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ABSTRACT 
 
This study performs theoretical analysis on the Joint Replenishment Problem (JRP) under General-Integer (GI) 

policy. The JRP models concern how to determine lot sizes and to schedule replenishment times for products so 

as to minimize the total costs per unit time. GI policy requires replenishment frequency of each product, denoted 

by ki, to be a general integer, i.e., ki = 1, 2, 3, …. In this study, we utilize a 10-product example to graphically 

present the curve of the optimal total cost with respect to the values of basic period. Under GI policy, we 

discover an interesting property on the optimal curve for the JRP, and we prove that the optimality structure of 

the JRP is piece-wise convex. By making use of the junction points in the optimality structure, we derive an 

effective (polynomial-time) search algorithm to secure a global solution for the JRP under GI policy. Evidently, 

we provide a numerical example to demonstrate the efficiency of the proposed algorithm. 
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1. Introduction 
 
1.1 Background and problem description 
 
The Joint Replenishment Problem (JRP) is concerned 

with the determination of lot sizes and schedule of n 

products in single-facility production/inventory 

systems over an infinite (and continuous) planning 

horizon. 

 

The objective of the JRP is to minimize the 

total costs incurred per unit time. The costs 

considered generally include setup costs and 

inventory holding costs. For each product i, its 

annual demand di is fixed (and continuous), and each 

unit incurs of holding cost hi each year. The JRP 

assumes that the single facility has infinite capacity, 

and therefore, the replenishment for each product is 

instantaneous. Also, in the JRP, a product must be 

packaged immediately after it is manufactured by the 

production facility. Therefore, no holding cost incurs 

for the raw material. On the other hand, two types of 

setup costs are considered in the JRP: 

 

1. A major setup cost, denoted by A, incurs 

whenever the production facility sets up to 

jointly replenish a subset of products.  

2. A minor setup cost ai is incurred while 

each product i is replenished 

(manufactured and packaged).  

We note that major and minor setup costs are 

usually independent of the quantities of the products 

jointly replenished.  

 

For decision makers facing the JRP, an 

intuitive move is to jointly replenish many products 

in each major setup to share the major setup cost so 

as to minimize the average total costs. Therefore, the 

focus of the JRP is to coordinate the replenishment 

schedule of each product i to economically share 

major setup cost, and balance the holding costs from 
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the inventory of jointly replenished products.  

 

In general, companies invest about 30% of 

their current asset and 90% of their operational 

capital on the inventories (i.e., raw materials, 

purchased parts and work-in-process, etc.; see 

Stevenson 1993). Major setups often incur significant 

setup times and costs in certain industries; for 

instance, pharmaceutical, chemical processes, and 

textile companies. If the executive managers may 

effectively apply the concept of the JRP in their 

production/inventory systems, they could joint the 

replenishment schedule of the products to 

satisfactorily meet customers’ demand and 

importantly, reduce significant cost in the meanwhile.  

 

The solution approaches for the JRP usually 

assume that each product i is replenished after a fixed 

cycle, denoted by Ti where Ti is the length of time 

between two consecutive minor setups for product i.  

 Most of early studies assume that Ti is equal to 

a positive integer ki times B, i.e., Ti= ki B, where B is 

a basic period in the production planning horizon. 

Also, it is usually assumed that the replenishment 

frequency for major setup, denoted by k0, is always 

set to 1 in the JRP. In order to secure the optimal 

solution, one must simultaneously determine the 

value of B and the set of optimal (integer) multipliers 

{ki: i = 1, 2, …, n} in the JRP. One may refer to 

Goyal and Satir (1989) as well as Aksoy and Erenguc 

(1988) for the details on the problem definition and 

the early studies of the JRP.  

 

 Based on the assumptions discussed above, the 

mathematical model for the JRP is formulated as 

follows.  
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subject to  { } .1 ,,3,2,1 0 =∈ kki L    (1b) 

 

 The subscript GI in the objective function 

TCGI({ki},B) indicates that the JRP model is 

formulated under General Integer (GI) policy, which 

is expressed by constraint (1b). GI policy requires 

that all the ki’s must be positive integers. Therefore, 

the JRP model in (1) is a nonlinear, integer problem.  
 

1.2  Literature survey 

 
Arkin, Joneja, and Roundy (1989) proved that the 

JRP is a NP-hard problem, i.e., the JRP is not 

solvable by polynomial-time algorithms. The JRP 

has been studied for some thirty years. Extensive 

research efforts have been addressed to attempt 

efficient heuristics for solving the JRP. 

 

Early, Shu (1971), Nocturne (1973) and Goyal 

(1973a) pioneered the research for the JRP. They 

solved the JRP by simply dividing the products into 

only two groups. Shu (1971) and Nocturne (1973) 

solved the JRP using graphical heuristics. Goyal 

(1973a) introduced another simple heuristic that tries 

to secure B*, the optimal value of B, by the first 

derivative of TCGI({ki},B) and used simple rule to 

decide k1
* and k2

* where k1
* and k2

* are the optimal 

replenishment frequencies for those two groups. 

 

 Goyal (1973b) initiated the research to derive 

heuristics for the JRP that divide n products into 

more than two groups. Goyal (1974a, b) proposed an 

enumeration approach, and he claimed that it always 

secure a global optimal solution (though without 

proof). The essence of his enumeration approach is as 

follows. Enumerate B and ki for each product i so as 

to satisfy both of the following conditions:  

 

TCGI (ki(B),B) ≤ TCGI (ki(B)+1,B)    (2a) 
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TCGI (ki(B),B) < TCGI (ki(B)-1,B).    (2b) 

 

Later, Goyal (1988) and van Eijs (1993) 

presented examples that showed that the conditions 

in (4) are not sufficient conditions for securing a 

global optimal solution for the JRP. Meanwhile, van 

Eijs (1993) derived another algorithm that improves 

efficiency of Goyal’s (1974b) algorithm. The 

shortcoming for this category of solution approaches 

is that one needs tremendous search efforts to 

enumerate between the upper and lower bounds on B. 

