima of the TCGI(B) function by securing the

local minimum candidate that exists in each convex

interval. In order to reduce the run time of the search

scheme, we need to shorten the range of the search

scheme. This may be achieved by skipping those

values of B where no local minimum exists.

First, Proposition 3 asserts that *
ccT in eq. (11)

can be used to secure an upper bound of the search

range. Recall that *
ccT is the optimal solution for

the CC approach that uses the set of multipliers {k0 =

1} ∪ n
iik 1}1{ == .

Proposition 3 For the TCGI(B) function, there

exist no local minima for B > *
ccT .

Proof. The proof is presented in Appendix
6.4. ■

By Proposition 3, the search scheme may skip
the junction points in (*

ccT ,∞). Consequently, we

may set *
ccT as the first upper bound of the search

range.

3.3 The optimal multipliers

Recall that the third step of the search scheme is to

secure the set of optimal multipliers for each convex

interval in [Blb,
*

ccT] . This step may be done by:

1.Secure KGI(
*

ccT), i.e., the set of optimal multipliers

at *
ccT , by the K-GI Search Procedure in §2.5 .

2. Starting from *
ccT , we use the ordered-pair array

{(wj, ιj(wj))} to secure the set of optimal

multipliers for each interval (wj+1, wj).

After securing KGI(
*

ccT), the algorithm

searches in descending order toward lower values in

the sequence {wj}. At each junction point wj, by

Theorem 1, one should change one and only one

multiplier by replacing)(jj wlk with)(jj wlk +1 to

update the set of optimal multipliers. Denote by

)(jwK the set of optimal multipliers in the interval

(wj+1, wj). Therefore, we secure)(jwK one by one

by

)(jwK ≡ ()(1−jwK \{)(jj wlk })∪ {)(jj wlk +1}(14)

for all wj ∈ (Blb, μB) where ‘\’ denotes set

subtraction. Recall that Theorem 1 implicates that the

set of optimal multipliers for the TCGI(B) function is

invariant in each convex interval (i.e., between a pair

of consecutive junction points). Hence, this step

actually secures the set of optimal multipliers for all

the values of B∈ (Blb, 1
μB).

3.4 The shortened search range

Next, we demonstrate how to utilize the derivative

information on the TCGI(B) function to secure the

upper and lower bounds of the search range, i.e.,

μB and λB , respectively.

Again, we would like to shorten the range of

the search scheme by skipping those values of B

where no local minimum exists. Recall that we have

secured a candidate 1
μB = *

ccT for the upper bound of

the search range in §3.2. Here, we hope to find

another upper bound μB < 1
μB to further shorten the

search range.

One may notice in Figure 2 that the TCGI(B)

function raises rapidly as B decreases because of the

34

term for the major setup cost, i.e.,
B
A

. Also, the

slope (i.e., the first-order derivative) of the left-tail of

the TCGI(B) function keeps being negative upto a

point where we denote it as λB . It implies that λB

is the largest value of B where no local minima of the

TCGI(B) function exist below λB . Surely, it shows

us an opportunity to skip those values of B≤ λB , and

λB can be considered as the lower bound on the

search range. Similarly, we hope to find the lowest

value of μB where TCGI(B) function keeps being

positive for B ≥ μB and hence, no local minima of the

TCGI(B) function exist for B ≥ μB .

In order to locate λB and μB , we will check

the derivative information of the junction points from

Blb and 1
μB , respectively. Given a set of {ki}, the

first derivative of the TCGI(B) function is given by

∑
=

+
−

+
−

=
n

i

iii

i

i
iGI

kdh
Bk
a

B
ABkTC

1
22

')
2

()},({ . (15)

In the third step of the search scheme, we have

secured the set of optimal multipliers for each convex

interval (wj+1, wj)∈ (Blb, 1
μB). We are ready to plug

in {ki} in eq. (15) and check the value of the first

derivative by the Bounds Locating Procedure as

follows.

The Bounds Locating Procedure:

Set lb_found = 0, and }min{argˆ
lbj Bwjj ≥= .

Set j = 1ˆ −j and λB = Blb .

while lb_found = 0

 if 0)),((' >jjGI wwKTC ,

Set j
(

= j, λB =))((jwKB (
(

 and

lb_found = 1.

otherwise, set j = j –1.

endwhile

Set lb_found = 0, and }max{argˆ 1
u

Bwjj j ≤= .

