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Abstract Effective data distribution techniques can significantly reduce the total ex-
ecution time of a program on grid computing environments, especially for data min-
ing applications. In this paper, we describe a linear programming formulation for the
data distribution problem on grids. Furthermore, a heuristic method, named Heuristic
Data Distribution Scheme (HDDS), is proposed to solve this problem. We implement
two types of data mining applications, Association Rule Mining and Decision Tree
Construction, and conduct experiments on grid testbeds. Experimental results show
that data mining programs using the proposed HDDS to distribute data could execute
more efficiently than traditional schemes could.
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1 Introduction

As inexpensive personal computers and Internet access become available, much at-
tention has been directed to grid computing [4, 7, 24, 30, 31, 36, 41, 42, 45]. The
basic goal of grid computing is to share the computing and storage resources all over
the world via wide area networks. In this way, computation jobs can be distributed to
idle computers far away, probably in other countries. Moreover, remote data can be
accessed for large-scale analysis.

Data mining is an emerging technology which is applied to many fields including
bioinformatics, e-business, etc. Basically, data mining is a data-intensive application,
and it is time-consuming to execute data mining programs. In the past decade, a
lot of efforts have been devoted to design efficient data mining algorithms [12, 14,
29]. Furthermore, the parallelization of these algorithms has also been investigated.
However, the previous work is focused on traditional parallel architectures, such as
multiprocessors, homogeneous clusters, heterogeneous clusters, etc. Little work is
conducted on grid computing environments.

Traditional parallel data mining work assumes data is partitioned and transmitted
to the computing nodes in advance. However, it is also usually the case in which a
large database is generated and stored in some station [1]. Therefore, it is important
to efficiently partition and distribute the data to other nodes for parallel computation.

In this paper, we focus on the problem of data distribution for data mining appli-
cations on grids. It is formulated as a linear programming problem, and a heuristic
algorithm is proposed to solve it. The proposed scheme is applied to two kinds of
data mining applications, Association Rule Mining and Decision Tree Construction.
We implement the application with MPI directives, and execute them on grid test-
beds, across three schools. Experimental results show that effective data partition can
significantly reduce the total response time.

Our major contributions can be summarized as follows. First, we extend the lin-
ear programming formulation of this problem by considering memory constraints to
be suitable for data mining applications. Second, this paper proposes a new heuristic
algorithm to solve this problem. Finally, we implement the algorithm and apply it to
two types of data mining applications on our grid testbeds. Consequently, experimen-
tal results show the obvious effectiveness of our approach. This paper enhances our
previous work [48] by incorporating a new case study, Decision Tree Construction.

The rest of this paper is organized as follows. Section 2 reviews the related back-
ground. In Sect. 3, we describe the system model and formulate the data partition
problem. Next, our heuristic scheme is proposed in Sect. 4. Then Sect. 5 shows the
experimental results on our grid testbed. Finally, we conclude this paper in Sect. 6.

2 Background review and related work

In this section, we review related background for our research. First, background
knowledge about data mining and grid computing is reviewed. Then we present the
literature about load distribution and data mining on grids.
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Fig. 1 Overview of a typical data mining system

2.1 Data mining

Due to the advances of information technologies, a tremendous amount of data has
been generated by various kinds of applications. This is called the data explosion
problem. Moreover, we need to extract knowledge or patterns from these data. There-
fore, automatic tools for data processing and analysis are demanding.

Data mining, or known as knowledge discovery, is to acquire interesting knowl-
edge from large-scale databases [26]. A typical architecture of a data mining system is
illustrated in Fig. 1. In this architecture, the data mining engine utilizes various kinds
of techniques to mine patterns from databases. These techniques include association
rule mining, classification, cluster analysis, etc.

The objective of association rule mining is to discover correlation relationships
among a set of items. The well-known application of association rule mining is mar-
ket basket analysis. This technique can extract customer buying behaviors by discov-
ering what items they buy together. The managers of shops can place the associated
items at the neighboring shelf to raise their probability of purchasing. For example,
milk and bread are frequently bought together.

The formulation of association rule mining problem is described as follows [3].
Let I = {I1, I2, I3, . . . , Im} be a set of items, and D a database of transactions. Each
transaction in D is a subset of I . An association rule is a rule of the form A ⇒ B ,
where A ⊂ I,B ⊂ I and A ∩ B = {}. The well-known algorithm for finding associa-
tion rules in large transaction databases is a priori. It utilizes the a priori property to
reduce the search space.

Classification is a kind of data analysis technique which can extract models from
categorical data. For example, we can build a classification model to classify animals
according a small training database. Classification can be described as a two-phased
process [26]. In the training phase, a model is constructed by analyzing a predeter-
mined set of small dataset. Then this model is utilized to conduct classification in the
testing phase. The common methods of classification include decision tree induction,
k-nearest neighbor classifiers, case-based reasoning, genetic algorithms, etc.

Typical data mining has two goals of prediction and description [43]. In the former
field, some people argue that the classification of data is the most important model of
data mining and the most commonly applied technique [9]. Among classification al-
gorithms, the decision tree shown in Fig. 2 is probably the most popular and practical
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Fig. 2 A decision tree model
for buying computers

method. A decision tree is composed of three types of nodes: the root node, the in-
termediate node, and the leaf node. Generally speaking, it is simple to be interpreted
by human [34], also straightforwardly be converted into SQL statements that can be
used to access databases efficiently [27].

A classification problem has an input dataset called the training data set. And the
dataset consists of a number of records, and each consists of several fields called
attributes. Attributes can be continuous, coming from an ordered domain, or cate-
gorical, coming from an unordered domain. One of the attributes, called the class
attribute, indicates the class to which record belongs. A decision tree is built on two
phases: a construction phase and a prune phase [6]. First, an initial tree is built un-
til the leaf nodes belong to a single class only. Second, pruning is done to remove
any over fitting to the training data. Typically, time is spent most on the construction
phase, so we focus on the tree generation only.

