
J Supercomput (2011) 56: 270–299
DOI 10.1007/s11227-009-0369-3

On construction of a well-balanced allocation strategy
for heterogeneous multi-cluster computing
environments

Chao-Tung Yang · Kuan-Chou Lai · Hao-Yu Tung

Published online: 18 December 2009
© Springer Science+Business Media, LLC 2009

Abstract With the rapid increment of the heterogeneity of hardware devices, clus-
ter computing has to encounter the problem of handling heterogeneous resources for
exploiting the utilization of system resources. This paper introduces a new job alloca-
tion strategy based on multi-clusters in diskless environments. By adopting Ganglia
as the resource monitor and Condor as the queue system, a heterogeneous multi-
cluster system is also constructed with and without storage devices for evaluating the
system performance. The proposed algorithm is called the Well-Balanced Allocation
Strategy (WBAS) in which the scheduler dispatches MPI-based jobs to appropriate
resources across multi-clusters. The strategy focuses on dispatching jobs to nodes
with similar performance, thus equalizing execution times among all the required
nodes. The WBAS is implemented on the constructed heterogeneous multi-cluster
system to evaluate the performance of the scheduling strategy. The experimental re-
sults show that the proposed strategy performs well and could efficiently improve the
system performance.

Keywords Multi-cluster · Heterogeneous · Job scheduling · Resource monitoring

C.-T. Yang (�) · H.-Y. Tung
High-Performance Computing Laboratory, Department of Computer Science, Tunghai University,
Taichung 40704, Taiwan (ROC)
e-mail: ctyang@thu.edu.tw

H.-Y. Tung
e-mail: jamesmap.tw@gmail.com

K.-C. Lai
Department of Computer and Information Science, National Taichung University, Taichung 40306,
Taiwan (ROC)
e-mail: kclai@ntcu.edu.tw

mailto:ctyang@thu.edu.tw
mailto:jamesmap.tw@gmail.com
mailto:kclai@ntcu.edu.tw


On construction of a well-balanced allocation strategy 271

1 Introduction

Cluster computing in commercial and non-commercial applications becomes more
and more common these days [2–5, 10, 13, 16, 18–21]. Multi-cluster systems inte-
grate multiple clusters into a huge environment for research facilities to make use of
high-performance computing resources by matching the computational requirement.
As computer architectures become more and more diverse and heterogenic, and com-
puter expiration rates are higher than before, the old and unused computers could
be used for increasing system computing capability. Therefore, clusters usually con-
sist of computers with different processors, memories and hard disk drives. It causes
difficulty for dealing with such heterogeneity in a cluster.

As is known, heterogeneous clusters have differing computing power and charac-
teristics. MPI-based job is usually split into several tasks to be executed with the same
program file in parallel. Since the heterogeneous nodes have differing computing ca-
pacities, the time to execute the same job in different nodes is different. As a result,
faster nodes of cluster have to wait for slower nodes, thus wasting the computing
resources [1, 6, 7, 11, 12, 14, 15, 17].

This paper addresses the resource wasting problem. The proposed scheduling
strategy first gathers all needed information from each node, depending on the sched-
uler. Depending on this gathered information, the proposed strategy decides which
jobs could be dispatched to which machines. The Well-Balanced Allocation Strat-
egy (WBAS) tries to achieve the goal that jobs finish in the nearly same times, thus
shortening the idle times of faster nodes.

This paper introduces a job allocation strategy, named the Well-Balanced Alloca-
tion Strategy (WBAS), to increase the efficiency for the multi-cluster environment.
The proposed strategy gathers the information needed from all the execution nodes
including the CPU, free memory, loading, and network status. According to node’s
computing power, WBAS classifies the nodes of clusters in the multi-cluster system
into different levels. And then, the scheduler dispatches the job based on three poli-
cies adopted in WBAS. The decision is made based on whether there are sufficient
free nodes in the clusters or not; the co-allocation is made to submit the job across
multiple clusters. Finally, the proposed strategy is evaluated in a multi-cluster envi-
ronment for the feasibility of this job allocation strategy.

The rest of this article is organized as follows. In Sect. 2, we mention some tech-
nologies and our cluster layer in brief. Section 3 describes the system architecture and
the scheduling algorithm. The experimental results are shown in Sect. 4. In Sect. 5,
the conclusions and the future work are given.

2 Background review

2.1 Cluster computing

Cluster computing supports high-performance parallel computing based on inexpen-
sive computer hardware. A Beowulf cluster system includes a group of usually iden-
tical PC computers which run the same Free and Open Source Software (FOSS)



272 C.-T. Yang et al.

Fig. 1 Logic view of a PC cluster

Unix-like operating system, such as BSD, Linux or Solaris. They are networked by a
small TCP/IP LAN, and have the same libraries and programs installed which allow
processes to be shared among them.

A Beowulf cluster uses a multi-computer architecture, as depicted in Fig. 1. It
consists of one or more head nodes and available tail nodes, compute nodes, or cluster
nodes, which are interconnected via widely available network. All the nodes in a
typical Beowulf cluster are commodity systems-PCs, workstations, or servers running
commodity software such as Linux, as mentioned above [3, 4, 10, 16, 19].

The head node acts as a server for NFS and as a gateway to communicate with the
outside world. As an NFS server, the head node provides the user file space and other
common system software for the computing nodes via NFS. As a gateway, the head
node allows users to gain accesses through it to the computing (tail) nodes. Usually,
the head node is the only machine with a second network interface card (NIC) to
connect to the outside world. The sole task of the tail nodes is to execute parallel
jobs.

From a user’s perspective, a Beowulf cluster appears as a Massively Parallel
Processor (MPP) system [2]. The most common methods of using such a system
are to access the head node either directly or through Telnet or remote login from
personal workstations. Users can prepare and compile their parallel applications, and
also spawn jobs on a desired number of tail nodes in the cluster. Applications must
be written in parallel form by the message-passing programming model. Jobs in a
parallel application are spawned on compute nodes, which work collaboratively un-
til finishing the application. During the execution, computing nodes use the standard
message-passing middleware, such as Message Passing Interface (MPI) [28, 32] and
Parallel Virtual Machine (PVM) [34], to exchange information.

