
Adaptive Performance Monitoring for
Embedded Multicore Systems

Chun-Yi Shih*, Ming-Chih Li*, Chao-Sheng Lin*, Pao-Ann Hsiung*+, Chih-Hung Chang@,
William C. Chu†, Nien-Lin Hsueh‡, Chihhsiong Shih†, Chao-Tung Yang†, and Chorng-Shiuh Koong$

*National Chung Cheng University, @Hsiuping Institute of Technology, †Tunghai University,
‡Fengchia University, $National Taichung University, Taiwan. E-mail: +pahsiung@cs.ccu.edu.tw

Abstract — With the advent of multicore processors, the
performance of software has been elevated to new unforeseen
heights via parallelization. However, this has not been achieved
without new problems cropping up due to parallelization. One
serious issue is the performance bottleneck due to cache misses or
resource starvation, which is hard to detect in application
software especially when the software has dynamically changing
behavior. Performance monitors are usually employed for such
purposes. Nevertheless, monitors have introduced their own
computation and communication overheads, especially in
embedded multicore systems. In this work, we try to estimate the
effects of monitor overheads on different types of applications,
such as CPU-bound and IO-bound tasks. Further, we give
suggestions on the number and type of monitors to use for such
embedded multicore applications. Besides trying to reduce
monitor overheads, we also aim for the accuracy and the
immediacy of the monitored information. Through a real-world
example, namely digital video recording system, we demonstrate
how different monitoring periods affect the tradeoff between
accuracy and immediacy of the monitored information.

Keywords: embedded multicore system, monitor overhead,
IO/CPU-bound task, monitor accuracy, monitor immediacy

I. INTRODUCTION
Multicore processors have invaded not only the desktop

computing infrastructure, but have also crept into the
embedded computing paradigm. New mobile phones are now
equipped with a mobile chip called Tegra 2 from Nvidia,
consisting of a dual-core ARM Cortex 9 CPU and an 8-core
GeForce GPU. With this progress, embedded systems can now
run applications with high performance due to inherent
parallelism in the computing infrastructure. However, true
parallelization has also made multi-threaded embedded
software more difficult to design and verify. Some well-known
issues include resource sharing problems such cache conflicts
and I/O device usage, inter-core communication, non-uniform
memory access, unbalanced workload, data sharing, high
power consumption, and performance bottlenecks. A variety of
solutions exists for solving these problems. For detecting
performance bottleneck at runtime, monitors are designed into
the embedded software. This work focuses on how to design
performance monitors for embedded multicore systems.

Monitors can be designed either by instrumenting an
application software code with specific monitoring code or as
an independent thread. Instrumentation is widely employed for
testing and monitoring at design time, without embedding the
monitoring code into final production applications. For

embedded runtime monitoring, separate monitors are more
preferable because they are more amenable to future
management due to a clear distinction between application
code and monitoring code. However, runtime monitors do not
come for free. They create issues of their own. For example,
monitors directly impact the computational performance of
their monitoring target applications and introduce
communication overheads across cores that affect the overall
system performance. The latter issue on communication has
been addressed in some related work. However, the former
computational overhead issue has not been addressed in-depth.
This work will look into this issue from several perspectives as
described in the following.

We propose an adaptive performance monitoring (APM)
scheme that tries to reduce the impact of the monitor on the
application, without sacrificing accuracy or immediacy of the
monitored information. We will define these terms later in
Section III. More specifically, in APM, we will be discussing
monitor design in terms of three different viewpoints. First,
from the application viewpoint, we will be distinguishing
between CPU-bound and IO-bound tasks and how monitors
affect different types of tasks. Second, from the system
viewpoint, we will be comparing the effects of the monitors for
systems with different computational power. Lastly, from the
monitor design viewpoint, we will be discussing the type of
monitors to be used, the number of monitors to be implemented,
and the effects of the monitoring time period on the computing
overhead, the information accuracy, and the information
immediacy.

