
J Supercomput (2009) 50: 177–207
DOI 10.1007/s11227-008-0258-1

A directive-based MPI code generator for Linux PC
clusters

Chao-Tung Yang · Kuan-Chou Lai

Published online: 16 December 2008
© Springer Science+Business Media, LLC 2008

Abstract Computation requirements in scientific fields are getting heavier and heav-
ier. The advent of clustering systems provides an affordable alternative to expensive
conventional supercomputers. However, parallel programming is not easy for non-
computer scientists to do. We developed the Directive-Based MPI Code Generator
(DMCG) that transforms C program codes from sequential form to parallel message-
passing form. We also introduce a loop scheduling method for load balancing that
depends on a message-passing analyzer, and is easy and straightforward to use. This
approach provides a completely different view of loop parallelism from that in the
literature, which relies on dependence abstractions. Experimental results show our
approach can achieve efficient outcomes, and DMCG could be a general-purpose tool
to help parallel programming beginners construct programs quickly and port existing
sequential programs to PC Clusters.

Keywords Linux PC cluster · Message passing programming · Parallel loops ·
Speedup · Cluster computing

1 Introduction

As computation requirements in the science field become more demanding, the role
of parallel architectures in helping to satisfy those requirements becomes increas-

C.-T. Yang (�)
High-Performance Computing Laboratory, Department of Computer Science, Tunghai University,
Taichung 40704, Taiwan
e-mail: ctyang@thu.edu.tw

K.-C. Lai
Department of Computer and Information Science, National Taichung University, Taichung 40306,
Taiwan
e-mail: kclai@ntcu.edu.tw

mailto:ctyang@thu.edu.tw
mailto:kclai@ntcu.edu.tw

178 C.-T. Yang, K.-C. Lai

ingly important. Parallel architectures include shared-memory multiprocessor sys-
tems, distributed-memory multiprocessor systems, and clustering systems.

Shared-memory multiprocessor systems contain two or more processors that all
share the same memory address. One operating system manages the processors, and
they share all resources, making communication among them very convenient in the
programmer’s view. However, there can be memory-sharing and scalability problems
in such systems. Distributed-memory multiprocessor systems may also contain many
processors, but each has its own local memory. The processors exchange data and
coordinate processes by message-passing. However, writing parallel programs for
such systems is not so convenient for programmers.

Another high performance computing system choice is the PCs/workstation clus-
ter [1–3]. Many individual PCs/workstations, generally with homogeneous system ar-
chitectures, are connected by high-speed networks, such as Beowulf Cluster, Network
of Workstations (NOW), Cluster of Workstations (COW), PC/Workstation Farms,
among others. Message-passing techniques such as Message Passing Interface (MPI)
[4] and Parallel Virtual Machine (PVM) [5] can be used to achieve parallel program-
ming in cluster computing systems. The advantages of cluster computing systems
include high scalability, high availability, and low cost/performance ratios. Clusters
for performing computation-intensive experiments like the N-body problem, DNA se-
quence simulations, weather prediction, nuclear simulation, and high-energy physics,
etc., are easy to build. According to the latest thirtieth top 500 report [6], clustered
architecture systems make up about 80% of the world’s 500 most powerful systems;
they are competitive with conventional supercomputers on performance. Given their
great performance and affordable price, it is believed that clustering systems will en-
ter the high-performance architecture mainstream and become increasingly popular.

Full utilization of clustering systems requires parallel programming, with methods
suitable for various parallel architectures, e.g., threading for shared-memory systems
and message-passing for distributed-memory systems. Programmers can create paral-
lel programming for message-passing systems via three approaches: by using a new
parallel programming language, extending an existing sequential language to han-
dle message passing, and by using an existing sequential language with a library of
external functions for message passing. The third option is the most popular using
either MPI [4] or PVM [5]. In such programming, programmers must explicitly dis-
tribute data to each processor. All computations within a processor can involve only
its own data. Whenever nonlocal data are required, the programmers must facilitate
message-passing function calls to transfer data among processors.

Parallelizing compilers find parallelisms in sequential programs and generate ap-
propriate parallel codes for parallel systems. Parallelization entails three subprob-
lems: identifying potential parallelisms, automatically or by programmers mapping
processes and data layouts to processors, optimizing, and generating target parallel
codes [7]. Many parallelizing compilers for shared-memory systems and global ad-
dressing systems exist: SUIF at Stanford University, Polaris at Purdue University and
the University of Illinois at Urbana-Champaign, ParaScope at Rice University, etc.
This includes OpenMP compilers, perhaps the most popular in this field.

Most parallel compilers assume the underlying systems are shared-memory sys-
tems when generating parallel codes, making them unsuitable for cluster computing.

A directive-based MPI code generator for Linux PC clusters 179

Table 1 Parallelizing compilers for distributed-memory systems

Compiler Company or Laboratory Availability/Cost

Paraguin University of North Carolina at Wilmington Under development; prototype available

PARADIGM University of Illinois Not available

VAST-HPF Crescent Bay Software $2,395, 8-node license

Bert 77 HPC Design $2,449, 8-node academic

single-user license

PGI PGHPF Portland Group Compiler Technology team $2,958, 10 processors node-locked

(part of CDK) at STMicroelectronics

Users may adopt the Distributed-Shared Memory (DSM) library to create convenient
abstractions that allow parallel codes written for shared-memory systems to be run by
distributed systems. However, distributed shared memories are still sources of ineffi-
ciency. Even though a few companies and laboratories have developed parallelizing
compilers for distributed-memory systems, none has a low cost/performance ratio, as
shown in Table 1. The lack of such parallelizing compilers for distributed-memory
systems prompted us to develop one.

In this study, we report on developing an MPI code generator called the Directive-
Based MPI Code Generator (DMCG), and an assisted-learning tool for MPI pro-
gramming beginners. Our approach was based on analyzing communication models
for distributed-memory systems. It provided a completely different view of loop par-
allelism from those that rely on dependence abstractions. Experimental results show
our approach outperforms hand-revised codes, and that DMCG could be a general-
purpose tool for creating parallel programming quickly and porting existing sequen-
tial programs to PC Clusters.

The rest of this paper is organized as follows. Section 2 introduces the concepts
of data dependencies, loop partitioning, message-passing interfacing and communi-
cation models. Section 3 presents a performance evaluation of collective communi-
cation. Section 4 describes our system and kernel technologies. In Sect. 5, we present
experimental results, and comparisons with hand-revised codes. Finally, concluding
remarks and future directions are given in Sect. 6.

2 Background

2.1 Data dependence

There are two types of dependence: control and data [10–12]. If, in a control flow
graph, there is a path from statement S1 to statement S2, i.e., S1 determines whether
S2 can be executed, we then say that a control dependence exists between S1 and S2.
For example:

S1 if (a = 5){
S2 b = 2
S3 }.

180 C.-T. Yang, K.-C. Lai

Data dependence exists between statements S1 and S2 if both access the same
memory location and at least one of them writes to that location. There are three types
of data dependence: flow dependence (also called true dependence), anti-dependence,
and output dependence. S5 is flow-dependent on S4 when S4 must be executed before
S5 because S4 writes a value that S5 must read.

