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Abstract The grid is a promising infrastructure that can allow scientists and engi-
neers to access resources among geographically distributed environments. Grid com-
puting is a new technology which focuses on aggregating resources (e.g., processor
cycles, disk storage, and contents) from a large-scale computing platform. Making
grid computing a reality requires a resource broker to manage and monitor avail-
able resources. This paper presents a workflow-based resource broker whose main
functions are matching available resources with user requests and considering net-
work information statuses during matchmaking in computational grids. The resource
broker provides a graphic user interface for accessing available and the appropriate
resources via user credentials. This broker uses the Ganglia and NWS tools to mon-
itor resource status and network-related information, respectively. Then we propose
a history-based execution time estimation model to predict the execution time of par-
allel applications, according to previous execution results. The experimental results
show that our model can accurately predict the execution time of embarrassingly
parallel applications. We also report on using the Globus Toolkit to construct a grid
platform called the TIGER project that integrates resources distributed across five
universities in Taichung city, Taiwan, where the resource broker was developed.
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1 Introduction

A grid is an aggregation of geographically distributed resources perhaps belonging
to separate organizations with different administrators, all working together over the
Internet as a vast virtual computer [1–9, 11, 12, 14, 19–22]. A computational grid
is a beacon to scientists for solving large-scale problems in gene comparison, high-
energy physics, earthquake simulation, weather prediction, etc. Grid computing can
be defined as coordinated resource sharing and problem solving in dynamic, multi-
institutional collaborations [7–9, 11, 12]. Grid computing involves sharing hetero-
geneous resources, based on different platforms, hardware/software, computer archi-
tecture, and computer languages, which are located in different places belonging to
different administrative domains over a network using open standards.

As more grids are deployed worldwide, the number of multi-institutional collabo-
rations is rapidly growing. However, for grid computing to realize its full potential, it
is assumed that grid participants are able to use one another’s resources. In the grid
environment, applications make use of shared grid resources to improve performance.
The target function usually depends on many parameters, e.g., the scheduling strate-
gies, the configurations of machines and links, the workloads in a grid, the degree
of data replication, etc. The subject of this paper is the resource management for a
grid system that is primarily intended to support computationally expensive tasks like
simulations and optimizations on a grid. Applications are represented as workflows
that can be decomposed into single grid jobs. These jobs require resources from the
grid that are described as accurately as necessary.

The main task of resource management is resource brokering to optimize a global
schedule for all requested grid jobs and all requested resources [16–21]. With a
resource broker, users are insulated from the grid middleware, thus avoiding com-
municative burdens between users and resources. Resource brokers generally map
application requirements to appropriate resources over multiple administrative do-
mains. However, conventional resource brokers cannot deal with a series of problems
that may contain mutual dependencies. Furthermore, when resource brokers make
decisions on matching application requirements to resources, frequently network in-
formation about the resources may be ignored [9–11, 19, 20]. This paper addresses
solutions for solving these kinds of problems.

In this paper, a workflow-based grid resource broker is presented whose main
function is to match available resources with user requests. The broker also solves
the job dependency problem by proper topological sorting and execution of work-
flows. A resource broker portal makes it convenient for general users to submit jobs,
query resource information, and monitor job statuses. And, in order to deal with
communication-intensive applications, the broker considers network information sta-
tuses during matchmaking and allocates the appropriate resources, thus speeding up
execution and raising throughputs.

The contributions of this paper are described as follows. First, we construct a com-
putational grid platform, called Taichung Integrated Grid Environment and Resources
(TIGER) [25], using Globus toolkits. TIGER consists of five different schools with
a total of 37 computing nodes with 50 processors. The experience of constructing
this computational grid will also be discussed. Second, we describe the design and
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implementation of a resource broker whose main function is to match the available
resources to the user’s needs. The consideration and strategy of how to design an effi-
cient resource broker will be discussed here. Then we combine network information
and machine information of the grid platform for future scheduling or benchmarking
use. Next, we propose a history-based execution time estimation model to predict the
execution time of parallel applications, according to previous execution results. Fi-
nally, we provide a uniform friendly graphic user interface (GUI) to use our TIGER
platform to achieve automatic resource discovery and efficient resource usage. This
helps grid users to submit their jobs to the suitable grid resources without knowing
any resource information.

The organization of this paper is as follows. Section 2 provides background re-
view and related work. Section 3 gives a description concerning the architecture of a
workflow system, the flowchart of job execution, and the interface of a resource bro-
ker portal. The experimental results and discussion are presented in Sect. 4. Finally,
conclusions and related future work are discussed in Sect. 5.

2 Background and related work

2.1 Phases of a grid resource broker

Grid resource brokering involves five main phases as follows:

1. Resource discovery, which generates a list of potential resources.
2. Information gathering, which collects dynamical resource information.
3. Application modeling, which allows the user to define the characteristics of appli-

cations.
4. Resource selection, which filters the resources that do not satisfy user require-

ments and enables the selection of the optimal set of resources depending on sys-
tem information.

5. Job execution, which includes file transferring, precompilation, job running, and
result retrieving.

These phases and the steps that comprise them are shown in Fig. 1.

2.1.1 Phase 1—resource discovery

The first phase of resource brokering involves determining which resources are avail-
able to different users, respectively. The resource discovery phase is done in two
steps: resource domain definition and authorization filtering.