As a motivational example, consider two different types of
monitor deployments as depicted in Figure 1, including one-to-
all and one-to-one. In the one-to-all deployment, there is only
one monitor thread in the whole system, which monitors all
application threads. Due to its low requirement on core
utilization, its impact on application threads can be minimized.
However, with increasing monitor workload, the accuracy and
immediacy of the monitored information will decrease. In other
words, a busy monitor will be unable to collect and provide
accurate information in real-time. If this information is
feedback to the application for runtime adaptation, then the
one-to-all monitor will degrade the performance of the adaptive
applications. Another issue is the possibly large
communication overhead incurred by the single monitor due to
the continuous exchange of monitoring information between
the target threads and the single monitor thread. At the other
extreme is the one-to-one deployment, where each application
thread has a devoted monitor thread. In this scheme, monitor

2011 International Conference on Parallel Processing Workshops

1530-2016/11 $26.00 © 2011 IEEE

DOI 10.1109/ICPPW.2011.27

224

2011 International Conference on Parallel Processing Workshops

1530-2016/11 $26.00 © 2011 IEEE

DOI 10.1109/ICPPW.2011.27

224

2011 International Conference on Parallel Processing Workshops

1530-2016/11 $26.00 © 2011 IEEE

DOI 10.1109/ICPPW.2011.27

222

threads can collect and provide information in real-time, thus
effectively ensuring accuracy and immediacy of the monitored
information. However, a large number of monitor threads may
incur an unacceptable amount of computational overhead.
Since there are pros and cons with both monitor deployments,
we will try to come up with an adaptive solution that suggests
when to use less number of monitors and when to use a larger
number of monitors.

(a) One-to-all (b) One-to-one

Fig. 1. Different monitor deployments
In the rest of this article, related work will be described in

Section II, the main concepts and design terminologies for
APM will be defined in Section III. Experiment results will be
given in Section IV. Conclusions and future work will be given
in Section V.

II. RELATED WORK
System monitors are being used in various application

domains such as networking for application security and
reliability and multimedia for application quality-of-service.
According to the different objectives, the design of system
monitors can be categorized into two classes, namely software-
only designs and software-hardware designs.

A well-known software-only monitor design is code
instrumentation through compiler techniques such as in Purify
[1] and TaintCheck [2] tools. However, the instrumentation of
code for program monitoring incurs high overhead and
interference on the target program. In [3], the authors proposed
a software monitor which controls and polices end-to-end
admission control schemes, but this technique is only suitable
for network applications routers or firewalls.

Hardware support can reduce the problems which are
induced by software-only designs. In [4], the authors proposed
a run-time monitor for secure program execution and a
dedicated hardware monitor is implemented to help the system
monitoring. For software debugging and memory access
monitoring, the works in [5, 6, 7] require hardware support to
help or optimize the monitoring tasks. A host-target
combination is proposed for dynamic performance monitoring
in embedded systems [8]; however, their target is not the
multicore programs. In contrast, we design our performance
monitor based on the multi-core processor architecture.

New monitor designs for multi-core architectures have been
proposed recently. A dispatch-based approach called Log-
Based Architecture [9, 10] and a distill-based approach [11, 12,
13] have been proposed. The main idea is to segregate the
monitor and the application into different processes that run on
different cores. The main issue addressed in these work is the
communication overhead between the monitor and the target

threads that are on different cores. The authors address the
communication issue because their prime objective is security
and reliability of the target applications. However, here in this
work, our prime objective is performance, thus instead of
addressing the communication problems, our study focuses on
addressing the computation overhead of the proposed monitor.
We try to minimize the computation overhead of the
monitoring system, without sacrificing the accuracy and
immediacy of the monitors.

III. ADAPTIVE PERFORMANCE MONITOR DESIGN
A monitor is a defined as an independent program that

collects and provides information on other application
programs running in the system. A monitor that focuses on
functional data is called a functional monitor. For example, the
memory monitors such as Purify [1] and TaintCheck [2] and
the protocol monitors [3] are all functional monitors because
they need to monitor the functional data from the application
targets. A monitor that focuses on non-functional data is called
a non-functional monitor. For example, monitoring the quality-
of-service (QoS) of an application such as its performance,
throughput, or latency is a type of non-functional monitor.
Another example is monitoring the power consumption or the
core utilization of an application. The basic differences
between functional and non-functional monitors are as follows.

� A functional monitor is more like an assertion verifier
which constantly reads and checks functional data for
correctness or security. However, a non-functional
monitor is like an estimator of the system performance
based on resource usages by the application.

