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Abstract This paper proposes a new duplication-based task scheduling algorithm
for distributed heterogeneous computing (DHC) systems. For such systems, many re-
searchers have focused on solving the NP-complete problem of scheduling directed
acyclic task graphs to minimize the makespan. However, the heterogeneity of com-
putational resources and communication mechanisms poses some major obstacles to
achieving high parallel efficiency. This paper proposes a heuristic strategy called the
Dominant Predecessor Duplication (DPD) scheduling algorithm, which allows for
system heterogeneities and communication bandwidth to exploit the potential of par-
allel processing. This algorithm can improve system utilization and avoid redundant
resource consumption, resulting in better schedules. Experimental results show that
the system heterogeneities and program structures of applications affect scheduling
performance, and that our presented algorithm is better able to avoid these problems
than those presented in previous literature. Here, we show that our algorithm can be
applied to design efficient distributed systems to overcome performance bottlenecks
caused by system heterogeneities.

Keywords Directed acyclic graph · Heterogeneity · Duplication · Task scheduling ·
Distributed computing

K.-C. Lai (�)
Department of Computer and Information Science, National Taichung University, Taichung
40302, Taiwan
e-mail: kclai@mail.ntcu.edu.tw

C.-T. Yang
Department of Computer Science and Information Engineering, Tunghai University, Taichung
40704, Taiwan
e-mail: ctyang@thu.edu.tw



A dominant predecessor duplication scheduling algorithm 127

1 Introduction

With advances in high-speed networks and CPU hardware technology, distributed
heterogeneous computing (DHC) is applied in terms of performance and cost-
effectiveness for applications with diverse computational requirements. Generally, a
DHC system consists of high-speed networks, a middleware, and a suite of distributed
off-the-shelf heterogeneous processing elements (PEs) [1–5]. There are at least two
salient features in DHC systems: the heterogeneity of computational resources (e.g.,
the different execution times of tasks run on different PEs), and the heterogeneity
of the network performance between PEs. Traditional parallel applications distribute
computations evenly across PEs and cannot balance the load of heterogeneous sys-
tems. Consequently, faster PEs stall at the synchronization points while waiting for
slower PEs to perform their tasks. In particular, latency and bandwidth limitations
induced by a network can seriously degrade parallel application performance [5–8].
These limitations remain a major challenge to using heterogeneous computation and
communication resources effectively, and they call for needed improvement.

When the application’s characteristics (which include task execution times, task
dependencies and amounts of communicated data) are known a priori, an application
can be modeled as a directed acyclic graph (DAG), where the nodes represent the
computational tasks and the edges represent the intertask communications (or data
dependence). The static scheduling problem is to assign tasks to a distributed system
and arrange the tasks’ executions by the diverse resource requirements, such that
precedence relationships between tasks are not violated, diverse resource contentions
are circumvented, and the data transferred between the tasks is orchestrated to obtain
a minimum overall completion time [3, 9] at the compile time.

There are many well-known scheduling problems in operations research and com-
puter science, most of which are NP-complete [10, 11] and have been studied ex-
tensively in the literature. To exploit heterogeneous computational resources, many
researchers have focused on obtaining near optimal solutions within an acceptable
time complexity. In general, the scheduling strategies perform poorly in DHC sys-
tems because of the heterogeneity of computational resources and communication
mechanisms. If the scheduling problem is not properly handled, then any gain ob-
tained from the parallelization of the application would be diminished.

In the static scheduling approach, these proposed heuristics are classified into a
variety of categories, such as the list-based approach, the clustering-based approach,
and the duplication-based approach. The simple and attractive list-based scheduling
algorithm assigns priorities to tasks statically or dynamically, and then repeatedly al-
locates the highest priority ready task to its most suitable PE to minimize the schedule
length. However, because each task is scheduled without regard for subsequent tasks,
the priority assignment does not always lead to optimized scheduling. This adverse
effect is particularly severe when communication message scheduling is considered
in DHC systems. A later task may be delayed because its incoming messages are
affected by the inefficient scheduling of previous messages and it, therefore, cannot
occupy an earlier time slot. The performance of list-based approaches suffers due to
the trade-off between maximizing parallelism and minimizing communication, and
worsens for fine grain tasks with a high communication to computation cost ratio
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(CCR) [8]. There have been several list-based algorithms proposed for DHC systems,
e.g., the Iso-Level Heterogeneous Allocation (ILHA) algorithm [12], Critical Nodes
Parent Trees (CNPT) [13], Dynamic Level Scheduling (DLS) [14], Bubble Schedul-
ing and Allocation (BSA) [5], the Heterogeneous Earliest Finish Time (HEFT), and
Critical Path on a Processor (CROP) technique [1].