S4 a = 10;
S5 b = a + 5

Antidependence occurs when S6 reads a memory location to which S7 later writes.
We say that S7 is antidependent on S6 since the read-write order between S6 and
S7 is in reverse order of flow dependence. Indeed, we can resolve this kind of data
dependence by using a temporary variable to hold the value stored in variable a. If S7
is executed before S6, S6 can use this temporary variable since it will have the correct
value.

S6 b = a + 5
S7 a = 10

Output dependence exists when statements S8 and S9 write to the same memory
location. The value stored in memory should be nearest the statement that will read
it.

S8 a = b ∗ 10 + 5
S9 a = c + d

The dependencies above occur in codes without loops. Dependencies bridging be-
tween iterations are called loop-carried dependencies. S11 and S12 have no dependent
relationship in one iteration, but in the next iteration, S12 reads a value that was writ-
ten by S11 in the previous iteration creating flow dependence. We say that S12 is
flow-dependent on S11 with a distance vector {(1)}. We note that distance vectors
describe dependencies between iterations not array elements. However, when there
is data dependence between statements, the statements must be executed in sequence
and cannot be parallelized.

S10 for (i = 1; i < n; i + +){
S11 a[i] = c + d
S12 b[i] = a[i − 1] ∗ 10
S13 }

2.2 Loop scheduling

If loops can be executed in parallel, we want to split them into sets of tasks on dif-
ferent processors. Therefore, a good loop-scheduling algorithm can achieve good
load balancing with only minimal overhead. Several loop-scheduling methods are
currently available, Pure Self-Scheduling, Guided Self-Scheduling, Chunked Self-
Scheduling, and Factoring Self-Scheduling [13–18]. We describe these scheduling in
the following:

Pure Self-Scheduling (PSS) is the first straightforward dynamic loop scheduling
algorithm. In this paper, a processor is said to be idle if it has not been assigned a

A directive-based MPI code generator for Linux PC clusters 181

Table 2 Margin formulas and examples of dynamic loop scheduling

Scheme Formulas N = 1000, P = 4

SS Ki = 1 1 1 1 1 1 1 1 1 1 1 1 1 1. . .

CSS(k) Ki = k 125 125 125 125 125 125 125 125

CSS/λ Ki = �N/λ� 250 250 250 250

GSS Ki = �Ri/P �,R0 = N,Ri+1 = Ri − Ki 250 188 141 106 79 59 45 33 25 19 14 11 8 6 4 3 3

2 1 1 1 1

FSS Ki = (1/2)�i/P � × N/P 125 125 125 125 62 62 62 62 32 32 32 32 16 16 16

16 8 8 8 8 4 4 4 4 2 2 2 2 1 1 1 1

chunk of workload or it has finished the assigned workload. That is, an idle node does
not have a chunk of workload to execute. Whenever a processor gets idle, iterations
are assigned to it. This algorithm achieves good load balancing, but induces excessive
overhead [10].

Chunk Self-Scheduling (CSS) assigns k iterations each time, where k, the chunk
size, is fixed and must be specified by either the programmer or by the compiler.
When k is 1, the scheme is purely self-scheduling, as discussed above. Large chunk
sizes cause load imbalances, while small chunk sizes are likely to produce excessive
scheduling overhead [10].

Guided Self-Scheduling (GSS) can dynamically change the numbers of iterations
assigned to idle processors [11]. More specifically, the next chunk size is determined
by dividing the number of remaining iterations of a parallel loop by the number of
available processors. The property of decreasing chunk size implies that an effort is
made to achieve load balancing and to reduce the scheduling overhead. By assigning
large chunks at the beginning of a parallel loop, one can reduce the frequency of
communication between master and slaves. The small chunks at the end of a loop
partition serve to balance the workload across all working processors.

Factoring Self-Scheduling (FSS) assigns loop iterations to working processors in
phases [9]. During each phase, only a subset of remaining loops iterations (usually
half) is equally divided among available processors. Because FSS assigns a subset of
the remaining iterations in each phase, it balances workloads better than GSS when
loop iteration computation times vary substantially. The synchronization overhead of
FSS is not significantly greater than that of GSS.

Assume P available processors, N iterations in the DOALL loop, and a Ki -size ith
partition. Several algorithms’ formulae for calculating Ki are listed in Table 2, where
the CSS/k algorithm distributes the DOALL loop in k equal-sized chunks. Table 2
also gives sample sizes for SS, CSS(125), CSS/4, GSS, FSS, and when N = 1000
and P = 4.

The approach above is dynamic loop scheduling in which each loop partition must
be mapped to a processor. An alternative approach is static scheduling. There are two
static loop scheduling methods: block and cyclic [19]. In static scheduling, the num-
ber of chunks equals the number of processors, i.e., a scheduler is not needed when
each partition is assigned to one processor. Adopting block or cyclic scheduling in-
volves a trade-off between locality and workload distribution since block scheduling

182 C.-T. Yang, K.-C. Lai

assigns blocks of continuous iterations to one processor, while cyclic scheduling as-
signs specific amounts of cyclic iterations to each processor.

2.3 PC clusters

A PC cluster uses multicomputer architecture and features a parallel computing sys-
tem that consists of one or more master nodes and available compute nodes or cluster
nodes, interconnected via widely available network interconnects. All of the nodes
in a typical PC cluster are commodity systems-PCs, workstations, or servers-running
commodity software such as Linux.

The master node acts as a server for Network File System (NFS) and as a gateway
to the outside world. As an NFS server, the master node provides user file space and
other common system software to the compute nodes via NFS. As a gateway, the
master node allows users to gain access through it to the compute nodes. Usually,
the master node is the only machine that is also connected to the outside world us-
ing a second network interface card (NIC). The sole task of the compute nodes is to
execute parallel jobs. In most cases, therefore, the compute nodes do not have key-
boards, mice, video cards, or monitors. All access to the client nodes is provided via
remote connections from the master node. Since compute nodes do not need to ac-
cess machines outside the cluster, nor do machines outside the cluster need to access
compute nodes directly, compute nodes commonly use private IP addresses, such as
the 10.0.0.0/8 or 192.168.0.0/16 address ranges.

From a user’s perspective, a PC cluster appears as a distributed memory multi-
processor system. The most common methods of using the system are to access the
master node either directly or through Telnet or remote login from personal worksta-
tions [1]. Once on the master node, users can prepare and compile their parallel ap-
plications, and also spawn jobs on a desired number of compute nodes in the cluster.
Applications must be written in parallel and use the message-passing programming
model. Jobs of a parallel application are spawned on compute nodes, which work
collaboratively until finishing the application. During the execution, compute nodes
use standard message-passing middleware, such as Message Passing Interface (MPI)
[4, 20] and Parallel Virtual Machine (PVM) [5], to exchange information.

• Cluster computing focuses on platforms consisting of often homogeneous inter-
connected nodes in a single administrative domain,

• Clusters often consist of PCs or workstations and relatively fast networks,
• Cluster components can be shared or dedicated,
• Application focus is on cycle-stealing computations, high-throughput computa-

tions, and distributed computations.

2.4 Message passing interface

The Message Passing Interface standard (MPI) [1] describes a message-passing ap-
plication programming interface with protocol and semantic specifications such as
message buffering and message delivery progress requirements. MPI includes point-
to-point message passing and collective (global) operations, and provides a substan-
tial set of libraries for writing, debugging, and performance testing distributed pro-
grams.