Commonly used parallel processing libraries include MPI (Message Passing In-
terface) and PVM (Parallel Virtual Machine). Both of these libraries permit the pro-
grammer to divide a task among a group of networked computers, and recollect the



On construction of a well-balanced allocation strategy 273

processing results. Different libraries based on the MPI standards exist, for example,
MPICH [33] and LAM/MPI [31]. In general, there is a misconception that arbitrary
software runs faster on a Beowulf system. Software must be revised to take advantage
of the cluster. Specifically, it must perform multiple independent parallel operations
that can be distributed among the available processors.

2.1.1 Message passing interface

There are two main Message Passing Interfaces used for executing MPI jobs under
Linux, MPICH and LAM. They are briefly described as follows. MPICH is a robust
and flexible implementation of the MPI. MPI is often used with parallel or distributed
computing projects. MPICH is a multi-platform, configurable system (development,
execution, libraries, etc.) for MPI. It can achieve parallelism using networked ma-
chines or using multitasking on a single machine. LAM is an implementation of the
Message Passing Interface parallel standard that is especially friendly to clusters. It
includes a persistent runtime environment for parallel programs, support for all of
MPI-1, and a good chunk of MPI-2, such as the dynamic functions, one-way com-
munication, C++ bindings, and MPI-IO.

2.1.2 DRBL

DRBL stands for Diskless Remote Boot with Linux [23, 29]. This solution is solely
designed and implemented by people in National Center of High-performance Com-
puting (NCHC), Taiwan. DRBL uses PXE or Etherboot, NFS, and NIS to provide
services for client machines [26]. When the server is a DRBL server, the client ma-
chines can boot a Linux image over the network via PXE or Etherboot (Diskless).
DRBL does not touch the hard drive of the clients, so other OS (for example, MS
Windows) installed on the client machines will retain their own OS, or clients can
do without hard drives entirely. This may be important in a phased deployment of
the GNU/Linux, where users still want to have the choice of booting as an MS Win-
dows system and running the Office application. DRBL allows to be flexible in one’s
deployment of the GNU/Linux system.

2.1.3 Ganglia

The Ganglia project grew out of the University of California, Berkeley’s Millennium
initiative [30]. Ganglia is a scalable open source distributed system for monitoring
the status of nodes (processor collections) in wide-area systems based on clusters. It
adopts a hierarchical tree-like communication structure among its components in or-
der to accommodate information from large arbitrary collections of multiple clusters,
such as Grids. The information collected by the Ganglia includes hardware and sys-
tem information, such as processor type, load, memory usage, disk usage, operating
system information, and other static/dynamic scheduler-specific information.



274 C.-T. Yang et al.

2.1.4 Condor

Condor [12, 14, 15, 20] is an Open Source project developed by the Condor team of
Computer Sciences Department at the University of Wisconsin-Madison, WI. Condor
is a powerful workload management system for computing intensive jobs. It is use-
ful for constructing a multi-cluster environment; it also provides many features for
handling the nodes in cluster pools, such as queuing mechanism, scheduling policy,
priority scheme, resource monitoring, and resource management.

Condor provides a job queue in our system. Under the assumption that only one
job is allowed to execute one node, ordinary way of submitting jobs under the cluster
could only be done with one user at a time. But by using Condor, we are able to
submit up to one hundred jobs at a time. Condor automatically queues the jobs in its
queue waiting for the jobs which were submitted prior to the finish. Moreover, the
jobs can also be monitored through Condor, and also the removing of the jobs.

2.2 Related works

The personal computer becomes cheaper today, and the ratio of cost to price is even
more valuable when we use the Beowulf cluster for parallel processing and applica-
tions. By purchasing a number of PCs to build a Beowulf cluster in batches, we could
not obtain higher performance because we cannot easily integrate these heteroge-
neous computational resources. We have several ways to integrate the heterogeneous
clusters to build a new computational resource to get a better performance [13]. It is
a problem to build the Multi-Cluster Computing. The purpose of building the Multi-
Cluster Computing is to get any type of resources to resolve many of demanding tasks
[8, 9].

The major objective of scheduling in a multi-cluster environment is to make the
best use of resources [24, 25]. When a job arrives at the job queue, the responsibility
of the scheduler is to decide which machine should handle it [27]. Many studies have
been conducted on multi-cluster scheduling. Generally, they fall into one of the two
categories: static scheduling or dynamic scheduling [5]. Static scheduling, performed
at compiling time, allocates jobs to individual processors before execution; and the
allocation remains unchanged during execution. Dynamic scheduling is performed at
runtime and can support dynamic load balancing and fault tolerance. Although load
balancing could distribute the load to different nodes during execution [18, 22], it
introduces additional overhead into program execution. The method we propose here
is based on static scheduling.

Most static scheduling methods must gather information for the scheduler to make
decisions on what kinds of resources are necessary. Some of them use memory la-
tency as the main indicator for load sharing [17], or take memory and CPU power
usage into account [6]. Others take further steps like queuing [21] or co-allocation
[11] into consideration. In single-cluster systems there is no need to consider co-
allocation, which allocates jobs across clusters, but it is necessary in multi-cluster
systems. Although the bandwidth could be disregarded in multi-cluster systems, it
does have some effect on systems with network-bounded jobs.

Certain studies have focused on queuing systems. Some of them consider jobs
in the waiting queue [1]. Most multi-cluster environments are scaled hierarchically,



On construction of a well-balanced allocation strategy 275

working by methods for placing and maintaining queues [7]. They also divide jobs
into two categories: single and multiple jobs, which is practical for real-world envi-
ronments. Many scheduling policies have been proposed. The main goal is to make
the best use of the resources, and that is also the major purpose of the present work.

3 Well-balanced allocation strategy

3.1 System architecture

Our system performs two services: a monitoring service and a job managing. The user
could acquire node statuses before submitting jobs to the system. As shown in Fig. 2,
at any time the user can browse the status of the whole cluster via the monitoring
service. The job manager checks the status of jobs in the job queue. The job queue
handles all submitted jobs, including job status monitoring and job removing. The
scheduler uses a simple FCFS strategy and automatically chooses nodes or clusters
for executing the first job in the queue [35–37].

