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ABSTRACT

This study performs theoretical analysis on the Joint Replenishment Problem (JRP) under General-Integer (GI)
policy. The JRP models concern how to determine lot sizes and to schedule replenishment times for products so
as to minimize the total costs per unit time. Gl policy requires replenishment frequency of each product, denoted
by ki, to be a general integer, i.e., ki = 1, 2, 3, .... In this study, we utilize a 10-product example to graphically
present the curve of the optimal total cost with respect to the values of basic period. Under Gl policy, we
discover an interesting property on the optimal curve for the JRP, and we prove that the optimality structure of
the JRP is piece-wise convex. By making use of the junction points in the optimality structure, we derive an

effective (polynomial-time) search algorithm to secure a global solution for the JRP under Gl policy. Evidently,

we provide a numerical example to demonstrate the efficiency of the proposed algorithm.
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1. Introduction for the raw material. On the other hand, two types of

setup costs are considered in the JRP:
1.1 Background and problem description

The Joint Replenishment Problem (JRP) is concerned 1. A major setup cost, denoted by A, incurs

with the determination of lot sizes and schedule of n whenever the production facility sets up to

jointly replenish a subset of products.

products in single-facility production/inventory

systems over an infinite (and continuous) planning 2. A minor setup cost & is incurred while

each  product i is  replenished

horizon.
(manufactured and packaged).

The objective of the JRP is to minimize the
total costs incurred per unit time. The costs
considered generally include setup costs and
inventory holding costs. For each product i, its
annual demand d; is fixed (and continuous), and each
unit incurs of holding cost h; each year. The JRP
assumes that the single facility has infinite capacity,
and therefore, the replenishment for each product is
instantaneous. Also, in the JRP, a product must be
packaged immediately after it is manufactured by the

production facility. Therefore, no holding cost incurs

We note that major and minor setup costs are
usually independent of the quantities of the products

jointly replenished.

For decision makers facing the JRP, an
intuitive move is to jointly replenish many products
in each major setup to share the major setup cost so
as to minimize the average total costs. Therefore, the
focus of the JRP is to coordinate the replenishment
schedule of each product i to economically share

major setup cost, and balance the holding costs from
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the inventory of jointly replenished products.

In general, companies invest about 30% of
their current asset and 90% of their operational
capital on the inventories (i.e., raw materials,
purchased parts and work-in-process, etc.; see
Stevenson 1993). Major setups often incur significant
setup times and costs in certain industries; for
instance, pharmaceutical, chemical processes, and
textile companies. If the executive managers may
effectively apply the concept of the JRP in their
production/inventory systems, they could joint the
schedule of the

replenishment products  to

satisfactorily meet customers’ demand and

importantly, reduce significant cost in the meanwhile.

The solution approaches for the JRP usually
assume that each product i is replenished after a fixed
cycle, denoted by T; where T; is the length of time
between two consecutive minor setups for product i.

Most of early studies assume that T; is equal to
a positive integer k; times B, i.e., T;= k; B, where B is
a basic period in the production planning horizon.
Also, it is usually assumed that the replenishment
frequency for major setup, denoted by ko, is always
set to 1 in the JRP. In order to secure the optimal
solution, one must simultaneously determine the
value of B and the set of optimal (integer) multipliers
{ki i =1, 2, ..., n} in the JRP. One may refer to
Goyal and Satir (1989) as well as Aksoy and Erenguc
(1988) for the details on the problem definition and
the early studies of the JRP.

Based on the assumptions discussed above, the
mathematical model for the JRP is formulated as

follows.

Minimize TCg, (k; ,B)=

1(A &a) BY
—| 2y a1 23 kdh 1
B(ko i k'j 2 s (a)

subjectto  k; € {1,2,3,--} k, = 1. (1b)

The subscript Gl in the objective function
TCei({ki},B) indicates that the JRP model is
formulated under General Integer (GI) policy, which
is expressed by constraint (1b). Gl policy requires
that all the k;’s must be positive integers. Therefore,

the JRP model in (1) is a nonlinear, integer problem.

1.2 Literature survey

Arkin, Joneja, and Roundy (1989) proved that the
JRP is a NP-hard problem, i.e., the JRP is not
solvable by polynomial-time algorithms. The JRP
has been studied for some thirty years. Extensive
research efforts have been addressed to attempt

efficient heuristics for solving the JRP.

Early, Shu (1971), Nocturne (1973) and Goyal
(1973a) pioneered the research for the JRP. They
solved the JRP by simply dividing the products into
only two groups. Shu (1971) and Nocturne (1973)
solved the JRP using graphical heuristics. Goyal
(1973a) introduced another simple heuristic that tries
to secure B*, the optimal value of B, by the first
derivative of TCg({ki},B) and used simple rule to
decide k;” and k,” where k;” and k," are the optimal

replenishment frequencies for those two groups.