The clustering-based approach [15–18] tries to allocate heavily communicating
tasks onto the same PE to reduce the overall communication cost, and includes two
phases. In the first phase, tasks are grouped into an unbounded number of clusters
using clustering heuristics, and then these clusters are mapped onto the available
PEs by load-balancing heuristics. Although the complexity of the clustering-based
approach is generally lower than that of other approaches, the performance of the
clustering-based approach is still worse than that of other approaches [2].

Another attractive technique is the duplication-based approach, which aims to du-
plicate the parents of the candidate task to more than one PE to reduce the candidate
task’s start or finish time by decreasing the communication overhead. Generally, list
or clustering algorithms with duplication tend to perform better than nonduplication
algorithms; however, the performance improvement, which originates from the ex-
hausted backward search in the duplication step, usually leads to a higher degree of
complexity and causes redundant duplications without contributing to performance.
There are several duplication-based algorithms, including the Critical Path based Full
Duplication algorithm (CPFD) [19], the Heterogeneous Critical Parents with Fast Du-
plicator (HCPFD) [4, 20], the Bottom-up Top-down Duplication Heuristic (BTDH)
[21], the Task Duplication-based Scheduling Algorithm for Network of Heteroge-
neous Systems (TANH) [2], and the Heterogeneous Critical Tasks Reverse Duplicator
(HCTRD) [22].

Most of these algorithms only consider computational aspects, and adopt the
macro-dataflow model. They assume that target systems include fully-connected PEs
and have dedicated communication subsystems without any communication con-
tention. In fact, communication contentions are important factors to consider in the
production of accurate and efficient schedules [5–8]. If a communication resource
is occupied by one task, then any other tasks requiring the same resource have to
wait until it becomes available. As the computational power increases, communica-
tion mechanisms may cause bottlenecks in the system, particularly when executing
applications with large communication requirements. Therefore, it is clear that the
scheduling problem must be studied from both the computation and communication
points of view.

In our study, a heuristic algorithm, called the Dominant Predecessor Duplication
(DPD) scheduling algorithm, is proposed to schedule tasks according to system het-
erogeneity, network bandwidth, and the communication requirements of applications.
The strict reduction of schedule lengths obtained by the DPD algorithm is defined to
reduce the intermediate schedule length monotonically at each scheduling step. This
condition shows that the completion time of a directed acyclic task graph can be
strictly curtailed through the application of the DPD algorithm. In order to improve
system utilization, the proposed algorithm also uses limited-length time slot lists to
exploit schedule holes [8]. The DPD algorithm also takes care of the dynamically-
changing critical path as the scheduling progress proceeds to accurately capture the
critical tasks.
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Here, we show that our DPD algorithm can avoid redundant resource consumption
and produce better schedules than those obtained through existing algorithms. Exper-
imental results are presented to verify the improvement in performance, and we have
also applied 3 algorithms proposed in other studies to demonstrate the comparative
effectiveness of our algorithm.

In Sect. 2 of this paper, we introduce the scheduling problem. In Sect. 3, we present
our proposed algorithm, and the experimental results and performance analyses are
provided in Sect. 4. Our conclusions are offered at the end of the paper.

2 Scheduling problem

In this section, we define the program and system models and present the definition
of the scheduling problem.

2.1 Program model

As a rule, classical scheduling algorithms schedule parallel tasks to attain a program’s
minimum completion time based on the macro-dataflow model [22]. This model as-
sumes that the bandwidth of communications performed at the same time is unlim-
ited [2] (i.e., instantaneous contention-free transmission). However, in real systems,
contention among communication mechanisms must be taken into account. Our pro-
gram model enlarges the macro-dataflow program description to allow for scheduling
heuristics to be used in DHC systems.

A program is presented as a directed acyclic graph (DAG). The DAG is defined
as G = (N,E,T,C), where N is the set of tasks, T is the set of computation volumes
(i.e., one unit of computation volume is one million instructions), E is the set of
communication edges that define precedence constraints on N, and C is the set of
communication volumes (i.e., one unit of communication volume is a kbyte). The
value of τi ∈ T is the computation volume for ni ∈ N. The value of cij ∈ C is the
communication volume occurring along the edge, eij ∈ E, where ni, nj ∈ N.