Our system consists of four clusters, each with one head node and seven tail nodes.
The clusters are named “amd1,” “amd-mpdual1,” “condor1,” and “condor2.” All have
AMD ATHLON processors except the two head nodes of “condor1” and “condor2,”
which use both Intel Pentium CPUs. The “condor1” and “condor2” clusters have
hard disks only on their head nodes; the seven tail nodes have none. Thus, these two
clusters need a diskless environment in order to work. There is one master node on top

Fig. 2 System architecture



276 C.-T. Yang et al.

Fig. 3 Three layers of multi-cluster view

of all clusters that handles job assignments. All nodes are linked by a gigabit network,
as shown in Fig. 3. Since we have few nodes, they are basically placed hierarchically.

The Linux system is installed on all nodes. The head nodes are responsible for
providing services to their clusters, and the tail nodes are the basic computational
nodes. The master node is responsible for deploying jobs and offering monitoring
services. As shown in Fig. 3, the clusters are composed of three layers: one master
node, head nodes, and tail nodes.

As described above, the software stack diagram is shown in Fig. 4. We divided the
three layers as following:

• Master Nodes: The master nodes support the main system functions, the monitor-
ing service and the job manager. They include the Ganglia monitoring server and
the Web page with a RRD tool. Condor is also deployed on these nodes.

• Head Nodes: They provide the needed services for the clusters, including the Net-
work Information Service (NIS), Network File System (NFS), and the Message
Passing Interface (MPI) environment needed to run MPI jobs. Ganglia and Condor
are also implemented to keep users informed on node statuses and to schedule jobs
on the clusters. DRBL enables “condor1” and “condor2” to run as diskless nodes,
i.e., the execution of Linux without a hard disk. In our situation, only one hard disk
is required per cluster.

• Tail Nodes: The computational nodes on the bottom layer are responsible for ex-
ecuting jobs and sending their node statuses. The working file systems on these
nodes are mounted on NFS servers provided by the head nodes. Ganglia client-
side services and Condor execution services are the only functions implemented
on these nodes. MPI is deployed on these nodes to enable them to run MPI jobs.



On construction of a well-balanced allocation strategy 277

Fig. 4 Software stack

The main goal of scheduling systems is to make the best use of resources. The
main functions of a scheduler include resource discovery, information gathering, sys-
tem selection, and job execution. Information is gathered for the scheduler to make
the best decision in determining which nodes’ jobs are assigned. Therefore, this study
proposes a scheduling policy called the Well-Balanced Allocation Strategy (WBAS).
Choosing the most efficient nodes to execute jobs is a simple method for single jobs,
but it does not always work well in MPI environments because MPI jobs are exe-
cuted on multiple/single nodes; so choosing the most powerful nodes is not always
practical. It may be feasible for homogeneous and dedicated clusters, since all their
nodes are identical. But in heterogeneous environments, selecting nodes with similar
performance is a more complex work. Our objective is to even out the computation
times of all executing nodes. The main problem of MPI jobs is that when executed
in heterogeneous or non-dedicated environments, nodes will have differing comput-
ing capacities. Therefore, the distributed loads may be different. Some nodes would
finish their jobs earlier waiting for slower nodes.

The major objective of our policy is to find nodes with similar performance to ex-
ecute jobs for improving the resource utilization. When a job in a queue is ready for
deployment, we first gather the information needed for decision-making. The sched-
uler then fetches the processor request required for the job and the scheduling policy
starts to decide which nodes accept the job for execution. We use the gathered infor-
mation to calculate the performance value for every node. Then we classify all these



278 C.-T. Yang et al.

Fig. 5 An example without WBAS

values into α levels, from the fastest to the slowest. The scheduler decides which
policy to use in deploying the job to a specific node.

Our strategy aims to improve the resource utilization and reduce the job turn-
around time in heterogeneous multi-cluster systems. Clusters with heterogeneous
nodes or non-dedicated clusters have the most effectiveness in our scheduling strat-
egy. The chief weakness of running MPI programs is in that when employing nodes
with different computing power or loading, the nodes that are faster or with lighter
loads are more likely to finish earlier than the nodes that are slower or with heavier
loads. This will cause the nodes finishing earlier to wait for the nodes that have not
finished their job. Figure 6 shows an example of the scheduling without WBAS.

Assume that we have eight nodes with different computing power. Nodes 1 to 4 are
the slower nodes, or in other words, machines with weaker computing power. On the
other hand, nodes 5 to 8, are the nodes with higher computing power. In Fig. 6, two
jobs are submitted to these eight nodes. These two jobs both requested four nodes for
execution. The timeline shows how long the jobs need to run under certain nodes. We
can see that if the nodes which these two jobs acquired are of a different computing
power, then nodes 5 and 6 have to wait for nodes 1 and 2, nodes 7 and 8 have to wait
for nodes 3 and 4. The double arrowhead line shows the time we have lost during this
execution procedure. And that is also the main problem that we are trying to solve in
this paper.

As shown in Fig. 7, the time we have lost is nearly zero in the same example. We
have earned a lot of free execution time from nodes 5 to 8 for other users to submit
their jobs to these nodes. Nodes 1 to 4 have similar computing powers, as well as



On construction of a well-balanced allocation strategy 279

Fig. 6 An example with WBAS

nodes 5 to 8. WBAS will calculate the performance and the loading of all the free
nodes. And it will submit the jobs to suitable nodes with the gathered information.

3.2 Parameters and the algorithm

Now, we discuss the evaluating process of the performance power of all the nodes.
The parameters used in the algorithm are listed as follows:

• jobi : The ith job is de-queued from the queue, where i = 1 ∼ n. The job contains
some information such as the job name, program name, program arguments, input
data, and number of required processors. The program is usually a parallel program
written by the MPI library and compiled by MPICH or LAM/MPI. The scheduler
will allocate resources according to the information provided by the job.

• NPreq: The number of nodes required to execute jobi . When the scheduler success-
fully dispatches jobi , the distributed resources used for jobi will be locked until
jobi is finished. In other words, we allow only rigid job scheduling by pure space
sharing, which means that one processor is permitted to run one job at a time.