While building the tree, there are three main steps [50] that must be performed for
each node at each level of the tree:

1. Evaluate split points for each attribute.
2. Find the winning split-point for a node.
3. Split all attribute lists into two parts, one for each node.

Cluster analysis is a process of grouping objects into groups or clusters, in order
that the objects in the same cluster have high similarity, while the objects belonging to
different groups have small similarity. There are many methods of clustering, includ-
ing partitioning methods, hierarchical methods, density-based methods, grid-based
methods, model-based methods, etc.

As parallel processing rises, parallel data mining has been well investigated in the
past decade; especially, much attention has been directed to parallel association rule
mining. A good survey can be found in [49].

2.2 Grid computing

The concept of grid computing is first stated by Foster and Kesselman, and it has
emerged as a promising technology [17–21]. However, it is a new field, and its stan-
dards and architectures are still being investigated. Conceptually, grid environments
are a type of distributed systems. However, it includes many unique characteristics.
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First, resources within the grid are shared without centralized controlling and co-
ordination. Users access these resources via distributed protocols and mechanisms.
Second, the protocols, standards, and middleware are open. In other words, it is not
a proprietary system. Finally, the performance of the grid is a critical issue. Because
the resource can be located all over the world interconnected by the Internet, it is
necessary for the grid infrastructure to provide a good enough quality of service.

The architecture of the grid involves many standards. The well-known one is the
Open Grid Services Architecture (OGSA). OGSA is a common specification, and its
objective is to standardize the services used by users and applications of a grid. This
standard primarily involves:

• Program-to-program interface and messaging (SOAP)
• Data sharing (XML)
• Workload management (WS-Management)
• Other related specifications

In the OGSA standard, specification for implementing is provided by OGSI.
A common implementation of OGSI is Globus Toolkit [46]. The software tools are
provided by the Globus Project, and are used to build computational Grids and Grid-
based applications. The toolkit includes software for security, information infrastruc-
ture, resource management, data management, communication, fault detection, and
portability.

The Globus Toolkit consists of three components: Resource Management, Infor-
mation Services, and Data Management. First, a resource management protocol is
implemented by the Globus Resource Allocation Manager (GRAM). Second, the
Metacomputing Directory Service (MDS) implements an information services pro-
tocol. Finally, a data transfer protocol is implemented by GridFTP. These protocols
utilize the GSI security protocol to interconnection.

MPI is a message-passing interface library. This standard is based on the discus-
sion in the MPI Forums [32]. Participants include vendors, researchers, academics,
software library developers, and users. MPI offers portability, standardization, per-
formance, and functionality [33]. MPICH-G2 [32, 33] is an implementation of the
MPI v1.1 standard, but it is Grid-enabled. It uses services of the Globus Toolkit® to
interconnect multiple machines, which may include different kinds of architectures.
Existing parallelized programs written with MPI directives can be recompiled and
executed on the Globus infrastructure [33].

The NWS (Network Weather Service) [35] is a distributed system that periodi-
cally monitors and dynamically forecasts the performance of various networking and
computational resources over a given time interval. This service utilizes a distributed
set of performance sensors (network monitors, CPU monitors, etc.) from which it can
gather system status information. It then uses numerical models to generate forecasts
of what the conditions will be for a given time period. It also uses mathematical mod-
els to forecast each condition and the Mean Absolute Error (MAE) and Mean Square
Error (MSE) rates. NWS is a widely used measurement tool for grid environments.

The HPC laboratory of Tunghai University has developed a GUI [47] which can
display bandwidth statistics of their grid environments. This tool utilizes API pro-
vided by NWS, and depicts real-time bandwidth statistics in web-based graphic user
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Fig. 3 Bandwidth statistics extracted from NWS information

interface, as shown in Fig. 3. In this paper, these bandwidth statistics will be used to
estimate the performance of each grid node.

2.3 Load distribution

Load distribution has been studied for decades. As described in [16], it aims to im-
prove the performance of a distributed system, usually in terms of response time or
resource availability, by allocating workload amongst a set of cooperating hosts. This
division of system load can take place statically or dynamically:

• Static load distribution assigns jobs to hosts probabilistically or deterministically,
without consideration of runtime events. This approach is both simple and effective
when the workload can be accurately characterized and where the scheduler is
pervasive, in control of all activity, or is at least aware of a consistent background
over which it makes its own distribution. Problems arise when the background
load is liable to fluctuations, or there are jobs outside the control of the static load
distributer.

• Dynamic load distribution is designed to overcome the problems of unknown or
uncharacterizable workloads, nonpervasive scheduling and runtime variation (any
situation where the availability of hosts, the composition of the workload, or the
interaction of human beings can alter resource requirements or availability). Dy-
namic load distribution systems typically monitor the workload and hosts for any
factors that may affect the choice of the most appropriate assignment and distribute
jobs accordingly. This very difference between static and dynamic forms of load
distribution is the source of the power and interest in dynamic load distribution.
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Divisible load theory is a methodology involving the linear and continuous mod-
eling of partitionable computation and communication loads for parallel processing.
It adequately represents an important class of problems with applications in parallel
and distributed system scheduling, various types of data processing, scientific and
engineering computation, and sensor networks. Solutions are surprisingly tractable.
Research in this area over the past decade is described.