As only static heuristics are discussed here, we assume that the number of tasks,
the number of PEs, and the accurate estimations of the expected execution and com-
munication volumes for each task are static and known beforehand. A task is an
indivisible unit of computation (i.e., nonpreemptive), and satisfying precedence con-
straints and removing resource contentions trigger the execution of a task. Precedence
constraints only occur when the task’s execution is postponed until all the data from
its immediate predecessors arrives. The removal of resource contentions includes:
(a) removing computational resource contentions, in which case a task’s execution
is deferred until all the tasks scheduled before it within the same PE are complete,
and (b) removing communication resource contentions, in which case data is received
sequentially from the same communication channel.

2.2 System model

In this study, system resources only include computational resources and communi-
cation mechanisms. However, our proposed system model can also be extended to
include diverse system resources.
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Suppose that a DHC system is represented by M = (P,Q,A,B), where P = {pi |
pi ∈ P, i = 1, . . . , |P|} is the set of PEs, A = {α(pi) | α(pi) ∈ A, i = 1, . . . , |P|}
is the set of execution rates, α(pi) is the execution rate for pi (i.e., the unit is
time/instruction counts, such as seconds/one million instructions), Q = {q(pi,pj ) |
q(pi,pj ) ∈ Q, i, j = 1, . . . , |P|} is the set of communication channels, q(pi,pj )

is the communication channel from pi to pj , and B = {β(pi,pj ) | β(pi,pj ) ∈ B,
i, j = 1, . . . , |P|} is the set of transfer rates for the communication channels from pi

to pj (i.e., the unit is time/volume, such as seconds/kbytes). We assume that each PE
has a coprocessor to deal with communications, which allows for computations and
communications that are independent of each other to overlap [7, 23]. Formally, let
τi ×α(pk) be the computation cost when ni is allocated to pk , and let cij ×β(pk,pl)

be the communication cost from ni to nj , where ni is allocated to pk and nj is allo-
cated to pl .

In general, communication contention [7] includes end-point contention [24] and
network contention [14]. To manifest the probable resource contentions, we assume
that when a resource is occupied by one communication and is insufficient for other
requirements, any other communication requiring the same resource has to wait until
it becomes available.

2.3 Problem definition

Considering the DAG and the system model described above, the goal of the schedul-
ing problem is obtaining the minimum-length nonpreemptive schedule for task
graphs. To avoid a high degree of complexity, we only consider the nonbacktracking
algorithm; therefore, the number of scheduling steps remains polynomial-bounded
with respect to DAG size. To further simplify the analysis, we neglect the additional
overhead of transforming a serial algorithm into a parallel form, and assume that no
additional processing cost is required to execute programs in DHC systems.

3 The proposed algorithm

Before introducing our DPD algorithm, it is useful to discuss the related terminology.
Our notations are summarized in Table 1.

3.1 Related terminology

Formally, let pred(ni) be the set of immediate predecessors of ni . The data ready
time, drt(ni), of ni is defined as the latest arrival time of communication data from
its predecessors (i.e., the data ready time of ni is the earliest time when ni has sat-
isfied precedence constraints and received all its input data). However, even after
receiving all the input data, the execution of a task might not be triggered because of
unremoved resource contentions. After satisfying precedence constraints and remov-
ing any resource contentions, the earliest starting time of ni , est(ni), is the earliest
time when ni can begin its execution. Let the earliest completion time of ni , ect(ni),
be defined as:

ect(ni) = est(ni) + τi × α
(
p(ni)

)
, (1)
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Table 1 Summary of notations
Notation Description

pi the ith processing element

ni the ith task node

p(ni ) the processing element which ni is allocated

τi the computation volume for ni ∈ N

cij the communication volume occurring along the edge
eij

α(pi) the execution rate for pi

α(p(ni )) the average execution rate for processing elements to
which ni is allocated

β(pi ,pj ) the transferring rates for communication channels
from pi to pj

β(pi) the average transferring rates for communication chan-
nels from pi to other PEs

β the average transferring rates for all communication
channels

pred(ni ) the set of immediate predecessors of ni

succ(ni ) the set of immediate successors of ni

drt(ni ) the latest arrival time of communication data from its
predecessors

est(ni ) the earliest time when node ni can start execution

ect(ni ) the earliest completion time of node ni

b-level(ni ) the length of the longest path from ni to an exit node

u-level(ni ) the longest possible length from the entry nodes to ni

nmp the task with the maximal priority value

ndt the dominant task

ndp the dominant predecessor

where p(ni) ∈ P is the PE that executes ni . Assume that succ(ni) is the set of imme-
diate successors of ni . Initially, ∀ni ∈ N and pred(ni) = ∅, let est(ni) = 0.