Set j = 1ˆ −j and μB = 1
μB .

while ub_found = 0

 if 0)),((' <jjGI wwKTC ,

Set j
(

= j, λB =))((jwKB (
(

 and

lb_found = 1.

otherwise, set j = j –1.

endwhile

Output λB and μB , stop.

The rationale behind the Bounds Locating Procedure

is as follows. The variables wj and wj-1 are

consecutive junction points on the TCGI(B) function.

By Theorem 1, the set of optimal multipliers for the

TCGI(B) function is invariant between wj and wj-1.

Therefore, wj and wj-1 correspond to the left-hand and

the right-hand end points for a particular piece of

convex curve on the TCGI(B). For locating the lower

bound λB , the condition 0)),((' >jjGI wwKTC

checks the lowest junction point where the sign of

the first derivative of the TCGI(B) function changes.

The value of))((jwKB (
(

 indicates the

lowest-valued local minimum for the TCGI(B)

function. We set the lower bound of the search range

λB at))((jwKB (
(

 since no local minima of the

TCGI(B) function exist below λB =))((jwKB (
(

.

Similar idea applies to locate the upper bound μB ,

but the condition checks 0)),((' <jjGI wwKTC for

the largest junction point.

3.5 Secure all the local optima

In this section, we introduce the condition for

checking the existence of a local optimum in the

interval of (wj+1, wj).

35

In the third step of the search scheme, we

already secure the set of optimal multipliers for all

the values of B∈ (Blb, μB). We are ready to plug in

the set of optimal multipliers {ki} and check the

existence of a local optimum jB
(

 in the interval

(wj+1, wj) by the Location checking condition as

follows.

Location checking condition:

i. For the set of {ki}, secure its local

minimum at jB
(

({ki}) by eq. (19).

ii. If jB
(

∈ (wj+1, wj), then jB
(

 is a local minimum

of the TCGI(B) function.

3.6 The algorithm

We are now ready to enunciate the Global Optimum

Search Algorithm. It uses the array of the (sorted)

ordered pairs {(wj, 　j(wj))} as the backbone and

secures all the local minima of the TCGI(B) function.

Recall that the algorithm searches from the upper

bound μB along lower value we label as l the index

for the local optima of the TCGI(B) curve. Hence, lB
(

is the lth local optimal solution secured in the search

process of the Global Optimum Search algorithm.

The step-by-step procedure is presented as follows.

1. Generate the array of the (sorted) ordered pairs,

i.e., {(wj,)(jj wι)}, by

(a) Secure all the junction points of TCGI

function by the JP Locating Procedure.

(b) Sort all the junction points by the JP

Sorting Procedure.

2. Utilize *
ccT in eq. (11) to secure 1

μB by:

(a) Set KGI(w1+ ε) = {1, 1,…, 1}. Employ the

Location checking condition in §3.5 to check:

i. If),())((1
*

1 ∞∈=+ wTwKB ccGI ε
(

, then

set l = 1, 1B
(

 = *
ccT , and compute

)),((*
1 ccGIGI TwKTC ε+ ; go to Step 2(b).

ii. otherwise, let l = 0, go to Step 2(b).

(b) Set 1
μB = *

ccT and }max{argˆ *
cci Twj ≤= .

Do the following steps:

i. Secure)(*
ccTK , i.e., the set of

 optimal multipliers at *
ccT by the K-GI

Search Procedure in § 2.5.

ii. Set)(jwK ≡ ()(*
ccTK \{)(jj wlk })∪

{)(jj wlk +1}.

3. Secure the set of optimal multipliers for the

convex intervals (wj+1, wj) ∈ (Blb, 1
μB) by:

(a) If wj < Blb, then go to Step 4.

(b) Otherwise, let j = j+1, secure)(jwK by

)(jwK ≡ ()(1−jwK \{)(jj wlk })∪ {)(jj wlk +1}

and go to Step 3(a).

4. Use the Bounds Locating Procedure in §3.4 to

secure the upper and lower bounds, i.e., μB

and λB , respectively.

