
Adaptive Performance Monitoring for  
Embedded Multicore Systems 

Chun-Yi Shih*, Ming-Chih Li*, Chao-Sheng Lin*, Pao-Ann Hsiung*+, Chih-Hung Chang@,  
William C. Chu†, Nien-Lin Hsueh‡,  Chihhsiong Shih†, Chao-Tung Yang†, and Chorng-Shiuh Koong$ 

*National Chung Cheng University, @Hsiuping Institute of Technology, †Tunghai University,  
‡Fengchia University, $National Taichung University, Taiwan.   E-mail: +pahsiung@cs.ccu.edu.tw 

 
Abstract — With the advent of multicore processors, the 
performance of software has been elevated to new unforeseen 
heights via parallelization. However, this has not been achieved 
without new problems cropping up due to parallelization. One 
serious issue is the performance bottleneck due to cache misses or 
resource starvation, which is hard to detect in application 
software especially when the software has dynamically changing 
behavior. Performance monitors are usually employed for such 
purposes. Nevertheless, monitors have introduced their own 
computation and communication overheads, especially in 
embedded multicore systems. In this work, we try to estimate the 
effects of monitor overheads on different types of applications, 
such as CPU-bound and IO-bound tasks. Further, we give 
suggestions on the number and type of monitors to use for such 
embedded multicore applications. Besides trying to reduce 
monitor overheads, we also aim for the accuracy and the 
immediacy of the monitored information. Through a real-world 
example, namely digital video recording system, we demonstrate 
how different monitoring periods affect the tradeoff between 
accuracy and immediacy of the monitored information. 

Keywords: embedded multicore system, monitor overhead, 
IO/CPU-bound task, monitor accuracy, monitor immediacy 

I.  INTRODUCTION  
Multicore processors have invaded not only the desktop 

computing infrastructure, but have also crept into the 
embedded computing paradigm. New mobile phones are now 
equipped with a mobile chip called Tegra 2 from Nvidia, 
consisting of a dual-core ARM Cortex 9 CPU and an 8-core 
GeForce GPU. With this progress, embedded systems can now 
run applications with high performance due to inherent 
parallelism in the computing infrastructure. However, true 
parallelization has also made multi-threaded embedded 
software more difficult to design and verify. Some well-known 
issues include resource sharing problems such cache conflicts 
and I/O device usage, inter-core communication, non-uniform 
memory access, unbalanced workload, data sharing, high 
power consumption, and performance bottlenecks. A variety of 
solutions exists for solving these problems. For detecting 
performance bottleneck at runtime, monitors are designed into 
the embedded software. This work focuses on how to design 
performance monitors for embedded multicore systems. 

Monitors can be designed either by instrumenting an 
application software code with specific monitoring code or as 
an independent thread. Instrumentation is widely employed for 
testing and monitoring at design time, without embedding the 
monitoring code into final production applications. For 

embedded runtime monitoring, separate monitors are more 
preferable because they are more amenable to future 
management due to a clear distinction between application 
code and monitoring code. However, runtime monitors do not 
come for free. They create issues of their own. For example, 
monitors directly impact the computational performance of 
their monitoring target applications and introduce 
communication overheads across cores that affect the overall 
system performance. The latter issue on communication has 
been addressed in some related work. However, the former 
computational overhead issue has not been addressed in-depth. 
This work will look into this issue from several perspectives as 
described in the following. 

We propose an adaptive performance monitoring (APM) 
scheme that tries to reduce the impact of the monitor on the 
application, without sacrificing accuracy or immediacy of the 
monitored information. We will define these terms later in 
Section III. More specifically, in APM, we will be discussing 
monitor design in terms of three different viewpoints. First, 
from the application viewpoint, we will be distinguishing 
between CPU-bound and IO-bound tasks and how monitors 
affect different types of tasks. Second, from the system 
viewpoint, we will be comparing the effects of the monitors for 
systems with different computational power. Lastly, from the 
monitor design viewpoint, we will be discussing the type of 
monitors to be used, the number of monitors to be implemented, 
and the effects of the monitoring time period on the computing 
overhead, the information accuracy, and the information 
immediacy. 