The run time of these approaches grows 

exponentially with the number of products. If there 

are more than 10 products in the JRP, extremely long 

run time make these enumeration approaches 

impractical. To address to this concern, Viswanathan 

(1996) derived some theoretical results that shorten 

the range between the upper and lower bounds on B. 

Viswanathan also presented an efficient algorithm 

that usually secures a “reasonable good” solution 

with a very shorter run time. 

 

 Another category of the solution approaches 

for the JRP are non-iterative procedures. First, Silver 

(1976) derived some analytical properties for the JRP 

under the assumption that all the ski
'  are 

continuous variables. Then, he solved the optimal 

multipliers *
ik ’s in closed-form. The three steps in 

Silver’s procedure are: (1) Set as product number 1 

for the product with the minimal value of .
ii

i
dh

a  (2) 

Secure *
ik  by (a) computing a value of ki by 

1

11
aA
hd

hd
a

i ii

ik += , and (b) rounding the value of ki to 

the nearest positive integer. (3) Secure the optimal 

value of B using the { *
ik } secured from the second 

step. Goyal and Belton (1979) suggested to improve 

Silver’s procedure by changing the criterion value (of 

picking product 1) from 
ii

i
hd

a  to 
ii

i

hd
aA+ . They 

provided an example that shows their modified 

procedure secures a better solution than Silver’s 

procedure. Later, Kaspi and Rosenblatt (1983) 

brought another example to demonstrate that Goyal 

and Belton’s procedure secures a poorer solution than 

Silver’s. In order to improve Goyal and Belton’s 

solution, Kaspi and Rosenblatt (1983) suggested to 

recalculated {ki} and B after Goyal and Belton’s 

procedure secures its solution. Based on similar 

philosophy, Jackson, Maxwell and Muckstadt (1985) 

derived some interesting theorems on the optimal 

grouping for the products using 
ii

i
hd

a  as the criterion 

value. 

 

1.3 The motivation to study the JRP 

under PoT policy 

 
In literature, few research efforts have been 

addressed to explore the optimal structure of the JRP 

in literature. And, to the best of the authors' 

knowledge, no solution approach is able to guarantee 

to secure an optimal solution for the JRP. 

 

Before our study, we found only two papers 

that tried to explore the optimal structure of the JRP. 

In Viswanathan's (1996) paper, he implies that the 

optimal objective value of the JRP is piece-wise 

convex on B, though he did not bring the proof for 

this assertion. Also, since his theoretical results 

provide insufficient information to reveal the 

overview for the optimal structure of the JRP (under 

GI policy), Viswanathan's solution approach secures 

only an approximate solution (that is close to the real 

optimal solution.) Besides, Wildeman et al. (1997) 

did some decent studies on a relaxed version of the 

JRP in which they replaced ki∈ {1, 2, …} in (1b) 

with 1≥ik and ℜ∈ik for all i =1, 2,… , n. By 

utilizing their theoretical results, they derived tight 

upper and lower bounds on the search range. They 
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proposed to use a dynamic Lipschitz optimization 

procedure to secure an approximate solution. But, 

neither Viswanathan (1996) nor Wildeman et al. 

(1997) guarantees that their algorithm is able to 

secure a global optimal solution. 

 

To fulfill the research gap discussed above, we 

would like to investigate the optimality structure of 

the JRP. Also, based on the optimality structure of 

the JRP, we derive an effective search algorithm that 

is able to secure a global optimal solution in this 

paper. 

 

The rest of this paper is organized as follows. 

In Section 2, we will present a full theoretical 

analysis on the optimal cost function for the JRP. 

Based on the theoretical results in Section 2, we 

derive an effective search algorithm to secure a 

global solution for the JRP under GI policy in 

Section 3. Evidently, we provide a numerical 

example to demonstrate the efficiency of the 

proposed algorithm in Section 4. Finally, we address 

our concluding remarks in Section 5. 

 

2. Theoretical Analysis on the Optimal  

Cost Function 

 
In this section, we first discuss some remarks and 

propositions to provide insights into the TCGI 

function. Next, we introduce the “junction points” in 

the curve of the TCGI function and demonstrate how 

to efficiently locate the junction points of the TCGI 

function. These junction points assist us in securing 

the set of optimal multipliers for each given value of 

B that facilitates the derivation of the search 

algorithm presented in Section 3. 

 

Under GI policy, the cost expression for a 

product i, is,  

TC i (ki, B) = Bkdh
Bk

a
ii

i

i

i

2
+    (3) 

where ki  ≥ 1 ; ki : integer, i = 1, 2, …, n. For a given 

B, one may secure the optimal multiplier ki so as to 

TCi(ki,B). We denote it as TCi(B), the minimum cost 

function with respect to B for product i, i.e.,   

TC i (B) = 
ik

min {TC i (ki, B)}.   (4) 

 

2.1 Some insights into the optimal cost 

function 

 
Denote TCGI (B) as the optimal cost function of the 

JRP at a given B, i.e., TCGI(B)= 

∑
=

+
n

i
iGI BTC

Bk
A

1
,

0

)(  where k0 =1. We use the data 

in Section 4 to plot the optimal cost curve of the 

TCi(B) function with respect to B for products 1 and 

2 in Figure 1. Importantly, Figure 1 shows an 

interesting property on the TC i (B) function as 

follows. The following theoretical results provide us 

some insights into the TCGI function. 
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Figure 1 : The local minimum cost function of products 1 and 2 
 
 
 
 

Remark 1 TC i (B) function is piece-wise convex 

with respect to B (since it is easy to verify that 

0)(
2

2

>
∂

∂
B

BTCi , for a given ki.)  