Divisible Load Theory (DLT) [10, 11, 15, 38] addresses the case where the total
workload can be partitioned into any number of independent subjobs. This problem
has been discussed in the past decade, and a good review can be found in [8]. How-
ever, these previous models did not consider the memory storage constraint, which
is critical for storing intermediate data structures in data mining processes. In [13],
a data distribution method was proposed for host-client type of applications. Nev-
ertheless, it was not formulated as a linear programming problem. In addition, their
method was an analytic technique, and only verified on homogeneous and heteroge-
neous cluster computing platforms, not for grid environments.

2.4 Data mining on grids

Traditional parallel data mining work assumes data is partitioned and transmitted to
the computing nodes in advance. However, it is also usually the case in which a large
database is generated and stored in some station [1]. Grid computing has emerged as a
computing infrastructure for implementing distributed high-performance applications
and solving complex problems. Grid computing is receiving an increasing attention
both from the research community and from industry and governments. A lot of re-
searches have been conducted to address the execution of data mining applications on
grid environments [12, 14, 29]. In [12], the KNOWLEDGE GRID was proposed to
integrate data mining techniques and grid technologies. In the KNOWLEDGE GRID
architecture data mining tools are integrated with generic and data grid mechanisms
and services. Thus, the KNOWLEDGE GRID can be exploited to perform data min-
ing on very large data sets available over grids, to make scientific discoveries, im-
prove industrial processes and organization models, and uncover business valuable
information. However, the problem of partitioning and distributing the data to other
nodes for parallel computation has not been addressed. In this paper, we focus on the
problem of data distribution for data mining applications on grids.

3 Problem formulation

In this section, the master/slave model for grid computing is described. Then we
present the linear programming formulation of the data distribution problem.

3.1 The system and cost model

Our system model and cost model are extended from the framework in [8]. The mas-
ter/slave model for a grid is represented by a star graph G = {P0,P1, . . . ,Pn}, as
shown in Fig. 4. In this graph, P0 is the master node and the other n nodes, P1, . . . ,Pn,
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Fig. 4 The system model

are slave nodes. In addition, there is a virtual communication link Li connecting the
master node and the slave node Pi .

In our cost model, each node Pi is associated with a computing capacity Ci , a
memory capacity Mi , and a disk storage capacity Di . Furthermore, each link Li is
also associated with a transmission capacity Ti . In our linear cost model, it takes
W × Ci time units for the slave node Pi to conduct computation on W units of data.
Besides, it takes W × Ti time units for link Li to transmit W units of data. In this
model, we assume that the master can only communicate with one slave node at the
same time.

3.2 Linear programming formulation

The goal is to minimize the total response time of a given workload W on the sys-
tem. The Data Distribution Problem (DDP) can be formulated as a linear program as
follows

MinimizeTfinish

Subject to

Wi ≥ 0, 1 ≤ i ≤ n (1)
n∑

i=1

Wi = W (2)

W · s ≤ D0 (3)

Wi · s ≤ Di, 1 ≤ i ≤ n (4)

DS(Wi) ≤ Mi, 1 ≤ i ≤ n (5)

W1 · T1 + W1 · C1 ≤ Tfinish (6)

i∑

j=1

Wj · Tj + W1 · C1 ≤ Tfinish, 2 ≤ i ≤ n (7)

where

• Tfinish is the response time for the master node to finish executing the data mining
application program. For simplicity, we assume Tfinish is a linear function.
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• Wi is the work load dispatched to the slave Pi .
• s is the size of one unit data.
• DS is a linear function which returns the size of the intermediate data structure

during data mining process. This intermediate data structure is generated during
the process of local computation. For example, in association rule mining, the in-
termediate data structure could be a hash tree for frequent itemsets. For simplicity,
we assume DS is a linear function.

3.3 An example

We describe an example to clarify the model and the problem formulation. The mas-
ter/slave model for the example grid consists of four nodes, P0,P1,P 2, and P3, as
shown in Fig. 5. In this graph, P0 is the master node and the other three nodes are
slave nodes. In addition, L1,L2, and L3 connect the master node to P1,P2, and P3,
respectively. The total workload of this example database contains 256 transactions.
The related attributes are listed in Table 1.

The objective is to minimize the total response time of a given workload of 256
transactions on the system. The data mining application is association rule mining.
We try to partition the database into three subsets, and transmit them to the three slave
nodes, respectively. However, inappropriate partition size or transmission order could
affect the total execution time. Therefore, a good distribution scheme is essential.

Fig. 5 An example grid

Table 1 Parameters in the
example grid Attribute Node

P0 P1 P2 P3

(Master)

Ci 1.5 GHz 2.0 GHz 1.0 GHz 1.5 GHz

Mi 1 GB 512 MB 512 MB 256 MB

Di 80 GB 80 GB 40 GB 40 GB

Li 1 Mbps 256 Kbps 512 Kbps
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4 HDDS (heuristic data distribution scheme)

The proposed heuristic algorithm is based on the performance of each slave node and
each link to distribute the corresponding workload. In this section, the concept of
performance ratio is explained first. Then we present the heuristics which the algo-
rithm is based on. Finally, the algorithm is formally described and illustrated by an
example.

4.1 Performance ratio

We propose to partition the workload according to the performance ratio of all slave
nodes. Therefore, the effectiveness of this approach depends on the accuracy of es-
timating the performance ratio. To estimate the performance of each slave node, we
define a Performance Function (PF) for a slave node j as

PFj (V1,V2, . . . , VM) (8)

where Vi , 1 ≤ i ≤ M , is a parameter of the performance function. In more detail, the
parameters could include CPU speed, networking bandwidth, memory capacity, etc.
In this paper, our PF for node j is defined as

PFj = w1 × 1/tj∑
∀nodei∈S 1/ti

+ w2 × Bj∑
∀nodei∈S Bi

(9)

where

• S is the set of all slave nodes.
• ti is the execution time (s) of node i for some data mining application program,

such as association rule mining.
• Bi is the bandwidth (Mbps) between node i and the master node.
• w1 is the weight of the first term.
• w2 is the weight of the second term (w2 = 1 − w1).