• NPall: The total number of processors in the multi-clusters. If NPreq exceeds NPAll,
the job is dropped.

• SNmax: The maximum number of nodes in a single cluster on the same level.
• PNmax: The maximum number of nodes in a cluster pair on the same level.
• MNmax: The maximum number of nodes in all of cluster pairs on the same level.
• Loadi : The sum of load1, load5, and load15 on Nodei , where Nodei is the ith node

and is available for allocation; calculation of Loadi is as follows: (here load1 is the



280 C.-T. Yang et al.

ith processor loading in one minute, load5 is the ith node loading in five minutes,
and load15 is the ith node loading in fifteen minutes).

Loadi = load1
i × 15 + load5

i × 5 + load15
i

21
(1)

• CPi : The computing capacity of the ith node; its calculation is as follows:

CPi = HPL

Cpunum
× 100 − Loadi

100
× (Memfree + Cpupow) (2)

• HPL: The site benchmarking value obtained by the approach of benchmarking.
• Cpunum: The total number of CPUs in a specified cluster. Job “the unit of job

distributed” is a node.
• Memfree: Available node memory in gigabytes; if a node has 1.2 GB of free mem-

ory, this value will be 1.2.
• Cpupow: Node CPU clock rate in gigahertz; if a node has a clock rate of 1.8 GHz,

this value will be 1.8.
• LS: Since we sort α levels according to computing power, this value is the size of

each level.

LS = (CPmax − CPmin)

α
(3)

• Level: it means familiar computing node in the same group.
• α: The number of levels into which we sort all the nodes; the value depends on

the number of clusters and their homogeneity. The default value is the number of
clusters in the environment, which is 4 in our case.

• CPmin: The lowest CP value among all nodes.
• CPmax: The highest CP value among all nodes.
• BWmn: The average bandwidth between the head node of cluster m and cluster n at

a given time period. The value k stands for the number of measurements computed
to get the average bandwidth; the default value is 30. The bandwidth is constantly
being measured; BWmn between two clusters is the bandwidth between them over
the last two minutes.

BWmn =
k∑

t=1

Lmn[t]
k

(4)

• Lmn[t]: The bandwidth between cluster m and cluster n at time t .

We sort all nodes by α levels according to their performance capacity from high
to low. The procedure below shows how nodes are classified into α levels. The level
classification function is responsible for sorting. Figure 7 shows nodes sorted into
groups according to the CP value.

After sorting out all the available nodes in our system, we know which node be-
longs to which level. In other words, we classify all the nodes into α levels. The
primary purpose for sorting nodes into different levels is to equalize execution times.
The α value will be different for different environments, depending on the comput-
ing power of the specific multi-cluster system. When building clusters, we generally



On construction of a well-balanced allocation strategy 281

Fig. 7 Level classification
algorithm 1 LevelClassify(CPi ){

2 if (CPi � CPmin + LS) then
3 Level1 = i

4 elseif (CPi � CPmin + LS × 2) then
5 Level2 = i

6 elseif (CPi � CPmin + LS × 3) then
7 Level3 = i

8 . . .

9 else
10 Level α = i

11 . . .

12 fi
13 fi
14 fi
15 }

place nodes with similar computing capacities in the same cluster. Machines with
the greatest capacity are grouped into one cluster, those with slightly lesser capacity
into the next, and so on. In such cases it is feasible to simply set α to the number of
clusters in the environment.

3.3 The flow chart

The WBAS allocation strategy includes three main phases: information gathering,
level classification, and allocation policy. There are two allocation policies: Single
Cluster and Cluster Pair. Figure 8 shows a simplified flow chart. Jobs are dispatched
from the master node’s queue. The master node is responsible for making dispatch
decisions, including fetching states and all node information, and for determining
whether the number of processors requested is greater than the number of available
processors in the whole cluster. If not enough processors are allocated, the job is
abandoned and the user is informed that not enough processors are available to ex-
ecute the job. The scheduler then begins the Well-Balanced Allocation Strategy to
calculate the performance capacities of all the nodes.

The “level classification” function gathers the needed information about classifi-
cation by the CP value for each node. After sorting all the nodes according to the
α level, one of two policies may be chosen for the job. The first is the “single site
only,” and the other is “co-allocation” which means selecting more than one cluster
for execution.

“Single cluster policy” is to select nodes in a single cluster on the same level using
the best-fit algorithm. If there are not enough free nodes to use this policy, the “cluster
pair policy” will be chosen.

“Cluster pair policy” is similar to the “single cluster policy”, except that nodes
from two clusters are chosen instead of one from the same level. Cluster pairs that
satisfy the number of requested nodes are first selected. The BWnm values of all the
candidates are compared and the cluster pair with the lowest latency is chosen. The
job is then dispatched to the nodes for execution.



282 C.-T. Yang et al.

Fig. 8 WBAS flow chart

“Multi-cluster policy” is to emphasize when users need a huge amount of nodes.
This method tries to use all the clusters in the system but still within the same level.
If neither policy met job requirements, the job is sent back to the queue to wait in line
for another try.

3.4 An example

In this simple example we show how the WBAS works in real environments. Note
that we have four clusters: Alpha, Bravo, Charlie, and Delta, each with eight nodes,
for a combined total of 32 nodes in our multi-cluster environment. Figure 9 shows
that the nodes are sorted into four levels, which means that α value is set to 4 in this
case.

The scheduler is enabled whenever there is a job in the job queue, and checks for
available nodes, which is, nodes not executing jobs. Some nodes in Fig. 9 are in the



On construction of a well-balanced allocation strategy 283

Fig. 9 WBAS example

Table 1 The CP-value example
Node CP value

Alpha 1 14.58

Alpha 2 15.64

Bravo 1 16.22

Bravo 2 15.15

Bravo 3 15.66

Bravo 4 16.71

Charlie 1 20.19 (CPmax)

Charlie 2 19.88

Charlie 7 14.55

Charlie 8 15.27

Delta 5 19.01

Delta 6 18.97

Delta 7 18.55

Delta 8 8.11 (CPmin)

busy state, which means they are running jobs. Therefore, the scheduler only gathers
information on nodes Alpha 1∼2, Bravo 1∼4, Charlie 1∼2, Charlie 7∼8, and Delta
5∼8, which are free. Using the data gathered the scheduler then calculates CP values
for these 13 nodes. As shown in Table 1, the highest (CPmax) is for Charlie 1 at 20.19
and the lowest (CPmin) for Delta 8 at 8.11.