 

Remark 2 For each ki, one can secure the minimum 

cost for product i, TCi (ki, B), at  

B = 
ii

i

i
ii dh

a
k

k 21)( =λ      (5) 

with the minimum cost value of  

iiiiBi dhaBTC 2)}({min ==Υ .   (6)  

The minimum cost iΥ is exactly the  EOQ foumula 

and iΥ  is, in fact, independent of ki and B. 

 

The following proposition shows the optimality 

structure of the JRP. 

 

Proposition 1 The TCGI(B) function is piece-wise 

convex with respect to B. 

Proof. The proof is presented in Appendix 6.1. ■ 

 

Again, we employ the data in Section 4 to 

demonstrate this comment in Figure 2. One may also 

observe that the term raises the left-tail of TCGI(B) 

function as the values of B decrease. 
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Figure 2: The optimal value for the TCGI(B) function. 

 
2.2 The junction points on the optimal 

cost function 

 
Next, we introduce the “junction points” on the curve 

of the TCGI function. Recall that the TC i (B) function 

is piece-wise convex. We define a junction point for 

the TC i (B) function as a particular value of B where 

two consecutive convex curves concatenate. These 

junction points determine at ‘what value of B’ where 

one should change the multiplier of ‘what product i’ 

from ki (= j) to ki ( = j+1) so as to secure the 

minimum value for TC i (B) function. 

 

By equation (3), we define the difference 

function ),( BkiiΔ by  

≡Δ ),( Bkii TCi(ki+1, B) － TC,i (ki, B)    (7) 

= Bdh
Bkk

a ii

ii

i

2)1(
+

+
− .     (8) 

By Figure 1, one observes that the value of 

),( BkiiΔ  grows from negative to positive, and 

reaches zero at  

ii

i

ii
ii dh

a
kk

k 2
)1(

1)(
+

=δ      (9) 

where )( ii kδ  is named as the junction point for the 

multipliers ki and ki +1 of product i. More specifically, 

)( jkii =δ  is the jth junction point of product i 

where +ℵ∈j . Therefore, the junction point )( jiδ  

provides us the information that one should choose 

jki = for B ≥ )( jiδ  and choose 1+= jki , vice 

versa, to secure a lower value for the TCi(B) function. 

In other words, if the value j is the optimal multiplier 

for B ≥ )( jiδ , one should replace jki = with 

1+= jki as the optimal multiplier for product i at 

the junction point )( jiδ  if one searches from 

higher values to lower values of B. 

 

Remark 3 For a product i,  

  δi(ki) = 1+i

i

k
k

λi(ki)  (10) 

prescribes the relation between a local minimumλ

i(ki) (defined in eq. 5) and the next junction point δi(ki) 

(defined in eq. 9) belowλi(ki). 

 

2.3 The location of the junction points 

 
 By plugging ki (using general-integer values) in 

equation (9) for all n products, one secures all the 

junction points. Again, we use the 10-product 

example in Section 4 to illustrate our discussion on 
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the junction points. We sort all the junction points in 

descending order and list only those junction points 

that are less than *
ccT  =24.7009 in Table 1 where 

*
ccT  is expressed in eq. (11). 

Table 1 in fact reveals an overview of our 

proposed search scheme. It shows that one can make 

use of difference calculation not only to locate all the 

junction points, but also to indicate ‘which product i’ 

should replace its optimal multiplier ki by ki +1. The 

following theoretical results on the junction points 

provide strengthen foundation for such a search 

scheme. 

 
Lemma 1 Suppose that ki

(L) and ki
(R), respectively, are 

the optimal multipliers of the left-side and right-side 

convex curves with regard to a junction point in the 

plot of the TC,i(B) function. Then, ki
(L) = ki

(R) + 1. 

Proof: The proof is presented in Appendix 6.2. ■ 

 
Proposition 2 All the junction points for each 

individual product i, will be inherited by the TCGI(B) 

function. In other words, if w is a junction point for a 

product i, w must also show as a junction point on the 

piece-wise convex curve of the TCGI(B) function. 

Proof: The proof is presented in Appendix 6.3. ■ 

Theorem 1 is an immediate result of Lemma 1 and 

Proposition 2. 

 

Theorem 1 Suppose that K(L) and K(R), respectively, 

are the set of optimal multipliers for the left-side and 

right-side convex curves with regard to a junction 

point in the plot of the TCGI(B) function. Then, there 

is one and only one product i such that ki
(L) = ki

(R)+1. 

 

From another point of view, Theorem 1 provides an 

important implication: namely, the set of optimal 

multipliers for the TCGI(B) function is invariant 

between each pair of consecutive junction points.