A directive-based MPI code generator for Linux PC clusters 183

MPI was established for writing message-passing programs, and its main advan-
tages are portability and ease-of-use. The benefits of standardization are especially
apparent in distributed-memory communication environments in which higher-level
routines and/or abstractions are built upon lower-level message passing routines. Fur-
thermore, defining a message-passing standard provides vendors with well-defined
routines they can implement efficiently, or in some cases provide hardware support
for enhancing scalability. Before MPI, many message-passing libraries were offered
by various parallel computing system vendors; however, their portability was a big
problem.

There are various implementations of MPI, for example, LAM/MPI [20], now
supported and maintained by the University of Notre Dame, MPICH, implemented
by the Argonne National Lab/Mississippi State University [21], MPI/Pro, a commer-
cial implementation for clusters, Windows NT, and multicomputers provided by MPI
Software Technology, Inc. [22]. We use the LAM/MPI implementation in this study
because it is implemented according to the MPI standard and creates no MPI pro-
gramming portability problems in our system.

2.5 Communication model

Most loop parallelization technologies depend on abstract dependence analyses.
Communication model analysis plays an important role in message-passing paral-
lel programming; given the importance of translating sequential codes into parallel
ones and the fact that various models have different send/receive patterns.

In [23], McGarvey et al., classified four categories of point update methodol-
ogy: Independent, Nearest Neighbor, Quasi-Global, and Global. Since we care most
about communication behavior among processors, we simplify classification into
three categories: Independent, Semi-Global (merging Neighbor and Quasi-Global),
and Global, as shown in Fig. 1.

Each node (processor) executes update algorithms and depends on data from pre-
vious steps. If an update algorithm requires only data from previous steps, it is Inde-
pendent and needs no communication with other processors. It is commonly referred
to as “embarrassingly parallel”, such as calculating the value of PI, Mandelbrot set,
matrix manipulation, etc.

If an update algorithm requires some outside data, it is Semi-Global. This com-
plicates the mapping from sequential to parallel because semantics must be parsed
precisely to determine which nodes need which data. For this problem, we introduce
a new concept, “data distance” directives annotated by users to tell the compiler how
far away the data is from it. Note that the data distance here resembles the distance
vector in data dependence, but they are not the same. Our system does not parallelize
program blocks subject to any form of data dependence. For example, Jacobi itera-
tion, which updates each item with values from its neighbors, is in this category. For
this communication model, users must indicate data distance from the compiler: (−1,
−1), (−1, 1), (1, −1), and (1, 1). We leave parallelizing loops in this communication
model for future work.

The last communication model is Global in which the update algorithm requires
data from all others. All-pairs shortest-path solved by Floyd’s algorithm [24], which

184 C.-T. Yang, K.-C. Lai

Fig. 1 Three type of
communication models for loop
parallelization

updates paths stored in a two-dimensional array during each iteration, belongs in this
category.

3 Performance evaluation of collective communication

3.1 Collective communication

Various application types exhibit certain communication patterns, and rather than
coding these patterns with point-to-point communication functions, MPI provides
collective communication functions to handle them. Collective communication in-
volves groups of processes that manipulate “common” pieces or sets of information
as mentioned above. Generally, efficient algorithms are used to build collective com-
munication functions from point-to-point communication functions.

A directive-based MPI code generator for Linux PC clusters 185

Fig. 2 Collective
communication functions

MPI collective communication functions can be divided into three categories:
synchronization, data movement, and global computation. Here, we discuss only
data movement functions, as shown in Fig. 2. Some say collective communication
functions are more efficient than point-to-point communication functions, but that
is not so clear-cut because collective communication implementations are some-
times related to synchronizations, some of which are redundant. Some suggest that
send/receive in parallel programs should be “considered harmful” and avoided in
favor of collective communication functions as far as possible. The benefits over
send/receive include: simplicity, programmability, performance, expressiveness, and
predictability [25].

In this section, we report on experiments conducted to evaluate the performance
of MPI collective communication data movement functions; the results were taken
into consideration in our parallelizing system.

186 C.-T. Yang, K.-C. Lai

3.2 Timing methodologies

Program execution times must be measured when evaluating performance. There are
two timing methodology categories: coding for single nodes and coding for parallel
machines. In coding for single nodes, we must distinguish between wallclock time
and CPU time. Time-sharing systems may be executing many processes simultane-
ously. Wallclock time is the “real” or elapsed time used by all processes. CPU time
is that actually used by processes.

In parallel systems, parallelism is accomplished via message passing, so commu-
nication time must be separated from total execution time since it plays an impor-
tant role in performance analyses. Two factors determine the communication perfor-
mance: latency and bandwidth. Latency is the time required to send a message of
zero length from one node to another. It is heavily dependent on network protocols.
Bandwidth determines the rate at which messages are sent.

Wallclock time is best used on dedicated machines. When a program first runs,
it may vary due to acquiring page frames. Thus, CPU time is useful in evaluating
whole programs. Certain system function calls and MPI implementations measure
these time categories, as shown in Fig. 3.

System call gettimeofday or MPI implementation MPI_Wtime may be used to get
wallclock time. As we known, time, a UNIX system command, can be used to mea-
sure total execution (CPU) time, or the standard C function call clock can be inserted
into a program. Examples of these functions are shown in Fig. 3. In (a), the time unit
is microseconds, in (b), seconds, (c) shows a shell command not used in programs; its
time unit is seconds, and in (d), the time unit is microseconds. To show it in seconds,
we divide total time by the constant CLOCKS_PER_SEC.

3.3 Communication analysis

Since we compared point-to-point and collective communication performances, we
must analyze collective communication behavior. Collective communication func-
tions are all implemented by point-to-point communication and are all block. If we
are willing to do it, we can go ahead, but its performance will only be as good as its
implementations. Here, we analyze three collective communication functions: broad-
cast, scatter, and allgather. Below, we look more closely at their behavior and analyze
it mathematically [26].

Often, a processor needs to broadcast data to all processes in a group. MPI pro-
vides the broadcast primitive MPI_Bcast to accomplish this. Assume an M-byte
message is sent from one node to another, α stands for network latency and β

stands for the network communication rate, i.e., the bandwidth is 1/β . The time used
is then “α + Mβ”. If all collective communication functions are implemented us-
ing an algorithm based on a binary tree, the MPI_Bcast execution time would be
log(p) × (α + Mβ). Here, p represents number of group processes.

If an array is scattered throughout all processors in the group, MPI_Gather is used
to collect all pieces of the array into a specified process in order of process rank. Con-
versely, MPI_Scatter is used to distribute data in p equal segments, where the ith seg-
ment is sent to the ith process in the group, which has p processes. Since MPI_Gather

A directive-based MPI code generator for Linux PC clusters 187

Fig. 3 Timing methodologies

and MPI_Scatter behave similarly except in data movement direction, we may use
MPI_Scatter to evaluate data movement behavior. Assume the root processor owns
p messages m0, m1, . . . ,mp−1, each of size M bytes, and each is sent to Processors
1,2, . . . , p − 1. First, Processor 0 sends mp/2, . . . ,mp−1 to Processor p/2. Next,
Processor 0 sends mp/4, . . . ,mp/2−1 to Processor p/4, and concurrently, Processor
p/2 sends messages m3p/4, . . . ,mp−1 to 3p/4. The scatter is completed by repeat-
ing log(p) steps. The total number of pieces sent is (p − 1), so the execution time is
α log(p) + (p − 1)Mβ .