Goyal (1973b) initiated the research to derive
heuristics for the JRP that divide n products into
more than two groups. Goyal (1974a, b) proposed an
enumeration approach, and he claimed that it always
secure a global optimal solution (though without
proof). The essence of his enumeration approach is as
follows. Enumerate B and k; for each product i so as

to satisfy both of the following conditions:

TCa (ki(B).,B) < TCq (ki(B)*1,B) (2a)



TCai (ki(B),B) < TCg (ki(B)-1,B). (2b)

Later, Goyal (1988) and van Eijs (1993)
presented examples that showed that the conditions
in (4) are not sufficient conditions for securing a
global optimal solution for the JRP. Meanwhile, van
Eijs (1993) derived another algorithm that improves
efficiency of Goyal’s (1974b) algorithm. The
shortcoming for this category of solution approaches
is that one needs tremendous search efforts to
enumerate between the upper and lower bounds on B.
The run time of these approaches grows
exponentially with the number of products. If there
are more than 10 products in the JRP, extremely long
run time make these enumeration approaches
impractical. To address to this concern, Viswanathan
(1996) derived some theoretical results that shorten
the range between the upper and lower bounds on B.
Viswanathan also presented an efficient algorithm
that usually secures a “reasonable good” solution

with a very shorter run time.

Another category of the solution approaches
for the JRP are non-iterative procedures. First, Silver

(1976) derived some analytical properties for the JRP
under the assumption that all the ki'S are
continuous variables. Then, he solved the optimal
multipliers ki* ’s in closed-form. The three steps in

Silver’s procedure are: (1) Set as product number 1

for the product with the minimal value of hé—é_. 2)

Secure ki* by (a) computing a value of k; by

ki =, [f—;ml :f;‘l , and (b) rounding the value of k; to

the nearest positive integer. (3) Secure the optimal

value of B using the {ki*} secured from the second

step. Goyal and Belton (1979) suggested to improve
Silver’s procedure by changing the criterion value (of

A+a;
dih;

picking product 1) from % to They
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provided an example that shows their modified
procedure secures a better solution than Silver’s
procedure. Later, Kaspi and Rosenblatt (1983)
brought another example to demonstrate that Goyal
and Belton’s procedure secures a poorer solution than
Silver’s. In order to improve Goyal and Belton’s
solution, Kaspi and Rosenblatt (1983) suggested to
recalculated {ki} and B after Goyal and Belton’s
procedure secures its solution. Based on similar
philosophy, Jackson, Maxwell and Muckstadt (1985)

derived some interesting theorems on the optimal

grouping for the products using —— as the criterion

3
dih;

value.

1.3 The motivation to study the JRP
under PoT policy

In literature, few research efforts have been
addressed to explore the optimal structure of the JRP
in literature. And, to the best of the authors'
knowledge, no solution approach is able to guarantee

to secure an optimal solution for the JRP.

Before our study, we found only two papers
that tried to explore the optimal structure of the JRP.
In Viswanathan's (1996) paper, he implies that the
optimal objective value of the JRP is piece-wise
convex on B, though he did not bring the proof for
this assertion. Also, since his theoretical results
provide insufficient information to reveal the
overview for the optimal structure of the JRP (under
Gl policy), Viswanathan's solution approach secures
only an approximate solution (that is close to the real
optimal solution.) Besides, Wildeman et al. (1997)
did some decent studies on a relaxed version of the
JRP in which they replaced kie {1, 2, ...} in (1b)
with k; >1and k; € R for all i =1, 2,... , n. By

utilizing their theoretical results, they derived tight

upper and lower bounds on the search range. They
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proposed to use a dynamic Lipschitz optimization
procedure to secure an approximate solution. But,
neither Viswanathan (1996) nor Wildeman et al.
(1997) guarantees that their algorithm is able to

secure a global optimal solution.

To fulfill the research gap discussed above, we
would like to investigate the optimality structure of
the JRP. Also, based on the optimality structure of
the JRP, we derive an effective search algorithm that

is able to secure a global optimal solution in this

paper.

The rest of this paper is organized as follows.
In Section 2, we will present a full theoretical
analysis on the optimal cost function for the JRP.
Based on the theoretical results in Section 2, we
derive an effective search algorithm to secure a
global solution for the JRP under Gl policy in
Section 3. Evidently, we provide a numerical
example to demonstrate the efficiency of the
proposed algorithm in Section 4. Finally, we address

our concluding remarks in Section 5.

2. Theoretical Analysis on the Optimal

Cost Function

In this section, we first discuss some remarks and
propositions to provide insights into the TCg
function. Next, we introduce the “junction points” in
the curve of the TCg, function and demonstrate how

to efficiently locate the junction points of the TCg

function. These junction points assist us in securing
the set of optimal multipliers for each given value of
B that facilitates the derivation of the search

algorithm presented in Section 3.