 

Table 1: The location of the junction points that are less than 1B
(

 

Obs. Where on B-axis How to change ki Obs. Where on B-axis How to change ki 
0 24.4339 Tcc 23 12.3150 k7: 1  2 
1 24.2091 k3: 2  3 24 11.9151 k5: 6  7 
2 22.7921 k4: 6  7 25 11.8262 k4: 12  13 
3 22.5374 k6: 2  3 26 11.4453 k1: 2  3 
4 22.2911 k5: 3  4 27 10.9490 k4: 13  14 
5 22.1313 k8: 1  2 28 10.8266 k3: 5  6 
6 19.8238 k1: 1  2 29 10.3188 k5: 7  8 
7 19.7386 k4: 7  8 30 10.2607 k10: 2  3 
8 18.1926 k2: 2  3 31 10.1929 k4: 14  15 
9 17.7721 k10: 1  2 32 10.0791 k6: 5  6 

10 17.4078 k4: 8  9 33 9.9645 k2: 4  5 
11 17.2666 k5: 4  5 34 9.5346 k4: 15  16 
12 17.1184 k3: 3  4 35 9.1502 k3: 6  7 
13 15.9364 k6: 3  4 36 9.1003 k5: 8  9 
14 15.5700 k4: 9  10 37 9.0351 k8: 3  4 
15 15.3188 k9: 1  2 38 8.9562 k4: 16  17 
16 14.0981 k5: 5  6 39 8.8443 k9: 2  3 
17 14.0836 k4: 10  11 40 8.5184 k6: 6  7 
18 13.2599 k3: 4  5 41 8.4440 k4: 17  18 
19 12.8641 k2: 3  4 42 8.1396 k5: 9  10 
20 12.8565 k4: 11  12 43 8.1360 k2: 5  6 
21 12.7775 k8: 2  3 44 8.0930 k1: 3  4 
22 12.3443 k6: 4  5 45 7.9872 k4: 18  19 
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2.4 Locate all the junction points 
 

Before locating all the junction points, one needs to 

know how many junction points shall be located for 

each product. This question leads to the problem of 

finding an upper bound on ki. In fact, the lower 

bound on the value of B determines the upper bound 

on ki. Suppose that iv  is an upper bound on the 

value of ki. Then we need to locate iv  junction 

points for product i.  

 

2.4.1  Find an upper bound on ki  
  

Under GI policy, a simple upper bound on ki can be 

derived from the Common Cycle (CC) approach and 

the independent solution (which is denoted by IS, and 

it is expressed in eq. 6). 

 

Hanssmann (1962) proposed the Common Cycle (CC) 

approach to solve the Economic Lot Scheduling 

Problem (ELSP). Recall that the CC approach is a 

special case in which it assumes that Ti=T (or ki=1) 

for all i, i.e., all the products share the same cycle. 

Graves (1979) commented that one can consider the 

JRP as a special case of the ELSP where the major 

setup may be regarded as an additional product 0 

with no demand or production requirements. 

 

The optimal solution of the CC approach is a 

well-known upper bound on the objective function of 

the conventional ELSP. Therefore, we may use the 

cost of the CC approach, denoted by TCcc, as an 

upper bound on the objective function of the JRP. 

Denote as *
ccT  the optimal solution for the CC 

approach. Then, one may easily secure *
ccT  by the 

following expression. 

}
)(2

max{

1

1*

∑

∑

=

=
+

= n

i
ii

n

i
i

cc
dh

aA
T    

 (11) 

 

Let IS(n-{i}) = ∑ ≠=
n

ijj jjj dha,1 2 Then, an upper 

bound on the average cost of product i is obtained by 

TCcc-IS(n-{i})- B
A , and we have 

TCi(ki,B)= Bkdh
Bk

a
ii

i

i

i

2
+ ≤  TCcc-IS(n-{i})- B

A . 

Thus, for a given B, an upper bound vi(B) on ki  is 

obtained by  

vi(B)= 

( )
⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢

⎢

⎡ −−−−+−−−

Bdh
dhainISTCinISTC

ii

iiiB
Acc

B
Acc 2}){(}){(

2

 

(12) 

By plugging in (12) a lower bound value on B, 

denoted by Blb, one secures an upper bound iv on ki. 

 

The next task is to determine Blb, a lower bound on B 

for the search range in the JRP. Many researchers 

addressed their efforts on narrowing the search range 

in the solution algorithms for the JRP. (Please refer 

to Section 1 for references.) van Eijs (1993) proposed 

that Blb = 
2A

TCU  where TCU is an upper bound on 

the objective value of the JRP.  van Eijs derived 

another upper bound on the objective value of the 

JRP other than TCcc. Based on our experience, van 

Eijs' bound is usually looser than TCcc, our upper 

bound by the CC  approach. Therefore, we secure 

our lower bound on B by Blb =
2A

TCU  and the upper 

bound v v A
TC

i i cc= ( )2
 on ki is determined 

accordingly. 
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2.4.2 The junction points locating procedure 
 

We utilize the theoretical results presented above and 

propose an efficient procedure, viz., the Junction 

Point (JP) Locating Procedure, to locate all the 

junction points of the TCGI function as follows. 

 

The JP Locating Procedure: 

for i = 1, …, n 

 Compute vi  on ki by eq. (12).  

 Set found = 0 and j = 0. 

 while found = 0 

  ki = j. 

  Compute
ii

i

ii
ii dh

a
kk

k 2
)1(

1)(
+

=δ . 

(refer to equation (9) for details). 

j = j+1. 

  if j > vi, then found = 1;  

endwhile 

endfor 

 

Let vmax ≡ maxi{ iv +1}. Since the junction points are 

no more than nvmax, i.e., max
1

}1{ nvv
n

i
i ≤+∑

=

. 

Therefore, the complexity of the JP Locating 

Procedure is bounded by O(n vmax). 

 

By substituting ki = 1, 2, 3, ..., 6 into the eq. (9), 

we enumerate the computing results for the 

10-product example in Section 4 in Table 2. One may 

compare Table 2 with the sorted sequence in Table 1. 

For example, when the search started from 

w1=104.4466 where one should change k4 = 1 to k4 = 

2 for product 4. The algorithm continues its search 

and changes k4 = 2 to k4 = 3 at the next junction point 

B = 60.3023. 