� A functional monitor is very strict in its correctness
checking, for example, no memory leaks, no security
violations, etc. A non-functional monitor needs to be very
accurate in is QoS estimation, for example, the real-time
performance of a video encoder/decoder in frames per
second (fps), the throughput of a network streaming in
bytes per second (bps), etc.

Most state-of-the-art monitors [1-13] are functional ones. In
this work, we focus on the design of non-functional monitors,
which have received little attention but which are very
important for embedded multicore systems. The goal in the
design of non-functional monitors is to reduce the
computational overhead of the monitors, while maintaining the
accuracy and immediacy of the monitored information.

A monitor is defined formally as M = �id, A, p, q, r�, where
id is a unique integer index of the monitor, A is a set of
application threads that are monitored by M, p is the time
period of the monitor in microseconds, q is the desired
accuracy of the monitor, and r is the desired immediacy of the
monitor. The accuracy of a monitor is defined as the percentage
of monitoring error allowed before the monitored information
is considered invalid. For example, a monitor for a video
encoder with a 30 fps capture rate should have a maximum of
30 fps encoding rate; however, monitoring inaccuracy could
either increase or decrease the encoding rate at runtime. If a
3.33% monitoring error is allowed, then the maximum
encoding rate fluctuation between 29 fps and 31 fps is
considered valid. Otherwise, the encoding rate is to be

225225223

considered invalid and ignored. The immediacy value for a
monitor is defined as the latency allowed between the change
of a data and the detection of the data change. For example, a 5
μs immediacy value for video encoding rate means any change
in video encoding rate should be detected in that time interval.

The target problem in this work is defined as follows.
Given an application consisting of a set of tasks and executing
in an embedded multicore system, we need to design a set of
non-functional performance monitors {Mi | Mi = �i, Ai, pi, qi, ri�}
such that the total overhead of monitoring is minimized while
all accuracy requirements qi and immediacy requirements ri are
satisfied. The main parameter to be determined for each
monitor is its time period pi, which will affect the satisfaction
of both qi and ri. The total overhead is affected by all the
periods pi and also by the allocation of the monitors and the
application tasks to the different cores in the processor. Here,
for simplicity, the overhead of a monitor is defined as the
percentage of increase in the execution time of a task due to
monitoring. In the future, we will consider other formulations
of monitor overhead such as the effect on throughput, latency,
and power consumption due to monitoring.

To solve the above problem, we devised a novel
architecture for performance monitoring as illustrated in Fig. 2,
which consists of three parts, namely the dispatchers, the
monitoring tasks, and the worker pool. The motivation behind
adopting such an architecture is as follows. The binding or
association between a monitor and its set of monitored tasks
could be either synchronous or asynchronous. A synchronous
association means the computations and the communications
required for monitoring are all performed synchronously by the
monitor thread itself. An asynchronous association means the
computations are delegated to other worker threads, while the
communications are performed by the monitor thread. The
proposed performance monitoring architecture implements an
asynchronous association. The dispatchers are monitor threads
that are responsible for communication with the application
tasks. The monitoring tasks are implemented as a prioritized
work pile, which consists of the tasks that are delegated by the
dispatchers. There are basically two types of monitoring tasks
including application-specific tasks such as the video encoding
rate and the platform-specific tasks such as the core utilization.
The worker pool consists of a pool of threads that play different

roles such as the displaying, logging, and checking of the
monitored information. There are several parameters to be
determined for this architecture, including the number of
monitor threads, the size of the prioritized work pile, the
number of priority levels, and the number of worker threads.

Using such architecture, in order to solve the target problem,
we will answer the following questions in the next section.

� How must the monitor threads be allocated to the processor
cores so that we have low monitoring overheads?

� How many monitor threads must be designed so that
monitoring overhead is reduced?

� How to determine the monitor periods such that overhead is
reduced while accuracy and immediacy requirements are all
satisfied?

IV. EXPERIMENTAL RESULTS
The proposed adaptive performance monitor architecture

was implemented on two different platforms: (a) Intel Core2
Duo SU7300, with 4GB DDR3 SDRAM, Linux 2.6.35-25, and
(b) ARM 11 MPCore, embedded Linux 2.6.35, 512MB
SDRAM, and 128MB NOR Flash. We used the GNU gcc
version 4.4.5 to compile our experiment programs without
using any compiler optimizations.