The first step of resource discovery is to know how many resources the grid envi-
ronment has. There is no manager component for controlling resources in a grid in
the current Globus toolkit version. So, we implement resource domain definition by a
file of the host list to indicate the domain name of those resources. This file contains
all resources users can access, but it does not guarantee resource availability.

The second step is to give the user “authorization” to navigate the entire grid.
The essence of a grid is that jobs can be submitted to anywhere from everywhere. In
this step, the user will have a passport to access those resources defined in the pre-
vious step. We used Grid Security Infrastructure (GSI) in Globus [11] and account
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Fig. 1 Five main phases of a
grid resource broker

controlling of different policies to implement this authorization. And, we used Java
CoG Kit [13, 15] to develop a Java based GUI environment. The GSI uses public
key cryptography (also known as asymmetric cryptography) as the basis for its func-
tionality. A central concept in GSI authentication is the certificate. Every user and
service on the Grid is identified via a certificate, which contains information vital to
identifying and authenticating the user or service [11]. The Java CoG Kit [17, 18]
provides access to grid services through the Java framework. Components providing
client and limited server side capabilities are provided. The Java CoG Kit provides a
framework utilizing the many Globus services as part of the Globus metacomputing
toolkit. Many of the classes are provided as pure Java implementation, and using a
client side applet without installing the Globus toolkit is possible.

2.1.2 Phase 2—information gathering

This phase is used for collecting resource information. This information is very im-
portant for the performance of the resource broker. System information collection
is used to make the best possible job/resource match; detailed dynamic information
about the resources is needed. That information will help the broker to determine
whether the resource is available or to learn the status of the resource (Process CPU
frequency, CPU utilization rate, network bandwidth, etc.). Because grid resources
are dynamically changeable, real-time information allows for successful dynamical
scheduling. We implement this step by using Ganglia [24] and NWS [22, 23]. The
Network Weather Service (NWS) is a distributed system that detects network sta-
tus by periodically monitoring and dynamically forecasting over a given time in-
terval [23]. The service operates a distributed set of performance sensors (network
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monitors, CPU monitors, etc.) from which it gathers system condition information. It
then uses numerical models to generate forecasts of what the conditions will be for a
given time period.

We develop a network measurement model for gathering network-related infor-
mation (including bandwidth, latency, forecasting, error rates, etc.) without generat-
ing excessive system overhead. Then we consider inaccuracies in real-world network
values in generating approximation values for future use. The details of the network
information model will be discussed in [22, 23].

2.1.3 Phase 3—application modeling

The application model is used by users to describe characteristics and requirements
of their jobs. A user can specify his preference during this phase. This model pro-
vides basic information that enables a broker scheduling algorithm to select the best
strategy to distribute jobs among resources. To select suitable resources for a user’s
program, the user must be able to specify the minimal set of job requirements and
program types. More specifically, we can divide this step into two substeps.

In the first substep, a user has to define application characteristics. Different jobs
may have different running requirements. The more details are included, the less
matching effort is made. Since various applications such as high energy physics and
bioinformatics execute in grid computing, we must distinguish the unique factors
that each application has. Most application-level scheduling models are based on the
unique characteristic of each application. The following factors are the application
characteristics that we consider in our resource selection strategy.

• CPU-intensive: An application requires mass computational power, and almost all
the execution time is spent on CPU. It is limited by CPU speed and availability.

• Data-intensive: An application requires processing large amounts of data or gener-
ates large results, and may require distribution of those data to different resources.
It is limited by network bandwidth needed to transfer those data to different re-
sources.

• Communication-intensive: A process needs large network bandwidth or less net-
work latency to communicate with other processes during job execution.

2.1.4 Phase 4—resource selection

This phase is responsible for selecting the most suitable resources for users. There
are two main steps in this phase: minimal requirement filtering and system selection.

Step 1: Minimal requirement filtering: The first step of the resource selection phase
is to filter out resources that do not satisfy the application requirements or user pref-
erences described in phase 3. The main function of this step is to reduce the available
and suitable resource set.

Step 2: System selection: As dynamic information of resources is available, sys-
tem selection becomes easier and more scalable. While application requirement is de-
fined and dynamic information of resources is available, everyone can make his own
scheduling algorithm to handle different situations. We implement this step by sup-
porting two kinds of application characteristics described in phase 3, CPU-intensive



Design and implementation of a workflow-based resource broker 81

and communication-intensive. Data-intensive characteristics will not be covered in
our system Those two parts (computational grid and data grid) will be integrated in
the future. Here, we describe the two resource selection strategies as follows:

• CPU-intensive: The broker selects resources based on the static CPU frequency
multiplied by the dynamic average CPU free percentage over 1, 5, and 15 minutes
(0% for fully busy). Therefore, the formula for CPU power is CPUpower =
CPUfreq ×(15/21CPU1 min +5/21CPU5 min +1/21CPU15 min). We choose the best
n resources according to CPU power; n is also the total number of CPU needed by
users.

• Communication-intensive: The broker selects resources based on the network in-
formation modeling which will be described in Sect. 3. Therefore, the selection
strategy will be covered in Sect. 3.

At the end of this step, a set of suitable resources is generated, saved as a machine
list, and is ready to run jobs.