MPI_Allgather can be seen as MPI_Gather where all processes receive the re-
sult along with the root. It is usually implemented to cyclically shift messages

188 C.-T. Yang, K.-C. Lai

Table 3 Communication
analysis Function name Mathematical analysis

MPI_Bcast log(p) × (α + Mβ)

MPI_Scatter α log(p) + (p − 1)Mβ

MPI_Allgather (p − 1) × (α + Mβ)

Table 4 Startup time
Parameter Time (s) Parameter Time (s)

-np1 0.51 -np2 0.51

-np3 0.52 -np4 0.53

-np5 0.60 -np6 0.62

-np20 1.78 -np40 3.5

on p processors [26]. It takes a total of (p − 1) steps, so the execution time is
(p − 1) × (α + Mβ). Table 3 summarizes these analyses.

3.4 Evaluation results

As described above, network latency and bandwidth deeply affect the performance
of message-passing systems, so we conducted experiments to measure the startup
time and inter-node/intranode transformation overhead for LAM/MPI on our PC
Cluster. To measure the performance improvements in using collective communica-
tion functions, there are experiments to get the MPI_Send/MPI_Recv to MPI_Bcast,
MPI_Scatter, and MPI_Allgather ratios, and a matrix multiplication program is used
to evaluate the effects of the computation to communication ratio.

3.4.1 Startup for LAM/MPI on PC cluster

In this case, we started up one node consisting of two processors. The time used
is listed in Table 4. This is trivial, only for curiosity. The startup time includes MPI
environment and program initialization. Of course, no one spawns processes outnum-
bering processors since it is redundant.

3.4.2 Network transformation

Table 5 shows execution times and bus to network communication ratios. Ideally,
the internode to intranode ratio is (system bus rate) / (network transformation rate)
= (133*8) / (100) = 10.64. But we see approximately 5, about half that of ideal
performance. This is because data is first sent to NIC and then sent back to the sys-
tem. Given this, threading, rather than message-passing, is used to send messages to
processors sharing the same memory. MPI is thread-safe, i.e., implementations made
following the MPI standard should ensure correct threading.

A directive-based MPI code generator for Linux PC clusters 189

Table 5 Network transformation times

Parameters Execution time (s)

Intra-node Inter-node Ratio

-np 2 Average n0-1 Average

Data size: 10 MB; Transfer times: 1 0.24 0.24 1.05 1.05 4.3750

Data size: 10 MB; Transfer times: 2 0.43 0.22 2.02 1.01 4.5909

Data size: 10 MB; Transfer times: 4 0.81 0.20 3.97 0.99 4.9500

Data size: 10 MB; Transfer times: 8 1.56 0.20 7.84 0.98 4.9000

Data size: 100 MB; Transfer times: 1 2.38 2.38 10.39 10.39 4.3655

Data size: 100 MB; Transfer times: 2 4.18 2.09 20.16 10.08 4.8230

Data size: 100 MB; Transfer times: 4 7.98 2.00 39.69 9.92 4.9600

Data size: 100 MB; Transfer times: 8 15.52 1.94 78.73 9.84 5.0722

Table 6 Send/receive to broadcast ratios

Parameter Execution time (s)

Point-to-point Broadcast Ratio

Data size: 10 MB; processors: 2 0.21 0.21 1.0000

Data size: 10 MB; processors: 4 2.11 2.04 1.0343

Data size: 10 MB; processors: 8 2.12 2.10 1.0095

Data size: 10 MB; processors: 16 5.92 4.62 1.2814

Data size: 100 MB; processors: 2 13.53 8.36 1.6184

Data size: 100 MB; processors: 4 21.33 20.38 1.0466

Data size: 100 MB; processors: 8 59.54 47.00 1.2668

Data size: 100 MB; processors: 16 135.98 89.55 1.5185

3.4.3 Ratios of various communication functions

Here, we report on experiments in two categories: performance ratios for point-to-
point to broadcast, and to scatter. As described above, allgather can be viewed as
“broadcast after gather”, and its performance depends on the combination of these
two functions.

Table 6 shows execution times and point-to-point to collective communication
ratios for MPI_Bcast. Note that the larger the message and the more processors used,
the more obvious the effect of collective communication becomes. The experimental
results suggest that broadcasting is especially effective for large groups of processors
and large amounts of message transmissions.

Table 7 shows point-to-point to collective communication ratios for MPI_Scatter.
According to the analysis above, it has few advantages over point-to-point behavior,
and Table 8 shows scatter offers no advantage over point-to-point behavior. Perhaps
this is because LAM was implemented with synchronization in some way. Our ex-
periments show scatter provides no advantage over point-to-point collective commu-
nication.

190 C.-T. Yang, K.-C. Lai

Table 7 Send/receive to scatter ratios

Parameter Execution time (s)

Point-to-point Scatter Ratio

Data size: 10 MB; processors: 2 0.24 0.24 1.0000

Data size: 10 MB; processors: 4 2.14 2.15 0.9953

Data size: 10 MB; processors: 8 5.94 5.95 0.9983

Data size: 10 MB; processors: 16 13.55 13.56 0.9993

Data size: 100 MB; processors: 2 2.36 2.36 1.0000

Data size: 100 MB; processors: 4 21.51 21.6 0.9958

Data size: 100 MB; processors: 8 59.74 59.86 0.9980

3.4.4 Computation to communication effects

Table 8 shows matrix multiplication execution times rounded to 0.01 second. Note
that the execution times for two versions are almost equal since programs have
few communication chances. If we repeat our experiment with all-pair-shortest-path,
which executes data exchanges during each iteration, the results would be very dif-
ferent.

We evaluated the performance of collective communication functions. The re-
sults showed that collective communication has little advantage over point-to-point
communication other than in broadcasting, mainly because communication is only a
small part of the whole program. Though collective communication is not more ef-
fective than point-to-point communication in our case, its coding would be simpler
and clearer than that of point-to-point versions. This is very important for our system,
which is partly aimed at parallel programming training. To improve performance, we
included MPI_Bcast in our system.

4 Design approach

4.1 Problem statement

Most sequential programs spend a major part of their execution time processing loops
[27], which is why we focused mainly on loop transformation in our system. Before
we describe our system, we use an example to introduce the concepts and explain the
goal of our system. There is a loop in Fig. 4a marked by the C comment format direc-
tives “DOALL_BEGIN” and “DOALL_END” asserting to our system that iterations
may be executed concurrently. The compiler follows the owner-computes rule—the
processor that owns the left-hand side of the computation computes it—in generating
its corresponding parallel message-passing code. Data distribution is needed for the
parallel style of data parallelism.