The Performance Ratio (PR) is defined to be the ratio of all performance functions.
For instance, assume the PFs of three nodes are 1/2, 1/3, and 1/4, respectively. Then
PR is 1/2 : 1/3 : 1/4; i.e., the PR of the three nodes is 6 : 4 : 3. In other words, if there
are 13 transactions to be processed, 6 transactions will be assigned to the first node, 4
transactions will be assigned to the second node, and 3 transactions will be assigned
to the last one.

4.2 Performance-based heuristics

Our algorithm is based on two heuristics to dispatch workload to slave nodes.

1. The total workload is divided in n chunks according to the PR of the n slave nodes.
2. Send the data chunk to the node with faster network bandwidth first. The network

bandwidth is estimated by
Bj∑

∀nodei∈S Bi
.

In this paper, Bj is obtained from NWS (Network Weather Service) statistics [35].
Specifically, our network bandwidth estimation is extracted directed from [47].
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4.3 Algorithm

Our algorithm is also a master/slave type of application. In the MASTER module, the
total dataset is divided according to the PR of slaves, and the subdatasets are transmit-
ted accordingly. In the SLAVE module, the subdataset is computed. The algorithm of
our approach is described as follows.

Module MASTER

1. Initialization
2. Calculate performance ratio of all slave nodes
3. Partition the total data according to the PR
4. Get network bandwidth Bi of the link to node i

5. Send data to slaves in nonincreasing order of Bi

6. //Master could does its own computation work here
7. Gather results from all slave nodes
8. Print the results
9. Finalization

Module SLAVE

1. Receive data from the master node
2. Conduct data mining computation on its local database
3. Send the result to the master

Without loss of generality, we assume the master node does not participate in
computation in our algorithm. However, the algorithm can be modified to utilize the
computing power of the master node by removing the comment notation (//) in line 6.

4.4 An example

To clarify our algorithm, we use the example in Fig. 4 to go through the MASTER
algorithm.

1. The master conducts initialization work.
2. The PR is obtained by (9), and is assumed to be 6 : 4 : 3.
3. The dataset is partitioned by 6 : 4 : 3.
4. The ratio of Bi values of three links is obtained from the NWS information, and

is assumed to be 4 : 1 : 2.
5. The data chunks are sent in the order: P1, P3, and then P2, as shown in Fig. 6.
6. The master collects results from slaves.
7. The master outputs the answer.
8. The master conducts finalization work.

For comparison, the partition sizes by different partition schemes are listed in
Table 2. In this table, “EQ” means to distribute the workload to slaves equally, and
“CPU-Weighted” means to distribute the workload to slaves according to the ratio of
CPU speed values of slaves. And, HDDS is our scheme.
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Fig. 6 Example time line

Table 2 The partition sizes by
different partition schemes Scheme Node

P0 P1 P2 P3

(Master)

EQ 256 85 85 86

CPU-Weighted 256 114 57 85

HDDS 256 118 79 59

4.5 A grid-based data mining architecture

We can set up a local Grid instead of global, because the basic idea is sharing infor-
mation, not necessarily depend on the scale. The purpose is to avoid wasting resource.
The main advantage is in the resource integration. For example, through Grid com-
puting technology, we can find the idle computers on the Internet and divide task
into these computers. Because of the efficient usage of resources, we can spend only
one hour in finishing the tasks that originally needs 10 hours to complete by one
computer.

Since, Grid computing has caught a lot of attention. Some applications on Grid-
based data mining infrastructure have been proposed, such as the Knowledge Grid
(K-Grid) [37] and NASA’s Information Power Grid (IPG) [28]. Both are the input
on the data mining algorithms work to extract new knowledge. The objective is to
build the next generation computing infrastructure providing intensive analysis and
integration over World Wide Web. In addition, the DataGrid Project developed by
European Union is focused on core Grid data services, like data access and metadata
access. It can process the data sets from hundreds of TeraBytes to PetaBytes [5].

We present the “Top-Down” closed Grid architecture for data mining, because it
is normally used for e-commerce. Finding the best split point and performing the
split are the main tasks in data mining. The former is a very important as well as a
very tedious job, specifically the continuous attribute, for which many algorithms use
gini index [25] to get the split position. The split point is a mid-point between every
two sorted consecutive attribute values. Therefore, it requires an ongoing calculation
based on two adjacent values. When the data amount is large, using Grid technology
to split up the workload is very useful. So, our main task in our Grid architecture is
to calculate the split point.

In general, basic Grid technology services include security service, scheduling,
data service, database service, user service, application management service, auton-
omy and monitoring service, information service, composition service, and message
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Fig. 7 Grid-based data mining
architecture

service. Currently, Grid architecture is mature, and we will not elaborate the various
service details here. Our architecture is shown in Fig. 7; we just use Open Source
Globus Toolkit as Grid middleware, it provides three functions, that is, resource man-
agement, data management and information services. They are built in GSI (Grid
Security Infrastructure) [22]. The data exchange protocol, allocation, control and se-
curity in the Grid environment are all dependent on this middleware. Web Service
provides XML and HTTP services. It will be a corresponding suite of XML schema
describing the object and services associated with the application [23]. The particular
application is built on the top of them.

Users submit instructions to the data mining application and through Globus find
the suitable resources. Workload is estimated according to the resource efficiency.
Following, attribute data and description will be specified in XML. Note the attribute
data maybe have been sorted by task type. All the work is processed through Web
Services. Those XML documents not only contain attribute data, but also describe
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the task including some parameters for computing split point. Finally, Globus sends
the resulting documents to the client side.

