
ARTICLE IN PRESS

Journal of Network and Computer Applications 32 (2009) 834–845
Contents lists available at ScienceDirect
Journal of Network and Computer Applications
1084-80

doi:10.1

$ Thi

under G
� Corr

E-m

(M.-F. Y
1 Co

Taiwan,
journal homepage: www.elsevier.com/locate/jnca
Enhancement of anticipative recursively adjusting mechanism for redundant
parallel file transfer in data grids$
Chao-Tung Yang a,�, Ming-Feng Yang a,1, Wen-Chung Chiang b

a High-Performance Computing Laboratory, Department of Computer Science, Tunghai University, Taichung, Taiwan, ROC
b Department of Information Networking Technology, Hsiuping Institute of Technology, Taichung County, Taiwan, ROC
a r t i c l e i n f o

Article history:

Received 4 July 2008

Received in revised form

16 December 2008

Accepted 8 February 2009

Keywords:

Co-allocation

Data grid

Recursively adjusting

Parallel file transfer

Burst Mode
45/$ - see front matter & 2009 Elsevier Ltd. A

016/j.jnca.2009.02.002

s work is supported in part by the National S

rant nos. NSC 96-2221-E-029-019-MY3 and N

esponding author. Tel.: +886 4 23590415; fax

ail addresses: ctyang@thu.edu.tw (C.-T. Yang),

ang), wcchiang@mail.hit.edu.tw (W.-C. Chian

mputer Center, Hsiuping Institute of Tec

ROC.
a b s t r a c t

Co-allocation architectures can be used to enable parallel transfers of data file from multiple replicas in

data grids which are stored at different grid sites. Schemes based on co-allocation models have been

proposed and used to exploit the different transfer rates among various client–server network links and

to adapt to dynamic rate fluctuations by dividing data into fragments. These schemes show that the

more fragments used the more performance. In fact, some schemes can be applied to specific situations;

however, most situations are not common actually. For example, how many blocks in a data set should

be cut? For this issue, we proposed the anticipative recursively adjusting mechanism (ARAM) in a

previous research work. Its best feature is performance tuning through alpha value adjustment. It relies

on special features to adapt to various network situations in data grid environments. In this paper, the

TCP Bandwidth Estimation Model (TCPBEM) is used to evaluate dynamic link states by detecting TCP

throughputs and packet lost rates between grid nodes. We integrated the model into ARAM, calling the

result the anticipative recursively adjusting mechanism plus (ARAM+); it can be more reliable and

reasonable than its predecessor. We also designed a Burst Mode (BM) that increases ARAM+ transfer

rates. This approach not only adapts to the worst network links, but also speeds up overall performance.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

An increasing number of scientific applications, e.g., arising
from Genomics, Proteomics, and Bioinformatics require exchanges
of large volumes of data to support computation (Allcock et al.,
2002; Czajkowski et al., 1999, 2001; Foster et al., 2001; Hoschek
et al., 2000; Open Grid Forum; Stockinger et al., 2002; The Globus
Alliance). Downloading large data sets from replica locations may
result in different performance rates because replica sites may have
different architectures, system loading, and network connectivity.
Bandwidth quality is the most important factor affecting internet
transfers between clients and servers, with download speeds being
bounded by traffic congestion due to bandwidth limitations.

One method for improving download speeds uses replica
selection techniques to determine the best replica locations
(Chervenak et al., 2001, 2002; Czajkowski et al., 1999, 2001;
Foster and Kesselman, 1997; Yang et al., 2005, 2008; Zhang et al.,
2003; Vazhkudai and Schopf, 2002, 2003; Yang et al., 2006).
ll rights reserved.

cience Council, Taiwan, ROC,

SC 97-2622-E-029-003-CC2.

: +886 4 23591567.

orson@mail.hit.edu.tw

g).

hnology, Taichung County,
However, downloading data sets from single best servers often
results in ordinary transfer rates because bandwidth quality varies
unpredictably due to the shared nature of the Internet.

Another method uses co-allocation (Vazhkudai, 2003)
technology to download data. Co-allocation architectures were
developed to enable clients to download data from multiple
locations by establishing multiple connections in parallel, thus
improving performance over single-server transfers and helping
to alleviate the internet congestion problem (Yang et al., 2007b).
Parallel downloading (Vazhkudai et al., 2002, 2001; Wang et al.,
2006; Yang et al., 2007a) is a technique used to fetch and
download files from multiple sources including Web servers, file
servers, P2P nodes, etc. Parallel downloading has been integrated
into many Internet applications and has become the core of
many P2P systems. It speeds up download times and eliminates
the server selection problem (Vazhkudai, 2003; Venugopal et al.,
2006; Vazhkudai et al., 2002). Several co-allocation strategies
were addressed in previous works (Mathis et al., 1997; Yang
et al., 2007a), but drawbacks remain, such as faster servers
having to wait for the slowest one to deliver its final block. As
shown in Mathis et al. (1997) and Padhye et al. (1998), this may
degrade network performance by repeatedly transferring the
same block. Hence, it is important to minimize differences in
finish times among servers, and to prevent the same blocks
from being transferred over different links between servers and
clients.

www.sciencedirect.com/science/journal/yjcna
www.elsevier.com/locate/jnca
dx.doi.org/10.1016/j.jnca.2009.02.002
mailto:ctyang@thu.edu.tw
mailto:orson@mail.hit.edu.tw
mailto:orson@mail.hit.edu.tw
mailto:wcchiang@mail.hit.edu.tw


ARTICLE IN PRESS

C.-T. Yang et al. / Journal of Network and Computer Applications 32 (2009) 834–845 835
In our previous research work, we presented a method for
regulating next-section workloads by continuously adjusting the
workloads on selected replica servers. The anticipative recursively
adjusting mechanism (ARAM) scheme (Yang et al., 2007a)
measures the actual bandwidth performance during data file
transfers, and, according to previous transfer finish rates,
anticipates bandwidth statuses at the next transfer section. The
basic idea is to assign less data to selected replica servers with
greater network link performance variations since links with more
bandwidth variations will have smaller effective bandwidths, as
well as smaller transfer finish rates. The goal is to make the
expected finish times of all servers be the same.