5. Secure the local optimum (if it exists) for each

interval (wj+1, wj)∈ [λB , μB] by:

(a) Locate the junction point

}max{arg
u

Bwj i ≤= .

(b) Employ the Location checking condition

in §3.5 to check: if))((jwKB (
(

∈(wj+1,

wj), then let l= l+1, lB
(

=))(~(jwKB
(

,

and compute TCGI (lj BwK
(

),(~).

(c) Set j = j +1 and check: if wj < λB , then

go to Step 6; otherwise, go to Step 5(b).

6. Secure the global optimal solution by

(*
GIK , *

GIB)= minarg
l

{TCGI()(jwK , lB
(

)}.

 (16)

36

and stop.

Recall that the complexity of the JP Locating

Procedure and the JP Sorting Procedure is bounded

by O(nvmax) and O(nvmaxlog nvmax), respectively. The

complexity of Steps 3 and 4 is also bounded by

O(nvmax). The number of iterations in the loop of

Step5 is less than ∑ +i iv)1(, and is surely less than

nvmax. Therefore, the complexity of the global

optimum search algorithm is bounded by O(nvmaxlog

nvmaxx).

4. A Numerical Example

In this section, we present a numerical example

to demonstrate the implementation of the proposed

Global Optimum Search algorithm. In the Table 3,

we present the set of parameters used in this

numerical example. Part of the data also show in

Example 6 of Elmaghraby (1978).

Table 3: The set of parameters used in this numerical example

Product 1 2 3 4 5 6 7 8 9 10

Minor setup cost 33600 16800 4800 7200 14400 24000 72000 14400 13200 84000

Holding cost 0.095 0.0235 0.0065 0.022 0.023 0.075 0.1055 0.014 0.0625 0.2955

Demand 900 720 420 30 210 210 4500 2100 900 900

Major setup cost
6250

1. Secure all the junction points of TCGI function

by the JP Locating Procedure as shown in Table

1. Then, we sort all the junction points by the JP

Sorting Procedure.

2. A candidate for the upper bound of the search

range is secured by 1
μB = *

ccT =24.7009.

(a) We note that *
ccT = 24.7009∉(1w ,∞) =

(104.4466,∞).

(b) The largest junction point less than 1
μB is

secured at w11=24.091. Also,

i. The set of optimal multipliers at
*

ccT ,)(*
ccTK , is secured by

{1,2,2,6,3,2,1,1,1,1}.

ii. Set)(11wK ≡

()(*
ccTK \{)(1111 wlk })∪ {)(1111 wlk +1}

which is given by

{1,2,3,4,3,2,1,1,1,1}.

3. Secure the set of optimal multipliers for the

convex intervals (wj+1, wj) ∈ (Blb, 1
μB) =

(0.5312, 24.7009). In this step, we totally review

935 convex intervals.

4. Use the Bounds Locating Procedure in §3.4 to

secure the upper and lower bounds. They are

given by λB =5.0078 (the 92nd junction point)

and μB =22.1313 (the 15th junction point),

respectively.

5. Secure the local optimum (if it exists) for each

interval (wj+1, wj) ∈ [λB , μB]. All the local

minima secured are summarized in Table 4.

6. A global optimal solution is secured at
*
GIB =14.9114 and *

GIK is given by

{2,3,4,10,5,4,1,2,2,2}. The optimal total cost is

given by $22432.46.

37

Originally, we have to search totally 946

junction points. By securing a candidate on the

search range, namely *
ccT , we can skip (the

largest) 10 junction points. Furthermore, by utilizing

the derivative information, we shorten the search

range from (0.5312, 24.7009) to (5.0078, 22.1313).

This action leads to only 78 possible local minima to

be checked. Consequently, it reduces significantly the

run time for the search scheme.