In order to fully utilize the network resources, no matter using PCs or servers, there
may be different application functions. But they all use the same Grid mechanism
while the differences lie at the algorithm of parallel or sequential process. The client
resource is processed as follows: through Web Services, XML files are transformed
into database table data or text file by client attributes. If clients are using the parallel
mechanism, such as servers or Clusters, the software application will execute with
parallel data mining algorithms. On the other hand, if it is a PC, it will compute by
the sequential algorithms.

The calculation results are then transformed into XML-based format which do
not include original attribute data because the data mining application just needs the
candidate split point values. The same process, send back to the local PC by the Grid
mechanism. The local PC receives the result, via Web Service, and then stores into the
storage for data management. Through these repeating processes of resource search
and allocation task, a large and various data mining will proceed faster than the single
resource process.

Through collaboration, it can extend the application scope of data mining using
Grid technologies. Parallel and sequential mechanisms both can be used. With the
enhancement of calculation speed and Grid-related technologies, programmers do
not need to modify too many codes to transfer the original system onto the Grid en-
vironment. Some algorithms are very useful and accurate, but the fact that during
calculation all the tasks need to be fit into a single site is requiring further enhance-
ment or replacement with the increasing number of data. Therefore, if data can be
distributed to every computer in the world and participates in the Grid with each host
processing part of the data and sending back response result. There is no need to
modify the algorithm in order to reach the same objective with enhanced speed and
performance and lower cost. Of course, the supercomputers or Clusters resources can
also be included in the architecture.

5 Experimental results

To verify our approach, a grid testbed is built, and one type of data mining applica-
tion programs is implemented with MPI (Message Passing Interface) to be executed
on this testbed. To begin with, our grid environment is illustrated, and terminologies
for our programs are described. Next, performance of our scheme is compared with
that of other schemes on this grid, with respect to association rule mining. Based on
experimental results in this section, we could conclude that our HDDS got perfor-
mance improvement on previous schemes for most cases.

5.1 Data mining application 1: association rule mining

In this section, we implement the a priori algorithm, and apply our HDDS to conduct
data distribution. Specifically, the parallelized version of a priori we adopt is Count
Distribution (CD) [2].
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Fig. 8 The grid testbed

Table 3 Hardware
configuration Host CPU type CPU speed RAM

Master

gamma3 Intel PentiumTM III 866 MHz 512 MB

Cluster 1: LZ (Li Zen High School)

lz01 CeleronTM 900 MHz 256 MB

lz02 CeleronTM 900 MHz 256 MB

lz03 CeleronTM 900 MHz 256 MB

Cluster 2: THU (Tunghai University)

beta1 CeleronTM 1.7 GHz 512 MB

beta2 CeleronTM 1.7 GHz 512 MB

beta3 CeleronTM 1.7 GHz 256 MB

gamma1 Intel PentiumTM III 866 MHz 512 MB

gamma2 Intel PentiumTM III 866 MHz 512 MB

Cluster 3: HIT (Hsiuping Institute of Technology)

gridhit3 Intel PentiumTM 4 2.8 GHz 512 MB

Hardware configuration and terminology We have built a grid testbed, which con-
sists of one master and three domains. This testbed is illustrated in Fig. 8. We have
built this grid testbed by the following middleware:

• Globus Toolkit 4.0.6 [46]
• Mpich library 1.2.7 [32, 33]

The hardware configuration of this testbed is shown in Table 3.
In this experiment, the performance function and the performance ratio are the

same as those defined in Sect. 3. The assumption behind the assignment is that each
type of application has its suitable weight assignment. For Association Rule Mining,
we have experimented on different weight combination, and the ratio of 7/3 got best
performance for w1/w2. Therefore, w1 is assigned as 0.7 and w2 is assigned as 0.3.
In the future work, the impact of weight assignment will be investigated and rules
will be worked out. Furthermore, Ti for node i is obtained by executing a priori, a
representative algorithm for association rule mining, for input size 1000 transactions,
while Bi for node i is obtained by NWS statistics [35, 47]. The resulting performance
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Fig. 9 Performance ratio of 9 slave nodes for our grid testbed

Table 4 Description of our implementation for all programs

AP Name Scheme Description

Association rule mining cd_eq EQ Equal data partition

(count distribution) cd_cpu CPU_Weighted CPU-Weighted data partition

cd_hdds HDDS Our HDDS data partition

Table 5 Description of our
dataset Dataset Number of Average transaction Number of items

transactions length

D10KT5I10 10,000 5 10

D50KT5I10 50,000 5 10

D100KT5I10 100,000 5 10

ratio is shown in Fig. 9. For example, node 4 and node 5 have the same CPU speed.
However, our HDDS assigns higher PR to node 4 because of its higher network band-
width.

We have implemented one kind of data mining application programs in C lan-
guage, with message passing interface (MPI) directives for parallelizing code seg-
ments to be processed by multiple CPUs. For readability of experimental results, the
description of our implementation for all programs is listed in Table 4. In this ta-
ble, “cd_eq” means to distribute the workload to slaves equally, and “cd_cpu” means
to distribute the workload to slaves according to the ratio of CPU speed values of
slaves. And, cd_hdds is our scheme. Our datasets are generated by the tool as in [3].
The parameters of the synthetic datasets are described in Table 5.

Relative performance for different dataset sizes First, execution time on the grid
for the three schemes is investigated. Figure 10 illustrates execution time of cd_eq,
cd_cpu, and our cd_hdds, with input size 10 K, 50 K, and 100 K transactions, respec-
tively. Experimental results show that our scheme got better performance than cd_eq
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Fig. 10 Performance of data partition schemes for different datasets

and cd_cpu. In this case, our scheme for input size 100 K transactions got 18% and
52% performance improvement over cd_eq and cd_cpu, respectively.