 

2.5 The K-GI Search Procedure 

 
In this section, we present an efficient procedure to 

secure the set of optimal multipliers at a given value 

of B, which is denoted as KGI(B). Proposition 2 

provides an easier way to secure each ki ∈KGI(B) by  

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

−
≤<

+

>
=

ii

i

ii

i

ii

i

i

dh
a

mm
B

dh
a

mm
m

dh
aB

Bk
2

)1(
12

)1(
1,

,1
)(

 

(13) 

 

Therefore, for any B, one can secure KGI(B) using the 

K-GI Search Procedure as follows. 

The K-PoT Search Procedure: 

for i = 1, ..., n 

Set found = 0 and m = 1. 

 if B >
ii

i

dh
a

, then found = 1. 

 while found = 0 

  m ← m+1. 

  if B >
)1(

1
+mm ii

i

dh
a2

 

, then found = 1. 

 endwhile 

 Set ki(B) = m. 

endfor 
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  Table 2: The junction points for the TCGI function in the example 
 
 
 
 
 
 
 
 
 
 
 

 
3. A Global Optimum Search Algorithm
In this section, we present a search scheme which 

secures the global optimal solution for the JRP. The 

search scheme secures the global optimum since it is 

able to locate all the local minima (which, in turn, 

depends on the junction points) of the TCGI(B) 

function. Recall that Blb = 
2A

TCcc is the lower bound 

on the value of B for the JRP. (Please refer to §2.4.1.) 

The overview of our search scheme is summarized as 

follows. 

1. Secure all the junction points, and sort them in a 

descending order. 

2. Utilize *
ccT  in eq. (11) as the first upper bound 

of the search range. 

3. Secure the set of optimal multipliers for each 

convex interval in (Blb,
*

ccT ). 

4. Utilize the derivative information on the TCGI (B) 

to further shorten the search range, and secure a 

pair of tighter upper and lower bounds of the 

search range, which are denoted by μB and λB , 

respectively. 

5. Secure the local optimum (if it exists) for each 

convex interval in the search range [ λB , μB ] . 

6. A global optimal solution is secured by picking 

the best solution among all the local minima 

secured in [ λB , μB ] . 

 

We have detailed discussion on each step of our 

search scheme in the following subsections. 

 
3.1 The JP Sorting Procedure 
 
Recall that each junction point δi(ki) provides the 

information that one should change the optimal 

multiplier of item i from ki  to ki +1 at δi(ki) to secure 

the optimal value for the TCi(B) function. We show 

the JP Sorting Procedure as follows. 

The JP Sorting Procedure: 

1. Input all the junction point {δi(ki)|i=1,…,n} of the 

TCGI(B) function (secured by the JP Locating 

Procedure). 

2. Generate an array of ordered pairs by inputing the 

first element of each order pair is the location (i.e., 

the value of B) of the junction point and the 

second element is the identity of the product i. 

3. Use the location as the key field, and sort the 

ordered-pair array secure in Step 2 in descending 

order. 

 

Denote by {wj} the sequence of junction points 

generated by the JP Sorting Procedure where wj+1 < 

wj, j =1, 2,···. Another sequence of product indices, 

denoted by {ιj(wj)}, is generated accordingly to 

correspond to the wj’s. We now have in hand an array 

of (sorted) pairs {(wj, ιj(wj))}. 

 

Product i ki = 6 ki = 5 ki = 4 ki = 3 ki = 2 ki = 1 
1 4.3259    5.1185    6.2688    8.0930    11.4453 19.8238 
2 6.8761    8.1360    9.9645    12.8641   18.1926   31.5104 
3 9.1502    10.8266   13.2599   17.1184   24.2091   41.9314 
4 22.7921   26.9680   33.0289   42.6401   60.3023   104.4466 
5 11.9151   14.0981   17.2666   22.2911   31.5244   54.6019 
6 8.5184    10.0791   12.3443   15.9364   22.5374   39.0360 
7 2.6873    3.1797    3.8943    5.0276    7.1101    12.3150 
8 4.8295    5.7143    6.9985    9.0351    12.7775   22.1313 
9 3.3428    3.9553    4.8442    6.2539    8.8443    15.3188 

10 3.8782    4.5887    5.6200    7.2554    10.2607   17.7721 
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Since the JP Sorting Procedure sorts all the 

junction points, of which there are at most nvmax, its 

complexity is bounded by O(nvmaxlog nvmax). 

 
3.2 The first upper bound 
 
Recall that the search scheme needs to locate all the 

local minima of the TCGI(B) function by securing the 

local minimum candidate that exists in each convex 

interval. In order to reduce the run time of the search 

scheme, we need to shorten the range of the search 

scheme. This may be achieved by skipping those 

values of B where no local minimum exists. 

 

First, Proposition 3 asserts that *
ccT in eq. (11) 

can be used to secure an upper bound of the search 

range. Recall that *
ccT  is the optimal solution for 

the CC approach that uses the set of multipliers {k0 = 

1} ∪ n
iik 1}1{ == . 

 
Proposition 3 For the TCGI(B) function, there 

exist no local minima for B > *
ccT . 

Proof. The proof is presented in Appendix 
6.4. ■ 
 

By Proposition 3, the search scheme may skip 
the junction points in ( *

ccT ,∞). Consequently, we 

may set *
ccT  as the first upper bound of the search 

range. 
 
3.3 The optimal multipliers 
 
Recall that the third step of the search scheme is to 

secure the set of optimal multipliers for each convex 

interval in [Blb, 
*

ccT ] . This step may be done by: 

1.Secure KGI(
*

ccT ), i.e., the set of optimal multipliers 

at *
ccT , by the K-GI Search Procedure in §2.5 . 

2. Starting from *
ccT , we use the ordered-pair array 

{(wj, ιj(wj))} to secure the set of optimal 

multipliers for each interval (wj+1, wj). 