Each processor computes only the array slices it owns. The compiler assigns the
loop partitioning option and the communication model detected by the communica-
tion model analyzer to compute the loop iteration upper and lower bounds for each

A directive-based MPI code generator for Linux PC clusters 191

Ta
bl

e
8

M
at

ri
x

m
ul

tip
lic

at
io

n
ex

ec
ut

io
n

tim
es

Pr
ob

le
m

si
ze

E
xe

cu
tio

n
tim

e

1
2

4
8

16

Se
nd

/R
ec

v
C

ol
le

ct
iv

e
Se

nd
/R

ec
v

C
ol

le
ct

iv
e

Se
nd

/R
ec

v
C

ol
le

ct
iv

e
Se

nd
/R

ec
v

C
ol

le
ct

iv
e

Se
nd

/R
ec

v
C

ol
le

ct
iv

e

12
8

C
om

pu
ta

tio
n

0.
07

0.
07

0.
03

0.
03

0.
02

0.
02

0.
01

0.
01

0.
01

0.
01

C
om

m
un

ic
at

io
n

0.
00

0.
00

0.
00

0.
00

0.
02

0.
02

0.
04

0.
04

0.
09

0.
06

25
6

C
om

pu
ta

tio
n

1.
46

1.
72

0.
79

1.
08

0.
53

0.
52

0.
27

0.
31

0.
13

0.
13

C
om

m
un

ic
at

io
n

0.
00

0.
00

0.
01

0.
01

0.
08

0.
08

0.
42

0.
16

0.
60

0.
25

51
2

C
om

pu
ta

tio
n

21
.4

8
22

.2
0

12
.7

9
13

.2
2

6.
40

6.
57

3.
21

3.
30

1.
61

1.
68

C
om

m
un

ic
at

io
n

0.
00

0.
01

0.
05

0.
05

0.
31

0.
32

0.
73

0.
63

1.
65

1.
03

10
24

C
om

pu
ta

tio
n

17
6.

80
18

2.
95

10
4.

72
10

7.
58

52
.3

5
53

.7
8

26
.2

2
26

.9
4

13
.1

2
13

.4
8

C
om

m
un

ic
at

io
n

0.
00

0.
04

0.
20

0.
21

1.
29

1.
27

2.
99

2.
51

6.
14

4.
32

192 C.-T. Yang, K.-C. Lai

Fig. 4 Parallel code generated from sample code

Fig. 5 System model

processor. And then compiler will pass necessary data to each processor, as shown in
Fig. 4b. The pseudo parallel code control flow structure is identical to its sequential
code with the difference being data distribution before and after the loop body. This
is the main characteristic of message-passing programming. Put more simply, it is a
true parallelizing compiler’s front end focused mainly on loops. Its chief function is
translating parallelizable loops into their parallel forms with correct data distribution.

A directive-based MPI code generator for Linux PC clusters 193

Fig. 6 A pseudo source code

Table 9 Directives for parallelism

Name: / ∗ DOALL_BEGINP = XXX ∗ /

Usage: Tell the system to parallelize the following loop block. Character P stands for loop partitioning
option. The system now supports only static partitioning: BLK for block, CYC for cyclic. CSS,
GSS, FSS, TSS are reserved for future versions.

Name: /* DOALL_END */

Usage: Enclose the block parallelized with respect to DOALL_BEGIN.

Name: /* INIT_BEGIN */

Usage: Tell the system this block will be initialized for all nodes.

Name: /* INIT_END */

Usage: Enclose the block initialized with respect to INIT_BEGIN.

Name: /* SYN */

Usage: Tell the system to synchronize. Synchronization is done automatically done for parallelizable
loops, so this directive works only when a loop is not parallelized, but a user wants synchro-
nization for safety.

Name: /* DD par(X,X . . .) */

Usage: Tell the system the data distance vector for array variable par. This directive is used when the
communication model is semi-global.

4.2 System model

Our system is a directive-based MPI code generator that translates sequential source
code into parallel coding; Fig. 5 shows a skeleton diagram of our system. The sample
source program shown in Fig. 6 was fed into our system. It is a sequential C program
with the comment format directives listed in Table 9 as examples of source code. The
implementation is based on these assumptions:

• The loop is expressed by a for statement: There is much syntax for loop expres-
sion. Some technologies format while loops as for loops [28], but for simplicity
parallelizable loops should be expressed as for statements.

194 C.-T. Yang, K.-C. Lai

Fig. 7 Directive preprocessing

• Parallelizable loops in loop nests are made the outermost loops. Generally, syn-
chronization costs for parallelized inner loops are higher on each outermost loop
iteration.

• Pointers should be excluded from parallelizable loops. First, because analyzing
pointer structures is difficult. Second, MPI does not support this data structure
type for communication functions, since implementing pointer-pass messages in
general forms is difficult.

• For loop normalization and unrolling iteration spaces, the boundaries of each loop
are static and known at compile time. For this reason, array index functions should
be linear functions of the index variables.

Our system is a two-pass technology. After source code is input, it is preprocessed
in Pass One to format the source program and extract directives. Parallelizable loops
are normalized and each is assigned a unique number as an identifier. Iteration infor-
mation is extracted from the normalized loops and stored in the iteration table built
for loop partitioning. In this phase, semantics are parsed and the def-use symbol table
is established for further analyses.

In Pass Two, the message-passing analyzer examines parallelizable loops accord-
ing to the def-use symbol table established in Pass One, and eventually generates MPI
coding. More details on each phase are discussed below.

4.3 Pass one

The main work of Pass One is to scan the source program and extract information for
Pass Two. It consists of three main tasks: directive processing, loop preparation, and
establishing a def-use symbol table. Two tables are built: the iteration table for loop
partitioning and the def-use symbol table for the message-passing analyzer.

4.3.1 Directive preprocessor

The directive preprocessor formats directives and loops and corrects their syntax er-
rors. This may seem trivial, but it is necessary for future parsing. The preprocessor
combines all directive lines, if more than one, into one-line directives. Of course,
some spelling errors are also corrected, and redundant synchronizations of paralleliz-
able loops omitted. In the example given in Fig. 7a, the synchronization in the third
line is redundant because the loop will be synchronized automatically after paral-
lelization. Figure 7b shows the formatted and corrected directive.

A directive-based MPI code generator for Linux PC clusters 195

Fig. 8 For loop preprocessing

4.3.2 Loop preparation

The preprocessor substitutes constants and formats loop iterations, especially for
statement incremental expressions. Figure 8a shows incremental expression format-
ting, and Fig. 8b formatting for incremental expressions and constant substitution.

Loop optimization encompasses many techniques, e.g., redundancy elimination,
normalization, reordering, fusion, etc. A detailed list of loop transformations is given
in [8]. We implemented loop normalization for easy and convenient subscript analy-
sis. Other transformations could be added to the loop preparation phase for further
optimization.

Loop normalization [31] converts all loops such that the induction variable is ini-
tially 0 (1 in Fortran) and is incremented by 1 during each iteration. This ensures that
the loop iteration space is regular. The transformation (algorithm shown in Fig. 9) is
very simple. Only two actions in iteration space are necessary: shifting the induction
variable to 0 and scaling the distance of each item to 1. After the boundaries have
been set, the original index is recomputed to its original value from the new index
during each iteration. The normalization produces two assignment statements on the
initial loop index. The first, at the beginning of the loop body, assigns its new index
value function to it, and the second, at the end of the loop, assigns its final value to it.
The loop body remains unchanged.

An iteration table is built during this phase. With loop normalization, loop control
variables are inserted into the table. Each item consists of a variable name, upper
boundary, and a unique loop identification number.