From this experiment, we can see the significant influence of partition schemes
on the total response time. In grid environments, network bandwidth is an important
criterion to evaluate the performance of a slave node. Cd_eq and cd_cpu are static
data partition schemes. Therefore, they can not adapt to the practical network status.
When communication cost becomes a major factor, our HDDS scheme would be well
adaptive to the network environment.

Moreover, the reason why cd_cpu got the worst performance can be contributed to
the inappropriate estimation of node performance. In grid computing environments,
CPU speed is not the only factor to determine the node performance. A node with
the fastest CPU is not necessary the node with optimal performance. This has been
illustrated in Fig. 10.

Speedup In order to see how well our HDDS scheme speeds up, we keep the dataset
constant to be D10KT5I10 and vary the number of nodes. Figure 11 shows that the
response time of HDDS is decreasing as the number of nodes increases. This means
our HDDS can choose available computing power to optimize its execution time.
However, the curves of cd_eq and cd_cpu fluctuate as the number of nodes increases.

The effect of transmission order In this experiment, we address the effect of trans-
mission order. As described in Sect. 4.2, our HDDS sends data chunks in the de-
creasing order of link bandwidths. For comparison, we implement two schemes with
different transmission order, cd_inc and cd_rand. In contrast to our HDDS, cd_inc
sends data chunks in the increasing order of network bandwidths. On the other hand,
cd_rand sends data chunks in the arbitrarily chosen order of network bandwidths. As
shown in Fig. 12, HDDS outperforms the other two schemes. The reason might be
that our decreasing heuristic can reduce the overall waiting time of all slave nodes.
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Fig. 11 Speedup performance of data partition schemes

Fig. 12 Performance of data partition schemes for different transmission order

5.2 Data mining application 2: decision tree construction

The SPRINT algorithm We employ a parallel SPRINT (Scalable Parallel Induction
of Decision Tree) algorithm that implemented its parallelization on an IBM SP2 [39].
We exploit the same program into Cluster and Grid environments, and try not to
modify the originally program of Cluster. Also we want to know SPRINT algorithm
whether suitable for Grid computing or not. Then we introduce it briefly in next
section and focus on the continuous attribute. Note this algorithm was running SMP
architecture, but we run in Cluster architecture. So, it can affect the experimental
result, maybe different from the original paper of SPRINT.
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Fig. 13 Evaluating continuous split points

SPRINT algorithm removes all of the memory restrictions, and it is fast and scal-
able. It is designed for being easily parallelized, allowing many processors to work
together to build a single consistent model. The algorithm assumes a share-nothing
parallel environment where each processor has private memory and disk. The proces-
sors are connected by a communication network and can communicate only by pass-
ing messages [39]. In SPRINT program [44], we downloaded that has been written
by C++ and MPI, compiler with mpiCC v2.96. It is implementation of the SPRINT
parallel synchronous decision tree construction.

For continuous attributes, there are two histograms are associated with each node
for splitting. The example is shown in Fig. 13 [39]. All attributes will partition to each
own attribute list. The attribute list will average to every processor when process.
Cbelow maintains the attribute records that have already been processed, whereas
Cabove for remainder that has not. Both Cbelow and Cabove have all the necessary in-
formation to compute the gini index. For the root node, it is obtained at the time of
sorting, the other nodes is obtained when the node is created. Since attribute lists are
processed one at a time, memory is required for only one set of such histograms.
It is one characteristic of SPRINT algorithm. Note this algorithm needs to sort the
continuous attribute first before the put into the attribute list.

For performing the split, it used a hash table that collected the attribute value,
class and its record number, namely attribute list. You can refer to Fig. 13. So, there
is nothing to which child the record was moved. The retrieved information told us
with which child to place the record. Therefore, the memory is less used. If the hash-
table is too large for memory, splitting is done in more than one step. The attribute
list for the splitting attribute is partitioned according to the attribute record for which
the hash table will fit in memory, and the process is repeated for the remainder.

As data placement, the partitioning is achieved by first distributing the records
equally among all the processors; it is shown in Fig. 14. Each processor generates its
own attribute list partitions in parallel. Also, they can parallelize computing to find
the split point for each own record.
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Fig. 14 Parallel data placement

Table 6 The dataset list
Dataset Attributes Record Size

Continuous Categorical Class

cov4 4 0 1 581,012 15.7 MB

big4 4 0 1 1,162,024 31.7 MB

In a parallel environment, each processor can work independently for processing
1/N of the total data. Each processor has a separate contiguous section of a global
attribute list. Cbelow must initially reflect the class distribution of all sections of an
attribute-list assigned to processors of lower rank. Cabove must likewise initially re-
flect the class distribution of the local section as well as all sections assigned to
processors of higher rank. Once all the attribute list sections of a leaf have been
processed, each processor will have what it considers besting the best split for that
leaf. The processors then communicate to determine which of the N split points has
the lowest cost.

Datasets The dataset we use synthetic datasets with text file. We focus on the con-
tinuous attribute computing. We try two different datasets: cov4 and big4, big4 is
almost double size of cov4. Both have 4 continuous attributes and 1 class, and their
sizes are shown in Table 6. In these synthetic datasets, the range of attributes are as
follows: the class ranges from 1 to 7 (integer), attribute 1 ranges from 200 to 3999,
attribute 2 ranges from 1 to 500, attribute 3 ranges from 1 to 99, attribute 4 ranges
from 0 to 99.