Under Gl policy, the cost expression for a

product i, is,
a h

TCi (ki, B)=—>+—d;k;B 3)
where ki >1;k;: integer,i=1, 2, ..., n. For a given
B, one may secure the optimal multiplier k; so as to
TCi(ki,B). We denote it as TCi(B), the minimum cost
function with respect to B for product i, i.e.,

IC;(B)= nlln {TCi (ki, B)}. 4

2.1 Some insights into the optimal cost

function

Denote TCg (B) as the optimal cost function of the

JRP at a given B, ie, TCg(B)=

A n
—+ ZEGU(B) where ko =1. We use the data

0 i=1

in Section 4 to plot the optimal cost curve of the
TCi(B) function with respect to B for products 1 and
2 in Figure 1. Importantly, Figure 1 shows an
interesting property on the TC ; (B) function as
follows. The following theoretical results provide us

some insights into the TCg function.
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Remark 1 TC; (B) function is piece-wise convex
with respect to B (since it is easy to verify that
0°TC,(B
# >0, for a given k;.)

oB
Remark 2 For each k;, one can secure the minimum

cost for product i, TC; (k;, B), at

1 |2a;
B= A(k)=— | —- 5
i(Ki) ki"hidi ()
with the minimum cost value of
Y; =min{TC;(B)} =y2a;hd; . (6)

The minimum cost Y;is exactly the EOQ foumula

and Y; is, in fact, independent of kj and B.

20 30

The local minimum cost function of products 1 and 2

The following proposition shows the optimality

structure of the JRP.

Proposition 1 The TCg(B) function is piece-wise
convex with respect to B.

Proof. The proof is presented in Appendix 6.1. m

Again, we employ the data in Section 4 to
demonstrate this comment in Figure 2. One may also
observe that the term raises the left-tail of TCg(B)

function as the values of B decrease.
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Figure 2: The optimal value for the TCg(B) function.

2.2 The junction points on the optimal

cost function

Next, we introduce the “junction points” on the curve
of the TCg, function. Recall that the TC; (B) function
is piece-wise convex. We define a junction point for
the TC; (B) function as a particular value of B where
two consecutive convex curves concatenate. These
junction points determine at ‘what value of B’ where
one should change the multiplier of ‘what product i’
from ki (= j) to ki ( = j+1) so as to secure the

minimum value for TC; (B) function.

By equation (3), we define the difference
function A;(k;,B)by
Ai(ki,B)=TCi(ki+1,B) — TC;(k,B) (7)

_ g n hid; B

 k(k+DB 2

®)

By Figure 1, one observes that the value of
A;(k;,B) grows from negative to positive, and
reaches zero at

U [
ki(k; + 1)\ h,d,

5 (ki) = ®

where J;(K;) is named as the junction point for the

multipliers K; and k; +1 of product i. More specifically,

S;(ki = j) is the j" junction point of product i

where j €N . Therefore, the junction point &;( j)
provides us the information that one should choose
ki=jfor B> 0;(j) and choose k; =j+1, vice

versa, to secure a lower value for the TC;(B) function.

In other words, if the value j is the optimal multiplier

for B > 9;(j), one should replace k; =] with
ki = j+1as the optimal multiplier for product i at

the junction point &;(]) if one searches from

higher values to lower values of B.

Remark 3 For a product i,

f ki (k:
§|(ki)_ m A|(k|) (10)

prescribes the relation between a local minimum A
i(ki) (defined in eq. 5) and the next junction point &(k;)
(defined in eq. 9) below A i(k;).

2.3 The location of the junction points

By plugging k; (using general-integer values) in
equation (9) for all n products, one secures all the
junction points. Again, we use the 10-product

example in Section 4 to illustrate our discussion on



the junction points. We sort all the junction points in

descending order and list only those junction points

that are less than ch* =24.7009 in Table 1 where

ch* is expressed in eq. (11).

Table 1 in fact reveals an overview of our
proposed search scheme. It shows that one can make
use of difference calculation not only to locate all the
junction points, but also to indicate ‘which product i’
should replace its optimal multiplier k; by ki +1. The
following theoretical results on the junction points
provide strengthen foundation for such a search

scheme.

Lemma 1 Suppose that k™ and k™, respectively, are
the optimal multipliers of the left-side and right-side
convex curves with regard to a junction point in the
plot of the TC(B) function. Then, k{® = k® + 1.
Proof: The proof is presented in Appendix 6.2. m

Proposition 2 All the junction points for each
individual product i, will be inherited by the TCg(B)

29

function. In other words, if W is a junction point for a
product i, w must also show as a junction point on the
piece-wise convex curve of the TCg(B) function.
Proof: The proof is presented in Appendix 6.3. m
Theorem 1 is an immediate result of Lemma 1 and

Proposition 2.

Theorem 1 Suppose that K and K®, respectively,
are the set of optimal multipliers for the left-side and
right-side convex curves with regard to a junction
point in the plot of the TCg(B) function. Then, there

is one and only one product i such that k(™= k{®+1.

From another point of view, Theorem 1 provides an
important implication: namely, the set of optimal
multipliers for the TCg(B) function is invariant

between each pair of consecutive junction points.