 

After securing KGI(
*

ccT ), the algorithm 

searches in descending order toward lower values in 

the sequence {wj}. At each junction point wj, by 

Theorem 1, one should change one and only one 

multiplier by replacing )( jj wlk   with )( jj wlk +1 to 

update the set of optimal multipliers. Denote by 

)( jwK  the set of optimal multipliers in the interval 

(wj+1, wj). Therefore, we secure )( jwK  one by one 

by  

)( jwK ≡ ( )( 1−jwK \{ )( jj wlk })∪ { )( jj wlk +1}(14) 

for all wj ∈ (Blb, μB ) where ‘\’ denotes set 

subtraction. Recall that Theorem 1 implicates that the 

set of optimal multipliers for the TCGI(B) function is 

invariant in each convex interval (i.e., between a pair 

of consecutive junction points). Hence, this step 

actually secures the set of optimal multipliers for all 

the values of B∈ (Blb, 1
μB ). 

 
3.4 The shortened search range 
 
Next, we demonstrate how to utilize the derivative 

information on the TCGI(B) function to secure the 

upper and lower bounds of the search range, i.e.,  

μB and λB , respectively. 

 

Again, we would like to shorten the range of 

the search scheme by skipping those values of B 

where no local minimum exists. Recall that we have 

secured a candidate 1
μB = *

ccT for the upper bound of 

the search range in §3.2. Here, we hope to find 

another upper bound μB < 1
μB  to further shorten the 

search range. 

 

One may notice in Figure 2 that the TCGI(B) 

function raises rapidly as B decreases because of the 
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term for the major setup cost, i.e., 
B
A

. Also, the 

slope (i.e., the first-order derivative) of the left-tail of 

the TCGI(B) function keeps being negative upto a 

point where we denote it as λB . It implies that λB  

is the largest value of B where no local minima of the 

TCGI(B) function exist below λB . Surely, it shows 

us an opportunity to skip those values of B≤ λB , and 

λB can be considered as the lower bound on the 

search range. Similarly, we hope to find the lowest 

value of μB where TCGI(B) function keeps being 

positive for B ≥ μB and hence, no local minima of the 

TCGI(B) function exist for B ≥ μB . 

 

In order to locate λB and μB , we will check 

the derivative information of the junction points from 

Blb and 1
μB , respectively. Given a set of {ki}, the 

first derivative of the TCGI(B) function is given by  

∑
=

+
−

+
−

=
n

i

iii

i

i
iGI

kdh
Bk
a

B
ABkTC

1
22

' )
2

()},({ . (15) 

In the third step of the search scheme, we have 

secured the set of optimal multipliers for each convex 

interval (wj+1, wj)∈ (Blb, 1
μB ). We are ready to plug 

in {ki} in eq. (15) and check the value of the first 

derivative by the Bounds Locating Procedure as 

follows. 

 

The Bounds Locating Procedure: 

Set lb_found = 0, and }min{argˆ
lbj Bwjj ≥= . 

Set j = 1ˆ −j and λB = Blb . 

while lb_found = 0 

 if 0)),((' >jjGI wwKTC , 

Set j
(

= j, λB = ))(( jwKB (
(

 and 

lb_found = 1. 

otherwise, set j = j –1. 

endwhile 

Set lb_found = 0, and }max{argˆ 1
u

Bwjj j ≤= . 

Set j = 1ˆ −j and μB = 1
μB . 

while ub_found = 0  

 if 0)),((' <jjGI wwKTC , 

Set j
(

= j, λB = ))(( jwKB (
(

 and 

lb_found = 1. 

otherwise, set j = j –1. 

endwhile 

Output λB and μB , stop. 

 

The rationale behind the Bounds Locating Procedure 

is as follows. The variables wj and wj-1 are 

consecutive junction points on the TCGI(B) function. 

By Theorem 1, the set of optimal multipliers for the 

TCGI(B) function is invariant between wj and wj-1. 

Therefore, wj and wj-1 correspond to the left-hand and 

the right-hand end points for a particular piece of 

convex curve on the TCGI(B). For locating the lower 

bound λB , the condition 0)),((' >jjGI wwKTC  

checks the lowest junction point where the sign of 

the first derivative of the TCGI(B)  function changes. 

The value of ))(( jwKB (
(

 indicates the 

lowest-valued local minimum for the TCGI(B) 

function. We set the lower bound of the search range 

λB  at ))(( jwKB (
(

 since no local minima of the 

TCGI(B)  function exist below λB = ))(( jwKB (
(

. 

Similar idea applies to locate the upper bound μB , 

but the condition checks 0)),((' <jjGI wwKTC for 

the largest junction point. 

 
3.5 Secure all the local optima 
 
In this section, we introduce the condition for 

checking the existence of a local optimum in the 

interval of (wj+1, wj). 
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In the third step of the search scheme, we 

already secure the set of optimal multipliers for all 

the values of B∈ (Blb, μB ). We are ready to plug in 

the set of optimal multipliers {ki} and check the 

existence of a local optimum jB
(

 in the interval 

(wj+1, wj) by the Location checking condition as 

follows. 

 

Location checking condition: 

i. For the set of {ki}, secure its local       

minimum at jB
(

({ki}) by eq. (19). 

ii. If jB
(

∈ (wj+1, wj), then jB
(

 is a local minimum 

of the TCGI(B) function. 

 
3.6 The algorithm 
 
We are now ready to enunciate the Global Optimum 

Search Algorithm. It uses the array of the (sorted) 

ordered pairs {(wj, 　j(wj))} as the backbone and 

secures all the local minima of the TCGI(B) function. 