As a motivational example, consider two different types of 
monitor deployments as depicted in Figure 1, including one-to-
all and one-to-one. In the one-to-all deployment, there is only 
one monitor thread in the whole system, which monitors all 
application threads. Due to its low requirement on core 
utilization, its impact on application threads can be minimized. 
However, with increasing monitor workload, the accuracy and 
immediacy of the monitored information will decrease. In other 
words, a busy monitor will be unable to collect and provide 
accurate information in real-time. If this information is 
feedback to the application for runtime adaptation, then the 
one-to-all monitor will degrade the performance of the adaptive 
applications. Another issue is the possibly large 
communication overhead incurred by the single monitor due to 
the continuous exchange of monitoring information between 
the target threads and the single monitor thread. At the other 
extreme is the one-to-one deployment, where each application 
thread has a devoted monitor thread. In this scheme, monitor 
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threads can collect and provide information in real-time, thus 
effectively ensuring accuracy and immediacy of the monitored 
information. However, a large number of monitor threads may 
incur an unacceptable amount of computational overhead. 
Since there are pros and cons with both monitor deployments, 
we will try to come up with an adaptive solution that suggests 
when to use less number of monitors and when to use a larger 
number of monitors. 

  
(a) One-to-all (b) One-to-one 

Fig. 1. Different monitor deployments 
In the rest of this article, related work will be described in 

Section II, the main concepts and design terminologies for 
APM will be defined in Section III. Experiment results will be 
given in Section IV. Conclusions and future work will be given 
in Section V. 

II. RELATED WORK 
System monitors are being used in various application 

domains such as networking for application security and 
reliability and multimedia for application quality-of-service. 
According to the different objectives, the design of system 
monitors can be categorized into two classes, namely software-
only designs and software-hardware designs. 

A well-known software-only monitor design is code 
instrumentation through compiler techniques such as in Purify 
[1] and TaintCheck [2] tools. However, the instrumentation of 
code for program monitoring incurs high overhead and 
interference on the target program. In [3], the authors proposed 
a software monitor which controls and polices end-to-end 
admission control schemes, but this technique is only suitable 
for network applications routers or firewalls. 

Hardware support can reduce the problems which are 
induced by software-only designs. In [4], the authors proposed 
a run-time monitor for secure program execution and a 
dedicated hardware monitor is implemented to help the system 
monitoring. For software debugging and memory access 
monitoring, the works in [5, 6, 7] require hardware support to 
help or optimize the monitoring tasks. A host-target 
combination is proposed for dynamic performance monitoring 
in embedded systems [8]; however, their target is not the 
multicore programs. In contrast, we design our performance 
monitor based on the multi-core processor architecture.  

New monitor designs for multi-core architectures have been 
proposed recently. A dispatch-based approach called Log-
Based Architecture [9, 10] and a distill-based approach [11, 12, 
13] have been proposed. The main idea is to segregate the 
monitor and the application into different processes that run on 
different cores. The main issue addressed in these work is the 
communication overhead between the monitor and the target 

threads that are on different cores. The authors address the 
communication issue because their prime objective is security 
and reliability of the target applications. However, here in this 
work, our prime objective is performance, thus instead of 
addressing the communication problems, our study focuses on 
addressing the computation overhead of the proposed monitor. 
We try to minimize the computation overhead of the 
monitoring system, without sacrificing the accuracy and 
immediacy of the monitors. 

III. ADAPTIVE PERFORMANCE MONITOR DESIGN 
A monitor is a defined as an independent program that 

collects and provides information on other application 
programs running in the system. A monitor that focuses on 
functional data is called a functional monitor. For example, the 
memory monitors such as Purify [1] and TaintCheck [2] and 
the protocol monitors [3] are all functional monitors because 
they need to monitor the functional data from the application 
targets. A monitor that focuses on non-functional data is called 
a non-functional monitor. For example, monitoring the quality-
of-service (QoS) of an application such as its performance, 
throughput, or latency is a type of non-functional monitor. 
Another example is monitoring the power consumption or the 
core utilization of an application. The basic differences 
between functional and non-functional monitors are as follows.  

� A functional monitor is more like an assertion verifier 
which constantly reads and checks functional data for 
correctness or security. However, a non-functional 
monitor is like an estimator of the system performance 
based on resource usages by the application. 

� A functional monitor is very strict in its correctness 
checking, for example, no memory leaks, no security 
violations, etc. A non-functional monitor needs to be very 
accurate in is QoS estimation, for example, the real-time 
performance of a video encoder/decoder in frames per 
second (fps), the throughput of a network streaming in 
bytes per second (bps), etc. 