A. Monitor Thread Allocation to Cores

To answer the first two questions posed in the previous
section on the number of monitor threads and their core
allocations, we created two types of application tasks, namely
IO-bound task and CPU-bound task. The IO-bound tasks
performed a large amount of file operations such as reading
and writing data. Each task starts by reading a large number of
integers from a file. The integers are incremented and then the
results are written to another file. The CPU-bound task mainly
performed the computation-intensive job of multiplication of
two floating point matrices. Each task maintains its own
counter on the number of operations performed. Here, an
operation is defined as the reading and writing of one number
in the IO-bound task, and as the completion of one matrix
multiplication in the CPU-bound task. The monitors must
check the counters of the IO-bound and CPU-bound tasks
periodically. Semaphores are used to protect the counters.

Prioritized Work Pile

Application-
specific

(e.g. capture
rates, encoding

rates)
Platform-specific

(e.g. core
utilizations)

Monitoring Tasks

Worker Threads

Worker Pool

Displayer Checker, Logger, …

Dispatchers

Monitor Threads

dispatch get tasks to run

Fig. 2. Adaptive Performance Monitoring Architecture

226226224

Initially, to profile the execution time of
the original workload without any monitor
bound tasks and the CPU-bound tasks in
different monitors were added to the tasks a
tasks were executed once more. For the o
configuration, a round-robin scheme was
single monitor when checking the task coun
the original execution time of the tasks, the r
times of the monitored tasks were alw
difference in execution times was taken
overhead, which varied with different monito

To answer the first two questions on nu
and their core allocations, we experimented w
scenarios as follows, where a worker thread
IO-bound task or a CPU-bound task:

� 1T1M Apart: One worker thread and one
two different cores

� 1T1M Together: One worker thread and o
on the same core

� 2T1M: Two worker threads and one m
two worker threads are on different
monitor thread is running with one of the
the same core.

� 2T2M: Two pairs of one worker thread
thread, each pair is assigned to one core.

We experimented with five different m
including 10000us, 1000us, 100us, 10us, and

Figure 2a shows the computational o
different monitor configurations for the IO-b
2b shows the computational overheads fo
tasks. From the experimental results, w
following useful observations.

First, the monitoring overhead increase
periods. This is because smaller periods
frequency of monitoring and thus the amoun
to the worker threads increases.

 (a) Monitored IO-bound task
Fig. 3. Comparis

f the tasks, that is,
r, we ran the IO-
ndividually. Then,
and the monitored
one-to-all monitor
employed by the

nters. Compared to
resulting execution

ways larger. This
n as the monitor
or configurations.

umber of monitors
with four different
executes either an

monitor thread on

one monitor thread

monitor thread, the
cores, while the
worker threads on

d and one monitor

monitoring periods,
1us.

overheads of four
ound tasks. Figure
r the CPU-bound

we can make the

es with decreasing
s mean a higher
nt of interruptions

Second, we observe that irr
bound tasks, the monitoring o
(less than 5%), if the monitor t
running on two different cores.
it is suggested to separate the
onto different cores.

Third, if the monitor thread
on the same core, it affects the
monitoring overhead increases
monitoring period. For instanc
1000us, the monitoring overhe
the worst situation of monitorin
overhead is as high as 35% fo
CPU-bound tasks. Note that
frequency leads to greater
monitoring overhead may affe
threads seriously.

Finally, let us compare
different types of tasks, i.e., IO
We can observe that the differ
more pronounced effect on the
both 2T1M and 2T2M cases, th
bound tasks reaches as high as
in the 2T2M case. However,
overheads are only 7% in the 2T
case. The reason for such a s
bound tasks are inherently not
even a small number of interru
a larger percentage of overhead
intensive CPU-bound tasks.