2.1.5 Phase 5—job execution

The fifth phase of grid scheduling is actually running jobs on available resources.
Step 1: Job submission: Before really running a job, the application must be sub-

mitted to the resources set described in phase 4. We perform this step by two actions.
First, transfer the machine list needed for MPI [17, 19–22] to the first machine in our
machine list via GridFTP, because the first is the best choice based on the application
model. The second action is to transfer the application to every available resource.

Step 2: Job preparation and running: The preparation step may involve setup, com-
piling, or other actions needed to prepare the resource to run the application. And the
program file, data file, argument file, and other settings file need to be located at the
right place. Users can select uploading the application unless it has been uploaded
before, which means the application is already placed appropriately. If a user selects
to upload, the broker will send the compile operation to every machine and compile
the source program simultaneously right after all the applications complete upload-
ing to target resources. When compiling is finished, the broker starts to execute the
applications.

Step 3: Job monitoring: While the job is running, users may want to monitor the
progress of their application or may cancel or resubmit their job. Historically, such
monitoring is typically done by repetitively querying the resource for status infor-
mation. However, Globus is able to interrupt users when the job is finished. GRAM
(Grid Resource. Allocation and Management) [11] provides basic status information
such as failed, running, and finished. We also implement a job monitor web page that
shows the job ID, submission time, status of job, finish time, and the result of each
application.

Step 4: Job completion: When the job is finished, the user needs to be notified. The
broker must be able to interrupt the user for job completion. We use the job monitor
web pages to show the results to the user. Sending an e-mail or message to the cell
phone of a user will be further implemented.
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2.2 Related work

GRB was born in 1999 as a research project; it has been presented at Open Grid Fo-
rum and recognized by the Grid Computing Environment (GCE) research group since
2001. The GRB grid portal provides an integrated approach to grid resource manage-
ment through a user-friendly web GUI and back-end GSI enabled scheduler. Among
the research works focused on Grid Resource Broker (GRB) topics, in 2002 the au-
thors in [26, 30] described the Grid Resource Broker (GRB) portal, an advanced Web
gateway for computational grids in use at the University of Lecce. The portal allows
trusted users seamless access to computational resources and grid services, provid-
ing a friendly computing environment that takes advantage of the underlying Globus
Toolkit middleware, enhancing its basic services and capabilities. The authors’ pre-
sentation shows that users do not need to learn how to use Globus, or rewrite their
legacy applications.

In [27, 29], the authors describe a resource management system which is the cen-
tral component of a distributed network computing system. There have been many
projects focused on network computing that have designed and implemented resource
management systems with a variety of architecture and services. In this paper, an ab-
stract model and a comprehensive taxonomy for describing resource management
architecture is developed. The paper presents a taxonomy for grid RMSs Resource
Management Systems (RMSs). Requirements for RMSs are described and an abstract
functional model has been developed. The requirements and model have been used
to develop a taxonomy focused on types of grid systems, machine organization, re-
source model characterization, and scheduling characterization. Representative grid
systems are surveyed and placed into their various categories.

A software layer that interacts with grid environments is needed to achieve these
goals, i.e., middleware and its services. It is also necessary to offer resource man-
agement services to hide the underlying grid resource complexity from grid users. In
[28], the authors present the design and implementation of an OGSI-compliant grid
resource broker compatible with both GT2 and GT3. It focuses on resource discovery
and management, and dynamic policy management for job scheduling and resource
selection. The presented resource broker is designed in an extensible and modular
way using standard protocols and schemas to become compatible with new middle-
ware versions. The authors also gave experimental results to demonstrate the resource
broker behavior.

Grid-enabled workflow management tools are crucial for successful building and
deployment of bioinformatics workflows. We briefly review the following workflow
systems: GRBWE [31], Pegasus [32], Pegasys [33]. In [31], the authors described the
design and implementation of the Grid Resource Broker Workflow Engine (GRBWE)
which deals with workflows described by arbitrary graphs and handles both cycles
and conditions vertices; an important feature provided is recursive composition, i.e.,
the possibility to define a workflow vertex as a subworkflow or parameter sweep
vertex instead of a batch task.

Pegasus [32] is a workflow management system designed to map abstract work-
flows onto grid resources, through Globus Replica Location Service (RLS), Moni-
toring and Discovery Service (MDS) to determine the available resources and data.
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The difference between our GRB and Pegasus is that it lacks the interface with some
de-facto bioinformatics tools and it does not support a monitoring tool for workflow.
Pegasys [33] allows users to build direct acyclic graphs. The differences between
Pegasus and our implementation are listed as below. First, the former supports only
DAGs and does not include an editor for graphical composition of the workflow, but
our can support an editor for graphical composition of the workflow; second, Pe-
gasys does not exploit a Grid framework and must be installed on a cluster machine
whereas our GRB scheduler supports dynamic assignment of resources belonging to
a computational grid environment.

3 System design and implementation

3.1 Conceptual overview

The use of the resource broker provides a uniform interface to access any of the
available and appropriate resources using the user’s credentials. The resource broker
runs on top of the grid middleware (such as Globus Toolkit) and serves as a link
to the diverse systems available in the grid. Our grid resource broker discovers and
evaluates grid resources, and makes informed job submission decisions by matching
a job’s requirements with an appropriate grid resource to meet user and deadline
requirements. Figure 2 shows the resource broker system architecture and component
relationships; the functions of each component are listed in the relation link.