Table 4: The Search Process of the Global Optimum Search Algorithm

(wj+1,wj) k0 k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 lB
(

 TCPoT (lB
(

)
[19.8238, 22.1313] 1 1 2 3 7 4 3 1 2 1 1 21.2856 22445.06
[19.7386, 19.8238] 1 2 2 3 7 4 3 1 2 1 1 19.7388 22501.68
[18.1926, 19.7386] 1 2 2 3 8 4 3 1 2 1 1 19.7274 22501.68
[15.3188, 15.5700] 1 2 3 4 10 5 4 1 2 1 2 15.4952 22439.14
[14.0981, 15.3188] 1 2 3 4 10 5 4 1 2 2 2 14.9114 22432.46*
[10.3188, 10.8266] 1 3 4 6 14 7 5 2 3 2 2 10.5447 22612.63
[9.1502, 9.5346] 1 3 5 6 16 8 6 2 3 2 3 9.1826 22490.33
[6.5060, 6.5665] 1 4 7 9 23 12 8 3 5 3 4 6.5305 22778.11
[6.2869, 6.5060] 1 4 7 9 23 12 9 3 5 3 4 6.5012 22778.26
[6.2508, 6.2539] 1 5 7 9 24 12 9 3 5 4 4 6.2516 22794.09
[6.1824, 6.2508] 1 5 7 10 24 12 9 3 5 4 4 6.2469 22794.09
[5.0078, 5.0276] 1 6 9 12 29 15 11 4 6 4 5 5.0258 23083.62

5. Concluding Remarks

This paper fulfills two research gaps in the

study of the Joint Replenishment Problem (JRP).

First, our study presents several important results on

the optimality structure of the JRP under General

Integer (GI) policy. For instance, Proposition 1

asserts that TCGI(B) function is a piece-wise convex

function of B. Also, we have thorough discussion on

the properties of the junction points on the TCGI(B)

function in Section 2.

Second, we propose an efficient search

algorithm that always secures the global optimal

solution for the JRP under GI policy in Section 3. In

our search algorithm, we use simple, but powerful

bounds that significantly shorten the search range.

Also, we utilize the junction points on the TCGI(B)

function, to efficiently secure all the local minima in

the search range.

Our search algorithm is the first solution

approach in literature that always secures the global

optimal solution though many heuristics have been

derived for the JRP. Also, the theoretical results in

this paper shall establish an important foundation for

those lot sizing and scheduling problems.

Acknowledgement The authors would like to

thank the National Science Council, Taiwan,

Republic of China for its support (grant

NSC-89-2213-E-029-029).

6. Appendix

6.1 Proof for Proposition 1
Proof. The first term in the TCGI(B) function, i.e.,

Bk
A

0
, is a convex function. The second term,

i.e.,)(1 BTCi
n
i∑ = , is a piece-wise convex function

since it is the sum of n piece-wise convex functions

by Remark 1. Since the TCGI(B) function is the sum

of a convex function and a piece-wise convex

function, it is obvious piece-wise convex. ■

38

6.2 Proof for Lemma 1
Proof. By equation (9),

)1()2(...)()1(...)(iiiii jjv i δδδδδ <<<<+<<

(17)

where iv is an upper bound on ki (discussed in §

2.4). Denote as *
ik (B) the optimal multiplier for

)(BTCi at a given B. Because of ineq. (17) and the

convexity of),(BkTC ii , one asserts that

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−=+∈+
∞∈

=
1,...,1)),(),1([,1

)),1([,1
)(

iii

i
i vjforjjBifj

Bif
Bk

δδ
δ

(18)

Equation (18) exactly states that)(L
ik =)(R

ik +1. ■

6.1 Proof for Proposition 2
Proof. Recall that the function TCGI is a separable

function where TCGI(B)= ∑ =+ n
i i BTC

Bk
A

1
0

)(where

k0=1. Without loss of generality, assume that w is a

junction point for a product i, but not a junction point

for the other (n-1) products. Then, there must exist

0>ε such that the followings hold.

1. the curve for ∑
≠ij

j BTC)(is convex in the

interval of],[εε +− ww since each one of

)(BTC j is convex in],[εε +− ww

where ij ≠ ,

2.)(BTCi is convex in the intervals of],[ww ε−

and],[ε+ww .

3.
Bk

A

0
 is convex in the intervals of],[ww ε−

and],[ε+ww .

Since TCGI(B) =
Bk

A

0
+)(BTCi + ∑

≠ij
j BTC)(,

TCGI(B) is still convex in the intervals],[ww ε−

and],[ε+ww . Therefore, w is a junction point on

the curve of TCGI(B). ■

6.4 Proof for Proposition 3

Proof. For any given set of { ik }, one may secure its

local minimum, })({ ikB
(

, by (1) securing the

derivative of the TCGI(B) function w.r.t. B, and (2)

equating it to zero. })({ ikB
(

is given by eq. (19) as

follows.