After the CP values have been calculated, the nodes are sorted into four levels
from high to low, as shown in Fig. 10. Below, we give examples for two NPreq values
(number of user-requested nodes).

• Example 1. (NPreq = 4) If the enqueued job we are about to process needs four
nodes for execution, Fig. 9 shows that we should choose Bravo 1∼4 based on the
single-site policy of our WBAS.



284 C.-T. Yang et al.

Fig. 10 Ganglia web front-end multi-cluster view

• Example 2. (NPreq = 6) In this case, the single-site policy will fail to satisfy the
requirement since there are not enough free nodes on the same level in any of
the clusters. The cluster pair policy of our WBAS must be used, which gives two
choices, Bravo 1∼4 with Alpha 1∼2 or Bravo 1∼4 with Charlie 7∼8. From these,



On construction of a well-balanced allocation strategy 285

the pair with the higher BW value is selected. Since the bandwidth between Bravo
and Charlie is high, they are chosen.

3.5 Monitoring and scheduler

Basically, we have two kinds of monitoring systems in our clusters. The first one
is Ganglia which we briefly described in Sect. 2. And the second one is a simple
monitoring system to fetch the remaining information which is needed by WBAS.
Ganglia is a scalable distributed monitoring system for high-performance computing
systems such as clusters and Grids. It uses such information as the XML for data
representation, XDR for compact, portable data transport, and RRDtool, to draw the
graph on its web.

Figure 10 is shows all the clusters in each row. The first row displays the infor-
mation of the whole multi-cluster system. There are 27 nodes with 54 CPUs in our
multi-cluster. Each row represents the data of each cluster. We can see that there are
up to eight clusters with different number of nodes in our system. The name of the
cluster is displayed on each row and graphs. We can see there some “clouds” with
the names of each cluster and the colors are different as well. These show the average
load of each cluster, every color representing a different loading, e.g. orange for high
loading and blue for light loading.

The other main purpose of using Ganglia is that we can fetch all the data we need
from it. As mentioned before, Ganglia takes care of the data fetching throughout of
the whole multi-cluster. The only thing we need to do is to deploy the system onto
our multi-cluster platform. Ganglia provides a binary called “gstat,” which can be
used for our scheduling system to fetch the status needed. As in Fig. 11, this demon-
strates an example of fetching the information of one of the clusters named “amd1.”
We have eight nodes in our cluster pool, numbered from one to eight. This infor-
mation includes hostnames, CPU numbers, processes, loadings and CPU loadings.

Fig. 11 Gstat output of Ganglia



286 C.-T. Yang et al.

Fig. 12 The process flow of scheduler

Our scheduling system only needs to fetch the CPU number, one-minute loading,
five-minute loading, and fifteen-minute loading. These data are then trimmed for our
scheduler to use. These four values comprise the message we need to decide which
nodes to deploy which jobs to our clusters. The master node fetches the information
from gstat every time before making scheduling decisions.

The second kind of the monitoring system is used for our scheduling system. The
primary objective of our scheduler is to fetch HPL and the memory-free value. Al-
though NFS is operating on each cluster, the file systems are still separated from each
cluster. So we use SSH (Secure Shell) to fetch the needed data. An easy shell script
could do the job. The HPL value is stored on the head nodes, and the memory-free
value is stored in a file “/proc/meminfo.” The HPL value remains unchanged except
when there are any hardware changes within this cluster. In this situation, we recom-
mend to rerun the HPL benchmark program to get a new HPL value for this cluster.
On the other hand, the file “/proc/meminfo” is changed within a second. This would
not be a problem when we only need to fetch this data before deploying a job.



On construction of a well-balanced allocation strategy 287

Fig. 13 Mutex example

The scheduling system is written in C++ language which is easier to implement
under Linux. Figure 12 shows the main process flow of our scheduling system. After
the scheduler has been executed, the main thread creates a number of job threads,
where each thread stands for one job. The number of NPreq, which is the number of
processors needed for this job, has also been generated. This job thread number could
be of any size, based on how many jobs are allocated by this scheduler.

The next process is to allow these threads to compete for the critical area which
is shown in Fig. 12. The scheduler uses mutual exclusion in this region, which only
allows one thread to enter this part of the program. This mutex algorithm restricts
simultaneous threads to use common resources in the critical areas. Figure 13 shows
an example how the mutex work in our scheduler. In Fig. 13 we assume that we have
a main thread and two job threads created on the scheduler. The time line is going
from top to bottom.

At the beginning of the phase, the main thread first calls the fetch_status() function
to fetch the status of all the nodes including the memory-free, one-minute load, five-
minute load and fifteen-minute load. In our strategy, job thread one and job thread
two compete with each other to enter the critical area where the mutex are. In this
figure, it displays that thread one has won this round. Thread one is afterwards locked
in the critical area by the mutex_lock() function. Now thread one may gain access
to common resources, like files or memory spaces. As in our system, the WBAS()
function is in the critical area for the scheduler to make scheduling decisions. The
main purpose of the critical section is to protect the status of all machine states.
In our scheduling system, we adjust the status of our machine before and after the
execution of any job.



288 C.-T. Yang et al.

Fig. 14 Scheduler initializing state

Later on, if the decision has been made by the WBAS() function, then the job
is dispatched to the selected nodes for execution, as shown in Fig. 15. On the other
hand, if WBAS() failed to select the nodes, like if there are not sufficient nodes, thread
one will have to make for another try to compete for the critical section. The critical
area will be released by the mutex_unlock() function after the WBAS() function is
finished. Then the main thread takes into control again to fetch the status of all the
machines.