Cluster Our Cluster C149 is a low cost Beowulf-type supercomputer that utilizes
multicomputer architecture for parallel computations, as shown in Table 7. It consists
of 8 PC-based connected by three 24-port 100 Mbps Ethernet switches with Fast
Ethernet interface. Each node has two AMD Athlon MP 2600+ or 2400+ 1 GHz
processors. There are total 16 processors. The disks are made a NFS shared local disk.
The processors of Cluster connected with a private network. It is a less heterogeneous
Cluster architecture.
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Table 7 Hardware
configuration of Cluster C149

*Stands for Master node of the
cluster, the others are slave
nodes

Cluster C149

No Host name Processor (CPU = 16) Memory

1 amd1* AMD Athlon MP 2600+ × 2 2048 MB

2 amd2 AMD Athlon MP 2600+ × 2 1024 MB

3 amd3 AMD Athlon MP 2600+ × 2 1024 MB

4 amd4 AMD Athlon MP 2400+ × 2 1024 MB

5 amd5 AMD Athlon MP 2400+ × 2 1024 MB

6 amd6 AMD Athlon MP 2400+ × 2 1024 MB

7 amd7 AMD Athlon MP 2400+ × 2 1024 MB

8 amd8 AMD Athlon MP 2400+ × 2 1024 MB

All computers in this Cluster run the RedHat Linux release 8 operating system.
Program is developed using C++ language, compiler within MPI library LAM 6.5.8-
4 and gcc 3.2.2. The program and dataset are just put in the master node, also com-
piler, and run here.

Grid Our Grid architecture is implemented on top of Globus Toolkit, name grid-
cluster. It has built three Clusters to form a multiple cluster environment. Cluster1
and Cluster2 consist of 4 PCs that each has one master node and three slave nodes.
Cluster3 consists of 3 PCs, has one master node and two slave nodes, as shown in
Table 8. Each node is interconnected through 3COM 10/100 Fast Ethernet Card to
Accton Switch HUB. SGE QMaster daemon is run on the master node of each Clus-
ter, and SGE execute daemon is run to manage and monitor the incoming job and
Globus Toolkit v2.4. Each slave node is running SGE execute daemon to execute
income job only.

The operating system is RedHat Linux release 9. The parallel application we use
is MPICH-G2 v1.25 for message passing. The program and dataset have to be put in
the master node of each Cluster and also need to be put into the same directory. But
we can run just in Cluster1. Cluster1 is a master of grid-cluster. If we use mpirun over
5 processors, it means that the process will communicate current Cluster with another
Cluster. The order of mpirun is Cluster1, Cluster2, and Cluster3. Note the order will
affect the result of run. During execution, if mpirun needs to cross the other processor,
it will run sequentially by machine file that we have written.

Performance result There are two kinds of environment and two datasets in our ex-
periment. We first examined the original cluster C149, the result is shown in Fig. 15.
The turn-around time is the total response time. We found the best performance is
6 processors, because the former 3 CPU of nodes are higher. The latter 5 nodes are
lower, so the performance is getting down. There is just a little difference in CPU, but
the performance is sensitive. Although the result is not good for increasing proces-
sors, it needs more communication as the processor is increased. Fortunately, the
execution time is not double when the amount of dataset is double. In the experiment
of original SPRINT paper is implemented in IBM SP2, it is all in the SMP archi-
tecture with intracommunication. Our Cluster has external communication with each
node.
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Table 8 Hardware configuration of Grid-cluster

Cluster1*

No. IP Host name Processor (CPU = 4) Memory

1 beta1.hpc.csie.thu.edu.tw beta1* Intel Celeron 1.7 GHz 512 MB

2 beta2.hpc.csie.thu.edu.tw beta2 Intel Celeron 1.7 GHz 256 MB

3 beta3.hpc.csie.thu.edu.tw beta3 Intel Celeron 1.7 GHz 256 MB

4 beta4.hpc.csie.thu.edu.tw beta4 Intel Celeron 1.7 GHz 256 MB

Cluster2

No. IP Host name Processor (CPU = 8) Memory

1 gamma1.hpc.csie.thu.edu.tw gamma1* Pentium III × 2 512 MB

2 gamma2.hpc.csie.thu.edu.tw gamma2 Pentium III × 2 512 MB

3 gamma3.hpc.csie.thu.edu.tw gamma3 Pentium III × 2 512 MB

4 gamma4.hpc.csie.thu.edu.tw gamma4 Pentium III × 2 512 MB

Cluster3

No. IP Host name Processor (CPU = 6) Memory

1 alpha1.hpc.csie.thu.edu.tw alpha1* AMD Athlon MP 2400+ × 2 1024 MB

2 alpha2.hpc.csie.thu.edu.tw alpha2 AMD Athlon MP 2000+ × 2 1024 MB

3 alpha3.hpc.csie.thu.edu.tw alpha3 AMD Athlon MP 1800+ × 2 512 MB

*Stand for Master node of the cluster, the others is slave node

Fig. 15 The turn-around time
of C149 diagram

Figure 16 shows our experimental result of the Grid environment. During the ex-
periment test, for the same case, we got the different turn-around time every time, but
the interval within one minute. We tried to do our best to get the result in the same
condition. It is still changeable. It is comprehensible because the interchange com-
munication is unsettled in the Internet. Therefore, we chose the least time of every
processor for this experimental presentation. So, the results of 6 processors and 12
processors are higher suddenly, because they just cross the external node. After that,
the workload is average because the speedup is increasing. We obtain the amazing
discovery that we can get the lower turn-around time for the maximum processor. As
seen from the figure, all the execution times are very close after 4 processors, but big4
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Fig. 16 The turn-around time
of grid-cluster diagram

Fig. 17 Cluster and Grid
comparison diagram for cov4
dataset

Fig. 18 Cluster and Grid
comparison diagram for big4
dataset

dataset is double than cov4 dataset. All prove that Grid computing is available in the
particular condition. It means the proposed method is scalable for large dataset.