The above analysis has
question on how to allocate c
further use the 2T1M and 2T2
second question on how many
one would think that a small
reduce the monitoring overhead
periods, a larger number of de
lesser overhead due to reduced
the monitor and the worker thre

k(s) (b) Monitored CP
son of overheads for four different monitor configuratio

respective of IO-bound or CPU-
overheads are almost negligible
thread and the worker thread are
Therefore, if there is a free core,
monitor and the worker threads

d is running with a worker thread
worker thread significantly. The

s drastically with a decrease in
ce, with a monitoring period of
ad is less than 5%. However, in
ng period of 1us, the monitoring
or IO-bound tasks and 40% for
t although higher monitoring
r information accuracy, the

fect the performance of worker

the effects of monitoring on
O-bound and CPU-bound tasks.
ent numbers of monitors have a
IO-bound tasks. For example, in
he monitoring overheads for IO-
25% in the 2T1M case and 35%
, for the CPU-bound tasks, the
T1M case and 13% in the 2T2M
significant difference is that IO-

computation-intensive and thus
uptions from monitors will incur
d, compared to the computation-

provided answers to the first
ores to monitor threads. Let us

2M cases to find answers to the
monitors to allocate. Intuitively,
ler number of monitors would
d. However, for large monitoring
evoted monitors instead exhibit

d communication traffic between
eads.

PU-bound task(s)
ons

227227225

B. Number of Monitor Threads

Let us delve specifically into the case
threads, including 2T1M and 2T2M. From F
we can observe that the two devoted monito
lower overhead than the single monitor (
monitoring period is large. In the case of CP
long as the monitoring period is larger tha
devoted monitors incur smaller overheads.
1000us period, 2T1M incurs 1.67% overh
incurs 0.97% overhead. In the case of IO-bo
as the monitoring period is larger than 4000u
monitors incur smaller overheads. For exam
period, 2T1M incurs 0.49% overhead, wh
0.15% overhead.

The above analysis can be used to an
question: “How many monitor threads must b
monitoring overhead is reduced?” The answ
monitoring period. As concluded from Figur
bound tasks, if there is a need to monitor them
100μs, then it is suggested to use two moni
Otherwise, a single monitor is preferred
monitoring overhead. From Figure 4b, we ca
same question for IO-bound tasks, if there is
the IO-bound tasks at most once per 40
suggested to use two monitors, one per t
single monitor is preferred. For a different
different number of monitors might be r
thorough analysis is desired, which will be
One more issue to be discussed here is the
difference between when to switch between s
monitors for the CPU-bound (100μs) and
(4000μs). The intuitive reason is that devot
computation overheads. Since IO-bound ta
computation and thus even small amounts of
devoted monitors, for example once per 1
overheads comparably larger than a single
monitor is thus preferred. In contrast, this

(a) Monitored CPU-bound tas

Fig. 4. D

es of two worker
Figures 4a and 4b,
ors (2T2M) incur a
(2T1M) when the
PU-bound tasks, as
an 100us, the two

For example, for
head, while 2T2M
ound tasks, as long
us, the two devoted
mple, for 10000us
hile 2T2M incurs

nswer the second
be designed so that

wer depends on the
re 4a, for the CPU-
m at most once per
itors, one per task.
d due to smaller
an also answer the
 a need to monitor
000μs, then it is
task. Otherwise, a
t number of tasks,
required. A more
e our future focus.

reason for a large
single and multiple
d IO-bound tasks
ted monitors incur
asks perform little
interruptions from

1000μs, results in
monitor. A single

s effect is not so

pronounced at the same monito
bound tasks, thus devoted moni

C. Accuracy and Immediacy of

In the following, we go on
tradeoff between the accuracy a
information in embedded mult
adaptive performance monitorin
(DVR) system [14], which is a
online and on-demand video st
and multiple client connection
DVR consists of parallel tasks f
parallel data for block-based
(DCT) of each video frame, an
encoding sequence consisting
Huffman encoding. DVR was
the VERTAF/Multi-Core (VM
development of multi-core
automatically generated the par
Quantum Platform (QP) [15
Building Block (TBB) [16]. H
DVR did not consist of an o
performance bottlenecks were
also found that it was difficul
monitored information. Thus, t
we designed a monitor suitable
focus on how information accur