The b-level [9, 25] of ni , b-level(ni), is the length of the longest path from ni to
an exit node. We elaborate the formula by taking system heterogeneity into consider-
ation. Formally, ∀ni ∈ N,

b-level(ni) = max
(
cij × β + τj × α

(
p(nj )

) + b-level(nj )
)
, (2)

where nj ∈ succ(ni), α(p(nj )) is the average computation rate of nj , and β is the
average transferring rate.

In the scheduling process, a task is denoted as being examined after it is scheduled
to a PE, or as being unexamined before it is scheduled to a PE. Unexamined tasks are
classified into three sets: (a) a ready set of tasks where the immediate predecessors
of any given ready task are all examined (i.e., precedence constraints are satisfied
and resource contentions are removed); (b) a partially ready set of tasks where at
least one of the immediate predecessors is examined and at least one of its immediate
predecessors is unexamined; and (c) an unready set of tasks in which none of the
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Fig. 1 Example of task
classification

immediate predecessors are examined. Figure 1 shows these situations. After na is
scheduled to a PE, it is examined. The unexamined set includes {nb,nc, nd, ne}, in
which the set {nb,nc} is the ready set, the set {nd} is the partially ready set, and the
set {ne} is the unready set.

Here, we define the u-level(ni) of an unexamined ready or partially ready node, ni ,
as being the longest possible length from the entry nodes to ni . For example, Fig. 1
shows,

u-level(nb) = ect(na) + cab × β
(
p(na)

)
,

where β(p(na)) is the average communication rate from p(na) to other PEs. How-
ever, after nb and nc are examined, then

u-level(nd) = max
(
ect(na) + cad × β

(
p(na)

)
, ect(nb) + cbd × β

(
p(nb)

)
,

ect(nc) + ccd × β
(
p(nc)

))
.

Formally, ∀nj ∈ pred(ni)∩ examined set, and ∀nk ∈ pred(ni)∩ unexamined set,

u-level(ni) = max
(
ect(nj ) + cji × β

(
p(nj )

)
,

u-level(nk) + τk × α
(
p(nk)

) + cki × β
(
p(nk)

))
. (3)

The max–min parallel processing anomaly arises when the completion time ob-
tained after parallelizing is greater than that obtained by sequential execution, and is
caused by a trade-off between maximizing parallelism and minimizing the intertask
communication. This anomaly has previously been discussed in the literature [26].

To overcome the max–min anomaly and reduce the intermediate schedule length
monotonically at each scheduling step, the critical task must be identified at each step
so the final schedule length can be strictly reduced. Finding the selection priority that
accurately reflects the critical tasks in the context of scheduling is a challenge. How-
ever, the critical path may change dynamically as the scheduling progress proceeds
(i.e., a node on a critical path at a given step may not be on the critical path at the
next step). Therefore, it is not necessary to identify the entire critical path at each
scheduling step. We must only consider the tasks on the critical path with immediate
predecessors that are also on the critical path and examined. Such a task is called a
Dominant Task (DT).
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To identify a dominant task in the DPD algorithm, all immediate successors of
the examined tasks are considered, and the task, ndt , with the maximum value of
u-level(ndt ) + τdt × α(ndt ) + b-level(ndt ) is identified as being the dominant task.
However, a DT is not necessarily a ready task.

In general, most of the proposed algorithms fail to exploit schedule holes [8, 27].
These primarily occur when tasks are scheduled after other tasks with higher schedul-
ing priorities. However, these tasks could be scheduled before the higher-priority
tasks without affecting their earliest starting times. Therefore, the DPD algorithm du-
plicates the dominant tasks of a candidate task into these schedule holes to advance its
earliest starting time. Then, the utilization of the PE could be raised, and the earliest
starting time of a given task could be advanced, shortening the final schedule length.
In this study, we use an idle time slot list, with a limited length m, to keep a list of
the last m idle time slots for each PE; and in each scheduling step the DPD algorithm
tries to find the schedule holes in the idle time slot list for each PE.

In this study, a Dominant Predecessor, ndp , of ni is an examined task, which is
scheduled before ni , with precedence constraints or resource contentions between
ndp and ni . When a given task’s dominant predecessor finishes executing, the task’s
execution can be triggered by satisfying precedence constraints and removing re-
source contentions. In other words, a task’s dominant predecessor restricts the ad-
vance of the earliest starting time. The difference between a dominant predecessor
in the DPD algorithm and a critical parent [4, 22] in the HCPFD algorithm is that
the dominant predecessor takes both precedence constraints and resource contentions
into account, whereas the critical parent only considers precedence constraints.