Table 1: The location of the junction points that are less than B,

Obs. Where on B-axis How to change k; Obs. Where on B-axis How to change k;
0 24.4339 T 23 12.3150 kp:1=2
1 24.2091 k: 2= 3 24 11.9151 Ks: 6 = 7
2 22.7921 Ky: 6= 7 25 11.8262 ke 122 13
3 22.5374 Ke: 2 = 3 26 11.4453 ki:2=3
4 22.2911 Ks: 3= 4 27 10.9490 ky: 132 14
5 22.1313 Ke: 1 = 2 28 10.8266 ky: 5= 6
6 19.8238 ki: 1 =2 29 10.3188 Ks: 7= 8
7 19.7386 ky: 7= 8 30 10.2607 Kig: 2= 3
8 18.1926 ky:2=3 31 10.1929 Ky: 14 = 15
9 17.7721 Kip: 1 = 2 32 10.0791 Ke: 5= 6
10 17.4078 ki:8=9 33 9.9645 ky:4=35
11 17.2666 Ks: 4= 5 34 9.5346 ky: 152 16
12 17.1184 ky:3=4 35 9.1502 ky: 6 = 7
13 15.9364 Ke: 3= 4 36 9.1003 Ks: 8= 9
14 15.5700 ke: 9= 10 37 9.0351 k: 3= 4
15 15.3188 kKg: 1 =2 38 8.9562 Ke: 16 = 17
16 14.0981 Ks: 5= 6 39 8.8443 ke: 2= 3
17 14.0836 ke 10 =2 11 40 8.5184 Ke: 6 = 7
18 13.2599 ky:4=35 41 8.4440 ke: 17 = 18
19 12.8641 ky:3=4 42 8.1396 ks: 9= 10
20 12.8565 ke 11 = 12 43 8.1360 ky:5=6
21 12.7775 ke: 2 = 3 44 8.0930 ki:3=4
22 12.3443 Ke: 4= 5 45 7.9872 ky: 18 = 19
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2.4 Locate all the junction points

Before locating all the junction points, one needs to
know how many junction points shall be located for
each product. This question leads to the problem of
finding an upper bound on k. In fact, the lower

bound on the value of B determines the upper bound
on k;. Suppose that ;i is an upper bound on the

value of ki. Then we need to locate Vi junction

points for product i.
2.4.1 Find an upper bound on k;

Under Gl policy, a simple upper bound on k; can be
derived from the Common Cycle (CC) approach and
the independent solution (which is denoted by IS, and

it is expressed in eq. 6).

Hanssmann (1962) proposed the Common Cycle (CC)
approach to solve the Economic Lot Scheduling
Problem (ELSP). Recall that the CC approach is a
special case in which it assumes that T=T (or k=1)
for all i, i.e., all the products share the same cycle.
Graves (1979) commented that one can consider the
JRP as a special case of the ELSP where the major
setup may be regarded as an additional product O

with no demand or production requirements.

The optimal solution of the CC approach is a
well-known upper bound on the objective function of
the conventional ELSP. Therefore, we may use the
cost of the CC approach, denoted by TC*, as an
upper bound on the objective function of the JRP.

Denote as ch* the optimal solution for the CC

approach. Then, one may easily secure ch* by the

following expression.

T, =max{

(11)

Let IS(n-{i}) = X_, j.i4/2@;h;d; Then, an upper
bound on the average cost of product i is obtained by

TC®-IS(n-{i})- & , and we have

a h

TCi(ki,B)= ki_lB+?dikiB < TCIS(n-{i})- 4 .
Thus, for a given B, an upper bound Vi(B) on k; is
obtained by

vi(B)=

TC® —15(n— fi}) — & +4/TC™ —18(n — (i} - &) —2a,n,d,

h,d,B

(12)
By plugging in (12) a lower bound value on B,

denoted by By, one secures an upper bound Vi on k;.

The next task is to determine By, a lower bound on B
for the search range in the JRP. Many researchers
addressed their efforts on narrowing the search range
in the solution algorithms for the JRP. (Please refer

to Section 1 for references.) van Eijs (1993) proposed

that By, = where TCY is an upper bound on

cU
the objective value of the JRP. van Eijs derived
another upper bound on the objective value of the
JRP other than TC*. Based on our experience, van
Eijs' bound is usually looser than TC*, our upper

bound by the CC approach. Therefore, we secure

2
our lower bound on B by By, =_I_— and the upper

CU

bound giZVi(%) on ki is

determined

accordingly.



2.4.2 The junction points locating procedure

We utilize the theoretical results presented above and
propose an efficient procedure, viz., the Junction
Point (JP) Locating Procedure, to locate all the

junction points of the TCg, function as follows.

The JP Locating Procedure:

fori=1,...,n
Compute Vi on ki by eq. (12).
Set found =0 and j = 0.
while found =0
ki=].

Compute 5; (k;) = ;\/2—7'

ki(ki +1) | hid;
(refer to equation (9) for details).
j=j+1.
if j > v;, then found = 1;

endwhile

endfor

Let Vmax = max;{ Vi +1}. Since the junction points are
n —_—

no more than nNVya, Ii.€., Z{Vi +1}<nv,,, .
i=1

Therefore, the complexity of the JP Locating

Procedure is bounded by O(N Viay)-

By substituting ki =1, 2, 3, ..., 6 into the eq. (9),
we enumerate the computing results for the
10-product example in Section 4 in Table 2. One may
compare Table 2 with the sorted sequence in Table 1.
For example, when the search started from
W;=104.4466 where one should change k;= 1 to k;=

2 for product 4. The algorithm continues its search

31

and changes k,= 2 tok,= 3 at the next junction point

B =60.3023.

