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Abstract Loop partitioning on parallel and distributed systems has been a critical
problem. Furthermore, it becomes more difficult to deal with on the emerging het-
erogeneous PC cluster environments. In the past, some loop self-scheduling schemes
have been proposed to be applicable to heterogeneous cluster environments. In this
paper, we propose a performance-based approach, which partitions loop iterations
according to the performance ratio of cluster nodes. To verify the proposed approach,
a heterogeneous cluster is built, and three types of application programs are imple-
mented to be executed in this testbed. Experimental results show that the proposed
approach performs better than traditional schemes.
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1 Introduction

As more and more inexpensive personal computers (PC) are available, clusters of
PCs have become alternatives of supercomputers which many research projects can-
not afford. Usually, a cluster connects several commodity computers by a local area
network. Therefore, it is natural that a cluster consists of computers with various
processors, memories and hard disk drives because of the fast development of infor-
mation technology. However, it is difficult to deal with the heterogeneity in a cluster
[1–4, 6, 13–15, 17, 18].

Loop scheduling and load balancing on parallel and distributed systems are critical
problems, but it is difficult to cope with these problems, especially on the emerg-
ing PC-based clusters. Traditional loop self-scheduling approaches include static
scheduling and dynamic scheduling. However, the former considers computing nodes
as homogeneous resources, thus not suitable for heterogeneous environments. Be-
sides, the latter, especially self-scheduling, still can be improved.

Previous researchers propose some useful self-scheduling schemes, which are ap-
plicable to PC-based cluster [17, 18] and grid computing environments [5, 12, 19].
These schemes are composed of two phases. In the first phase, system configuration
information is collected, and some portion of the workload is distributed among slave
nodes according to their CPU clock speed [17] or HINT measurements [5, 18, 19].
After that, the remaining work load is scheduled by some well-known self-scheduling
scheme, such as GSS [10]. Nevertheless, the performance of this approach depends
on the appropriate choice of scheduling parameters. Besides, it estimates node perfor-
mance only by CPU speed or HINT benchmark, which is one of the factors affecting
node performance. In [5], an enhanced scheme, which dynamically adjusts schedul-
ing parameters according to system heterogeneity, is proposed.

Intuitively, we may want to partition loop iterations according to CPU clock speed.
However, the CPU clock is not the only factor which affects node performance. Many
other factors also have dramatic influences in this respect, such as the amount of
memory available, the cost of memory accesses, and the communication medium
between nodes, and so forth. Using this intuitive approach, the result will be degraded
if the performance estimation is not accurate.

In this paper, we propose a general approach which utilizes performance functions
to estimate the performance ratio of each node. To verify the proposed approach, a
heterogeneous cluster is built, and three types of application programs, matrix multi-
plication, Mandelbrot and circuit satisfiability, are implemented to be executed in this
testbed. Empirical results show that the proposed approach can obtain performance
improvement on previous schemes, for heterogeneous cluster environments.

Previous work in [5, 12, 18, 19] and this paper are all inspired by [17], the α self-
scheduling scheme. However, this work has different viewpoints and unique con-
tribution. First, while [5, 18] partition α% of workload according to performance
weighted by CPU clock speed in phase one, the proposed scheme conducts the par-
tition according to a general performance function (PF). In this paper, we do not
define performance function explicitly. Instead, application execution time is used
to estimate the value of PF for all nodes. The PF obtained by simulation execution
can estimate performance of cluster nodes rather accurately. The calculation of PR is
presented later.
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Second, the scheme in [17] utilizes a fixed α value, and [5, 18] adaptively adjust
the α value according to the heterogeneity of the cluster. In a word, both schemes
depend on a properly chosen α value to get good performance. Nevertheless, the
proposed scheme focuses on accurate estimation of node performance, so the choice
of α value is not very critical. In other words, we can roughly choose the α value
from a larger range than previous schemes can. Third, in our implementation, the
master node also participates in computation. However, in previous schemes, only
slave nodes do computation work.