3.2 Dominant predecessor duplication scheduling algorithm

In the DPD algorithm, candidate selection depends on the priority function,

priority(nmp) = max
(
b-level(nmp) − τmp × α(nmp) − u-level(nmp)

)
, (4)

where nmp is the task with the maximum priority value. The priority function is de-
rived as follows: (a) when two tasks (e.g., na and nb) are ready and (b-level(na) −
τa ×α(na)) = (b-level(nb)−τb ×α(nb)), then the task that can be issued earlier (i.e.,
the one with a smaller u-level) should be scheduled first; (b) when two tasks (e.g., na

and nb) are ready and (τa × α(na) + u-level(na)) = (τb × α(nb) + u-level(nb)), then
the one having the larger remaining work should be scheduled first; and (c) when two
tasks (e.g., na and nb) are ready and (b-level(na) − u-level(na)) = (b-level(nb) −
u-level(nb)), then the task that can be scheduled to the PE with the smaller execution
rate (i.e., a higher speed) should be scheduled first to shorten the task’s execution
time. Therefore, we use a composition of these three situations to obtain the priority
function.

First, the DPD algorithm initializes the variables and finds the average execution
and communication rates for all heterogeneous PEs. Initially, the DPD algorithm as-
sumes that each task is assigned to a single virtual PE, and that the communication
overhead between the tasks is the average communication rate multiplied by the com-
munication volume between tasks. Then, the DPD algorithm estimates the b-levels for
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all tasks using the average execution rates of the heterogeneous PEs in a bottom-up
fashion. Let the tasks without predecessors be in the ready set. When the ready set is
not empty, the DPD algorithm repeats the following steps. First, the DPD algorithm
calculates the u-levels of unexamined ready and partial ready tasks, and then finds
the dominant task, ndt . Second, the DPD algorithm schedules the candidate task to
the PE that permits its earliest completion time, taking into consideration that, due to
system heterogeneity, the PE that allows the earliest starting time does not necessarily
allow the earliest completion time for a task. The DPD algorithm identifies the ready
task, nmp , with maximal priority(nmp), and its corresponding PE, p(nmp), where the
ect(nmp) could be obtained. Third, the DPD algorithm finds the nmp’s dominant pre-
decessor, ndp , and its data ready time, drt(ndp). Fourth, if ndt �= nmp , then the DPD
algorithm tries to duplicate ndp to p(nmp) without affecting the u-level of ndt ; oth-
erwise, the DPD algorithm tries to duplicate ndp to p(nmp) in order to advance the
est(nmp). Last, the DPD algorithm allocates nmp to p(nmp) and makes nmp examined.
The repeated steps are listed as follows.

1 Calculate the u-levels of unexamined ready and partial ready tasks.
2 Find the dominant task, ndt , in the ready and partial ready tasks.
3 Find the ready task, nmp , and p(nmp), where the ect(nmp) could be obtained.
4 Find the nmp’s dominant predecessor, ndp , and its data ready time, drt(ndp).
5 If there is a suitable idle time slot in the idle time slot list from drt(ndp) to

est(nmp) to duplicate ndp to p(nmp) then
5.1 if ndt = nmp then

5.1.1 try to duplicate ndp to p(nmp) to advance the est(nmp).
5.2 Else (if ndt �= nmp)

5.2.1 if duplicating ndp to p(nmp) won’t affect the u-level of ndt then try to
duplicate ndp to p(nmp) to advance the est(nmp).

5.3 End if
6 End if
7 Allocate nmp to p(nmp), and make nmp examined.

The sample DAG is shown in Fig. 2. To simplify the analysis, we assume that the
computation cost (i.e., τi × α(p(ni))) of all the tasks in all the PEs can be estimated
as shown in Table 2 (e.g., the computation costs of n1 are 5, 3 and 4 in PE1, PE2
and PE3, respectively), and that the communication rates of all the communication
channels are all unity (i.e., β = 1 for all paired inter-PE communications); therefore,
the numbers listed along the edges are the communication volume; these can also
be considered as being the communication costs when the parent task and its child
task are scheduled in different PEs. For example, when n1 and n2 are scheduled in
different PEs, the communication cost between them has a value of three.