In this paper, we first present our new approach based on the
ARAM co-allocation strategy for data grid environments. We have
designed and implemented a TCP bandwidth estimation model
and Burst Mode (BM) to enhancing the original ARAM algorithm.
Workloads on all selected replica servers are still adjusted
according to TCP throughputs and packet loss rates, and faster
servers get double or even quadruple throughputs via Burst Mode
enabling. Finally, we present Cyber Transformer, a useful toolkit
for data grid users. Integrated with the Information Service,
Replica Location Service, and Data Transfer Service, its simple,
friendly GUI interface makes it easy for inexperienced users to
manage replicas and download files in data grid environments.
This tool integrates all strategies based on co-allocation archi-
tectures including our previous and proposed algorithms.

The remainder of this paper is organized as follows. Related
background review and studies are presented in Section 2. Our
new approach is outlined in Section 3. Experimental results and a
performance evaluation of our scheme are presented in Section 4.
Section 5 concludes this research article.
Client

File Server 1

File Server 2
2. Background review and related work

2.1. Co-allocation architecture

The architecture proposed in Vazhkudai (2003) consists of
three main components: an information service, a broker/co-
allocator, and local storage systems. Fig. 1 shows co-allocation of
data grid transfers, an extension of the basic template for resource
management (Vazhkudai et al., 2001; Vazhkudai and Schopf,
2002) provided by the Globus Toolkit. Applications specify the
characteristics of desired data and pass attribute descriptions to a
Application

RLS

Queries

Data Access/Transport using GridFTP

Information

Broker Forecasts Information
Service

Local Storage System

Co-allocator

Fig. 1. Data grid co-allocation architecture.
broker. The broker queries available resources, gets replica
locations from the Information Service (Czajkowski et al., 1999,
2001) and Replica Management Service (Czajkowski et al., 2001),
then gets lists of physical file locations.

2.1.1. Brute-force co-allocation

The Brute-force co-allocation scheme shown in Fig. 2 divides
file sizes equally among available flows; it does not address
bandwidth differences among various client–server links.

2.1.2. History-based co-allocation

The history-based co-allocation scheme shown in Fig. 3 keeps
block sizes per flow proportional to predicted transfer rates, and
disregards the influence of network variations between client and
server.

2.1.3. Conservative load balancing

The conservative load balancing scheme shown in Fig. 4
divides requested data sets into k disjoint blocks of equal size.
Available servers are allocated single blocks to deliver in parallel.
Servers work in sequential order until all requested files are
downloaded. Loadings on the co-allocated flows are automatically
adjusted because the faster servers deliver larger file portions
more quickly.

2.1.4. Aggressive load balancing

This method, shown in Fig. 5, adds functions that change block
size in deliveries by: (1) gradually increasing the amounts of data
requested from faster servers and (2) reducing the amounts of
File Server 3

Fig. 2. The Brute-force co-allocation process.

Client

File Server 3

File Server 2

File Server 1

Fig. 3. The history-based co-allocation process.



ARTICLE IN PRESS

File Server 1

File Server 2

File Server 3

Client

Fig. 4. The conservative load balancing process.

Client

File Server 3

File Server 2

File Server 1

Fig. 5. The aggressive load balancing process.

CQ (6)

CQ (5)

CQ (4)

CQ (2)

CQ (1)

Client

File Server 3

File Server 2

File Server 1

Fig. 6. The DCDA process.

Section 1 Section 2 ... ...File A

C.-T. Yang et al. / Journal of Network and Computer Applications 32 (2009) 834–845836
data requested from slower servers or stopping requesting data
from them altogether.
Server 3

Server 2

Server 1

Round 1 Round 2
E (t1) E (t2)t1

...

...

...

Fig. 7. The adjustment process.
2.1.5. Dynamic co-allocation with duplicate assignments (DCDA)

The co-allocation strategies described above do not handle the
shortcoming of faster servers having to wait for the slowest server
to deliver its final block which, in most cases, wastes much time
and decreases overall performance. Neither the prediction nor the
heuristic approach, the DCDA scheme dynamically co-allocates
duplicate assignments (Bhuvaneswaran et al., 2005, 2007) and
copies nicely with changes in server speed performance, as shown
in Fig. 6. The DCDA scheme is based on an algorithm that uses a
circular queue. Let D be a data set and k the number of blocks of
fixed size in the data set. D is divided into k disjoint blocks of
equal size and all available servers are assigned to deliver blocks
in parallel. When a requested block is received from a server,
one of the unassigned blocks is assigned to that server. The
co-allocator repeats this process until all blocks have been
assigned. DCDA behaves well even when server links are broken
or idled. The DCDA scheme is flawed, however, in that it consumes
network bandwidth by repeatedly transferring the same blocks.
This wastes resources and can easily cause bandwidth traffic jams
in the links between servers and clients.
2.1.6. Recursively adjusting mechanism (RAM)

This co-allocation strategy is the most efficient approach to
reducing the influence of network variations between clients and
servers. However, idle times when faster servers are waiting for
the slowest server to deliver its last block are still a major factor
affecting overall efficiency that conservative load balancing and
aggressive load balancing (Vazhkudai, 2003; The Globus Alliance),
cannot effectively avoid. In real-world networking environments,
a replica server’s available bandwidth might change dynamically
as a result of network configuration or load variations. Previous
algorithms could not adapt to these dynamisms. Therefore,
the greater the degree of bandwidth variation the greater the
download times needed. Thus, overall efficiency depends on
several factors. Our strategy can overcome such obstacles, and
improve data transfer performance. The recursively adjusting
mechanism works by continuously adjusting each replica server’s
workload to correspond to its real-time bandwidth during file
transfers. The goal is to make the expected finish times of all
servers the same. As Fig. 7 shows, when an appropriate file section
is first selected, it is divided into proper block sizes according to
the respective server bandwidths. The co-allocator then assigns
blocks to servers for transfer. At this moment, it is expected that
the transfer finish times will be consistent at E(t1). However, since
server bandwidths may fluctuate during segment deliveries,
actual completion times may vary (solid line, in Fig. 7). When
the quickest server finishes its work at time t1, the next section
is assigned to the servers. This allows each server to finish
its assigned workload by the expected time at E(t2). These
adjustments are repeated until the entire file transfer is finished.

The main purpose of this algorithm is to select appropriate
data sources and download from multiple data servers to a single-
client resource. We proposed a recursively adjusting co-allocation
scheme for parallel downloads from multiple replica servers to a
single client. This is useful in cases like downloading music file
segments and playing continuous music on a single-client
resource. Our algorithms are mainly aimed at transferring
parallel data segments from multiple servers to multiple clients
for execution of parallel numerical applications on the clients.