The figures below show the output of our scheduling simulator program. Three
main phases are included in our process, scheduler initializing, fetch status, and job
dispatch. Figure 14 shows the first phase of our scheduler. The α value is first shown
on the screen, which is 4 in this figure. Then the scheduler is initialized by fetching
the host information. Afterwards, LAM is booted by this host information, and the
job threads are created at this point. The jobs are submitted and start to compete for
the critical zone where the scheduling decision is made.

Figure 15 shows the status of all the machines in our multi-cluster pool. The job
thread’s ID which got into the critical zone is shown on the top. Then the scheduler
commences to fetch the statuses on all the nodes. The columns Hostname, CPU,
HPL value, and CPU frequency maintain the same value every time except when the



On construction of a well-balanced allocation strategy 289

Fig. 15 Fetch status state

hardware is changed on certain nodes or clusters. The values of memory-free, one-
minute load, five-minute load, and fifteen-minute load are fetched at this moment.

Figure 16 shows how the job is dispatched by our WBAS policy. The second line
displays the number of requested nodes for this job. Then the CP value of each node
is calculated by the information given in Fig. 16. These nodes are classified into
α levels which were set to 4 in this example. Afterwards, the CPmax, CPmin, and the
number of nodes of each level under certain cluster are also outputted onto the screen.
In addition, the nodes which are busy are set to be busy state, the CP values of these
are not calculated and directly set to zero. We can see that the single-cluster policy
failed to select the nodes because we do not have sufficient nodes. Nevertheless, the
cluster-pair policy succeeded choosing size nodes from cluster 2 and two nodes from
cluster 3. Eventually, the job is dispatched onto these selected nodes for execution.
The leftover jobs are shown in the bottom of Fig. 16.

4 Experimental results

Our multi-cluster environment includes four clusters with eight nodes, including one
head node and seven tail nodes. These machines all participate in job execution. The
master node is responsible for dispatching jobs to the clusters and for evaluating
performance. The hardware and software specifications of our multi-cluster environ-
ment are shown in Table 2. The network bandwidths and the environment are shown
in Fig. 17. The bandwidths are all 10/100M, except for cluster “amd1,” where the
nodes are the fastest. This means that its HPL value is much higher than those of the



290 C.-T. Yang et al.

Fig. 16 Job dispatch state

other three. “amd-mpdual1,” “condor1,” and “condor2” perform nearly as well, but
they run in diskless environments.

The clusters are linked to a switch that connects to the master node where the
scheduler and monitoring system are located. The master node is responsible for sub-
mitting jobs to the clusters, and fetching and storing the statuses of all machines. The
head and tail nodes are responsible for executing jobs in this experimental environ-
ment, and return their statuses and outputs to the master node. The master node is
responsible for fetching the statuses of all the machines and submitting the jobs onto
the clusters, and also keeping the state of all the nodes. The head and tail nodes are



On construction of a well-balanced allocation strategy 291

Table 2 Hardware and software specifications

amd1 amd-mpdual1 condor1 condor2

H T H T H T H T

PC# 1 7 1 7 1 7 1 7

CPU AMD Athlon AMD Athlon Intel P4 AMD Athlon Intel P4 AMD Athlon

MP 2600+ MP 2000+ 2.8 GHz MP 2000+ 2.8 GHz MP 2000+

RAM 2 GB 1 GB 2 GB 1 GB 2 GB 512 KB 2 GB 1 GB

Hard Disk Yes Yes No Yes No

NIC Gigabit 10/100M

OS Fedora Core 5 Fedora Core 6

Lam lam-7.1.2-1.fc5 lam-7.1.2-8.fc6

Fig. 17 Network bandwidths

basically compute nodes in this experimental environment for returning the informa-
tion before execution and output back to the master node when the job is done.

The first step is to obtain the HPL value of each cluster. Therefore, we gather this
value by executing the benchmark program once only on them, as shown in Table 3.
After calculating and storing the HPL values for all clusters, we submitted ten runs
of two hundred MPI-based jobs, fifty requesting just one node, fifty requesting two
nodes, fifty requesting four nodes, and fifty requesting eight nodes, and measured the
average response times. We compared experimental results with sequential execution
in which the jobs are executed one by one, to demonstrate the speedup improvement.
In the following figures, “WBAS 3” means that the number of levels is 3 (i.e., α is 3).

The benchmarks are matrix multiplication MPI programs in which the matrix size
could be varied. The results in Fig. 18 show that when the size was set to 512, the
WBAS performed best with the α value set to 4, and took a long time to finish when it



292 C.-T. Yang et al.

Table 3 HPL values of each cluster

amd1 amd-mpdual1 condor1 condor2

HPL (GFlops) 29.9 3.86 2.181 3.317

Fig. 18 Results for mm_mpi 512

Fig. 19 Results for mm_mpi 1024

was set to 3. “Sequential” took even longer. We then set the matrix size to 1024, and
the results in Fig. 19 show that the system performed almost exactly as it did when
the matrix size was set to 512, with only slight increase in time. Figure 20 shows the
results obtained when the matrix size was set to be 2048. The nodes took a much
greater amount of time to finish the jobs. Note that in this situation, the shortest time
was recorded when the α value was set to 3. The “sequential” strategy, on the other
hand, finished almost half an hour later.

The next program calculates the prime numbers below a certain value, which could
be changed by the user. The total prime number and the largest are computed. Fig-
ure 21 shows that the parameter is set to 20 million; we can see that “sequential”



On construction of a well-balanced allocation strategy 293

Fig. 20 Results for mm_mpi 2048

Fig. 21 Results for prime_mpi 20m

behaves the worst in this case. In Fig. 22 that parameter is set to 50 million. The
results display that “WBAS 5” has the best result, but the turnaround time is very
similar in each case. The results shown in Fig. 23 are rather close when setting the
parameter to 100 million. The finishing time between “sequential” and “WBAS 5” is
about 10 minutes.

The next experiment calculates the π which is the ratio of any circle’s circumfer-
ence to its diameter in Euclidean geometry, as shown in Fig. 24. Our strategy had the
biggest impact on jobs that require a long time to finish. Because faster nodes of clus-
ter have to wait for slower nodes to finish, the idle time is wasted since the resource
is unused.