2.5 The K-GI Search Procedure

In this section, we present an efficient procedure to
secure the set of optimal multipliers at a given value
of B, which is denoted as Kgi(B). Proposition 2

provides an easier way to secure each ki € Kg(B) by

g

1, B>
hidi
n [ A g [T [a

(13)

ki(B):

Therefore, for any B, one can secure Kg (B) using the
K-GI Search Procedure as follows.

The K-PoT Search Procedure:

fori=1,..,n

Set found =0 and m = 1.

if B> & , then found = 1.
hid;

while found =0

m < m+l1.

B> [ |2
m(m+1) | hd;

, then found = 1.

endwhile
Set ki(B) = m.

endfor
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Table 2: The junction points for the TCg, function in the example

Product i ki=6 ki=5 k=4 ki=3 ki=2 ki=1
1 4.3259 5.1185 6.2688 8.0930 11.4453 19.8238
2 6.8761 8.1360 9.9645 12.8641 18.1926 31.5104
3 9.1502 10.8266 13.2599 17.1184 24.2091 41.9314
4 22.7921 26.9680 33.0289 42.6401 60.3023 104.4466
5 11.9151 14.0981 17.2666 22.2911 31.5244 54.6019
6 8.5184 10.0791 12.3443 15.9364 22.5374 39.0360
7 2.6873 3.1797 3.8943 5.0276 7.1101 12.3150
8 4.8295 5.7143 6.9985 9.0351 12.7775 22.1313
9 3.3428 3.9553 4.8442 6.2539 8.8443 15.3188
10 3.8782 4.5887 5.6200 7.2554 10.2607 17.7721

3. A Global Optimum Search Algorithm

In this section, we present a search scheme which
secures the global optimal solution for the JRP. The
search scheme secures the global optimum since it is
able to locate all the local minima (which, in turn,

depends on the junction points) of the TCg(B)

function. Recall that B, = is the lower bound

CCC
on the value of B for the JRP. (Please refer to §2.4.1.)

The overview of our search scheme is summarized as
follows.
1. Secure all the junction points, and sort them in a

descending order.

2. Utilize T,

cc

in eq. (11) as the first upper bound
of the search range.

3. Secure the set of optimal multipliers for each
convex interval in (B, ch* ).

4. Utilize the derivative information on the TCg (B)
to further shorten the search range, and secure a
pair of tighter upper and lower bounds of the
search range, which are denoted by B, and B,,
respectively.

5. Secure the local optimum (if it exists) for each
convex interval in the search range [B,,B, .

6. A global optimal solution is secured by picking
the best solution among all the local minima

securedin[Bl,B#].

We have detailed discussion on each step of our

search scheme in the following subsections.

3.1 The JP Sorting Procedure

Recall that each junction point &(k;) provides the

information that one should change the optimal

multiplier of item i from K; to kj+1 at &(k;) to secure
the optimal value for the TCy(B) function. We show
the JP Sorting Procedure as follows.

The JP Sorting Procedure:

1. Input all the junction point {&(k;)|i=1,...,n} of the
TCqi(B) function (secured by the JP Locating
Procedure).

2. Generate an array of ordered pairs by inputing the
first element of each order pair is the location (i.e.,
the value of B) of the junction point and the
second element is the identity of the product i.

3. Use the location as the key field, and sort the
ordered-pair array secure in Step 2 in descending

order.

Denote by {w;} the sequence of junction points
generated by the JP Sorting Procedure where wj.; <
wj, j =1, 2,~-. Another sequence of product indices,
denoted by {z(wj)}, is generated accordingly to
correspond to the W;’s. We now have in hand an array

of (sorted) pairs {(Wj, 5(W;))}.



Since the JP Sorting Procedure sorts all the
junction points, of which there are at most NVpgy, its

complexity is bounded by O(NVimaxl0g NVimay).

3.2 The first upper bound

Recall that the search scheme needs to locate all the
local minima of the TCg(B) function by securing the
local minimum candidate that exists in each convex
interval. In order to reduce the run time of the search
scheme, we need to shorten the range of the search
scheme. This may be achieved by skipping those

values of B where no local minimum exists.

First, Proposition 3 asserts that ch*in eq. (11)
can be used to secure an upper bound of the search
range. Recall that ch* is the optimal solution for
the CC approach that uses the set of multipliers {ko=
o k=11,

Proposition 3 For the TCg(B) function, there
exist no local minima for B>T,. .

Proof. The proof is presented in Appendix
64. m

By Proposition 3, the search scheme may skip

the junction points in (TCC* ,0). Consequently, we

may set ch* as the first upper bound of the search
range.

3.3 The optimal multipliers

Recall that the third step of the search scheme is to

secure the set of optimal multipliers for each convex

£

interval in [Bj, T.. ]. This step may be done by:

cc

1.Secure KG|(TCC* ), i.e., the set of optimal multipliers

at ch* , by the K-GI Search Procedure in §2.5 .