ARTICLE IN PRESS

Round 1 Round 2

File A Section 1 Section 2 ... ...

...

C.-T. Yang et al. / Journal of Network and Computer Applications 32 (2009) 834–845 837
The challenge in multiple server–multiple client scenarios is
greater since server selections and data downloads on some
clients can impact server selections and data transfer performance
on other clients.
Server 3

Server 2

Server 1

E (t1) E (t2)t1

...

...

Fig. 9. Earlier-than-expected-time adjustment process.
3. Our approach

3.1. Anticipative recursively adjusting mechanism (ARAM)

The recursively adjusting mechanism reduces file transfer
completion times and idle times spent waiting for the slowest
server. It also provides an effective scheme for reducing the cost of
reassembling data blocks. However, our scheme did not consider
the potential effect of server links broken or idled during file
transfers. Therefore, we propose an efficient approach called the
anticipative recursively adjusting mechanism to extend and
improve upon recursively adjusting co-allocation mechanism
(Yang et al., in press). The main idea of the ARAM is to assign
transfer requests to selected replica servers according to the finish
rates for previous transfers, and to adjust workloads on selected
replica servers according to anticipated bandwidth statuses. In
continuously adjusting selected replica server workloads, the
anticipative recursively adjusting mechanism scheme measures
actual bandwidth performance during data file transfers and
regulates workloads by anticipating bandwidth statuses for
subsequent transfers according to the finish rates for previously
assigned transfers. The basic idea is to assign less work to selected
replica servers on network links with greater performance
variability. Links with more bandwidth variation will have smaller
effective bandwidths, as well as smaller finish rates for assigned
transfers. The goal is to have the expected finished times of all
servers be the same. Our approach performs well, even when the
links to selected replica servers are broken or idled. It also reduces
the idle time wasted waiting for the slowest server. As appropriate
file sections are selected, they are first divided into proper block
sizes according to the respective server bandwidths, previously
assigned file sizes, and transfer finish rates. Initially, the finish rate
is set to 1. Next, the co-allocator assigns the blocks to selected
replica servers for transfer. At this moment, it is expected that the
transfer finish times will be consistent with E(t1). However, since
server bandwidths may fluctuate during segment deliveries,
actual completion times may differ from expected times E(t1)
(solid lines in Figs. 8 and 9). When the fastest server finishes at
time t1, the size of unfinished transfer blocks (italic blocks in Figs.
8 and 9) is measured to determine the finish rate. Two outcomes
are possible: the quickest server finish time t1 may be slower than
or equal to the expected time, E(t1), indicating that network link
performance remained unchanged or declined during the transfer.
In this case, the difference in transferred size between the
expected time and actual completion time (italic block in Fig. 8)
is then calculated.
Round 1 Round 2
E (t1) E (t2)t1

Section 1 Section 2 ... ...

...

...

...

File A

Server 1

Server 2 

Server 3

Fig. 8. Later-than-expected-time adjustment process.
The other outcome is that the quickest server finish time t1

may be faster than the expected time, E(t1), indicating an
excessively pessimistic anticipation of network performance, or
an improvement in replica server network link performance
during the transfer. The difference in transferred size between the
expected time (italic block in Fig. 9) and earlier time is then
measured. If the anticipated network performance was exces-
sively pessimistic, it is adjusted for the next section. The next task
is to assign proper block sizes to the servers along with respective
bandwidths and previous finish rates, enabling each server to
finish its assigned workload by the expected time, E(t2). These
adjustments are repeated until the entire file transfer is finished.

Looking more closely at ARAM, some parameter definitions are
shown below:
�
 A: file requested by user

�
 n: selected replica servers

�
 a: rate that determines how much of the section remains to be

assigned

�
 Tj: allocated time for section j
�
 SEj: allocated size for section j
�
 UnassignedFileSize: portion of file A not yet distributed for
downloading

�
 UnfinishedFileSize: size of unfinished blocks assigned in

previous rounds

�
 Bji: real-time transfer rate from the selected replica server

�
 rj: transfer finish rate

�
 rj�1: server transfer finish rate for previously assigned

delivered file

�
 Bj: bandwidth available for section j
�
 Sji: block size per flow from SEj for each server i at time Tj
�
 ETji: expected time for server i at section j
�
 RTji: real finish time for server i at section j
�
 TSji: actual transfer size at real finish time RTji
�
 rji: job finish rate

When a user requests file A from the data grid environment, the
replica selection server responds with a list of all available servers
defined as maximum performance data sets/servers. Data sets/
servers for the co-allocator to transfer the file are selected, and the
target file is then transferred from the chosen replica data sets/
servers.

Assume that n replica servers are selected and Si denotes server
‘‘i’’ for 1%i%n. A connection for file downloading is then built to
each server.

The anticipative recursively adjusting mechanism process is as
follows. A new section of a file to be allocated is first defined. The
section size is shown as

SEj ¼ ðUnassignedFileSizeþ TotalUnfinishedFileSizeÞa; 0oap1

(1)



ARTICLE IN PRESS

Fig. 10. 10 hosts classification according to bandwidth using k-means algorithm.

C.-T. Yang et al. / Journal of Network and Computer Applications 32 (2009) 834–845838
where SEj denotes section j such that 1%j%k, assume k time is
allocated for downloading and there are k sections, while Tj

denotes the time allocated to section j. UnassignedFileSize, the
portion of File A awaiting distribution for downloading is initially
equal to total file size and TotalUnfinishedFileSize is equal to zero in
the first round. a is the rate determining how much of the section
remains to be assigned.