4.3.3 Def-use symbol table

Our system is block-oriented. Source programs are separated into blocks according
to DOALL loops bracketed by DOALL_BEGIN and DOALL_END directives. Thus,
DOALL loops are break points. Each block is indexed by a global counter that starts
at 1 and increases by 1 during each iteration. A def-use symbol table based on this is
established to analyze message-passing behavior. Each item in the table consists of
three fields: name tuple, def-chain tuple, and use-chain tuple. Table 10 gives defini-
tions for each of these.

196 C.-T. Yang, K.-C. Lai

Fig. 9 Loop normalization algorithm

Table 10 Def-use symbol
definitions Tuple name Definition

name(N, A) N: variable name

A:

{
1, if n is an array

0,otherwise

def-chain(B, D, S, OP) B: block index

D:

{
1, if inside DOALL block

0,otherwise

S: sequence order

OP: self-reference on OP operation

use-chain(B, D, S) B: block index

D:

{
1, if inside DOALL block

0,otherwise

S: sequence order

Table 11 OP table
Operation OP value Operation OP value Operation OP value

None 0 ∗ 4 >= 8

Initialization 1 / 5 < 9

+ 2 % 6 <= 10

− 3 > 7

The two parameters shown in Table 11, S and OP, must be described more fully.
S is sequence order according to statement order and assists in determining the or-
der of write and read operations. OP represents operations on variables. That is, in
some instances or during some operations, a variable may appear on both left-hand
and right-hand sides. OP is considered and reperformed right after a DOLL loop to
“collect” data from all nodes.

Some rules are required to maintain the def-use symbol table. Given variable η

A directive-based MPI code generator for Linux PC clusters 197

Fig. 10 Matrix multiplication code segment

Table 12 Def-use symbol table
for the example code Def-use field Name field

(c, 1) (a, 1) (b, 1)

Def-chain (1, 0, 1, 1)

(2, 1, 2, 2)

Use-chain (2, 1, 2) (2, 1, 1) (2, 1, 1)

(3, 0, 3)

• if η is new to the table, create a new item in the table, the tuple field name is (N,
A);

• if η is defined (write to η), add (B, D, S, OP) to the def-chain field (here, OP
indicates whether variable η is self-referenced);

• if η is used (read from η), add (B, D, S) to the use-chain field.

For example, the matrix multiplication code segment shown in Fig. 10 has three
blocks. When S1 is parsed, Array C is new and defined, so a new item is created with
the name field (c, 1). Because S1 is for variable initialization, the def-chain of (c, 1)
is (1, 0, 1, 1), meaning that Array C is in block 1, which is not a DOALL loop, its
sequence order is 1, and the variable is initialized for all nodes. Next comes a DOALL
loop. Iteration variables are first parsed and the information recorded in the iteration
table early in the loop preparation phase. In S6, the block index is 2 and the sequence
order is 2. Array c has self-reference on add operation and so (2, 1, 2, 2) is linked
to the (c, 1) def-chain. After parsing this code segment from S1 to S6, the def-chain
symbol table shown in Table 12 is built.

4.4 Pass two

4.4.1 Message-passing analyzer

The analyzer checks the def-use symbol table for message-passing behavior and fur-
ther communication models, performing two analyses: read-write relation analysis
and data space analysis. The read-write relation affects the demand and direction of
data movement from the master to slaves (message in: into the loop) and from slaves

198 C.-T. Yang, K.-C. Lai

Table 13 MPI functions used in our system

Function name Functionality

MPI_Init Start up environment for MPI

MPI_Finalize Shut down MPI

MPI_Comm_rank Return the rank of calling process

MPI_Comm_size Return the size of communicator relative to calling process

MPI_Send Send data to destination process

MPI_Recv Receive data sent by source process

MPI_Bcast Send data to every process

to the master (message out: out of the loop). “Message in” means a parallelizable loop
requires data assigned before the loop; “message out” means at least one statement
requires data assigned in a parallelizable loop.

If there is a use-chain tuple in a DOALL block, it uses data in the previous block.
This means a message-in from the previous block nearest to the current block is re-
quired. If the use-chain tuple belongs to an initialization block, the message-in action
is redundant and is not performed. Variable (c, 1) in Table 13 has a use-chain tuple (2,
1, 2) and a def-chain tuple (1, 0, 1, 1), and so, message-in action is required, but the
OP field of this def-chain tuple is 1, meaning initialization, so the read-write relation
is ignored.

A def-chain tuple in a DOALL block affects later statements that read the variable.
Only when following statements read variables assigned in a previous DOALL loop
is message-out action required. For example, the variable (c, 1) in Table 13 has the
use-chain tuple (3, 0, 3) and the def-chain tuple (2, 1, 2, 2), so message-out action
is required. Sometimes temporal variables are used in DOALL loops and never used
after the DOALL loops, i.e., they have def-chain tuples, but no corresponding use-
chain tuple. In such cases, the read-write relation is also ignored.

The second analysis, data-space analysis, detects whether an update algorithm in
one node requires data from others. In other words, it recognizes a communication
model for each parallelizable loop. If a variable data type is not array, other nodes dur-
ing other iterations will never reference the variable. It is independent. If a variable
data type is array, the system unrolls array subscripts, and the iteration space, check-
ing to see if they are intersecting. If the data space (array subscript space) matches
the iteration space, it is Independent. If not, it may be Global or Semi-Global. If the
data space interests “all other’s” iteration space, it is Global; otherwise, it is Semi-
Global. For example, Floyd’s algorithm for all-pairs shortest-path stores all paths
in a square matrix and represents the cost from A to B to C as the summation of
path_matrix[A][B] and path_matrix[B][C]. Here, because A space is partitioned, B
will outstrip the first dimension of the path_matrix array. The algorithm must update
its current path cost during each iteration. In this case, B intersecting all nodes, so it
is Global. In our system, we unroll data space directly and check to see if it locates on
the iteration spaces of other nodes, however, this may be inefficient for large spaces.
We will solve this problem by using libraries like Omega data dependence test in the
near future.

A directive-based MPI code generator for Linux PC clusters 199

Fig. 11 Pattern of code
generation

Fig. 12 Static partitioning

4.4.2 Code generation

Code generation is also block-oriented, non-DOALL and noninitialization blocks,
excluding variable declaration, belong only to the master. Other parts of source pro-
grams belong to both masters and slaves. Parts of the master will be enclosed by if
(adppg_rank == 0) control flows in cooperation with an error-handling mechanism
that ensures all processes exit at the same time when one or more errors occur.

After message-passing analysis, code generation focuses on DOALL loops. The
code generated for DOALL loops is shown in Fig. 11. Control flows are not changed,
but loop partitioning and data movement do occur. A loop partitioning function that
partitions the iteration space for each node comes first. We use block and cyclic static
partitioning, described in Sect. 2. Figure 12 shows schematically how the loop parti-
tioning function partitions the iteration space. Before and after DOALL loops, there
is communication for data movement from the master to slaves and from slaves to the
master.

Communication is also necessary during each iteration if the communication
model inside a parallelizable loop is Global. After a self-referenced variable with
a slaves-to-master data movement direction has been sent, the operation stored in the
def-chain for this variable is performed in order to “collect” all data from slaves.