£

cc »

2. Starting from T_. , we use the ordered-pair array

{(w;, g4(w;))} to secure the set of optimal

multipliers for each interval (Wj+1, W;).
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After securing Kg( ch* ), the algorithm
searches in descending order toward lower values in
the sequence {Ww;}. At each junction point wj, by
Theorem 1, one should change one and only one
multiplier by replacing kl,(wj) with kl,(w,)+1 to
update the set of optimal multipliers. Denote by

K(w;) the set of optimal multipliers in the interval
(Wj+1, Wj). Therefore, we secure K(W;) one by one
by

K(w;) = (KW )Ry ) DO K )y T1H(14)
for all wj € (Byy, B# ) where ‘\” denotes set

subtraction. Recall that Theorem 1 implicates that the
set of optimal multipliers for the TCg(B) function is
invariant in each convex interval (i.e., between a pair
of consecutive junction points). Hence, this step

actually secures the set of optimal multipliers for all

the values of Be (By, BL ).

3.4 The shortened search range

Next, we demonstrate how to utilize the derivative
information on the TCg(B) function to secure the

upper and lower bounds of the search range, i.e.,

B, and B, respectively.

Again, we would like to shorten the range of
the search scheme by skipping those values of B

where no local minimum exists. Recall that we have
. 1 *

secured a candidate B, =T, for the upper bound of

the search range in §3.2. Here, we hope to find

another upper bound B, < BL to further shorten the

search range.

One may notice in Figure 2 that the TCg(B)

function raises rapidly as B decreases because of the
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. A
term for the major setup cost, I.e., E Also, the

slope (i.e., the first-order derivative) of the left-tail of

the TCg(B) function keeps being negative upto a
point where we denote it as B, . It implies that B,
is the largest value of B where no local minima of the
TCeqi(B) function exist below B, . Surely, it shows
us an opportunity to skip those values of B<B,, and
B, can be considered as the lower bound on the
search range. Similarly, we hope to find the lowest
value of Bﬂ where TCg(B) function keeps being

positive for B > B ., and hence, no local minima of the

TCoqi(B) function exist forB>B, .

In order to locate B,and B,, we will check

the derivative information of the junction points from

B|b and Bl

i respectively. Given a set of {ki}, the
first derivative of the TCg(B) function is given by

, -A <, —a | hdk
TCo (h}.B) =23 + > (b +-2). (19
i=1 i

In the third step of the search scheme, we have
secured the set of optimal multipliers for each convex
interval (Wj.1, Wj)€ (B, BL ). We are ready to plug
in {ki} in eq. (15) and check the value of the first

derivative by the Bounds Locating Procedure as

follows.

The Bounds Locating Procedure:
Set Ib found=0,and = argmin{j|wj >B,}.
Setj= j—land B,=By.
while Ib_found =0
if TCé,(K(Wj),Wj)>O,
Set j = j B,= B(K(W)) and

Ib_found = 1.

otherwise, set j=j —1.

endwhile
Set Ib_found = 0, and j =arg max{j|WJ- < BL }.
Set j = j—land B,= BL.
while ub_found =0
if TCq (K(W;),W;)<0,

Set j = j B,= B(K(W;) and
Ib_found = 1.
otherwise, set j=j —1.
endwhile

Output B, andB,,, stop.

The rationale behind the Bounds Locating Procedure
is as follows. The variables w; and W, are
consecutive junction points on the TCg(B) function.
By Theorem 1, the set of optimal multipliers for the
TCqi(B) function is invariant between W; and Wij,.
Therefore, wjand wj.; correspond to the left-hand and
the right-hand end points for a particular piece of

convex curve on the TCg(B). For locating the lower
bound B, the condition TC6| (K(wj),w;)>0

checks the lowest junction point where the sign of

the first derivative of the TCg(B) function changes.
B(K(W,))

The value of indicates  the

lowest-valued local minimum for the TCg(B)

function. We set the lower bound of the search range

B, at |§(K(W] )) since no local minima of the
TCqi(B) function exist below B, = B(K(W] ) .
Similar idea applies to locate the upper bound B >

but the condition checks Tcé| (K(w;),w;) <0 for

the largest junction point.

3.5 Secure all the local optima

In this section, we introduce the condition for
checking the existence of a local optimum in the

interval of (Wjs1, Wj).



In the third step of the search scheme, we

already secure the set of optimal multipliers for all

the values of Be (By,, B .. )- We are ready to plug in
the set of optimal multipliers {kij} and check the
existence of a local optimum B j in the interval

(Wj+1, Wj) by the Location checking condition as

follows.

Location checking condition:
of {ki},

1. For the set secure its local

minimum at B, ({ki}) by eq. (19).
ii. If E§j € (Wj+1, Wj), then E§j is a local minimum

of the TCg(B) function.

3.6 The algorithm

We are now ready to enunciate the Global Optimum
Search Algorithm. It uses the array of the (sorted)
ordered pairs {(W;, j(W;))} as the backbone and
secures all the local minima of the TCg(B) function.
Recall that the algorithm searches from the upper

bound B . along lower value we label as | the index

for the local optima of the TCg(B) curve. Hence, |§,

is the 1™ local optimal solution secured in the search
process of the Global Optimum Search algorithm.
The step-by-step procedure is presented as follows.