Figure 25 shows the program to solve the classical N-body problem which simu-
lates the evolution of a system of N bodies and where the force exerted on each body
arises due to its interaction with all the other bodies in the system. The performance is
rather close from “sequential” to “WBAS” with different α values. Figure 26 shows
a sequential satisfiability program in which the task is to give a logical formula in
sixteen variables to determine which values of the inputs make the formula true. The



294 C.-T. Yang et al.

Fig. 22 Results for prime_mpi 50m

Fig. 23 Results for prime_mpi 100m

Fig. 24 Results for pi_mpi



On construction of a well-balanced allocation strategy 295

Fig. 25 Results for nbody_mpi

Fig. 26 Results for sat3_mpi

figure also shows that the performances are still close to each other from the last
experiment for which both of these programs only take less time to finish.

Figure 27 shows a program for solving the N-queen problem. The original prob-
lem is called the eight-queen problem which is trying to place eight queens on a
chess board so that no queen could attack any other queen. The N-queen problem
expands this concept into N by N with variable input in this MPI program. This
figure shows the result of setting the parameter to 10 due to the chess board hav-
ing the size of 10 by 10. It behaves rather well under this kind of problem size, the
method of WBAS with α set to 5 finished about one minute earlier than the sequential
method.

Our strategy had the biggest impact on jobs that require a long time to finish.
Because of faster nodes of cluster having to wait for slower nodes to finish, the idle
time is wasted as the resource is unused.



296 C.-T. Yang et al.

Fig. 27 Results for nqueen_mpi 10

5 Conclusion and future work

In building cluster computing platforms, we commonly interconnect multiple per-
sonal computers or workstations to achieve high computing power. However, picking
the right tool to make the best use of our clusters is critical. The proposed work en-
ables users to exploit all available resources in multi-cluster environments. As well as
monitoring all nodes in the system, Ganglia also provides an advanced web front-end.
We can check node availability, and the status of all machines. With Condor, users
can easily submit jobs to and remove them from the queue.

The proposed WBAS could distribute loads across all the machines. It works on
homogeneous as well as heterogeneous multi-clusters, and even on non-dedicated
machines. It takes CPU, free memory, loadings, and network latency into account.
Moreover, HPL value, the benchmark used to evaluate the power of clusters around
the world, is also considered. Users need only to specify the number of required
nodes, and the scheduler does the matchmaking automatically, deploying jobs to the
most suitable nodes. The nodes will finish executing the task at nearly the same time
to avoid excessive idling of the system.

Our future work may be in enhancing the proposed scheduling strategy. Static
scheduling could be combined with dynamic scheduling in order to adjust node load-
ings during execution, or even to predict the job execution time in advance for im-
proving the system performance.

Acknowledgement This work is supported in part by National Science Council, Taiwan R.O.C., under
grants No. NSC 96-2221-E-029-019-MY3, NSC 98-2218-E-007-005 and NSC 98-2622-E-029-001-CC2.

References

1. Abawajy JH (2009) An efficient adaptive scheduling policy for high-performance computing. Future
Gener Comput Syst 25(3):364–370

2. Anderson T, Culler D, Patterson D (1995) A case for network of workstations. IEEE Micro 15(1):54–
64



On construction of a well-balanced allocation strategy 297

3. Buyya R (1999) High performance cluster computing: system and architectures, vol 1. Prentice Hall,
New York

4. Buyya R (1999) High performance cluster computing: programming and applications, vol 2. Prentice
Hall, New York

5. Cao J, Chan A, Sun Y, Das SK, Guo M (2006) A taxonomy of application scheduling tools for high
performance cluster computing. J Clust Comput 9(3):355–371

6. Chen DZ, Wang YM (2007) The impact of memory resource on loop self-scheduling for heteroge-
neous clusters. In: CTHPC 2007

7. Bucur AID, Epema DHJ (2007) Scheduling policies for processor coallocation in multicluster sys-
tems. IEEE Trans Parallel Distrib Syst 18(7):958–972

8. Foster I, Kesselman C (1999) The grid: blueprint for a future computing infrastructure. Morgan Kauf-
mann, San Mateo

9. Foster I, Kesselman C, Tuecke S (2001) The anatomy of the grid: Enabling scalable virtual organiza-
tions. Int J Supercomput Appl 15(3)

10. Geist A (1994) Cluster computing: the wave of the future. Lecture notes in computer science, vol 879.
Springer, Berlin, pp 236–246

11. Jones WM, Ligon III WB, Pang L.W., Stanzione D. (2005) Characterization of bandwidth-aware
meta-schedulers for co-allocating jobs across multiple clusters. J Supercomput 34(2):135–163

12. Krueger PE, Livny M (1988) A comparison of preemptive and non-preemptive load distributing. In:
Proc of the 8th international conference on distributed computing systems, pp 123–130, June 1988

13. Matsuda M, Kudoh T, Ishikawa Y (2003) Evaluation of MPI implementations on grid-connected clus-
ters using an emulated WAN environment. In: Proc of the 3rd IEEE/ACM international symposium
on cluster computing and the grid (CCGRID’03). IEEE Computing Society, p 10

14. Mutka M, Livny M (1987) Scheduling remote processing capacity in a workstation-processing bank
computing system. In: Proceedings of the 7th international conference of distributed computing sys-
tems, pp 2–9, September, 1987

15. Silberstein M, Geiger D, Schuster A, Livny M (2006) Scheduling mixed workloads in multi-grids: the
grid execution hierarchy. In: Proceedings of the 15th IEEE symposium on high performance distrib-
uted computing (HPDC), pp 33–40

16. Sterling TL, Salmon J, Backer DJ, Savarese DF (1999) How to build a beowulf: a guide to the imple-
mentation and application of PC clusters, 2nd edn. MIT, Cambridge

17. Wang Y-M (2006) Memory latency consideration for load sharing on heterogeneous network of work-
stations. J Syst Archit, EUROMICRO J 52(1):13–20

18. Werstein P, Situ H, Huang Z (2006) Load balancing in a cluster computer. In: Proceedings of the
seventh international conference on parallel and distributed computing, applications and technologies,
pp 569–577