Table 13 shows the MPI functions used in our system. Only six primitives are
required to make an MPI program. According to the evaluation in Sect. 3, using
broadcasting is worthwhile, so we include MPI_Bcast. Collective communication
allows Global communication mode programs to exchange data for all processes.

Taking the matrix multiplication in Fig. 10 as an example, S1 is inside an ini-
tialization block, thus, it belongs to all nodes, and remains unchanged; for all nodes
each variable inside an initialization block holds its value. Next is a loop-partitioning
function and in this case the option is block. According to the message-passing an-

200 C.-T. Yang, K.-C. Lai

Fig. 13 Parallel code generated for matrix multiplication

alyzer, Array A and Array B must be sent to slaves. Because the INIT_BEGIN and
INIT_END directives enclose Array C, all nodes must execute the statements in this
initialization block, i.e., the Array C data movement is unnecessary. If the user had
not used the INIT_BEGIN and INIT_END directives, the Array C data movement
would have been generated and been redundant. The loop control variable is substi-
tuted accompanying the loop-partitioning function.

Self-referenced variables will be repeated by some operation stored in the def-
chain OP field right after the loop, so they are prefixed by “adppg_” inside the loop to
make the distinction. The Array C def-chain in this block is (2, 1, 2, 2). From the OP
table, 2 means take the summation of itself. After sending adppg_c from all slaves
to the master, Array C repeats summation of adppg_c from all slaves to “collect” its
real value. Figure 13 shows the generated code corresponding to the sequential code
shown in Fig. 10.

5 Experimental environment and results

5.1 System environment

Our SMPs cluster is a low-cost Beowulf-class system that utilizes a multicomputer
architecture for parallel computation. Our cluster consists of 16 PC-based symmetric
multiprocessors (SMP) connected, for channel bounding, by two 24-port 100 Mbps
Ethernet SuperStackII 3300 XM switches with fast Ethernet interface. There is one
server node and fifteen computing nodes. The server node has two Intel Pentium-III
1 GHz (FSB 133 MHz) processors and 768 MBytes of shared local memory. Each
Pentium-III has 32K on-chip instruction and data caches (L1 cache), and a 256K on-
chip four-way second-level cache with full CPU speed. Each P-III-based computing
node has two 1G P-III processors has 512 MBytes of shared local memory. We ran
Redhat Linux 7.2 as our operating system and use Lam/MPI implementations for
message passing.

A directive-based MPI code generator for Linux PC clusters 201

Table 14 Matrix multiplication
execution times Processors Problem size

256 × 256 512 × 512 1024 × 1024

Sequential 1 1.494 20.819 170.530

Our system 2 1.456 13.088 102.410

4 1.382 7.616 55.337

8 1.166 4.989 31.490

16 1.355 6.223 25.161

Hand-revised 2 1.515 12.136 101.545

4 1.326 7.265 56.811

8 1.136 4.893 31.352

16 1.195 5.596 22.891

Table 15 Prime number
detection execution times Processors Problem size

1,000,000 10,000,000 100,000,000

Sequential 1 1.178 29.566 780.085

Our system 2 1.128 15.552 393.220

4 0.845 8.258 202.569

8 0.719 4.407 101.564

16 0.646 2.508 51.096

Hand-revised 2 1.128 15.619 393.854

4 0.837 8.273 202.532

8 0.724 4.405 101.579

16 0.645 2.508 51.086

5.2 Applications

Four study cases were assessed for correctness and performance. The first three were:
matrix multiplication, prime number detection, and Mandelbrot set. While they are
all “independent” communication models, they behave differently from one another.
Since they are independent, processors do not have to communicate with one an-
other while computing. The last study case is all-pairs shortest path. It is a “Global”
communication model. Each processor must access data from all other processors to
update its own data. For each case, we used three program sequencing, versions gen-
erated by our system and hand-revised. Experiments were conducted with various
numbers of iteration using various numbers of processors. A comparison between
using our system and hand-revision is also given.

Execution times for the four applications: matrix multiplication, prime number
detection, Mandelbrot set, and all-pairs shortest path, are shown in Tables 14, 15, 16,
and 17, respectively. Speedups are shown in Figs. 14 and 15.

202 C.-T. Yang, K.-C. Lai

Table 16 Mandebrot set
execution times Processors Problem size

Iteration: 1000 Iteration: 1000 Iteration: 1000

Grid: 1024 Grid: 2048 Grid: 4096

Sequential 1 4.945 19.764 79.037

Our system 2 3.425 11.057 41.152

4 3.728 11.723 42.829

8 3.289 9.919 35.639

16 3.709 6.256 21.720

Hand-revised 2 3.070 10.739 43.301

4 3.304 11.500 44.868

8 2.924 10.016 38.153

16 2.114 6.588 26.913

Table 17 All-pairs shortest
path execution times Processors Problem size

512 1024 2048

Sequential 1 5.266 41.422 329.319

Our system 2 3.580 24.230 186.800

4 2.649 15.233 107.029

8 2.127 10.676 65.412

16 2.600 10.079 53.090

Hand-revised 2 3.584 1.716 187.210

4 2.430 2.866 103.768

8 1.936 4.216 62.204

16 2.192 4.684 46.731

5.3 Comparison

Experimental results show that hand-revised optimized codes performed more effi-
ciently than codes generated by our system. There are two main reasons for the dif-
ference. First, the master block error-handling mechanism reduces the performance.
Second, as is widely known, collective communication generally performs better than
point-to-point communication, but in our system, it generates codes using point-to-
point behavior. These findings will be taken into consideration for future optimization
versions.

As indicated by the experimental results above, we compared our Directive-based
MPI Code Generator (DMCG) to hand-revised optimization. The comparison is sum-
marized in Table 18.

A directive-based MPI code generator for Linux PC clusters 203

Fig. 14 Matrix multiplication and prime number detection speedups

6 Conclusions and future work

We developed the Directive-based MPI Code Generator (DMCG) for translating se-
quential C source code into parallel code using C language with MPI. We provided

204 C.-T. Yang, K.-C. Lai

Fig. 15 Mandelbrot set and all-pairs shortest-path speedups

a useful learning tool to aid beginners to parallel programming with MPI. With our
system, users can generate parallel codes from sequential codes and can look closely
at the relationship between sequential and parallel coding. They can also learn how

A directive-based MPI code generator for Linux PC clusters 205

Table 18 Comparison of our system and hand-revised approach

Approach Time/Effort Performance Applicability

Our system Annotation required:
parallelism directives and
scheduling parameter
methods for performance

Depends completely on
program communication
model; it is excellent if
model is independent and
user tunes the code well

Cannot handle structure,
pointer, indirect array ref-
erence, and loop-carried
dependence

Hand-revised Requires extensive code
modification; time-
consuming and error-prone

Excellent when
implementation is adjusted
to problems and optimized
to parallel environments

Applicable to any code

to implement loop scheduling. Since the generated parallel codes perform nearly as
well as optimized codes, it is a good tool for speeding up solution steps and porting
current applications to parallel architectures with MPI implementation.

In the near future, we will reimplement our system, using the Stanford University
Intermediate Format (SUIF) [29] as a platform, to make it more flexible and suitable
for collaborative development. Of course, since it is a learning tool for beginners to
parallel programming, the graphical interface will be clarified and made friendlier. It
will show the relationship between sequential code and parallel code, as well as loop
transformation processing.