Next, we calculate the average computation costs and b-levels for all the tasks, as
listed in Table 3. When the set of unexamined tasks is not empty, the DPD algorithm
selects an unexamined ready task, nmp , to be scheduled to its corresponding PE. For
example, in the fourth step shown in Table 4, there are four ready nodes: n3, n4,
n6 and n8. Nodes n3 and n4 have the maximum priority, and the DPD algorithm
randomly selects n3 as nmp , and allocates it to PE1 to obtain the minimum earliest
completion time. Because n2 is ndp in this step, n2 can be duplicated to PE1 to
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Fig. 2 Sample DAG

Table 2 Computation costs in
different PEs Task ni PEs

PE1 PE2 PE3

1 5 3 4

2 3 2 7

3 2 4 9

4 7 5 3

5 8 6 7

6 3 4 8

7 4 3 2

8 2 3 4

9 4 5 3

10 6 4 5

decrease the value of ect(n3) from ect(n3) = 13 to ect(n3) = 11. The full list of
steps is presented in Table 4. For comparison, the scheduling results obtained from
the TANH, HCPFD and DPD algorithms are shown in Fig. 3.

The time complexities of the HCPFD, CNPT and TANH scheduling algorithms
are O(|P||N|2), O(|N|2) and O(|N|2), respectively. In the DPD algorithm, the time
complexity for calculating the b-level is O((|N| + |E|)|P|). Steps 1 to 7 are executed
in O(|N|) steps, and the time complexity in calculating the u-levels of unexamined
ready and partial ready tasks is O(|N|), in finding the dominant task, ndt , is O(|N|),
in finding nmp is O(|N|), and in finding nmp’s corresponding PE is O(|P|). The time
complexity of finding ndp requires O(|N|) steps. Checking the idle time slot list to
find the schedule hole requires O(|m|) steps, and testing whether duplicating ndp to
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Table 3 Pre-scheduling
information Task ni Average b-level(ni )

computation costs

1 4 38

2 4 31

3 5 20

4 5 18

5 7 23

6 5 20

7 3 12

8 3 9

9 4 13

10 5 0

Fig. 3 Scheduling results for the sample DAG given in Fig. 2
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Table 4 DPD scheduling steps

Steps Candidate u-level(ni ) Priority nmp p(nmp) ect(nmp) ndp drt(ndp) ndt Duplicated

tasks (ni ) task

1 1 0 34 1 2 3 – – 1 –

2 2 6 21 2 2 5 1 0 2 or 5 –

5 11 5

6 12 3

3 3 11 4 5 2 11 2 3 5 –

4 9 4

5 11 5

6 12 3

4 3 11 4 3 1 13 ↓ 11 2 3 6 or 9 2

4 9 4

6 12 3

8 17 −11

9 20 not

ready

5 4 9 4 4 3 12 2 3 6 or 9 –

6 12 3

7 17 not

ready

8 17 −11

9 20 not

ready

6 6 12 3 6 2 15 5 5 6 or 9 –

7 16 −7

8 17 −11

9 20 not

ready

7 7 16 −7 7 3 18 3 9 9 –

8 17 −11

9 18 −9

8 8 17 −11 9 2 20 6 11 9 or 10 –

9 18 −9

10 30 not

ready

9 8 17 −11 8 2 23 9 15 10 –

10 28 not

ready

10 10 28 −33 10 2 29 7 16 10 –
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p(nmp) would affect the u-level of ndt requires O(|N|) steps. Therefore, the time
complexity of the DPD algorithm is O((|N| + |E|)|P| + |N|(|N| + |P| + |m||N|)) =
O(|P||E| + |m||N|2). Consequently, in practical applications, the complexity of the
DPD algorithm is reasonable with an additional space complexity O(|m||P|).

4 Experimental results

The feasibility of the DPD algorithm is assessed by evaluating several practical ap-
plications (e.g., the Gauss–Jordan Elimination, Fast Fourier Transformation (FFT),
LU factoring, Fork trees, Join trees, and randomly generated program graphs whose
graph sizes vary from 378 to 511 nodes). The computation/communication volumes
required for each task are predetermined for each of the different applications.

4.1 Simulation environment

In our simulation environment, the number of PEs is set to 1, 2, 4, 8, 16 or 32. The
communication to computation ratio (CCR) is the ratio of the average communication
rate to the average computation rate. In this study, the CCR value is set to be 0.1, 0.3,
0.5, 0.7, 0.9, 1.0, 2.0, 4.0, 6.0, 8.0 or 10.0. It is well known that system heterogeneity
may affect the quality of the schedule. The variance in the execution rates, α(pi), of
the heterogeneous PEs is defined as the heterogeneity of computational resources. We
assume that the distribution of execution rates is a normal distribution, with a mean
value of 10 and a variance of 0.2, 0.4, 0.6, 0.8, 1, 2, 4 or 8. As the variance increases,
the heterogeneity of computational resources becomes more obvious. The variance of
the transfer rate, β(pi,pj ), for the communication channels is defined as the hetero-
geneity of the communication mechanisms. We assume that transfer rates also follow
a normal distribution, with a mean value obtained from the CCR multiplied by ten,
and a variance of 0.2, 0.4, 0.6, 0.8, 1, 2, 4 or 8. As the variance increases, the system
heterogeneity also becomes more obvious.