Recall that the algorithm searches from the upper 

bound μB  along lower value we label as l the index 

for the local optima of the TCGI(B) curve. Hence, lB
(

 

is the lth local optimal solution secured in the search 

process of the Global Optimum Search algorithm. 

The step-by-step procedure is presented as follows. 

1. Generate the array of the (sorted) ordered pairs, 

i.e., {(wj, )( jj wι )}, by  

(a) Secure all the junction points of TCGI 

function by the JP Locating Procedure. 

(b) Sort all the junction points by the JP 

Sorting Procedure. 

2. Utilize *
ccT  in eq. (11) to secure 1

μB by:   

(a) Set KGI(w1+ ε ) = {1, 1,…, 1}. Employ the 

Location checking condition in §3.5 to check:  

i. If ),())(( 1
*

1 ∞∈=+ wTwKB ccGI ε
(

, then 

set l = 1, 1B
(

 = *
ccT , and compute 

)),(( *
1 ccGIGI TwKTC ε+ ; go to Step 2(b). 

ii. otherwise, let l = 0, go to Step 2(b). 

(b) Set 1
μB = *

ccT  and }max{argˆ *
cci Twj ≤= . 

Do the following steps: 

i. Secure )( *
ccTK , i.e., the set of  

  optimal multipliers at *
ccT  by the K-GI 

Search Procedure in  § 2.5. 

ii.  Set )( jwK ≡ ( )( *
ccTK \{ )( jj wlk })∪    

{ )( jj wlk +1}. 

3. Secure the set of optimal multipliers for the 

convex intervals (wj+1, wj) ∈ (Blb, 1
μB ) by: 

(a)  If wj < Blb, then go to Step 4. 

(b)  Otherwise, let j = j+1, secure )( jwK by 

)( jwK ≡ ( )( 1−jwK \{ )( jj wlk })∪ { )( jj wlk +1} 

and go to Step 3(a). 

4. Use the Bounds Locating Procedure in §3.4 to 

secure the upper and lower bounds, i.e., μB  

and λB , respectively. 

5. Secure the local optimum (if it exists) for each 

interval (wj+1, wj)∈ [ λB , μB ] by: 

(a) Locate the junction point 

}max{arg
u

Bwj i ≤= . 

(b) Employ the Location checking condition 

in  §3.5 to check: if ))(( jwKB (
(

∈(wj+1, 

wj), then let l= l+1, lB
(

= ))(~( jwKB
(

, 

and compute TCGI ( lj BwK
(

),(~ ). 

(c) Set j = j +1 and check: if wj < λB , then 

go to Step 6; otherwise, go to Step 5(b). 

6. Secure the global optimal solution by 

( *
GIK , *

GIB )= minarg
l

{TCGI( )( jwK , lB
(

)}. 

       (16) 
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and stop. 

 
Recall that the complexity of the JP Locating 

Procedure and the JP Sorting Procedure is bounded 

by O(nvmax) and O(nvmaxlog nvmax), respectively. The 

complexity of Steps 3 and 4 is also bounded by 

O(nvmax). The number of iterations in the loop of 

Step5 is less than ∑ +i iv )1( , and is surely less than 

nvmax. Therefore, the complexity of the global 

optimum search algorithm is bounded by O(nvmaxlog 

nvmaxx). 
 

4. A Numerical Example 

 
In this section, we present a numerical example 

to demonstrate the implementation of the proposed 

Global Optimum Search algorithm. In the Table 3, 

we present the set of parameters used in this 

numerical example. Part of the data also show in 

Example 6 of Elmaghraby (1978). 

 

Table 3: The set of parameters used in this numerical example

Product 1 2 3 4 5 6 7 8 9 10 

Minor setup cost 33600 16800 4800 7200 14400 24000 72000 14400 13200 84000

Holding cost 0.095 0.0235 0.0065 0.022 0.023 0.075 0.1055 0.014 0.0625 0.2955

Demand 900 720 420 30 210 210 4500 2100 900 900 

Major setup cost 
6250 

 
1. Secure all the junction points of TCGI function 

by the JP Locating Procedure as shown in Table 

1. Then, we sort all the junction points by the JP 

Sorting Procedure. 

2. A candidate for the upper bound of the search 

range is secured by 1
μB = *

ccT =24.7009. 

(a) We note that *
ccT = 24.7009∉( 1w ,∞) = 

(104.4466,∞). 

(b) The largest junction point less than 1
μB  is 

secured at w11=24.091. Also, 

i. The set of optimal multipliers at 
*

ccT , )( *
ccTK , is secured by 

{1,2,2,6,3,2,1,1,1,1}. 

ii. Set )( 11wK ≡ 

( )( *
ccTK \{ )( 1111 wlk })∪ { )( 1111 wlk +1} 

which is given by 

{1,2,3,4,3,2,1,1,1,1}. 

3. Secure the set of optimal multipliers for the 

convex intervals (wj+1, wj)  ∈ (Blb, 1
μB ) = 

(0.5312, 24.7009). In this step, we totally review 

935 convex intervals. 

4. Use the Bounds Locating Procedure in §3.4 to 

secure the upper and lower bounds. They are 

given by λB =5.0078 (the 92nd junction point) 

and μB =22.1313 (the 15th junction point), 

respectively. 

5. Secure the local optimum (if it exists) for each 

interval (wj+1, wj)  ∈ [ λB , μB ]. All the local 

minima secured are summarized in Table 4. 

 

6. A global optimal solution is secured at 
*
GIB =14.9114 and *

GIK is given by 

{2,3,4,10,5,4,1,2,2,2}. The optimal total cost is 

given by $22432.46. 
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Originally, we have to search totally 946 

junction points. By securing a candidate on the 

search range, namely *
ccT , we can skip (the 

largest) 10 junction points. Furthermore, by utilizing 

the derivative information, we shorten the search 

range from (0.5312, 24.7009) to (5.0078, 22.1313). 