Fig. 2 System architecture
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Fig. 3 Workflow system architecture

Fig. 4 Simple dependencies

A common grid portal allows easy access to the system [17, 21]. A schematic
diagram of the complete workflow system is shown in Fig. 3. Most general resource
brokers cannot handle jobs with dependencies, which means, for example, that Job B
may have to be executed after Job A because Job B needs output from Job A as input
data, as shown in Fig. 4.

The workflow-based resource broker presented in this paper copes with this in two
phases: client-side phase and server-side phase. The client-side phase is a GUI Java
applet that is provided in the Grid Portal for users to create workflows in workflow
description language (WDL), which allows jobs with dependency and sets the fol-
lowing attributes for each job. We also list the names used as stored in an XML file,
shown as Fig. 6, in parenthesis:

• Job name (jobname)—name of the job
• Broker sorting algorithm (sortkey)—select preferred algorithm
• Job type, parallel MPI or general sequential (runtype)—select job type
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Fig. 5 Composing a workflow abstract with the Java-based workflow maker

• Job dependencies (pointed)—represent as DAG
• Working directory (workdir)—working directory of user program
• Program name (filename)—the program file name
• Argument (argu)—the arguments for the program
• Number of processors (cpuno)—number of CPU required

The workflow maker, as shown in Fig. 5, converts this workflow abstract into an
actual XML file, and then delivers it to the resource broker. In the server-side phase,
the resource broker portal provides a web page for receiving XML workflow files. The
resource broker parses the XML file, checking all job information and dependency
relationships, and then adds the job to the global job queue for execution.

3.2 Global job queue

The global job queue is responsible for holding all pending subjobs delivered to the
resource broker. When the scheduler retrieves a subjob from the global job queue,
it checks all node statuses, sets busy nodes to “occupied” to prevent overloading,
allocates available nodes to satisfy subjob requirements, and sets these nodes to “oc-
cupied.” The scheduler then gets the next subjob and repeats the procedure.

If the scheduler does not find sufficient nodes to meet job requirements, it pauses
until sufficient nodes are available. When a subjob finishes, the scheduler frees the
respective resources by changing their statuses from “occupied” to “available.” The



86 C.-T. Yang et al.

Fig. 6 Job queue architecture

scheduler also sets job run limits according to grid system capacities. For instance, if
the run limit is fifty and a fiftieth job is begun, the scheduler stops retrieving subjobs
from the global job queue until the number of jobs drops below fifty. Figure 6 shows
the architecture of our job queue.

Figure 7 shows an example of the workflow system operation. When the job se-
ries A ∼ F containing dependencies is submitted, the client-side Java applet applies
a topological sort. Suppose that Jobs A and E are independent of each other. The
workflow system simply adds them to the global job queue for execution in parallel.
When Job A finishes, it resolves its dependencies with Jobs B and C, and the work-
flow system adds them to the global job queue, removing Job A. When Jobs B and C
finish, the workflow system then adds Job D to the global job queue for execution.

3.3 Execution time estimation model

Consider the problem of the time estimation model. First, we have to know how many
variables will affect execution time when running a parallel job. Secondly, we need
to know the amount of information we can obtain from historical data. In our model,
there are three variables that might affect the estimated execution time: job size, quan-
tity of processors, and processor power. In our experimental computing environment,
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Fig. 7 The detailed steps of workflow operations

as the number of MPI jobs is divided by the number of processors, each processor
will get coherent job sizes to execute. To meet the concept of heterogeneous envi-
ronments, we propose the estimation model that considers the different processing
power of processors to formulate total execution time (TET). We first define some
terminologies that could affect the TET.

• T _mpinop: MPI start up time and Globus overhead of total nop processors
• S_now: The total job size for current execution
• Np_now: Number of processors for current execution
• P _nowpn: Processing power for processor pn, pn = 1 ∼ Np_now
• T_now: Total execution time (TET) for current execution
• N_pr: Number of previous results used for estimation
• S_prepr: The total job size for previous pr times execution, pr from 1 to N_pr
• Np_prepr: Number of processors for previous pr times execution, pr from 1 to

N_pr
• P _prepn,pr: Processing power of processor pn for previous pr times execution, pn

from 1 to Np_prepr , pr from 1 to N_pr
• T _prepr: TET for previous pr times execution, pr from 1 to N_pr

The part of jobs that every processor works on is calculated by:

Job_pre = S_prepr

Np_prepr
. (1)

The TET can be calculated by (the term “alpha” is defined below):

T _prepr = Max

(
Job_pre

P _pre1 × α
,

Job_pre

P _pre2 × α
, . . . ,

Job_pre

P _preNp_pre × α

)
+ T _mpinop
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= Job_pre × Max

(
1

P _pre1 × α
,

1

P _pre2 × α
, . . . ,

1

P _preNp_pre × α

)

+ T _mpinop

which can be simplified to

T_pre = Job_pre

Min(P _pre1,P _pre2, . . . ,P _preNp_pre) × α
+ T _mpinop. (2)

This formula can be used to predict the next execution time. This means that the
slowest processor will slow down the progress of the entire work. The TET is almost
equivalent to the time that the slowest processor takes completing its job. Therefore,
our estimation model is based on this particular idea. Here, we define the symbol α

in the previous result.

α = Ave

(
Job_prepr

Min(P_pre1,pr,P_pre2,pr,...,P_preNp_pre,pr)×(T _prepr−T _mpinop)

)
.