In the next step, SEj is divided into several blocks and assigned
to ‘‘n’’ servers. Each server has a real-time transfer rate to the
selected replica server of Bji. rj�1 denotes the server transfer finish
rate for previously assigned files, where the initial value is 1. The
block size per flow from SEj for each server ‘‘i’’ at time Tj is Sji:

Sji ¼
SEjiðBji � rj � iÞPn

i¼1ðBji � rj � iÞ
; 0prj � ip1 (2)

Bj ¼
Xn

i¼1

ðBji � rj � iÞ (3)

ETji ¼
Sji

Bji
(4)

This fulfills our requirement to minimize the time faster servers
must wait for the slowest server to finish. In some cases, network
variations greatly degrade transfer rates. A faster channel may
finish its assigned data blocks at real finish time RTji, or later or
earlier than expected time ETji. Then TSji denoting the actual
transfer size at real finish time RTji is given by

TSji ¼ Bji � RTji (5)

If the first finish time for RTji is earlier than expected time ETji,
the reason may be an excessively pessimistic anticipation of
network performance, or the network links used for improvement
during the transfer. We compare the block sizes transferred
between the earliest and expected times for each server chosen. If
the transferred size TSji is greater than expected size Sji at the first
finish time, otherwise, the first finish time for RTji may be the
result of the network link used remaining unchanged or
deteriorating during the transfer:

rji ¼

TSji

Sji
; RTjiXETji

1; RTjioETji; and TSjiXSji

8><
>: (6)

The co-allocator then measures the bandwidth performance of
each server, and estimates bandwidth statuses for the next
transfer section in order to adjust workflows for the next session.
At the same time, it eliminates server UnfinishedFileSize listings by
summing them up for assignment to the next section.

After allocation, all selected replica servers continue transfer-
ring data blocks. When a faster selected replica server finishes its
assigned data blocks, the co-allocator allocates an unassigned
section of file A. Workflows are continually adjusted during the
data block allocation process until the entire file has been
allocated.

3.2. TCP bandwidth estimation model

TCP/UDP is one of the core protocols in the Internet protocol
suite. TCP provides reliable, in-order delivery of a stream of bytes,
making it suitable for applications such as GridFTP file transfers.
Parallel TCP sockets is a generic ‘‘hack’’ that improves TCP
throughputs during bulk data transfers by opening several TCP
connections and striping the data files over them (Altman et al.,
2006). In practice, it is often unclear how many sockets one needs
to open in order to achieve satisfactory throughput, and opening
too many connections may be undesirable for various reasons
(Altman et al., 2006; Bolliger et al., 1999; Hacker and Athey, 2002;
Padhye et al., 1998). The TCP Bandwidth Estimation Model
(Hacker and Athey, 2002) as a function to assessing TCP packet
loss rate, such as round trip time, maximum segment size, other
miscellaneous parameters, etc.

TCPBW ðpÞ � min
Wmax

RTT
;

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2bp=3RTT

p
þ T0 minð1;3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3bp=8

p
Þpð1þ 32p2

 !
MSS

(7)
�
 TCPBW(p): bytes transmitted per second

�
 MSS: maximum segment size

�
 Wmax: maximum congestion window size

�
 RTT: round trip time

�
 b: number of transmitted data packets acknowledged by one

acknowledgement (ACK) from the receiver (usually b ¼ 2)

�
 T0: timeout value

�
 p: packet loss ratio, number of retransmitted packets divided

by the total number of packets transmitted

�
 C: a constant value, initially set to 1.0

In Eq. (7), TCPBW(p) represents bytes transmitted per second, and
three factors need to be considered: MSS, RTT, and p. These
represent overall TCP bandwidth. For TCP performance assess-
ment, another researcher has simplified them into one:

BWp
MSS

RTT

Cffiffiffi
p
p (8)

In Eq. (8), MSS, RTT, and p are the same variables used in Eq. (7),
C is a constant factor, and BW represents the number of bytes
transmitted per second.

Thus, how the TCP Bandwidth Estimation Model measures
server bandwidth makes it more reliable and fair.

3.3. k-means algorithm

The k-means algorithm clusters n objects according to
attributes into k partitions, kon. It is similar to the expectation-
maximization algorithm for Gaussian mixtures in that they both
attempt to find natural cluster centers in data. Assuming object
attributes form vector spaces, it tries to minimize total intra-
cluster variance, or, the squared error function:

V ¼
Xk

i¼1

X
x2Si

kx�mik
2 (9)

According to the k-means algorithm, where there are random k

clusters Si, i ¼ 1, 2,y, k, the Euclid distance of each x point to mi

in Si, mi is the cancroids or mean point of all the points xASi.
Eqs. (10)–(13) not only calculate Euclid distances by means of
each Si, but also recursively renew the mean point mi depending
on the cost function V. After calculations, 10 servers with different



ARTICLE IN PRESS

C.-T. Yang et al. / Journal of Network and Computer Applications 32 (2009) 834–845 839
network bandwidths have been placed in three groups (k ¼ 3).
The simulation results are shown in Fig. 10:
�
 k: number of partitions

�
 x: number of points

�
 Si: partition attributes form a vector space

�
 mi: the mean point of all of Si points

�
 xBooleanij: determines whether or not an x point belongs to Si
�
 V: distance cost function

�
 d: distance between two point

mi ¼

P
x2Si

dðxi;miÞ

jSij
(10)

xBooleanij ¼
1 if kxj ¼ Sik

2pkxj ¼ Skk
2 8ka1

0 otherwise

(
(11)

V ¼
Xk

i¼1

Vi ¼
Xk

i¼1

X
k;xj2Si

dðxj;miÞ

0
@

1
A (12)

newðmiÞ ¼
1

jSij

X
k;xj2Si

xj (13)

3.4. Burst Mode

Like many network accelerator methods, and multithreading,
Burst Mode first splits one huge bandwidth into small
pipelines all working at the same time. Burst Mode focuses on
the fastest group of servers and can differentiate among the
various candidate server network bandwidths. Second, BM
chooses the faster one then others (as shown in Eqs. (10)–(13)).
Ultimately, the BM has made single jobs into many, as shown in
Fig. 11.

The k-means simulation results showed that fewer local replica
servers are high efficiency than many remote replica servers.
Accordingly, the main ideas in Burst Mode are to find the fastest
server group, and to make it download via multithreading. BM
also deals with cutting blocks properly for various data sets.

Burst Mode function is shown below:
�
 Ni TCPBW: candidate server bandwidth

�
 FTS: the fastest group of servers

Ni TCPBW ¼
MSS

RTT

Cffiffiffi
p
p (14)

FTS ¼ Si maxfS1; S2; . . . ; Sng;mi 2 Si (15)
Server 1

Server 2

Server 3

Round 1 Round 2
t1 t2

Section 1 Section 2 ... ...

...

...

...