19. Wilkinson B, Allen M (1999) Parallel programming: techniques and applications using networked
workstations and parallel computers. Prentice Hall, New York, 1999

20. Wright D (2001) Cheap cycles from the desktop to the dedicated cluster: Combining opportunistic
and dedicated scheduling with Condor. In: Conference on Linux clusters: the HPC revolution, June
2001

21. Xavier P, Cai W, Lee BS (2006) Workload management of cooperatively federated computing clusters.
J Supercomput 36(3):309–322

22. Yang CT, Chang SC (2004) A parallel loop self-scheduling on extremely heterogeneous PC clusters.
J Inf Sci Eng 20(2):263–273

23. Yang CT, Chen PI, Chen YL (2005) Performance evaluations of SLIM and DRBL diskless PC clusters
on Fedora Core 3. In: Proceedings of the 6th IEEE international conference on parallel and distributed
computing, applications and technologies (PDCAT 2005), pp 479–482, December 5–8, 2005

24. Yang CT, Liao CS, Chen PI, Tung HY (2006) An information monitoring and job scheduling system
for multiple Linux PC clusters. In: Proceedings of the 7th international conference on parallel and
distributed computing, applications and technologies (PDCAT 2006), IEEE CS Press, pp 578–582,
Taipei, Taiwan, December 4–7, 2006

25. Yang CT, Chen PI, Chen SY, Tung HY (2006) A jobs’ allocation strategy for multiple DRBL diskless
Linux clusters with Condor schedulers. In: Proceedings of the 5th international conference on grid
and cooperative computing (GCC 2006), IEEE CS Press, pp 54–57, China, Oct 2006

26. Yang CT, Chen PI, Hu YC, Tung HY, Ke C-C (2006) On utilization of multiple DRBL-based Linux
clusters in the computer classroom to grid computing environments. In: Proceedings of the 12th work-
shop on compiler techniques for high-performance computing (CTHPC 2006), pp 36–41, Tainan,
Taiwan, March 16–17, 2006



298 C.-T. Yang et al.

27. Yang CT, Chen TT, Tung HY (2007) A dynamic domain-based network information model for com-
putational grids. In: Future generation communication and networking (FGCN 2007), pp 575–578,
Jeju-Island, Korea, December 6–8, 2007

28. MPI Forum (1994) MPI: A message-passing interface standard. Int J Supercomput Appl 8(3/4):165–
416

29. DRBL, http://drbl.sourceforge.net/
30. Ganglia, http://ganglia.info/
31. LAM/MPI Parallel Computing, http://www.lam-mpi.org/
32. Message Passing Interface Forum, http://www.mpi-forum.org/
33. MPICH, http://www-unix.mcs.anl.gov/mpi/mpich1/
34. PVM—Parallel Virtual Machine, http://www.epm.ornl.gov/pvm
35. Arabnia HR, Oliver MA (1987) Arbitrary rotation of raster images with SIMD machine architectures.

Int J Eurographics Assoc, Comput Graph Forum 6(1):3–12
36. Bhandarkar SM, Arabnia HR, Smith JW (1995) A reconfigurable architecture for image processing

and computer vision. Int J Pattern Recognit Artif Intell 9(2):201–229 (special issue on VLSI Algo-
rithms and Architectures for Computer Vision, Image Processing, Pattern Recognition and AI)

37. Bhandarkar SM, Arabnia HR (1995) The Hough transform on a reconfigurable multi-ring network.
J Parallel Distrib Comput 24(1):107–114

Chao-Tung Yang is a Professor of Computer Science at Tunghai Uni-
versity in Taiwan. He was born on November 9, 1968 in Ilan, Taiwan,
R.O.C. and received a B.Sc. degree in Computer Science from Tunghai
University, Taichung, Taiwan, in 1990, and the M.Sc. degree in Com-
puter Science from National Chiao Tung University, Hsinchu, Taiwan,
in 1992. He received the Ph.D. degree in Computer Science from Na-
tional Chiao Tung University in July 1996. He won the 1996 Acer
Dragon Award for an outstanding Ph.D. dissertation. He has worked
as an Associate Researcher for ground operations in the ROCSAT
Ground System Section (RGS) of the National Space Program Office
(NSPO) in Hsinchu Science-based Industrial Park since 1996. In Au-
gust 2001, he joined the Faculty of the Department of Computer Sci-
ence at Tunghai University. He got the Excellent Research Award from
Tunghai University in 2007. In 2007 and 2008, he got the Golden Pen-
guin Award by Industrial Development Bureau, Ministry of Economic

Affairs, Taiwan. His researches have been sponsored by Taiwan agencies of National Science Council
(NSC), National Center for High Performance Computing (NCHC), and Ministry of Education. His present
research interests are in grid and cluster computing, parallel and multi-core computing, and Web-based ap-
plications. He is both a member of the IEEE Computer Society and ACM.

Kuan-Chou Lai received his M.Sc. degree in Computer Science and
Information Engineering from the National Cheng Kung University in
1991, and the Ph.D. degree in Computer Science and Information En-
gineering from the National Chiao Tung University in 1996. Currently,
he is an Associate Professor in the Department of Computer and Infor-
mation Science and the director of the Computer and Network Center
at the National Taichung University. His research interests include par-
allel processing, heterogeneous computing, system architecture, P2P,
grid computing, and multimedia systems. He is a member of the IEEE
and the IEEE Computer Society.

http://drbl.sourceforge.net/
http://ganglia.info/
http://www.lam-mpi.org/
http://www.mpi-forum.org/
http://www-unix.mcs.anl.gov/mpi/mpich1/
http://www.epm.ornl.gov/pvm


On construction of a well-balanced allocation strategy 299

Hao-Yu Tung was born on July 5th, 1983, in Taichung City, Taiwan,
R.O.C. He received the B.S. degree in Department of Computer Sci-
ence from Tunghai University in 2006, and he also received the M.S.
degree in Department of Computer Science from Tunghai University
as well in 2008. He is currently an engineer of HTC Corporation in
Xindian City now.



Copyright of Journal of Supercomputing is the property of Springer Science & Business Media B.V. and its

content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's

express written permission. However, users may print, download, or email articles for individual use.