(3)
The function Ave() calculates the average value of α. Finally, the estimated TET

for current execution is:

T_now = Job_now

Min(P _now1,P _now2, . . . ,P _nowNp_now) × α
+ T _mpinop. (4)

Our estimation model first gets rid of the influence of MPI and Globus overhead,
in order to get the actual processor execution time. Finally, we add this overhead
according to how many processors are running.

3.4 Resource selection in a communication intensive application

We used a methodology to select resources when a user requests n CPUs. Here, we
describe the notation and assumptions used throughout our algorithm:

• n: total number of CPUs required
• m: total number of domains
• Numi : number of CPUs in domain i

• B_inavg,i : average inner-domain bandwidth in domain i

• B_outi,j : bridge bandwidth from domain i to domain j

Our algorithm is based on two principles:

• Select as few domains as possible
• Select relatively higher bandwidth

The first principle is because LAN bandwidth is larger than WAN in most cases.
The second is to select better network bandwidth to reduce the time complexity of
the selection algorithm. Figure 8 shows the resource selection flow of our algorithm.
First, we sort B_inavg,i to select resources starting from high average inner-domain
bandwidth. Then we search all domains for those owning more than n CPUs. If one
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Fig. 8 Resource selection flow in a communication-intensive application

is found, select n resources from that domain. If no single domain can satisfy n,
then we adapt Kruskal’s minimal cost spanning tree algorithm sort to find “maximal”
bandwidth with “circle.”

First we sort B_outi,j . Then the best B_outi,j and two connected domains are
selected. If the number of total CPUs satisfies n, then select n resources from these
two domains. Otherwise, select next best B_outi,j , and check whether this bridge is
connected with the selected domains. If not, re-select next best B_outi,j . If yes, then
add the original domain with a new domain connected with B_outi,j , and recheck
whether the number of CPUs satisfies n. If yes, then select CPU from those domains.
If not, select next best B_outi,j and repeat those steps until it satisfies n.
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3.5 Job scheduling strategy

An efficient scheduling strategy, as shown in Fig. 11, is essential for a resource bro-
ker to match jobs and resources. Our scheduling algorithm was domain-based in the
experimental testbed environment shown in Fig. 12; each independent cluster was a
domain. We divided a grid into n domains. Suppose a grid consists of domain 1 to
domain n. Here we define some terminology:

• X: Number of processors required to execute a job
• Y : Total processors available for allocations
• Si : Number of sites (domains) in the grid environment, i = 1 ∼ n

• SRB: Grid site where the resource broker is located
• N(Si): Number of nodes available at site i,N(Si) = 1 ∼ m.
• P(Si): Number of processors available at site i, where Ni ≤ Pi , and total proces-

sors available for job execution are summed as Y = ∑n
i=1 P(Si)

• Eij : Graph constructed between domains i and j , the edge corresponding to the
current available bandwidth reported by NWS

As shown in Fig. 9, after querying information services to get the processor load-
ing and networking status of all grid nodes, the resource broker eliminates busy nodes
to get Y . If X > Y , meaning the number of available processors is insufficient, match-
ing pauses and the resource broker continues querying information services until
X ≤ Y . When X ≤ Y , the resource broker first allocates the available processors
to the SRB site and initiates S = {SRB}. It then sorts the weights of edges (weights
correspond to current average network transmission speeds) linked to the SRB site to
find sites Sj and Sj /∈ S such that

∑
Eij is maximum, where ∀Si ∈ S. The resource

broker then gets new site sets S = S ∪ Sj ; if
∑

P(Si) = P(S) < X, the resource bro-
ker continues maximizing

∑
Eij for ∀Si ∈ S until P(S) � X. Finally, the resource

broker allocates X processors to S in order of speed.

Fig. 9 Scheduling algorithm
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Fig. 10 (a) An example from our grid testbed; (b) after the resource broker eliminates heavily loaded
nodes

An example of using this algorithm is shown in Fig. 10a. Suppose a grid consists of
five domains and the resource broker is in domain A. “A(12)” means there are twelve
working nodes (processors) in domain A. The number “231” represents the current
communication bandwidth (Mbps) between domain A and domain B. The resource
broker first queries information services to get the current status of all working nodes,
then eliminates nodes with heavy loadings, as shown in Fig. 10b. A database is used to
record the nodes with heavy loadings by using information services in grid resource
broker.

Three possible cases can occur:

Case 1. If an incoming job needs 8 processors, the resource broker checks to see if
8 processors are available in the domain. If it finds 8 or more, the resource
broker directly allocates 8 processors in order of speed to execute the job.

Case 2. If an incoming job needs 16 processors, and no one domain has that many
available, the resource broker cannot directly allocate processors. It then
must sort all edges between the domain in which it resides and the other do-
mains to find the largest one (“edge” refers to current available bandwidth).
When the largest (231) is found, the resource broker allocates 16 processors
from domains A and B, in order of speed, to execute the job.

Case 3. If the job in Case 2 needs 20 processors and there are not enough in do-
mains A and B, the resource broker sorts all edges connected to domains A
and B until it finds domain C which, combined with domains A and B, has
sufficient average bandwidth, and then allocates 20 processors from domains
A, B, and C, in order of speed, to execute the job.