:Burst Mode Enable

File A

80Mbps

5Mbps

2Mbps

Fig. 11. Burst Mode enables higher bandwidths.
The algorithm is listed below:

[Initialization]
Measure bandwidths and find the fastest servers using Eqs.
(14) and (15).
BigBlockUnit set to 100 MB initially
[Allocate blocks to the fastest servers and download via
multithreading.]
Step 1: Group mi and rank the most powerful server FTS

Step 2: Allocate SEj and download via multithreading
Step 3: Monitor job progress statuses
LOOP WHEN (UnassignedFileSize and total UnfinishedFileSize are
greater than BigBlockUnit (initial BigBlockUnit ¼ 100 MB))
THEN
{

IF (Job finish rate is just 100% (rji ¼ 1) and UnassignedFi-

leSize and total UnfinishedFileSize are greater than BigBlockUnit)
THEN
{
Let data transfer in multiple parts between client and FTS

server
SEj ¼ (UnassignedFileSize+TotalfinishedFileSize)a, 0oa

p1 (UnassignedFileSize+TotalUnfinishedFileSize)
XBigBlockUnit

}
}
END LOOP;

3.5. Grid network congestion control

Grid network congestion control is concerned with controlling
traffic entry into data grid networks to prevent congestive
collapse by avoiding oversubscription of any grid node processing
or link capacity and taking resource reduction steps, such as
reducing packet sending rates when Burst Mode is active.

The modern theory of congestion control (Kelly, 2003; Mamatas
et al., 2007), describes how individuals controlling their own pack
lost rate can interact to achieve an optimal network-wide rate
allocation. Examples of ‘‘optimal rate’’ allocation are max–min fair
allocation and Kelly’s (2003) suggestion of proportional fair
allocation, although many others are possible. The mathematical
expression (Eq. (16)) for optimal rate allocation is as follows. Let xi

be the rate of flow i. Let x, c and R be the corresponding vectors and
matrix. Let U(x) be an increasing, strictly convex function, called
the utility, which measures how much benefit a user obtains by
transmitting at rate x. The optimal rate allocation will then satisfy:

max
x

X
i

UðxiÞ; Rxpc (16)

3.6. Anticipative recursively adjusting mechanism plus (ARAM+)

3.6.1. Assumptions

We outline our system design model assumptions below.
�
 All grid nodes are installed GlobusToolkit4 previously.

�
 All grid nodes are supporting Simple Network Management

Protocol (SNMP).

�
 The time for transferring, stopping/assigning processes, and

calculating TCPBW to selected replica servers is negligible.

3.6.2. Anticipative recursively adjusting mechanism plus (ARAM+)

The ARAM+ is not merely inherited from ARAM. It has been
enhanced also in the following two areas: its TCP Bandwidth



ARTICLE IN PRESS

C.-T. Yang et al. / Journal of Network and Computer Applications 32 (2009) 834–845840
Estimation Model (TCPBEM) and its Burst Mode. ARAM+ con-
tinually adjusts the workloads on selected replica servers by
measuring actual bandwidth performance via TCPBEM during
data file transfers and, according to previous job finish rates, and
adjusting alpha values for subsequent transfer sections.

Some interesting ideas have arisen from P2P networks and
distributed denial-of-service (DDoS) attacks. As is well known,
P2P networking is share based; it shares data and downloads in
parallel, more numbers of share point get more speedup. Another
typical example is DDoS attacks that occur when multiple
compromised systems flood the bandwidth or resources of a
targeted system. We have combined these elements in our
approach. The multithreading in the Burst Mode design came
from DDoS attacks, BM ‘‘floods’’ the target replica server
bandwidth to speed up download performance. The other idea
from P2P networking was applied to ARAM+. It pre-selects many
candidate replicas from various servers, then chooses appropriate
servers and allocates only enough workload to fit server
capacities.

Both of our previous works (Vazhkudai et al., 2001; Wang
et al., 2006; Yang et al., 2005, 2007b, in press), the anticipative
recursively adjusting mechanism and recursively adjusting me-
chanism (RAM) were based on co-allocation architecture and
relied on tuning alpha values by hand to adapt to specific data grid
situations. The ARAM+ uses the same strategies, but differs in that
alpha values are tuned dynamically.

ARAM+ adapts to real-time network statuses and calculates
appropriate alpha a values continually with TCPBEM TotalTCPBW,
to ensure good download flexibility and to speed up overall
performance. The equations are as follows:

�TotalTCPBW: overall bytes transmitted per second

TotalTCPBW ¼
XN

i�1

MSS

RTT

Cffiffiffi
p
p (17)

a ¼ 1�
1

TotalTCP0:2
BW

 !
; 0oap1 (18)

3.6.3. ARAM+ algorithm

[Initialization]
Current bandwidths for all candidate servers are measured

using the TCP Bandwidth Estimation Model (TCPBEM) and
calculating appropriate alpha values with Eqs. (14) and (15).

[Allocating blocks to selected servers]
LOOP WHEN (UnassignedFileSize and total UnfinishedFileSize is
greater than zero)
THEN

{
IF (UnassignedFileSize and Total UnfinishedFileSize are greater
than TotalTCPBW)
THEN

{*
IF (UnassignedFileSize and Total UnfinishedFileSize multi-

plied by a are greater then TotalTCPBW)
THEN

{
Define new section for allocation

SEj ¼ (UnassignedFileSize+TotalUnfinishedFileSize)a,
0oap1

}
ELSE
{
Define finial section

SEj ¼ UnassignedFileSize+TotalUnfinishedFileSize

}
}
END LOOP;
Step 1: Define new section for allocation SEj

Step 2: Monitor all selected replica servers
Step 3: Allocate blocks to selected replica servers, according to
the TCPBW of the selected replica server, and the previous finish
rates Rj�1 for the selected replica server (initial R0 ¼ 1)
Step 4: Monitor all download flows
LOOP WHEN (The fastest flow finishes its assigned data blocks)
THEN
{
IF (First finish time for RTji is earlier then expected time ETji and
transferred size TSji is greater than expected size Sji) THEN

{
The rji ¼ 1

}
ELSE

{
Measure the finish rate for the previously delivered file
(0prjip1)
}

rji ¼

TSji

Sji
; RTjiXEtji

1; RTjioETji; and TSjiXSji

8><
>:

}
END LOOP;

4. Experimental

4.1. Our grid environment: Tiger grid

The experiments in this work were conducted and evaluated
on the TigerGrid, which consists of more than 100 processors
distributed over 10 clusters located at 5 educational institutions
(Tunghai University—THU, National Taichung University—NTCU,
Hsiuping Institute of Technology—HIT, National Dali Senior High
School—DALI, Lizen High School—LZSH, and Tungs’ Taichung
Metro Harbor Hospital—TUNG). A logical diagram of the Tiger
grid network environment is shown in Fig. 12. Fig. 13 shows
statuses for all machines used in the grid testbed on one monitor
page.