All the simulation programs are coded by C and run on IBM Xserver 206 with Intel
Pentium IV 3.0 GHz, 1 G DDRII RAM and two SCSI 36 G Harddisks. The simulation
environment is built on the Linux operating system, Fedora Core 4 version.

4.2 Related works

Here we apply three algorithms to demonstrate the comparative effectiveness of our
own. The first is a list scheduling algorithm, CNPT [13], which schedules tasks ac-
cording to their priority, and is a task scheduling heuristic that supports heterogeneous
processors.

The second is the TANH algorithm [2], which is based on the clustering and
duplication-based approaches. This algorithm generates initial clusters by arranging
nodes in an ascending order of levels, then either performs a duplication procedure
when the number of available PEs is larger than the number of clusters, or carries out
a processor reduction procedure when the number of available PEs is smaller than
the number of clusters. Message scheduling is achieved in the final step. Because the
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TANH algorithm directly merges tasks in different clusters by their levels to deter-
mine their relative positions in the processor reduction procedure, it fails to consider
the situation where two tasks initially in the same generated cluster may not stay in
the same PE to obtain a better schedule later.

The third, the HCPFD algorithm [4, 20], is based on the list and duplication-based
approaches for a bounded number of fully connected heterogeneous PEs. This algo-
rithm consists of two phases: the listing phase, where the algorithm divides the DAG
into a set of unlisted parent-trees to obtain the sequence of the task assignment, and
the machine assignment phase, where the HCPFD algorithm assigns the candidate
task to the PE that minimizes its completion time, and then tries to duplicate its criti-
cal parent to the idle time slot between the critical parent’s starting time and the last
task assigned in the same PE.

The DPD algorithm differs from the HCPFD algorithm in the following three
ways. First, because the HCPFD algorithm determines the scheduling sequence in
the listing phase, it does not consider the case where the critical path may dynami-
cally change in the scheduling process. Second, instead of duplicating the candidate’s
critical parent at the idle time slot between the critical parent’s starting time and the
last task assigned in the same PE, the DPD algorithm duplicates the candidate’s dom-
inant predecessor to the idle time slot from its data ready time to the starting time
of the candidate node. The DPD algorithm can increase the possibility of finding an
idle time slot for these duplicated dominant predecessors. Third, the DPD algorithm
initially assigns each task to a virtual PE, and then tries to reduce the time complexity
by avoiding reevaluating the ready-task-PE pairs in each scheduling step.

4.3 Performance analyses

Comparatively, the DPD algorithm outperforms the CNPT, TANH and HCPFD algo-
rithms in schedule lengths for practical applications, as shown in Table 5. These pre-
liminary experimental results show the superiority of the DPD algorithm. The sched-
ule lengths obtained by the DPD algorithm are shorter than 81.92% of the studied
cases by the HCPFD algorithm, 87.65% of the studied cases by the TANH algorithm,
and 95.73% of the studied cases by the CNPT algorithm.

The TANH algorithm has a poor performance in the data listed in Table 5 because
it adopts the clustering and duplication approaches. When the number of PEs is not
large enough, the TANH algorithm produces virtual PEs to bring forth scheduling,
and then merges these virtual PEs to fit in with the actual PEs using the level sort-
ing approach. For this reason, the TANH algorithm could not achieve an optimum
schedule.

As the performance of the CNPT algorithm was shown to be worse than that of
the HCPFD algorithm in the literature [4, 20], we omit the performance analysis of

Table 5 Comparison in terms
of scheduling lengths CNPT TANH HCPFD

DPD better than 95.73% 87.65% 81.92%

equal to 0.04% 1.04% 1.86%

worse than 4.23% 11.31% 16.22%
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Fig. 4 Scheduling lengths by varying the number of PEs

the CNPT algorithm, and focus on a comparison of the TANH, HCPFD and DPD al-
gorithms. Figure 4 shows the average scheduling lengths for different applications by
varying the number of PEs. As shown in Fig. 4a, the schedule length obtained by the
DPD algorithm is shorter than that obtained by the other three. This indicates that be-
cause the DPD algorithm dynamically decides the dominant task in each scheduling
step, its scheduling performance is better than that of the others. The HCPFD algo-
rithm decides the scheduling sequence in the listing phase, and lacks enough infor-
mation to reduce the schedule length at each scheduling step. The same experimental
results are also shown in Figs. 4b–f. In general, the DPD algorithm monotonically
reduces the schedule length as the number of PEs increases. This shows that the strict
reduction condition can indeed avoid the max–min anomaly.