3.6 Flowchart

Figure 11 illustrates job execution from beginning to end in flowchart form. The
numbers represent the execution sequence, the blue dotted lines interactions between
user and portal, and the black lines system processes after the portal. Users need
only know how to submit their jobs through the portal. This flowchart eliminates
the need for users to understand how jobs are connected to resources and system
intercommunications.
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Fig. 11 Resource broker job flow

1. Proxy Initiation: Create a proxy for accessing grid resources
2. Workflow System: Resolve job dependencies

a. Requirement Definition: User defines minimal requirements or preferences
b. Application Selection: Select execution application

3. Execute: Execution
a. Authorization: Use created proxy to get authorization
b. Query Information: Query static and dynamic resource information
c. Retrieve Information: Obtain information
d. Matchmaking: Match user requirements to resources
e. Upload and Compile: Prepare all applications and data on all resources
f. Result: Generate the result and transfer it to the Portal

4. Result Retrieval: Get and display the result

4 Experimental results

4.1 Experimental environment

Our experiments were performed on a grid testbed consisting of 37 machines (50
processors) across the five schools shown in Fig. 12, Tunghai University, Providence
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Fig. 12 The logical diagram of the test-bed experiment environment

University, Hsiuping Institute of Technology, Dali High School, and Li-Zen High
School. The grid testbed specifications are shown in Table 1.

4.2 Performance of resource broker

We define the questions that we want to investigate in our grid resource broker (GRB)
system:

1. What is the convenience of using our GRB?
2. What is the overhead of our GRB?
3. What is the performance of using GRB?

The first question is trivial because the time of opening web pages is much less
than connection to the grid nodes, entering pass phase, looking for available re-
sources, and submitting jobs. And it is easier to use a portal than to understand Linux
instructions. So, developing a GUI based portal reduces the time and complexity of
using or promoting our system. The second question is important. We first describe
the experimental variables for our GGB actions.

• IST—Information search time
• BST—Broker scheduling time
• TMT—Machine file transfer time
• JRT—Job run time
• RRT—Result retrieval time
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Fig. 13 Execution time distribution for 4 CPUs using a resource broker

IST is the time needed to gather system information, such as CPU speeds, loading,
and free memory sizes. The broker used the information to select the best resource
set according to the application model (BST), automatically transferred the selected
machine files to the first resource (TMT), and then started job execution on all ma-
chines simultaneously (JRT). Upon completion, the broker transferred the execution
results to the client side (RRT) and displayed them on our portal.

We can treat the time except JRT as the overhead of our system. Figures 13 and 14
show the time distribution of execution jobs with GRB. There are four program ex-
amples: PI, Matrix Multiplication, Mandelbrot Set, and Bucket Sort used for experi-
mentation. We executed four applications with 4 CPUs and 8 CPUs. “m1_512” means
matrix multiplication of a 512 × 512 matrix (problem size) using 1 CPU and so on.
The result shows that when the broker schedules with a small problem size, the over-
head seems large relative to JRT, but when the problem size is increased, the overhead
decreases relative to JRT. Because grid computing is suitable for large-scale prob-
lems, our broker overhead was constant and did not increase linearly with problem
size. This proves that the overhead can be ignored for large problem size. It just fits
the design goal of the grid system.

Figures 15 and 16 show a comparison of total turnaround times using the resource
broker and a Linux console to execute jobs. We can see that a constant but acceptable
overhead exists with programs of different sizes. This result also emphasize that the
overhead remains constant with different program size.
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Fig. 14 Execution time distribution for 8 CPUs using a resource broker

Fig. 15 Console execution vs. RB execution with 4 CPUs
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Fig. 16 Console execution vs. RB execution with 8 CPUs

In Figs. 17 and 18, RB_CPU indicates use of a CPU-intensive broking algorithm
that allocates available resources according to processor speed. RB_Net indicates
use of a communication-intensive brokering algorithm (addressed in Sect. 3.5) that
allocates available resources according to network speed. Random means selecting
resources without knowing resource information. Figure 17 shows a comparison
of brokering strategies on square matrix multiplication. “mm_8_2048” means com-
pute a 2048 by 2048 square matrix with 8 processors. The results in Fig. 17 indi-
cate the RB_CPU strategy will obtain better performance compared with the other
two because the matrix multiplication application requires a high amount of CPU
power to perform multiplication operations. Therefore, it is suitable for users to se-
lect RB_CPU for GRB to select resources. Besides that, the results also show that
using GRB is better than randomly selecting resources.

The comparison result of the prime number problem is shown in Fig. 18. Given
a range of numbers in which we want to find a list of prime numbers, for instance,
between 1 and 20,000,000, the process writes code that initially runs on a master
node and sends the task of testing 101–200 range value to node 1, the task of testing
201–300 range value to node 2, and so on. The RB_CPU strategy performed better
than the other two because the matrix multiplication application and prime number
application both require considerable CPU power. Clearly, RB_CPU is the optimal
brokering strategy.