∑

∑

=

=
+

= n

i
iii

n

i i

i

i
kdh

k
aA

kB

1

1

)(

)(2
})({

(
 . (19)

It is obvious that *})({
cc

TkB i ≤
(

 since ik ≥ 1 for

all i. Therefore, there exists no local minima for B

> *
ccT .■

References
1. Aksoy, Y. and Erenguc, S. (1988), “Multi-item

inventory models with coordinated

replenishments: A survey”, International

Journal of Production Management, Vol. 8, pp.

63-73.

2. Arkin, E., Joneja D., Roundy, R. (1989),

“Computational complexity of uncapacitated

multi-echelon production planning problems”,

Operations Research Letters, Vol. 8, pp. 61-66.

3. Elmaghraby, S.E. (1978), “The economic lot

scheduling problem (ELSP): review and

extension”, Management Science, Vol. 24, pp.

587-597.

4. Goyal, S.K. (1973a), “ Determination of

economic packaging frequency for items jointly

replenished”, Management Science, Vol. 20, No.

2, pp. 232-235.

5. Goyal, S.K. (1973b), “Economic packaging

frequency for Items jointly replenished”,

Operations Research, Vol. 21, pp. 644-647.

39

6. Goyal, S.K. (1974a), “Optimum ordering policy

for a multi item single supplier system”,

Operational Research Quarterly, Vol. 25, No. 2,

pp. 293-298.

7. Goyal, S.K. (1974b), “Determination of

optimum packaging frequency of items jointly

replenished”, Management Science, Vol. 21, No.

4, pp. 436-443.

8. Goyal, S.K. (1988), “Determining the optimal

production-packaging policy for jointly

replenished items”, Engineering Costs and

Production Economics, Vol. 15, pp. 339-341.

9. Goyal, S.K. and Belton, A.S. (1979), “On a

simple method of determining order quantities

in joint replenishments under deterministic

demand”, Management Science, Vol. 26, Iss. 6,

pp.604.

10. Goyal, S.K., Satir, A.T. (1989), “Joint

replenishment inventory control: deterministic

and stochastic models”, European Journal of

Operational Research, Vol. 38, pp. 2-13.

11. Graves, S.C., (1979), “On the deterministic

demand multi-product single-machine lot

scheduling problem”, Management Science, Vol.

25, No. 3, pp. 276-280.

12. Hanssmann, F., Operations Research in

Production and Inventory (New York City:

Johnson Wiley & Sons), pp. 158-160 (1962).

13. Jackson, P., Maxwell, W. and Muckstadt, J.

(1985), “The joint replenishment problem with

a powers-of-two restriction”, IIE Transactions,

Vol. 17, No. 1, pp. 25-32.

14. Kaspi, M. and Rosenblatt, M.J. (1983), “An

improvement of silver’s algorithm for the joint

replenishment problem”, IIE Transactions, Vol.

15, pp. 264.

15. Nocturne, D.J. (1973), “Economic ordering

frequency for several items jointly replenished”,

Management Science, Vol. 19, No. 9, pp.

1073-1099.

16. Shu, F.T. (1971), “Economic ordering frequency

for two items jointly replenished”, Management

Science, Vol. 17, No. 6, pp. B406-B410.

17. Silver, E.A. (1976), “A simple method of

determining order quantities in jointly

replenishments under deterministic demand”,

Management Science, Vol. 22, No. 12, pp.

1351-1361.

18. Stevenson, and William. J. (1993),

Production/Operations Management, 4th ed.,

Homewood, IL: Irwin.

19. van Eijs, M.J.G. (1993), “A note on the joint

replenishment problem under constant demand”,

Journal of Operational Research Society, Vol.

44, pp. 185-191.

20. Viswanathan, S. (1996), “A new optimal

algorithm for the joint replenishment problem”,

Journal of Operational Research Society, Vol.

47, pp. 936-944.

21. Wildeman, R.E., Frenk, J.B.G., Dekker, R.

(1997), An efficient optimal solution method for

the joint replenishment problem. European

Journal of Operational Research, Vol. 99,

433-444.