In DVR, we designed a
monitored the video frame cap
measure the variance in overh
experimented with different m
0.5, 0.1, and 0.01 seconds. T
different monitoring periods a
compared in Figure 6. Gene
monitored task (the parallel vi
with a decrease in the mon
monitoring frequency and over
degradation is observed for the

sks (b) Monitored IO

Decision on the number of monitors for two tasks

oring period of 1000μs for CPU-
itors are preferred.

f Monitored Information

ne step further to investigate the
and the immediacy of monitored
ticore systems. We applied our
ng to a Digital Video Recording
real-time multimedia system for

treaming, with multiple cameras
ns. As illustrated in Figure 5,
for supporting multiple cameras,
discrete cosine transformation

nd parallel pipeline for the video
g of quantization, DCT, and
used to illustrate the benefits of
MC) framework [14] for the

embedded software. VMC
rallel code for DVR based on the
5] and the Intel’s Threading

However, the code generated for
optimized monitor and thus the

difficult to detect. Further, we
lt to check the accuracy of the
through the results of this work,
e for DVR. In the following, we
racy is affected by the monitor.

monitor for the buffers and
pture rate and encoding rate. To
heads incurred by monitors, we
monitoring periods, including 1,
The average encoding rates for
as provided by our monitor are
erally, the performance of the
ideo encoder, here) is degraded
nitoring period due to higher
rhead. This trend in performance
 monitoring periods of 1, 0.5,

O-bound tasks

228228226

Fig. 5. Digital Video Recording System

and 0.1 second. However, both the encoding rate and the
capture rate unexpectedly increased in the case of 0.01 second
as the monitoring period, whereas in fact, it should be lower
than in the case of 0.1 second. On investigation of these
unexpected results, we found an accuracy problem in the
monitor design, which is described in details in the following.

To explain the accuracy problem, we delved into the
encoding rates given by the monitor over a time period. When
the monitoring period is 0.01 second, the recorded encoding
rates consisted of three to five consecutive 0 values for the
encoding rates, and then a very large encoding rate of 125 fps.
This cycle of several 0’s and one large rate repeatedly occurs.
As a result, the instantaneous encoding rate as calculated by the
monitor is misleading and has a wide-range of errors. When the
monitoring period is 0.1 second, the recorded encoding rates
consisted of one or two consecutive encoding rates of 25 fps
and then a comparatively larger value of 37 fps. This cycle
occurs repeatedly in the monitored information. The large
variance in observed encoding rates indicates that the rates are
invalid. Furthermore, they also cause inaccuracy in the
calculation of the average encoding rates. With larger
monitoring periods, such as 1 and 0.5 second, the observed
encoding rates are within a reasonable range of 28 fps to 32 fps.
This indicates that larger monitoring periods are desirable for
accuracy; however, in that case the immediacy of the
monitored information would be affected and become poor.
Consequently, a proper monitoring period is required to
achieve valid observations and evaluations of target systems.

V. CONCLUSIONS
Parallel application development for embedded multicore

systems is often faced with the need to detect performance
bottlenecks. Performance monitor is a viable solution; however,
there are several design issues related to the monitor design for
embedded multicore systems such the allocation of monitor
threads to cores, the number of monitor threads to be designed,
and the tradeoff between accuracy and immediacy of
monitored information. In this work, we have proposed a novel
adaptive performance monitoring framework that can be used
to solve the above issues. Since monitor deployment onto cores
may affect the performance of the monitored application tasks,
we performed extensive experiments by considering not only
different types of tasks (CPU-bound, IO-bound), but also
different monitoring periods. We estimated the overheads
caused by the different monitoring periods for the different
types of tasks. We found that for larger periods, devoted
monitors incurred lower overheads compared to single monitor;
however, for smaller periods, single monitor was preferable
due to lower overheads. This was true for both CPU-bound and
IO-bound tasks; however, the overhead was more pronounced
for IO-bound tasks. Further, we also clarified that there is a
tradeoff between information accuracy and immediacy due to
different monitoring periods having contrasting effects on
accuracy and immediacy. On one hand, large monitoring
periods reduce overhead, increase accuracy, but degrade
immediacy. On the other hand, small monitoring periods allow
high immediacy, but increases overhead and decreases
accuracy. In the future, we plan to analyze the monitoring
framework such that deeper issues such as how to tradeoff
between adaptivity and sensitivity can be addressed.