Most state-of-the-art monitors [1-13] are functional ones. In 
this work, we focus on the design of non-functional monitors, 
which have received little attention but which are very 
important for embedded multicore systems. The goal in the 
design of non-functional monitors is to reduce the 
computational overhead of the monitors, while maintaining the 
accuracy and immediacy of the monitored information. 

A monitor is defined formally as M = �id, A, p, q, r�, where 
id is a unique integer index of the monitor, A is a set of 
application threads that are monitored by M, p is the time 
period of the monitor in microseconds, q is the desired 
accuracy of the monitor, and r is the desired immediacy of the 
monitor. The accuracy of a monitor is defined as the percentage 
of monitoring error allowed before the monitored information 
is considered invalid. For example, a monitor for a video 
encoder with a 30 fps capture rate should have a maximum of 
30 fps encoding rate; however, monitoring inaccuracy could 
either increase or decrease the encoding rate at runtime. If a 
3.33% monitoring error is allowed, then the maximum 
encoding rate fluctuation between 29 fps and 31 fps is 
considered valid. Otherwise, the encoding rate is to be 
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considered invalid and ignored. The immediacy value for a 
monitor is defined as the latency allowed between the change 
of a data and the detection of the data change. For example, a 5 
μs immediacy value for video encoding rate means any change 
in video encoding rate should be detected in that time interval. 

The target problem in this work is defined as follows. 
Given an application consisting of a set of tasks and executing 
in an embedded multicore system, we need to design a set of 
non-functional performance monitors {Mi | Mi = �i, Ai, pi, qi, ri�} 
such that the total overhead of monitoring is minimized while 
all accuracy requirements qi and immediacy requirements ri are 
satisfied. The main parameter to be determined for each 
monitor is its time period pi, which will affect the satisfaction 
of both qi and ri. The total overhead is affected by all the 
periods pi and also by the allocation of the monitors and the 
application tasks to the different cores in the processor. Here, 
for simplicity, the overhead of a monitor is defined as the 
percentage of increase in the execution time of a task due to 
monitoring. In the future, we will consider other formulations 
of monitor overhead such as the effect on throughput, latency, 
and power consumption due to monitoring. 

To solve the above problem, we devised a novel 
architecture for performance monitoring as illustrated in Fig. 2, 
which consists of three parts, namely the dispatchers, the 
monitoring tasks, and the worker pool. The motivation behind 
adopting such an architecture is as follows. The binding or 
association between a monitor and its set of monitored tasks 
could be either synchronous or asynchronous. A synchronous 
association means the computations and the communications 
required for monitoring are all performed synchronously by the 
monitor thread itself. An asynchronous association means the 
computations are delegated to other worker threads, while the 
communications are performed by the monitor thread. The 
proposed performance monitoring architecture implements an 
asynchronous association. The dispatchers are monitor threads 
that are responsible for communication with the application 
tasks. The monitoring tasks are implemented as a prioritized 
work pile, which consists of the tasks that are delegated by the 
dispatchers. There are basically two types of monitoring tasks 
including application-specific tasks such as the video encoding 
rate and the platform-specific tasks such as the core utilization. 
The worker pool consists of a pool of threads that play different 

roles such as the displaying, logging, and checking of the 
monitored information. There are several parameters to be 
determined for this architecture, including the number of 
monitor threads, the size of the prioritized work pile, the 
number of priority levels, and the number of worker threads. 

Using such architecture, in order to solve the target problem, 
we will answer the following questions in the next section. 

� How must the monitor threads be allocated to the processor 
cores so that we have low monitoring overheads? 

� How many monitor threads must be designed so that 
monitoring overhead is reduced? 

� How to determine the monitor periods such that overhead is 
reduced while accuracy and immediacy requirements are all 
satisfied? 

IV. EXPERIMENTAL RESULTS 
The proposed adaptive performance monitor architecture 

was implemented on two different platforms: (a) Intel Core2 
Duo SU7300, with 4GB DDR3 SDRAM, Linux 2.6.35-25, and 
(b) ARM 11 MPCore, embedded Linux 2.6.35, 512MB 
SDRAM, and 128MB NOR Flash. We used the GNU gcc 
version 4.4.5 to compile our experiment programs without 
using any compiler optimizations. 