Next, we compare Cluster with Grid. We know their hardware are different, we
just put their results together and compare their curve varieties. Furthermore, their
CPU gap is not too much. The data values as the same former experiment are shown
in Fig. 17 and Fig. 18. Obviously, for the speedup, Cluster is much better than Grid,
even just one processor. We believe that the reason is due to the different MPI library;
MPICH-G2 has more of a communication layer with Globus toolkit. But on the other
hand, the increasing processor is good for Grid. As seen in the figure, the execution
time is just a little decreasing when the processor is increasing in the Grid, and the
Cluster is not. We can see that the performances of a large dataset are near gradual.
Particularly, the processor is increasing.
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Fig. 19 Performance of data
partition schemes for different
datasets

Relative performance for different dataset sizes First, execution time on the grid
for the three schemes is investigated. Figure 19 illustrates execution time of EQ,
CPU_Weighted and HDDS, with dataset cov4 and big4, respectively. Experimental
results show that the HDDS scheme got better performance than the others.

From this experiment, we can see the significant influence of partition schemes
on the total response time. In grid environments, network bandwidth is an impor-
tant criterion to evaluate the performance of a slave node. EQ and CPU_Weighted
are static data partition schemes. Therefore, they cannot adapt to the practical net-
work status. When communication cost becomes a major factor, the proposed HDDS
scheme would be well adaptive to the network environment.

Moreover, the reason why CPU_Weighted got the worst performance can be con-
tributed to the inappropriate estimation of node performance. In grid computing en-
vironments, CPU speed is not the only factor to determine the node performance.
A node with the fastest CPU is not necessarily the node with optimal performance.
This has been illustrated in Fig. 19.

Experiment discussion Obviously, for the speedup, Cluster is much better than Grid
in our case. On the other hand, we do not schedule the workload into the hetero-
geneous configuration. It also affects the entire performance. We believe that more
processors will result in more communication overhead between the slaves and the
master. However, if the large dataset is appropriately distributed, the benefit of saving
computation time will override the communication overhead. Frankly, we have bot-
tlenecks for more attributes and larger dataset in the Grid environment. The dataset
is too large to Grid segmentation. We plan use larger synthetic dataset in next exper-
iment and try the other way to solve it, even to modify the current program or try
another parallel decision tree algorithms. After all, we demonstrate that Grid is not
bad in the multiple processors.

Our experiment reveals the other appearance that the speedup will be a little down
when the processor first time touches the other Cluster processor in the Grid. But it
speeds up later. Of course, it will affect the Grid type that consists of plenty single
workstations. It is worth noting.

The turn-around time of a multiple processor does not double increase when the
dataset is double; oppositely, the speedup is closed. It is also amazing and satisfying.
All the experimental results can make us get going to research Grid computing for
data mining.
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6 Conclusion

In this paper, we have proposed a performance-based heuristic to solve the data par-
tition problem for data mining applications, and have compared it with other al-
gorithms by experiments for two types of application programs on our Grid envi-
ronment. In each case, our approach can obtain performance improvement on other
schemes. In our future work, we will implement more types of application programs
to verify our approach. Furthermore, we hope to study theoretical analysis to find
better solutions, and consider more status information.

The main goals of this paper are providing the idea architecture for decision tree
model in the Grid environment, and analyzing Grid roles of user equality perspective
in the data mining application. We hope the Grid-based decision tree architecture
plus the roles of Grid can help the emerging Grid community. Also, expecting the
evaluation report of the experimental performance in different platforms is interesting
to the computer researchers.

This preliminary experiment is the first step to achieve our Grid-based decision
tree architecture. After all, it is a big plan; we need to know what arduous problem we
will meet, and step-by-step achieve it. We think if the transplant is easy about Cluster
into Grid, then we can smoothly go to the next work that implements the decision
tree application. This ideal application can assign separately the task to single PC
and parallel computer according to the response of Globus Toolkit. Further, we will
involve the different data media, database, or text file based on computer side needs.

In this paper, we just want to know the difference between Cluster and Grid in
efficiency and try not to modify the original program. Our preliminary experimental
results show that Cluster is better than Grid in our datasets, but increasing processor
advantage Grid. Therefore, our next work is to implement the large dataset and more
attributes in Grid, and maybe try to use another decision tree algorithm. Finally, we
will have an application that can manage and assign the work to a remote workstation
to achieve Grid-based decision tree architecture that we propose.

Our experiment reveals Grid computing is expansibility; we believe it is expected
that Grid computing will be a trend and common. Now, there are more and more
researchers and large industries investing much time and money in Grid investigation.
We will have more tools to assist in achieving our goal that is integrated Grid-based
decision tree application.

It is a good idea to consider MIPS in the Performance Ratio calculation. We will
incorporate this attribute into the Performance ratio formula in the future work. In-
deed, in another paper [40] of ours about Workload Distribution, CPU speed has been
considered in the Performance Ratio calculation. And the experimental results show
good performance. We believe that the MIPS attribute should have the same effect as
the CPU speed.

This work assumes that the scalability problem can be alleviated by such fault-
tolerant technologies as server replication. Our future work will extend the mas-
ter/slave architecture to peer-to-peer models to overcome scalability problems.

We hope, through Grid collaboration, it can make data mining tasks originally
thought too difficult or complex to become possible. And all can be implemented
in every different research field, despite the fact that current Grid-based data mining
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applications still have many problems and limit to different scientific communities.
But from the perspective of the network development and global common objectives,
Grid is an ideal of the human being and a feasible platform.
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