1. Generate the array of the (sorted) ordered pairs,
i.e., {(W.2;(W;))}, by
(a) Secure all the junction points of TCg
function by the JP Locating Procedure.

(b) Sort all the junction points by the JP

Sorting Procedure.
2. Utilize ch* in eq. (11) to secure BL by:
(a) Set Kg(wy+¢&) = {1, 1,..., 1}. Employ the

Location checking condition in §3.5 to check:

i, If B(Kg (W, +¢) =T, (W) , then

35

- *

set 1 =1, B, = T

« » and compute

TCq (Kgy (W, + ), T,

cc

) ; go to Step 2(b).
ii. otherwise, let | =0, go to Step 2(b).
(b) Set BL =T, and j=argmax{w, <T.}.
Do the following steps:
i, Secure K(T.'),i.e., the set of
optimal multipliers at ch* by the K-GlI
Search Procedurein  § 2.5.
ii. Set K(Wj)z(K(T;)\{klj(wj)})u
{ k|j(wj)+1}~
3. Secure the set of optimal multipliers for the
convex intervals (Wj:1, W) € (B, B,,)by:
(a) Ifw;<By, then go to Step 4.
(b) Otherwise, let j = j+1, secure K(W;) by
K(w;) = (K(w;_)\{ klj(wl) Hud k|j(wj)+1}

and go to Step 3(a).

4. Use the Bounds Locating Procedure in §3.4 to

secure the upper and lower bounds, i.e., B u

and B, , respectively.
5. Secure the local optimum (if it exists) for each
interval (W1, W)€ [B,, B, ] by:
(a) Locate the junction point
j=argmax{w, <B }.
(b) Employ the Location checking condition
in  §3.5 to check: if B(K(W] ) €(Wj1,
w)), then let I= I+1, B,= B(K(w))),
and compute TCeqi (K(w), B))-
(¢ Set j = j +1 and check: if w; <B,, then

go to Step 6; otherwise, go to Step 5(b).

6. Secure the global optimal solution by

(Ke - Bg )= argmin {TCai(K(W;). BI)}-

(16)
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and stop.

Recall that the complexity of the JP Locating
Procedure and the JP Sorting Procedure is bounded
by O(NVmax) and O(NVyax0g NV, respectively. The
complexity of Steps 3 and 4 is also bounded by
O(NVmax). The number of iterations in the loop of

Step5 is less than Y (V; +1), and is surely less than

NVmax. Therefore, the complexity of the global

optimum search algorithm is bounded by O(nvpalog

NViax)-

4. A Numerical Example

In this section, we present a numerical example
to demonstrate the implementation of the proposed
Global Optimum Search algorithm. In the Table 3,
we present the set of parameters used in this
numerical example. Part of the data also show in

Example 6 of Elmaghraby (1978).

Table 3: The set of parameters used in this numerical example

Product 1 2 3 4 5 6 7 8 9 10
Minor setup cost 33600 | 16800 | 4800 | 7200 | 14400 |24000| 72000 | 14400 | 13200 | 84000
Holding cost 0.095 |0.0235|0.0065 | 0.022 | 0.023 | 0.075 | 0.1055 | 0.014 | 0.0625 | 0.2955
Demand 900 720 420 30 210 | 210 | 4500 | 2100 | 900 900
Major setup cost 6250

1. Secure all the junction points of TCg, function
by the JP Locating Procedure as shown in Table
1. Then, we sort all the junction points by the JP
Sorting Procedure.

2. A candidate for the upper bound of the search

range is secured by BL =T, =24.7009.

(a) Wenote that T, =24.7009¢(W, ,0) =
(104.4466,).
(b) The largest junction point less than BL is

secured at w;=24.091. Also,

i. The set of optimal multipliers at
ch* , K(TCC*) , is secured by
{1,2,2,6,3,2,1,1,1,1}.

ii. Set K(w,)=

( K(TCC)\{ k'n(Wn) })U {klll(Wll) +1}
which is given by
{1,2,3,43.2,1,1,1,1}.

3. Secure the set of optimal multipliers for the
convex intervals (Wj:1, W) € (B, BL) =

(0.5312, 24.7009). In this step, we totally review
935 convex intervals.

4. Use the Bounds Locating Procedure in §3.4 to
secure the upper and lower bounds. They are

given by B,=5.0078 (the 92" junction point)
and B, =22.1313 (the 15" junction point),

respectively.

5. Secure the local optimum (if it exists) for each
interval (Wj+1, W) € [B,,B, 1. All the local

minima secured are summarized in Table 4.

solution is secured at

Kg s
{2,3,4,10,5,4,1,2,2,2}. The optimal total cost is
given by $22432.46.