This action leads to only 78 possible local minima to 

be checked. Consequently, it reduces significantly the 

run time for the search scheme. 

Table 4: The Search Process of the Global Optimum Search Algorithm 
 

(wj+1,wj) k0 k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 lB
(

 TCPoT ( lB
(

) 
[19.8238, 22.1313] 1 1 2 3 7 4 3 1 2 1 1 21.2856 22445.06 
[19.7386, 19.8238] 1 2 2 3 7 4 3 1 2 1 1 19.7388 22501.68 
[18.1926, 19.7386] 1 2 2 3 8 4 3 1 2 1 1 19.7274 22501.68 
[15.3188, 15.5700] 1 2 3 4 10 5 4 1 2 1 2 15.4952 22439.14 
[14.0981, 15.3188] 1 2 3 4 10 5 4 1 2 2 2 14.9114 22432.46* 
[10.3188, 10.8266] 1 3 4 6 14 7 5 2 3 2 2 10.5447 22612.63 
[9.1502, 9.5346] 1 3 5 6 16 8 6 2 3 2 3 9.1826 22490.33 
[6.5060, 6.5665] 1 4 7 9 23 12 8 3 5 3 4 6.5305 22778.11 
[6.2869, 6.5060] 1 4 7 9 23 12 9 3 5 3 4 6.5012 22778.26 
[6.2508, 6.2539] 1 5 7 9 24 12 9 3 5 4 4 6.2516 22794.09 
[6.1824, 6.2508] 1 5 7 10 24 12 9 3 5 4 4 6.2469 22794.09 
[5.0078, 5.0276] 1 6 9 12 29 15 11 4 6 4 5 5.0258 23083.62 

 

 
5. Concluding Remarks 
 

This paper fulfills two research gaps in the 

study of the Joint Replenishment Problem (JRP). 

First, our study presents several important results on 

the optimality structure of the JRP under General 

Integer (GI) policy. For instance, Proposition 1 

asserts that TCGI(B) function is a piece-wise convex 

function of B. Also, we have thorough discussion on 

the properties of the junction points on the TCGI(B)  

function in Section 2. 

Second, we propose an efficient search 

algorithm that always secures the global optimal 

solution for the JRP under GI policy in Section 3. In 

our search algorithm, we use simple, but powerful 

bounds that significantly shorten the search range. 

Also, we utilize the junction points on the TCGI(B) 

function, to efficiently secure all the local minima in 

the search range. 

 

Our search algorithm is the first solution 

approach in literature that always secures the global 

optimal solution though many heuristics have been 

derived for the JRP. Also, the theoretical results in 

this paper shall establish an important foundation for 

those lot sizing and scheduling problems. 
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6. Appendix  

6.1 Proof for Proposition 1 
Proof. The first term in the TCGI(B) function, i.e., 

Bk
A

0
, is a convex function. The second term, 

i.e., )(1 BTCi
n
i∑ = , is a piece-wise convex function 

since it is the sum of n piece-wise convex functions 

by Remark 1. Since the TCGI(B) function is the sum 

of a convex function and a piece-wise convex 

function, it is obvious piece-wise convex. ■ 
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6.2 Proof for Lemma 1 
Proof. By equation (9), 

)1()2(...)()1(...)( iiiii jjv i δδδδδ <<<<+<<  

(17) 

where iv is an upper bound on ki (discussed in  §

2.4). Denote as *
ik (B) the optimal multiplier for  

)(BTCi at a given B. Because of ineq. (17) and the 

convexity of ),( BkTC ii , one asserts that  

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−=+∈+
∞∈

=
1,...,1)),(),1([,1

)),1([,1
)(

iii

i
i vjforjjBifj

Bif
Bk

δδ
δ

 
(18) 

Equation (18) exactly states that )(L
ik = )(R

ik +1. ■ 

 

6.1 Proof for Proposition 2 
Proof. Recall that the function TCGI is a separable 

function where TCGI(B)= ∑ =+ n
i i BTC

Bk
A

1
0

)( where 

k0=1. Without loss of generality, assume that w is a 

junction point for a product i, but not a junction point 

for the other (n-1) products. Then, there must exist 

0>ε  such that the followings hold. 

 

1. the curve for ∑
≠ij

j BTC )(  is convex in the 

interval of ],[ εε +− ww  since each one of 

)(BTC j  is convex in ],[ εε +− ww  

where ij ≠ ,  

2. )(BTCi is convex in the intervals of ],[ ww ε−  

and ],[ ε+ww . 

3. 
Bk

A

0
 is convex in the intervals of ],[ ww ε−  

and ],[ ε+ww . 

Since TCGI(B) = 
Bk

A

0
+ )(BTCi + ∑

≠ij
j BTC )( , 

TCGI(B) is still convex in the intervals ],[ ww ε−  

and ],[ ε+ww . Therefore, w is a junction point on 

the curve of TCGI(B). ■ 

 

6.4 Proof for Proposition 3 

Proof. For any given set of { ik }, one may secure its 

local minimum, })({ ikB
(

, by (1) securing the 

derivative of the TCGI(B) function w.r.t. B, and (2) 

equating it to zero. })({ ikB
(

is given by eq. (19) as 

follows.  

∑

∑

=

=
+

= n

i
iii

n

i i

i

i
kdh

k
aA

kB

1

1

)(

)(2
})({

(
 .   (19) 

It is obvious that *})({
cc

TkB i ≤
(

 since ik ≥ 1 for 

all i. Therefore, there exists no local minima for B 

> *
ccT .■ 
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