For the third question, we compare three different kinds of broker strategies as
shown from Figs. 19 to 22. Random means selecting resources randomly without
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Fig. 17 Performance of broker strategy in matrix multiplication

Fig. 18 Performance of broker strategy in prime numbers
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Fig. 19 Performance of broker strategy in Bucket sort

knowing resource information. Figure 19 performs the same experiment described
above but for the bucket sort application. The results show the RB_CPU is still the
best broker strategy. However, something unexpectedly occurred that resulted in ran-
dom selection performing better than RB_Net for some cases such as bs2_1000k,
bs2_500k, and bs16_1000k. We believe two reasons caused this situation. First, this
situation only happened when selecting two resources at least (one is not allowed) or
a maximum of 16 resources in our environment. While selecting 2 resources, we find
out that RB_Net will choose resources from alpha1 to alpha4 because the average
inner-domain bandwidth is the largest. But the CPU frequency is just in the middle
of all resources. Therefore, a random selection will increase the chances of selecting
a fast CPU. While selecting 16 resources, 16/22 resources are selected. Random still
has a chance of selecting faster CPUs then RB_Net meaning that the RB_Net strategy
is not appropriate for this application.

Figure 20 shows an example in which RB_Net is better than the other two. But
while selecting many resources, the performance of RB_CPU and RB_Net are closed.
That is because when selecting almost all resources, the function of the broker be-
comes useless. No broker is needed while selecting all resources. Because the degree
of parallelism is limited, using resources more than the boundaries will not obtain
better performance. That is the reason we need GRB to select resources. We summa-
rize these experiments as showing that our GRB is convenient for general users to
use grid environments without generating too much overhead.

Some applications require frequent communication during execution, and the re-
sulting communication speeds may influence total execution time. Figures 21 and 22
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Fig. 20 Performance of broker strategy in Mandelbrot set

present an example showing that RB_Net performed better than RB_CPU or Ran-
dom on Eatbw, a communication-intensive program; Eatbw_32_1024 means each of
32 processors transfers 1024 kB files. The performance of RB_CPU and RB_Net are
close while selecting more and more resources. RB_CPU and RB_NET both perform
better than Random in most cases. Because the degree of parallelism was limited, us-
ing more resources than the boundaries did not perform better performance. Clearly,
this indicates that our resource broker can handle this type of application.

4.3 Performance of history-based model

As we mentioned before, a history-based model is used to find previous execution
time records for similar applications based on certain parameters. Later, the average
execution time of previous execution results is computed within a tolerable error rate,
and these data are used to estimate the execution time of current parallel applications.
Using empirical data analysis, it is hard to understand the behavior of performance
generated by these applications. Therefore, we only consider the embarrassingly par-
allel jobs, which do not communicate with each other during execution. Our focus is
to estimate the total execution time (TET) executed on different sets of resources with
different job sizes. In order to identify jobs that are suitable for specific resources, an
execution time estimation model is required.

The purpose is to describe a history-based execution time estimation model, in
order to predict the execution time of parallel applications, according to previous
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Fig. 21 Performance of broker strategy in EatBW (fixed processor number)

execution results. We focus on estimating execution time of embarrassingly paral-
lel jobs. There are several factors which might influence the overall performance of
an application in the underlying heterogeneous grid environment, such as processor
power, network bandwidths, or memory sizes. A set of applications were ran on the
TIGER environment we built using the standard grid middleware Globus Toolkit, and
those experimental results show that our model can accurately predict the execution
time of parallel applications. The average network bandwidth is about 30 Mbps over
different sites. Table 2 shows the MPI and Globus overhead versus number of proces-
sors, that is, the real-world value of T _mpinop. This variable is obtained by running
the hello world MPI program, which is almost the smallest program, with no CPU
power needed.

During the test case, we chose three embarrassingly MPI parallel programs, which
are CPI, prime number, and Mandelbrot set. These programs communicate at the
start of execution, when the master node “tells” slave nodes what part of the job to
handle and send results back to the master node when finishing the execution. We
will describe the characteristics of each program and show the estimation results in
the following section.

CPI is a program that calculates the number π accurately. It computes the value of
π by numerical integration. Table 3 shows the calculated α value and estimated time
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Fig. 22 Performance of broker strategy in EatBW (fixed transmission data size)

Table 2 MPI and Globus overhead vs. number of processors

N.O.P. 1 2 3 4 5 6 7 8 9 10

Time 1.10 12.56 12.40 14.47 14.15 15.73 16.23 16.93 16.97 16.86

N.O.P. 11 12 13 14 15 16 17 18 19 20

Time 17.31 17.64 18.88 20.86 23.59 26.62 26.51 26.93 27.01 27.84

Table 3 Estimation results of CPI example

α 1.17683 1.18001 1.15143 1.16017 1.16946 1.16713 1.16509

Estimate 12.932 15.067 57.099 76.283 114.379 229.138

Time 30.174 12.897 15.420 57.555 76.130 114.423 229.248

Size 100000 100000 100000 100000 100000 100000 100000

N.O.P. 3 7 6 4 3 2 1

α 1.22250 1.21813 1.21436 1.16991 1.14709 1.14499 1.14963

Estimate 14.086 18.555 27.561 45.607 18.579 22.362 28.320

Time 13.397 17.926 26.973 46.680 19.404 23.327 29.041

Size 100000 100000 100000 100000 100000 100000 100000

N.O.P. 8 6 4 2 12 10 8
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Fig. 23 Execution time vs. estimation time of CPI example

in our model. We randomly execute the CPI program on various numbers of proces-
sors with different CPU power. Top-left is the first execution result with 3 processors
(N.O.P.). The second estimation is based on the first result; the third estimation is
based on the first and second results, and so on. This process continues until we have
more than 5 newest previous results. The size in Table 4 is irrelevant because we can-
not change any parameter of this program. The value 100,000 is just a proper value
that makes α more readable. Figure 23 shows that our model can precisely estimate
future values of execution time. In our experiments, the average error rate is 2.12%
and the maximum error rate is 5.14%. The error rate is calculated by parentage of
|(Estimate time − Actual time)/Actual time|.