A. Monitor Thread Allocation to Cores 

To answer the first two questions posed in the previous 
section on the number of monitor threads and their core 
allocations, we created two types of application tasks, namely 
IO-bound task and CPU-bound task. The IO-bound tasks 
performed a large amount of file operations such as reading 
and writing data. Each task starts by reading a large number of 
integers from a file. The integers are incremented and then the 
results are written to another file. The CPU-bound task mainly 
performed the computation-intensive job of multiplication of 
two floating point matrices. Each task maintains its own 
counter on the number of operations performed. Here, an 
operation is defined as the reading and writing of one number 
in the IO-bound task, and as the completion of one matrix 
multiplication in the CPU-bound task. The monitors must 
check the counters of the IO-bound and CPU-bound tasks 
periodically. Semaphores are used to protect the counters. 

Prioritized Work Pile

 
 

 
 

 

 

Application-
specific

(e.g. capture 
rates, encoding 

rates)
Platform-specific

(e.g. core 
utilizations)

 

Monitoring Tasks

Worker Threads

 

    

Worker Pool

Displayer Checker, Logger, …

 

 

Dispatchers

Monitor Threads

 

dispatch get tasks to run

Fig.  2. Adaptive Performance Monitoring Architecture 
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Initially, to profile the execution time of
the original workload without any monitor
bound tasks and the CPU-bound tasks in
different monitors were added to the tasks a
tasks were executed once more. For the o
configuration, a round-robin scheme was 
single monitor when checking the task coun
the original execution time of the tasks, the r
times of the monitored tasks were alw
difference in execution times was taken
overhead, which varied with different monito

To answer the first two questions on nu
and their core allocations, we experimented w
scenarios as follows, where a worker thread 
IO-bound task or a CPU-bound task: 

� 1T1M Apart: One worker thread and one 
two different cores 

� 1T1M Together: One worker thread and o
on the same core 

� 2T1M: Two worker threads and one m
two worker threads are on different 
monitor thread is running with one of the 
the same core. 

� 2T2M: Two pairs of one worker thread
thread, each pair is assigned to one core.  

We experimented with five different m
including 10000us, 1000us, 100us, 10us, and 

Figure 2a shows the computational o
different monitor configurations for the IO-b
2b shows the computational overheads fo
tasks. From the experimental results, w
following useful observations.  

First, the monitoring overhead increase
periods. This is because smaller periods
frequency of monitoring and thus the amoun
to the worker threads increases.  

 (a) Monitored IO-bound task
Fig. 3. Comparis

f the tasks, that is, 
r, we ran the IO-
ndividually. Then, 
and the monitored 
one-to-all monitor 
employed by the 

nters. Compared to 
resulting execution 

ways larger. This 
n as the monitor 
or configurations.  

umber of monitors 
with four different 
executes either an 

monitor thread on 

one monitor thread 

monitor thread, the 
cores, while the 
worker threads on 

d and one monitor 

monitoring periods, 
1us. 

overheads of four 
ound tasks. Figure 
r the CPU-bound 

we can make the 

es with decreasing 
s mean a higher 
nt of interruptions 

Second, we observe that irr
bound tasks, the monitoring o
(less than 5%), if the monitor t
running on two different cores. 
it is suggested to separate the 
onto different cores.  

Third, if the monitor thread
on the same core, it affects the 
monitoring overhead increases
monitoring period. For instanc
1000us, the monitoring overhe
the worst situation of monitorin
overhead is as high as 35% fo
CPU-bound tasks. Note that
frequency leads to greater
monitoring overhead may affe
threads seriously.  

Finally, let us compare 
different types of tasks, i.e., IO
We can observe that the differ
more pronounced effect on the 
both 2T1M and 2T2M cases, th
bound tasks reaches as high as 
in the  2T2M case. However,
overheads are only 7% in the 2T
case.  The reason for such a s
bound tasks are inherently not 
even a small number of interru
a larger percentage of overhead
intensive CPU-bound tasks. 