They are interconnected by the 1 Gbps Taiwan Academic
Network (TANET). The Tiger grid platform is built around 60
computing nodes, more than 224 CPUs with differing speeds, and
total storage of more than 5 TB. All the institutions are in Taiwan,
at least 10 km from THU. All machines have Globus 4.0.7 or above
installed.

We performed wide-area data transfer experiments using
Cyber Transformer, our GridFTP GUI client tool, on our co-
allocation testbed at Tunghai University (THU), Taichung City,
Taiwan, and fetched files from replica servers at National Da-Li
Senior High School (DL), Li-Zen High School (LZ), Tungs’ Taichung
Metro Harbor Hospital (TUNG), and Hsiuping Institute of
Technology School (HIT). These institutions are all in Taichung,
Taiwan, 10–30 km from THU.

4.2. Our experimental tool: Cyber Transformer

In a previous work Yang et al. (2006), we gave experimental
results for Cyber Transformer, a powerful new toolkit for replica



ARTICLE IN PRESS

Hsiuping Institute
of Technology, HIT

Da-Li Senior
HighSchool, DL

delta x 4
alpha x 4

beta x 4

gamma x 4
zeta x 5

eta x 8

75 Mbps

37 Mbps
16 Mbps

National
Taichung

University,
NTCU

23 Mbps

36
 M

bp
s

40 Mbps

48 M
bps

Lizen High
School, LZ

3.6
 M

pb
s

S1

Tungs’ Taichung
MetroHarbor

Hospital

2.8 Mpbs

2.
1 

M
pb

s

81 Mbps

Tunghai
University, THU

Tung Grid 1

Tung Grid 2
Tung Grid 3

Tung Grid 4

S6
S5

S4

S3

S2 tc4

tc3

tc2

tc1

host 101

host 102

host 103host 104
lz1

lz2
lz3

lz4

Fig. 12. Tiger grid network.

Fig. 13. Tiger grid resources.

C.-T. Yang et al. / Journal of Network and Computer Applications 32 (2009) 834–845 841
management and data grid environment data transfers. It can
accelerate data transfer rates, and also manage replicas over
various sites. The friendly interface enables users to easily
monitor replica sources, and add files as replicas for automatic
cataloging by our Replica Location Service. Moreover, we provide a
function for administrators to delete and modify replicas. Cyber
Transformer can be invoked with either the logical file name of a
data file or a list of replica source host names. When users search
for files using logical file names, Cyber Transformer queries the
Replica Location Services to find all corresponding replicas, and



ARTICLE IN PRESS

Fig. 14. Parallel download strategy selection.

Hsiuping Institute of
Technology, HIT

S1

Lizen High
School, LZTunghai University,

THU

S4
S5

S6

1Gbps

100Mbps 1Gbps

1Gbps

S2
S3

~37Mbps

~75Mbps

~48Mbps

Internet

100Mbps

100Mbps
1Gbps

1Gbps
1Gbps

beta1

beta 2 beta 3

lz1

lz2lz3

Fig. 15. Scenarios for our test-bed of Tiger grid.

Table 1
Scenario for replica local or not.

Scenario Replica server list

ARAMplus_4: non-local THU-S1, S2; LZ1, 2

ARAMplus_4: local-1 HIT-S1, S2; THU-beta1, beta2

ARAMplus_4: local-2 HIT-S1, S2; THU-beta 1; LZ-1

ARAMplus_4: local-3 HIT-S1, S2; LZ-1, 2

ARAMplus_4: all-local HIT-S1, S2, S3, S4

Table 2
Scenario for various replica numbers and selections.

Scenario Replica server list

R�6_non-local LZ-1, 2, 3; THU-beta 1, beta 2, beta 3

R�6_local HIT-S1, S2, S3, S4, S5, S6

R�2_local HIT-S1, S2

R�2_non-local-THU THU-S1, S2

R�2_non-local-LZ LZ-S1, S2

C.-T. Yang et al. / Journal of Network and Computer Applications 32 (2009) 834–845842
directs the replica sources to start parallel transfers. Cyber
Transformer users can easily gather replica resources and
combine them into single entities with the ‘‘strategy selection’’
user interface, accomplishing the task with various parallel
download strategies, as shown in Fig. 14.

4.3. Experimental results and analyses

An experiment and a case design were devised to test Burst
Mode, our proposed approach to speeding up local and remote
performance, and dynamically adjusting alpha values to adapt to
variable network situations. Details of the test cases we designed
are shown in Fig. 15.

4.3.1. Case study—‘‘cross-grid’’ vs. ‘‘local grid’’ replica selects and

transfers

We designed two scenarios to verify the efficiency of enabling
Burst Mode. All test cases are listed in Tables 1 and 2.

Generally, more replicas and local placement will yield better
parallel file transfer performance. Our results, shown in Figs. 16
and 17, show that we found more replicas remotely so user
performance improvement was not obvious, even worse than the
few replica found locally. However, Burst Mode function could get
more performance even two copies only (refer to scenario:
Rx2_local).

4.3.2. Case study—RAM and ARAM vs. ARAM+

RAM (Yang et al., 2007c) and ARAM (Yang et al., 2007a) both
used constant alpha values; our approach, ARAM+, relied on
dynamic alpha values to adapt to data grid network link
fluctuations. The case study for RAM and ARAM is listed in Table
4. We set the constant alpha values at 0.9, 0.5, and 0.1 for
comparison with ARAM+, and replicas were selected from inside
and outside regions. In order to distinguish among replica
locations, these two kinds of replica selection plans are listed in
Table 3.

In our next experiment, two scenarios, sets A and B, are listed
in Table 4 and used to accentuate the advantages of the Burst
Mode method and dynamic alpha value adjustment. Overall
performances in Scenario B have obviously been improved over
those in Scenario A. The total amounts of TCP bandwidth in
Scenario A differed slightly, but there were significant differences
in Scenario B. In all these case studies, especially in Scenario B,
Burst Mode yielded huge performance improvements, as shown in
Figs. 18 and 19.

4.3.3. Case study—comparison of 9 co-allocation schemes

To evaluate the performance of our proposed technique, we
implemented the following nine co-allocation schemes: Brute-



ARTICLE IN PRESS

Fig. 16. Effects of various replica locations on performance results.