In this case, we still randomly execute the prime number search on various num-
bers of processors with various CPU power. Table 4 shows partial results of our esti-
mation model. The size unit is one million. Figure 24 shows that our model can still
estimate the future execution time with an acceptable error. The average error rate is
28.82% and the maximum error rate is 57.84%.

The Mandelbrot set is a set of points in a complex plane that are quasi-stable (will
increase and decrease, but not exceed some limit) when computed by iterating a func-
tion, ZK+1 = Z2

k + c. This program is particularly convenient to be parallelized for
message-passing systems, since each pixel can be computed without any information
about surrounding pixels. Table 5 shows the error rate that occurs on this program,
and there are two size parameters that affect the TET. Figure 25 show the estimation
results. The average error rate is 42.95% and the maximum error rate is 136.42%.

From the experiments, we can observe that firstly the estimation result of CPI is
precisely because there is no size variable, and the workload is equally distributed to
each processor. Although the CPU power is different, our estimation model still can
handle it. Secondly, the prime number program possesses almost the same character-
istics as CPI, except its size. The size here represents the total workload of the pro-



Design and implementation of a workflow-based resource broker 105

Table 4 Estimation results for prime number search

α 0.022972 0.018626 0.019046 0.017385 0.014597 0.012958

Estimate 26.184 47.537 39.309 59.605 107.777 176.815

Time 48.445 95.600 68.793 94.205 168.299 252.777

Size 50 80 80 100 150 200

N.O.P. 12 12 8 8 8 8

α 0.011755 0.020827 0.015487 0.013007 0.007871 0.005814

Estimate 247.810 220.066 430.018 661.217 80.443 172.756

Time 348.315 160.061 430.503 768.894 151.321 409.746

Size 250 100 200 300 100 200

N.O.P. 8 3 3 3 11 11

Fig. 24 Execution time vs. estimation time for prime number search

gram, which is linearly increased. Although we cannot make sure that each processor
will have an equal workload (total number of prime numbers is not the same on each
interval), the number of mathematical operations is about the same. Our model can
estimate the execution time with an acceptable error rate.

Finally, the execution results of the Mandelbrot set program show that our predic-
tion model is not sufficiently accurate. This happens because the two size parameters
and the behavior of this program are not under control. The first parameter determines
the number of iterations that the Mandelbrot set program needs to generate its graph.
The second parameter defines the pixel height and width of the generated graph. The
more iterations, the heavier the workload. This is also true for pixel size. However,
the load is not equally distributed to each processor, since some powerful processors
may be allocated a light workload and vice-versa. This is why we cannot accurately
estimate execution time.
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Table 5 Estimation results of Mandelbrot set

α 56191.7 59102 38593.7 54619.1 35908.2 25656.4 41945.4

Estimate 25.182 16.364 31.841 20.535 45.913 87.223

Time 33.576 23.942 24.443 23.988 23.352 56.174 68.719

Size 1 8000 6000 4000 8000 8000 10000 20000

Size 2 1200 1200 1200 1000 800 1100 1100

N.O.P. 8 8 8 8 8 11 11

α 38085.6 35261.6 39006.1 40177.7 80657.6 110259.7 133173.7

Estimate 141.703 186.279 230.371 320.351 75.536 125.993 144.321

Time 113.525 163.489 184.743 286.97 36.426 53.293 66.185

Size 1 30000 40000 50000 80000 10000 20000 30000

Size 2 1100 1100 1100 1100 1100 1100 1100

N.O.P. 11 11 11 11 11 11 11

Fig. 25 Execution time vs. estimation time of Mandelbrot set

5 Conclusions and future studies

In this paper, we design and implement a grid resource broker whose main function is
to match the available resources to the user’s needs. The resource broker provided a
uniform interface for accessing available and appropriate computing resources. This
paper presents a workflow-based computational resource broker whose main function
is to match available resources with user requests and solve job dependence problems.

To identify and schedule jobs that are suitable for determined resources, an exe-
cution time estimation model is required. A history-based execution time estimation
model to predict current execution time, according to previous execution results is
proposed. We propose a scheduling algorithm for allocating appropriate resources
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to communication-intensive applications. We also implemented a user-friendly grid
portal for general users to submit jobs and monitor detailed resource statuses.

We constructed a grid platform using Globus Toolkit that integrated the resources
of five schools in Taichung that have integrated grid environment resources called the
TIGER project. The resource broker runs on top of TIGER. Therefore, it provides
security and current information about available resources and serves as a link to the
diverse systems available in the grid. The experimental results also show that users
can obtain good performance with this broker to submit their applications. Experi-
ments show that our broker is a viable contender.

In the future, a prediction model for finish times of communication-intensive jobs
is needed to enhance resource utilization rates, and the scheduling algorithm of the
broker must be improved. Furthermore, a database is needed to save job status and
resource reliability rates in order to deal with a wider variety of jobs. Then the re-
source broker could query this “behavior database” for help in making decisions and
to increase its efficiency in matching tasks and resources. In future studies, we plan
to enhance our resource broker to support scalability and more different application
characteristics to obtain better performance of different applications.
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