6. A global optimal

Bg, =14.9114 and given by



Originally, we have to search totally 946

junction points. By securing a candidate on the

*
search range, namely T,

« » We can skip (the

largest) 10 junction points. Furthermore, by utilizing
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the derivative information, we shorten the search
range from (0.5312, 24.7009) to (5.0078, 22.1313).
This action leads to only 78 possible local minima to

be checked. Consequently, it reduces significantly the

run time for the search scheme.

Table 4: The Search Process of the Global Optimum Search Algorithm

(Wj+1,Wj) Ko | ki | ko | ks | Ka | ks | Ke | k7 | ks | Ko | k1o B, TCrot (B,)
[19.8238,22.1313] | 1 1 213 71413 1 2 1 1 121.2856 22445.06
[19.7386, 19.8238] | 1 21213 7143 1 2 1 1 [19.7388 22501.68
[18.1926, 19.7386] | 1 21213 81413 1 2 1 1 119.7274 22501.68
[15.3188, 15.5700] | 1 213 4 110 5 | 4 1 2 1 2 115.4952 22439.14
[14.0981, 15.3188] | 1 213 4 10| 5 | 4 1 2 12| 2 (149114 22432.46°
[10.3188, 10.8266] | 1 3 4 16 |14 7 51213 2 | 2 110.5447 22612.63

[9.1502, 9.5346] 1 3 516 (16|86 |2 |3 1] 2|3 ]09.1826 22490.33
[6.5060, 6.5665] 1 4 1719 (23112 8 3 5 3 4 | 6.5305 22778.11
[6.2869, 6.5060] 1 4 | 7191231129 | 3 513 | 4] 65012 22778.26
[6.2508, 6.2539] 1 5 719 (2412 9 | 3 514 | 4| 6.2516 22794.09
[6.1824, 6.2508] 1 5 7110124 (12| 9 | 3 514 | 4 | 6.2469 22794.09
[5.0078, 5.0276] 1 6 |19 1212915 |11 |4 | 6 | 4| 5| 50258 23083.62

5. Concluding Remarks

This paper fulfills two research gaps in the
study of the Joint Replenishment Problem (JRP).
First, our study presents several important results on
the optimality structure of the JRP under General
Integer (GI) policy. For instance, Proposition 1
asserts that TCg(B) function is a piece-wise convex
function of B. Also, we have thorough discussion on
the properties of the junction points on the TCg(B)
function in Section 2.

Second, we propose an efficient search
algorithm that always secures the global optimal
solution for the JRP under Gl policy in Section 3. In
our search algorithm, we use simple, but powerful
bounds that significantly shorten the search range.
Also, we utilize the junction points on the TCg(B)
function, to efficiently secure all the local minima in

the search range.

Our search algorithm is the first solution

approach in literature that always secures the global

optimal solution though many heuristics have been

derived for the JRP. Also, the theoretical results in

this paper shall establish an important foundation for

those lot sizing and scheduling problems.
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6. Appendix
6.1 Proof for Proposition 1
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Proof. The first term in the TCg(B) function, i.e.,

A
k,B

, i1s a convex function. The second term,

i, X, TC.(B), is a piece-wise convex function

since it is the sum of n piece-wise convex functions

by Remark 1. Since the TCg(B) function is the sum

of a convex function and a piece-wise convex

function, it is obvious piece-wise convex. m
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6.2 Proof for Lemma 1
Proof. By equation (9),

(V)<< (j+1) <8, (j)<...<8.(2)<5,(1)
(17)

where V, is an upper bound on k; (discussed in ~ §

2.4). Denote as ki* (B) the optimal multiplier for
TC,;(B)at a given B. Because of ineq. (17) and the

convexity of TC,(k;,B), one asserts that

() :{ 1, if Be[s,(1),%)
(18)

Equation (18) exactly states that ki(l‘) = ki(R) +1. H

6.1 Proof for Proposition 2

Proof. Recall that the function TCg, is a separable

function where TCg(B)= % +>"  TC,(B) where
0

ko=1. Without loss of generality, assume that w is a

junction point for a product i, but not a junction point

for the other (n-1) products. Then, there must exist

&£ >0 such that the followings hold.

l.the curve for > TC;(B) is convex in the
j#
interval of [W—¢&,W+¢&] since each one of
TC;(B) is convex in [W-g&W+¢]
where j #1,
2. TC;(B)is convex in the intervals of [W—g,W]

and [W,W+¢&].

3. —— is convex in the intervals of [W—&,W]

k,B

and [W,W+¢&].

Since TCg(B) = %+T_Ci(5)+ 21C,(B),

0 j#i

TCai(B) is still convex in the intervals [W—&,W]

j+1, if Be[s,(j+1),6,(j)), for j=1,.,vi—

and [W,W+ &]. Therefore, w is a junction point on

the curve of TCg(B). m

6.4 Proof for Proposition 3

Proof. For any given set of {k; }, one may secure its
local minimum, E({ki }) ., by (1) securing the
derivative of the TCg(B) function w.r.t. B, and (2)
equating it to zero. B( {k; }) is given by eq. (19) as
follows.

B({k})= (19)

It is obvious that E({ki })ST:; since k; >1 for

all i. Therefore, there exists no local minima for B

*

>T

cc
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