The above analysis has 
question on how to allocate c
further use the 2T1M and 2T2
second question on how many 
one would think that a small
reduce the monitoring overhead
periods, a larger number of de
lesser overhead due to reduced
the monitor and the worker thre

 

k(s) (b) Monitored CP
son of overheads for four different monitor configuratio

 
respective of IO-bound or CPU-
overheads are almost negligible 
thread and the worker thread are 
Therefore, if there is a free core, 
monitor and the worker threads 

d is running with a worker thread 
worker thread significantly. The 

s drastically with a decrease in 
ce, with a monitoring period of 
ad is less than 5%. However, in 
ng period of 1us, the monitoring 
or IO-bound tasks and 40% for 
t although higher monitoring 
r information accuracy, the 

fect the performance of worker 

the effects of monitoring on 
O-bound and CPU-bound tasks. 
ent numbers of monitors have a 
IO-bound tasks. For example, in 
he monitoring overheads for IO-
25% in the 2T1M case and 35% 
, for the CPU-bound tasks, the 
T1M case and 13% in the 2T2M 
significant difference is that IO-

computation-intensive and thus 
uptions from monitors will incur 
d, compared to the computation-

provided answers to the first 
ores to monitor threads. Let us 

2M cases to find answers to the 
monitors to allocate. Intuitively, 
ler number of monitors would 
d. However, for large monitoring 
evoted monitors instead exhibit 

d communication traffic between 
eads. 

 

PU-bound task(s)
ons 
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B. Number of Monitor Threads 

Let us delve specifically into the case
threads, including 2T1M and 2T2M. From F
we can observe that the two devoted monito
lower overhead than the single monitor (
monitoring period is large. In the case of CP
long as the monitoring period is larger tha
devoted monitors incur smaller overheads. 
1000us period, 2T1M incurs 1.67% overh
incurs 0.97% overhead. In the case of IO-bo
as the monitoring period is larger than 4000u
monitors incur smaller overheads. For exam
period, 2T1M incurs 0.49% overhead, wh
0.15% overhead.  

The above analysis can be used to an
question: “How many monitor threads must b
monitoring overhead is reduced?” The answ
monitoring period. As concluded from Figur
bound tasks, if there is a need to monitor them
100μs, then it is suggested to use two moni
Otherwise, a single monitor is preferred
monitoring overhead. From Figure 4b, we ca
same question for IO-bound tasks, if there is 
the IO-bound tasks at most once per 40
suggested to use two monitors, one per t
single monitor is preferred. For a different 
different number of monitors might be r
thorough analysis is desired, which will be
One more issue to be discussed here is the 
difference between when to switch between s
monitors for the CPU-bound (100μs) and
(4000μs). The intuitive reason is that devot
computation overheads. Since IO-bound ta
computation and thus even small amounts of 
devoted monitors, for example once per 1
overheads comparably larger than a single 
monitor is thus preferred. In contrast, this

(a)  Monitored CPU-bound tas

Fig. 4. D

es of two worker 
Figures 4a and 4b, 
ors (2T2M) incur a 
(2T1M) when the 
PU-bound tasks, as 
an 100us, the two 

For example, for 
head, while 2T2M 
ound tasks, as long 
us, the two devoted 
mple, for 10000us 
hile 2T2M incurs 

nswer the second 
be designed so that 

wer depends on the 
re 4a, for the CPU-
m at most once per 
itors, one per task. 
d due to smaller 
an also answer the 
 a need to monitor 
000μs, then it is 
task. Otherwise, a 
t number of tasks, 
required. A more 
e our future focus. 

reason for a large 
single and multiple 
d IO-bound tasks 
ted monitors incur 
asks perform little 
interruptions from 

1000μs, results in 
monitor. A single 

s effect is not so 

pronounced at the same monito
bound tasks, thus devoted moni

C. Accuracy and Immediacy of 

In the following, we go on
tradeoff between the accuracy a
information in embedded mult
adaptive performance monitorin
(DVR) system [14], which is a 
online and on-demand video st
and multiple client connection
DVR consists of parallel tasks f
parallel data for block-based 
(DCT) of each video frame, an
encoding sequence consisting
Huffman encoding. DVR was 
the VERTAF/Multi-Core (VM
development of multi-core 
automatically generated the par
Quantum Platform (QP) [15
Building Block (TBB) [16]. H
DVR did not consist of an o
performance bottlenecks were 
also found that it was difficul
monitored information. Thus, t
we designed a monitor suitable
focus on how information accur

In DVR, we designed a 
monitored the video frame cap
measure the variance in overh
experimented with different m
0.5, 0.1, and 0.01 seconds. T
different monitoring periods a
compared in Figure 6. Gene
monitored task (the parallel vi
with a decrease in the mon
monitoring frequency and over
degradation is observed for the