Our experimental results also indicate that the DPD algorithm performs better
than the CNPT, TANH or HCPFD algorithms in terms of handling the heterogene-
ity of computational resources and communication mechanisms. Figure 5 shows the
average scheduling lengths for different applications over a range of variances of
computing rates, α, where the variance of α denotes the heterogeneity of the PEs. As
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Fig. 5 Scheduling lengths by varying the variance of computing rates

the variance of α increases, so do the scheduling lengths obtained by the four algo-
rithms. These results clearly indicate that computation heterogeneity affects schedul-
ing performance. The data in Fig. 5 also show that as the variance of α increases,
the variations of the scheduling lengths obtained by the DPD algorithm are less than
those obtained by other algorithms.

Figure 6 shows the average scheduling lengths for different applications over a
range of variances of communication rates, β , where the variance of β denotes the
heterogeneity of the communication mechanism. As the variance of β increases, the
scheduling lengths obtained by the four algorithms also increase. Just as with com-
putation, our experimental results indicate that communication heterogeneity also
affects scheduling performance. In addition, the data in Fig. 6 shows that, as the vari-
ance of β increases, the variations of the scheduling lengths obtained by the DPD
algorithm are less than those obtained by the other algorithms. Figures 5 and 6 show
that the system heterogeneity affects the schedule length, and that it is possible to
generate a parallelized schedule length worse than that obtained by scheduling se-
quentially. This arises from a scheduling anomaly, in which the completion time of a
DAG on a parallel processing system is worse than that on a single PE. This anom-
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Fig. 6 Scheduling lengths by varying the variance of communication rates

aly results from the max–min problem in parallel processing, and is caused by the
trade-off between maximizing the parallelism and minimizing the intertask commu-
nication.

We define utilization as
∑

τi · α(p(ni))/(|P| · max(ect(ni))), where ni includes
the duplicated tasks. In Fig. 7, the average system utilization obtained by the CNPT,
TANH, HCPFD and DPD algorithms reduces monotonically as the number of PEs
increases. The system utilization reasonably reduces as the number of PEs increases
under the same computing volume conditions. Our experimental results show that the
system utilization achieved by the DPD algorithm outperforms the other three algo-
rithms. The main reason for this is that the DPD algorithm dynamically duplicates the
candidate’s dominant predecessor to the idle time slot from the dominant predeces-
sor’s data ready time to the starting time of the candidate node. Therefore, the DPD
algorithm can exploit more resource utilization.

As shown in Fig. 8, the average utilization increases as the communication to com-
putation cost ratio (CCR) increases. Because the DHC system allows overlapping of
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Fig. 7 Utilization by varying
the number of PEs

Fig. 8 Utilization by varying
CCRs

computations and communications that are independent of each other, the utilization
is promoted by duplicating tasks for CCR ≥ 1.

5 Conclusions

Recent advances in high-speed networks make DHC appealing in terms of its per-
formance and cost-effectiveness. We have presented a scheduling algorithm, named
DPD, for heterogeneous computing environments, which has a higher scalability and
lower redundant resource consumption in DHC systems. This algorithm could avoid
the max–min anomaly and exploit schedule holes. Our experimental results show that
scheduling performance is affected by the heterogeneity of computational resources
and communication mechanisms, and by the program structure of applications. The
performance of our DPD algorithm is demonstrated by evaluating practical applica-
tion benchmarks, and our results also show the superiority of our proposed algorithm
to those discussed in the literature. In more than 80% of the studied cases, the DPD
algorithm out performs other compared algorithms in terms of the scheduling length;
and, as the system heterogeneity increases, the variations of the scheduling lengths
obtained by the DPD algorithm are less than those obtained by other algorithms.
The time complexity of the DPD algorithm is O(|P||E| + |m||N|2) with an additional
space complexity O(|m||P|), which is reasonable in practical applications. Therefore,
our proposed scheduling algorithm can be adopted and can work efficiently in de-
signing scheduling strategies for those situations where system heterogeneities cause
performance bottlenecks. [28, 29]
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