Fig. 17. Effects of various replica numbers and selections on performance results.

Fig. 18. Performance results for scenario A.

Fig. 19. Performance results for scenario B.

Table 3
Replica placement and selection plan.

Mix HIT-S1, S2; LZ-1, 2; THU-beta1, beta2

Local HIT-S1, S2, S3, S4, S5, S6

Fig. 20. Comparing 9 schemes on ‘‘local’’ cases.

Fig. 21. Comparing 9 schemes on ‘‘mixed’’ cases.

C.-T. Yang et al. / Journal of Network and Computer Applications 32 (2009) 834–845 843
force (Brute), history-based (history), conservative load balancing
(conservative), aggressive load balancing (aggressive), dynamic
co-allocation with duplicate assignments (DCDA), recursively
adjusting mechanism (RAM), dynamic adjustment strategy
(DAS), anticipative recursively adjusting mechanism (ARAM),
and anticipative recursively adjusting mechanism plus (ARAM+).
Using the case setups listed in Table 3 for each scheme, we
analyzed their performance by comparing transfer finish times
and overall performance, as shown Figs. 20 and 21.

We found that ARAM+ performed better than the others. An
interesting outcome shows the Brute scheme’s ‘‘local’’ perfor-
mance differed greatly from its ‘‘mixed’’ performance. ARAM+ is
comparable to Brute or any others. The advantages of ARAM+ are
the following:
�
 ARAM+ uses TCP bandwidth measurement technology, relia-
bility and accuracy of the best.

�
 ARAM+ can enhance GridFTP to become multiplexing.



ARTICLE IN PRESS

Table 4
Scenario for alpha value tuning.

Scenario A Scenario B

RAM(0.1)_local RAM(0.1)_mix

ARAM(0.1)_local ARAM(0.1)_mix

RAM(0.5)_local RAM(0.5)_mix

ARAM(0.5)_local ARAM(0.5)_mix

RAM(0.9)_local RAM(0.9)_mix

ARAM(0.9)_local ARAM(0.9)_mix

ARAM+_local ARAM+_mix

C.-T. Yang et al. / Journal of Network and Computer Applications 32 (2009) 834–845844
�
 ARAM+ used k-means for classifying numbers grid node. It
quickly finds out the most efficient computing nodes.

�
 ARAM+ gives the longest amount of computing job to powerful

grid node but small data set could ignore some advance option,
for example, dynamic a, server classification (k-mean) algo-
rithm and congestion control.

�
 ARAM+ can really adapt to different grid environments,

rather than to just specific experiments designed grid
system.

5. Conclusion

Co-allocation architectures can be used to enable parallel
transfers of data files from multiple replicas in data grids, which
mean all replicas stored in the various grid sites. Many schemes
based on the Co-Allocation Model have been proposed and used to
exploit the different transfer rates among various client–server
network links and to adapt to dynamic rate fluctuations by
dividing data into fragments. In these schemes, the applicable
piece fragments achieve more performance. In fact, some schemes
can be applied to specific situations; however, most situations are
not common actually. For this issue, we propose the anticipative
recursively adjusting Mechanism plus (ARAM+), based on ARAM.
The best part is performance tuning through continual dynamic
alpha value adjustment. It relies on special features to adapt to
various network situations in data grid environments. The TCP
Bandwidth Estimation Model was used to evaluate dynamic link
states in our experiments by detecting TCP throughputs and
packet lost rates between grid nodes. TCP Bandwidth Estimation
Model also can be more reliable and fair than ARAM and any other
scheme. Burst Mode function truly can increase transfer rates and
speed up total performance especially considering congestion
control. The ARAM+ not only adapts to the worst network links,
but also speeds up the overall performance especially in wide-
area grid networks.

References

Allcock B, Bester J, Bresnahan J, Chervenak A, Foster I, Kesselman C, et al. Data

management and transfer in high-performance computational grid environ-

ments. Parallel Computing 2002;28(5):749–71.

Altman Eitan, Barman Dhiman, Tuffin Bruno, Vojnovic Milan. Parallel TCP sockets:

simple model, throughput and validation. In: INFOCOM 2006, April 2006.

Bhuvaneswaran RS, Katayama Y, Takahashi N. Dynamic co-allocation scheme for

parallel data transfer in grid environment. In: Proceedings of first international

conference on semantics, knowledge, and grid (SKG 2005), 2005. p. 17.

Bhuvaneswaran RS, Katayama Y, Takahashi N. A framework for an integrated co-

allocator for data grid in multi-sender environment. IEICE Transactions on

Communications 2007;E90-B(4):742–9.

Bolliger Juerg, Gross Thomas, Hengartner Urs. Bandwidth modelling for network-

aware applications. In: INFOCOM ’99, March 1999.

Chervenak A, Foster I, Kesselman C, Salisbury C, Tuecke S. The data grid: towards

an architecture for the distributed management and analysis of large

scientific datasets. Journal of Network and Computer Applications 2001;23(3):

187–200.
Chervenak A, Deelman E, Foster I, Guy L, Hoschek W, Iamnitchi A, et al. Giggle: a
framework for constructing scalable replica location services. In: Proceedings
of the 2002 ACM/IEEE conference on supercomputing, November 2002.
p. 1–17.

Czajkowski K, Foster I, Kesselman C. Resource co-allocation in computational grids.
In: Proceedings of the eighth IEEE international symposium on high
performance distributed computing (HPDC-8 ’99), August 1999.

Czajkowski K, Fitzgerald S, Foster I, Kesselman C. Grid information services for
distributed resource sharing. In: Proceedings of the tenth IEEE international
symposium on high-performance distributed computing (HPDC-10 ’01),
August 2001. p. 181–94.

Foster I, Kesselman C. Globus: a metacomputing infrastructure toolkit. Interna-
tional Journal of High Performance Computing Applications 1997;11(2):
115–28.

Foster I, Kesselman C, Tuecke S. The anatomy of the grid: enabling scalable virtual
organizations. International Journal of High Performance Computing Applica-
tions 2001;15(3):200–22.

Hacker Thomas J, Athey Brian D. The end-to-end performance effects of parallel
TCP sockets on a lossy wide-area network, parallel and distributed processing
symposium. In: Proceedings international, IPDPS 2002, 10.1109/
IPDPS.2002.1015527.