Other future projects relate to performance. One is introducing dynamic schedul-
ing into our system to give users more tuning options in adjusting generated codes
to their environments (homogeneous and heterogeneous). It will be a long road to
realizing this. The other concerns loop and communication optimization. There are
many approaches to loop optimization, e.g., redundancy elimination, loop reordering,
loop fusion, etc. These approaches can be added to the loop preparation phase, as de-
scribed in the design approach. For communication optimization, we will improve
send/receive behaviors for various communication models and use the technology
described in [30] to reconstruct communication behavior.

References

1. Sterling TL, Salmon J, Becker DJ, Savarese DF (1999) How to build a Beowulf: a guide to the imple-
mentation and application of PC clusters, 2nd edn. MIT Press, Cambridge

2. Wilkinson B, Allen M (1999) Parallel programming: techniques and applications using networked
workstations and parallel computers. Prentice Hall, New York

3. Buyya R (1999) High performance cluster computing: architectures and systems, vol. 1. Prentice Hall,
New York

4. Message passing interface forum. http://www.mpi-forum.org/
5. PVM—parallel virtual machine. http://www.epm.ornl.gov/pvm/
6. TOP500 supercomputer sites. http://www.top500.org
7. Wolfe M (1996) Parallelizing compilers. ACM Comput Surv 28(1):261–262
8. Wolfe M (1996) High performance compilers for parallel computing. Addison-Wesley, Reading
9. Boulet P, Darte A, Silber G-A, Vivien F (1998) Loop parallelization algorithms: from parallelism

extraction to code generation. Parallel Comput 24:421–444
10. Banerjee U (1988) An introduction to a formal theory of dependence analysis. J Supercomput

2(2):133–149

http://www.mpi-forum.org/
http://www.epm.ornl.gov/pvm/
http://www.top500.org

206 C.-T. Yang, K.-C. Lai

11. Wolfe M (1989) More iteration space tiling. In: Proceedings of supercomputing, pp 655–664
12. Bacon DF et al (1994) Compiler transformations for high-performance computing. ACM Comput

Surv 26(4):245–320
13. Yang CT, Tseng SS, Fan YW, Tsai TK, Hsieh MH, Wu CT (2001) Using knowledge-based systems

for research on portable parallelizing compilers. Concurr Comput Pract Exper 13:181–208
14. Hummel SF, Schonberg E, Flynn LE (1992) Factoring: a method for scheduling parallel loops. Com-

mun ACM 35(8):90–101
15. Kruskal CP, Weiss A (1985) Allocating independent subtasks on parallel processors. IEEE Trans

Softw Eng 11(10):1001–1016
16. Polychronopoulos CD, Kuck DJ (1987) Guided self-scheduling: a practical self-scheduling scheme

for parallel supercomputers. IEEE Trans Comput 36(12):1425–1439
17. Tzen TH, Ni LM (1993) Trapezoid self-scheduling: a practical scheduling scheme for parallel com-

pilers. IEEE Trans Parallel Distrib Syst 4(1):87–98
18. Tang P, Yew PC (1986) Processor self-scheduling for multiple-nested parallel loops. In: International

conference on parallel processing, pp 528–535
19. Li H, Tandri S, Stumm M, Sevcik KC (1993) Locality and loop scheduling on NUMA multiproces-

sors. In: International conference on parallel processing, vol II, pp 140–147
20. LAM/MPI parallel computing. http://www.lam-mpi.org/
21. MPICH—a portable implementation of MPI. http://www-unix.mcs.anl.gov/mpi/mpich/
22. MPI software technology. http://www.mpi-softtech.com/
23. McGarvey B, Cicconetti R, Bushyager N, Dalton E, Tentzeris M (2001) Beowulf cluster design for

scientific PDE models. In: Proceedings of the 2001 annual Linux showcase, Oakland, CA, November
2001

24. Sedgewick R (1992) Algorithms in C++. Addison-Wesley, Reading, pp 476–478
25. Gorlatch S (2002) Message passing without send–receive. Future Gener Comput Syst 18:797–805
26. Luecke GR, Raffin B, Coyle JJ (1999) The performance of the MPI collective communication routines

for large messages on the Cray T3E600, the Cray Origin 2000, and the IBM SP. J Perform Eval Model
Comput Syst, July 1999

27. Beletsky V, Bagaterenco A, Chemeris A (1995) A package for automatic parallelization of serial
C-programs for distributed systems. In: Proceedings of the conference on programming models for
massively parallel computers, pp 184–188

28. Zhang F, D’Hollander EH (1994) Extracting the parallelism in programs with unstructured control
statements. In: Proceedings of international conference on parallel and distributed systems. IEEE,
New York, pp 264–270

29. The Stanford SUIF compiler group. http://suif.stanford.edu
30. Di Martino B, Mazzeo A, Mazzoccaa N, Villano U (2001) Parallel program analysis and restructuring

by detection of point-to-point interaction patterns and their transformation into collective communi-
cation constructs. Sci Comput Program 40:235–263

31. Allen JR, Kennedy K (1987) Automatic translation of Fortran programs to vector form. ACM Trans
Program Lang Syst 9(4):491–542

Chao-Tung Yang is a professor of computer science at Tunghai Uni-
versity in Taiwan. He received a B.S. degree in computer science from
Tunghai University, Taichung, Taiwan, in 1990, and the M.S. degree in
computer and information science from the National Chiao Tung Uni-
versity, Hsinchu, Taiwan, in 1992. He received the Ph.D. degree in com-
puter and information science from National Chiao Tung University in
July 1996. He won the 1996 Acer Dragon Award for an outstanding
Ph.D. dissertation. He has worked as an associate researcher for ground
operations in the ROCSAT Ground System Section (RGS) of the Na-
tional Space Program Office (NSPO) in Hsinchu Science-based Indus-
trial Park since 1996. In August 2001, he joined the faculty of the De-
partment of Computer Science at Tunghai University. He got the excel-
lent research award by Tunghai University in 2007. In 2007 and 2008,
he got the Golden Penguin Award by the Industrial Development Bu-
reau, Ministry of Economic Affairs, Taiwan. His researches have been

sponsored by Taiwan agencies National Science Council (NSC), National Center for High Performance

http://www.lam-mpi.org/
http://www-unix.mcs.anl.gov/mpi/mpich/
http://www.mpi-softtech.com/
http://suif.stanford.edu

A directive-based MPI code generator for Linux PC clusters 207

Computing (NCHC), and the Ministry of Education. His present research interests are in grid and clus-
ter computing, parallel and high-performance computing, and internet-based applications. He is both a
member of the IEEE Computer Society and ACM.

Kuan-Chou Lai received his M.S. degree in computer science and in-
formation engineering from the National Cheng Kung University in
1991, and the Ph.D. degree in computer science and information en-
gineering from the National Chiao Tung University in 1996. Currently,
he is an associate professor in the Department of Computer and Infor-
mation Science and the director of the Computer and Network Center
at the National Taichung University. His research interests include par-
allel processing, heterogeneous computing, system architecture, P2P,
grid computing, and multimedia systems. He is a member of the IEEE
and the IEEE Computer Society.