 

sks (b)  Monitored IO

Decision on the number of monitors for two tasks

oring period of 1000μs for CPU-
itors are preferred. 

f Monitored Information 

ne step further to investigate the 
and the immediacy of monitored 
ticore systems. We applied our 
ng to a Digital Video Recording 
real-time multimedia system for 

treaming, with multiple cameras 
ns. As illustrated in Figure 5, 
for supporting multiple cameras, 
discrete cosine transformation 

nd parallel pipeline for the video 
g of quantization, DCT, and 
used to illustrate the benefits of 
MC) framework [14] for the 

embedded software. VMC 
rallel code for DVR based on the 
5] and the Intel’s Threading 

However, the code generated for 
optimized monitor and thus the 

difficult to detect. Further, we 
lt to check the accuracy of the 
through the results of this work, 
e for DVR. In the following, we 
racy is affected by the monitor. 

monitor for the buffers and 
pture rate and encoding rate. To 
heads incurred by monitors, we 
monitoring periods, including 1, 
The average encoding rates for 
as provided by our monitor are 
erally, the performance of the 
ideo encoder, here) is degraded 
nitoring period due to higher 
rhead. This trend in performance 
 monitoring periods of 1, 0.5,  

O-bound tasks 
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Fig. 5. Digital Video Recording System 
 

and 0.1 second. However, both the encoding rate and the 
capture rate unexpectedly increased in the case of 0.01 second 
as the monitoring period, whereas in fact, it should be lower 
than in the case of 0.1 second. On investigation of these 
unexpected results, we found an accuracy problem in the 
monitor design, which is described in details in the following. 

To explain the accuracy problem, we delved into the 
encoding rates given by the monitor over a time period. When 
the monitoring period is 0.01 second, the recorded encoding 
rates consisted of three to five consecutive 0 values for the 
encoding rates, and then a very large encoding rate of 125 fps. 
This cycle of several 0’s and one large rate repeatedly occurs. 
As a result, the instantaneous encoding rate as calculated by the 
monitor is misleading and has a wide-range of errors. When the 
monitoring period is 0.1 second, the recorded encoding rates 
consisted of one or two consecutive encoding rates of 25 fps 
and then a comparatively larger value of 37 fps. This cycle 
occurs repeatedly in the monitored information. The large 
variance in observed encoding rates indicates that the rates are 
invalid. Furthermore, they also cause inaccuracy in the 
calculation of the average encoding rates. With larger 
monitoring periods, such as 1 and 0.5 second, the observed 
encoding rates are within a reasonable range of 28 fps to 32 fps. 
This indicates that larger monitoring periods are desirable for 
accuracy; however, in that case the immediacy of the 
monitored information would be affected and become poor. 
Consequently, a proper monitoring period is required to 
achieve valid observations and evaluations of target systems. 

V. CONCLUSIONS 
Parallel application development for embedded multicore 

systems is often faced with the need to detect performance 
bottlenecks. Performance monitor is a viable solution; however, 
there are several design issues related to the monitor design for 
embedded multicore systems such the allocation of monitor 
threads to cores, the number of monitor threads to be designed, 
and the tradeoff between accuracy and immediacy of 
monitored information. In this work, we have proposed a novel 
adaptive performance monitoring framework that can be used 
to solve the above issues. Since monitor deployment onto cores 
may affect the performance of the monitored application tasks, 
we performed extensive experiments by considering not only 
different types of tasks (CPU-bound, IO-bound), but also 
different monitoring periods. We estimated the overheads 
caused by the different monitoring periods for the different 
types of tasks. We found that for larger periods, devoted 
monitors incurred lower overheads compared to single monitor; 
however, for smaller periods, single monitor was preferable 
due to lower overheads. This was true for both CPU-bound and 
IO-bound tasks; however, the overhead was more pronounced 
for IO-bound tasks. Further, we also clarified that there is a 
tradeoff between information accuracy and immediacy due to 
different monitoring periods having contrasting effects on 
accuracy and immediacy. On one hand, large monitoring 
periods reduce overhead, increase accuracy, but degrade 
immediacy. On the other hand, small monitoring periods allow 
high immediacy, but increases overhead and decreases 
accuracy. In the future, we plan to analyze the monitoring 
framework such that deeper issues such as how to tradeoff 
between adaptivity and sensitivity can be addressed. 
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