Hoschek W, Jaen-Martinez J, Samar A, Stockinger H, Stockinger K. Data manage-
ment in an international data grid project. In: Proceedings of the first IEEE/
ACM international workshop on grid computing-grid 2000, Bangalore, India,
December 2000.

Kelly Frank. Fairness and stability of end-to-end congestion control. European
Journal of Control 2003:159–76.

Mamatas Lefteris, Harks Tobias, Tsaoussidis Vassilis. Approaches to congestion
control in packet networks. Journal of Internet Engineering 2007;1(1):2.

Mathis M, Semke J, Mahdavi J, Ott T. The macroscopic behavior of the TCP
congestion avoidance algorithm. Computer Communication Review 1997;
27(3).

Open Grid Forum. /http://www.ogf.org/S.
Padhye J, Firoiu V, Towsley D, Kurose J. Modeling TCP throughput: a simple model

and its empirical validation. In: ACMSIGCOMM, September 1998.
Stockinger H, Samar A, Allcock B, Foster I, Holtman K, Tierney B. File and

object replication in data grids. Journal of Cluster Computing 2002;5(3):
305–14.

The Globus Alliance. /http://www.globus.org/S.
Vazhkudai S. Enabling the co-allocation of grid data transfers. In: Proceedings

of fourth international workshop on grid computing, 17 November 2003.
p. 44–51.

Vazhkudai S, Schopf J. Predicting sporadic grid data transfers. In: Proceedings of
11th IEEE international symposium on high performance distributed comput-
ing (HPDC-11 ’02), July 2002. p. 188–96.

Vazhkudai S, Schopf J. Using regression techniques to predict large data transfers.
International Journal of High Performance Computing Applications (IJHPCA)
2003;17(3):249–68.

Vazhkudai S, Tuecke S, Foster I. Replica selection in the globus data grid. In:
Proceedings of the first international symposium on cluster computing and the
grid (CCGRID 2001), May 2001. p. 106–13.

Vazhkudai S, Schopf J, Foster I. Predicting the performance of wide area data
transfers. In: Proceedings of the 16th international parallel and distributed
processing symposium (IPDPS 2002), April 2002. p. 34–43.

Venugopal S, Buyya R, Ramamohanarao K. A taxonomy of data grids for distributed
data sharing, management, and processing. ACM Computing Surveys
2006;38(1) (Article 3).

Wang CM, Hsu CC, Chen HM, Wu JJ. Efficient multi-source data transfer in data
grids. In: Proceedings of the sixth IEEE international symposium on cluster
computing and the grid (CCGRID ’06), 16–19 May 2006. p. 421–4.

Yang CT, Chen CH, Li KC, Hsu CH. Performance analysis of applying replica
selection technology for data grid environments. In: PaCT 2005,
Lecture Notes in Computer Science, vol. 3603. Berlin: Springer; 2005.
p. 278–87.

Yang CT, Yang IH, Chen CH, Wang SY. Implementation of a dynamic adjustment
mechanism with efficient replica selection in co-allocation data grid environ-
ments. Proceedings of the 21st Annual ACM Symposium on Applied Computing
(SAC 2006) – Distributed Systems and Grid Computing Track, France, April
23–27, 2006. pp. 797–804.

Yang CT, Chi YC, Han TF, Hsu CH. Redundant parallel file transfer with anticipative
recursively-adjusting scheme in data grids. Distributed and Parallel Comput-
ing: 7th International Conference on Algorithms and Architectures for Parallel
Processing, ICA3PP 2007, Lecture Notes in Computer Science, vol. 4494, 2007a.
p. 242–53.

Yang CT, Yang IH, Li KC, Wang SY. Improvements on dynamic adjustment
mechanism in co-allocation data grid environments. Journal of Supercomput-
ing 2007b;40(3):269–80.

Yang CT, Wang SY, Fu CP. A dynamic adjustment mechanism for data transfer in
data grids. In: Network and parallel computing: IFIP international conference,
NPC 2007, Lecture Notes in Computer Science, vol. 4672, September 17–20.
Berlin: Springer; 2007c. p. 61–70, ISSN 1611-3349.

Yang CT, Yang MF, Chiang WC. Implementation of a cyber transformer for parallel
download in co-allocation data grid environments. Proceedings of the 7th
International Conference on Grid and Cooperative Computing (GCC2008) and
Second EchoGRID Conference, October 24–26, 2008, in Shenzhen, Guangdong,
China. pp. 242–53.

http://www.ogf.org/
http://www.globus.org/


ARTICLE IN PRESS

C.-T. Yang et al. / Journal of Network and Computer Applications 32 (2009) 834–845 845
Yang CT, Yang IH, Wang SY, Hsu CH, Li KC. A recursively-adjusting co-allocation
scheme with cyber-transformer in data grids. Future Generation Computer
Systems, in press (available online 21 January 2007).

Yang L, Schopf J, Foster I. Improving parallel data transfer times using predicted
variances in shared networks. In: Proceedings of the fifth IEEE international
symposium on cluster computing and the grid (CCGrid ’05), 9–12 May 2005.
p. 734–42.

Zhang X, Freschl J, Schopf J. A performance study of monitoring and information services
for distributed systems. In: Proceedings of 12th IEEE international symposium on
high performance distributed computing (HPDC-12 ‘03), August 2003. p. 270–82.


	Enhancement of anticipative recursively adjusting mechanism for redundant parallel file transfer in data grids
	Introduction
	Background review and related work
	Co-allocation architecture
	Brute-force co-allocation
	History-based co-allocation
	Conservative load balancing
	Aggressive load balancing
	Dynamic co-allocation with duplicate assignments (DCDA)
	Recursively adjusting mechanism (RAM)


	Our approach
	Anticipative recursively adjusting mechanism (ARAM)
	TCP bandwidth estimation model
	k-means algorithm
	Burst Mode
	Grid network congestion control
	Anticipative recursively adjusting mechanism plus (ARAM+)
	Assumptions
	Anticipative recursively adjusting mechanism plus (ARAM+)
	ARAM+ algorithm


	Experimental
	Our grid environment: Tiger grid
	Our experimental tool: Cyber Transformer
	Experimental results and analyses
	Case study--’’cross-grid’’ vs. ’’local grid’’ replica selects and transfers
	Case study--RAM and ARAM vs. ARAM+
	Case study--comparison of 9 co-allocation schemes


	Conclusion
	References