VI. REFERENCES
[1] R. Hastings and B. Joyce, “Purify: Fast detection of

memory leaks and access errors,” in the Proceedings of
the Winter 1992 USENIX Conference, 1991, pp. 125–138.

[2] J. Newsome and D. X. Song, “Dynamic taint analysis for
automatic detection, analysis, and signature generation of
exploits on commodity software,” in Procs. of the 12th
Network and Distributed System Security Symposium
(NDSS), February 2005.

(a) Encoding Rates (b) Capturing Rates
Fig. 6. Monitor inaccuracy results in unexpected performance

changes

19

20

21

22

(f
ps

) 1s 0.5s
0.1s 0.01s

monitoring periods
28

29

30

31

(f
ps

) 1s 0.5s
0.1s 0.01s

monitoring periods

229229227

[3] I. Mas, J. Brage, and G. Karlsson, “Lightweight
monitoring of edge-based admission control,” in Procs. of
the International Zurich Seminar on
Communications, July 2006, pp. 50-53.

[4] D. Arora, S. Ravi, A. Raghunathan, and N. K. Jha,
“Hardware-assisted run-time monitoring for secure
program execution on embedded processors,” IEEE
Transactions on Very Large Scale Integration (VLSI)
Systems, January 2007.

[5] G. Venkataramani, B. Roemer, Y. Solihin, and M.
Prvulovic, “Memtracker: Efficient and programmable
support for memory access monitoring and debugging,”
in Procs. of the 13th International Symposium on High-
Performance Computer Architecture, February 2007.

[6] P. Zhou, F. Qin, W. Liu, Y. Zhou, and J. Torrellas,
“iwatcher: Simple, general architectural support for
software debugging, in Procs. of the 31st Annual
International Symposium on Computer Architecture, 2004.

[7] R. Shetty, M. Kharbutli, Y. Solihin, and M. Prvulovic,
“Heapmon: a helper-thread approach to programmable,
automatic, and low-overhead memory bug detection,”
IBM J. Res. Dev., vol. 50, no. 2/3, pp. 261–275, 2006.

[8] Y. Guo, Z. Chen, and X. Chen, “A lightweight dynamic
performance monitoring framework for embedded
systems,” in Procs. of the International Conference on
Embedded Software and Systems, May 2009, pp. 256-262.

[9] S. Chen, B. Falsafi, P. B. Gibbons, M. Kozuch, T. Mowry,
and et al., “Log-based architectures for general-purpose
monitoring of deployed code,” in Procs. of the 1st
Workshop on Architectural and System Support for
Improving Software Dependability, ACM, 2006, pp. 63–
65.

[10] S. Chen, M. Kozuch, T. Strigkos, B. Falsafi, P. B.
Gibbons, T. Mowry, and et al., “Flexible hardware
acceleration for instruction-grain program monitoring,” in
Procs. of the 34th Annual International Symposium on
Computer Architecture, June 2008.

[11] G. He and A. Zhai, “Improving the performance of
program monitors with compiler support in multi-core
environment,” in Procs. of the IEEE International
Symposium on Parallel & Distributed Processing, May
2010.

[12] G. He, A. Zhai, and P.-C. Yew, “Ex-mons: An
architectural framework for dynamic program monitoring
on multicore processors,” in Procs. of the 12th Workshop
on Interaction between Compilers and Computer
Architectures, 2008.

[13] G. He and A. Zhai, “Efficient Dynamic Program
Monitoring on Multi-Core Systems,” Journal of Systems
Architecture, Vol. 57, pp. 121-133, 2011.

[14] C.-S. Lin, C.-H. Lu, Y.-R. Chen, S.-W. Lin, and P.-A.
Hsiung, “VMC: A Model-Driven Framework for Multi-
Core Embedded Software Development,” Journal of
Computer Science and Technology, 2011.

[15] Quantum Leaps, What is QPTM? Quantum Leaps®,
LLC. Retrieved May 10, 2010, from
http://www.state-machine.com/products/.

[16] J. Reinders, Intel Threading Building Blocks:
Outfitting C++ for Multi-core Processor
Parallelism, O'Reilly Media, Inc., 2007.

230230228