The rest of this paper is organized as follows. In Sect. 2, the background about
parallel loop scheduling and cluster computing is reviewed. In Sect. 3, we define
our model and describe our approach. Next, our system configuration is specified
and experimental results on three types of application programs are also presented in
Sect. 4. Finally, the conclusion remarks are given in the last section.

2 Review of loop self-scheduling schemes

Traditional static loop scheduling schemes make scheduling decisions at compiling
time, and equally assign workload to processors. It is applied when each iteration
takes roughly the same amount of time, and the compiler knows enough relative in-
formation before compilation. Its advantage is less scheduling overhead, while the
disadvantage is possible load-imbalance. Well-known static scheduling schemes in-
clude block Scheduling, cyclic Scheduling, block-D scheduling, cyclic-D scheduling
[9], and so forth. However, these schemes are not suitable for heterogeneous clusters.

In [17], a heuristic was proposed to distribute workload according to CPU perfor-
mance. In heterogeneous clusters, it is difficult to estimate node performance. In [11],
it is indicated that many attributes influence system performance, include CPU clock
speed, available memory, communication cost, and so forth. Yang et al. [18] tried to
evaluate computer performance by HINT benchmark. Nevertheless, HINT requires
hours to execute, so it is not suitable for frequent execution.

In contrast, dynamic scheduling is more suitable for load balancing. Nevertheless,
the runtime overhead must be taken into consideration. The schemes we focus in this
paper are self-scheduling, which is a large class of adaptive and dynamic centralized
loop scheduling schemes. In a common self-scheduling scheme, p denotes the num-
ber of processors, N denotes the total iterations and f () is a function to produce the
chunk-size at each step. The output of f is the chunk-size for the next iteration. The
design of the function f depends on the scheduling strategy of the scheme. For ex-
ample, in GSS [9], f is defined as the number of remaining iterations of a parallel
loop divided by the number of available processors. At the ith scheduling step, the
master computes the chunk-size Ci and the remaining number of tasks Ri ,

R0 = N, Ci = f (i,p), Ri = Ri−1 − Ci, (1)

where f () possibly has more parameters than just i and p, such as Ri−1. The master
assigns Ci tasks to an idle slave and the load imbalance will depend on the execution
time gap between the nodes [6, 9]. Different ways to compute Ci have given rise to
different scheduling schemes. The most notable examples are Pure Self-Scheduling
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Table 1 Example partition size

Scheme Example partition size

PSS 1, 1, 1, 1, 1, 1, 1, 1, 1, . . .

CSS(128) 128, 128, 128, 128, 128, 128, 128, 128

GSS [10] 256, 192, 144, 108, 81, 61, 46, 34, 26, . . .

FSS [7] 128, 128, 128, 128, 64, 64, 64, 64, 32, . . .

TSS [16] 128, 120, 112, 104, 96, 88, 80, 72, 64, . . .

(PSS), Chunk Self-Scheduling (CSS), Factoring Self-Scheduling (FSS), Guided Self-
Scheduling (GSS), and Trapezoid Self-Scheduling (TSS) [7, 10, 16]. Table 1 shows
the different chunk sizes for a problem with the number of iteration N = 1024 and
the number of processor p = 4.

Pure Self-Scheduling (PSS) is the first straightforward dynamic loop scheduling
algorithm. In this paper, a processor is said to be idle if it has not been assigned a
chunk of workload or it has finished the assigned workload. That is, an idle node does
not have a chunk of workload to execute. Whenever a processor gets idle, iterations
are assigned to it. This algorithm achieves good load balancing but induces excessive
overhead [9].

Chunk Self-Scheduling (CSS) assigns k iterations each time, where k, the chunk
size, is fixed and must be specified by either the programmer or by the compiler.
When k is 1, the scheme is purely self-scheduling, as discussed above. Large chunk
sizes cause load imbalances, while small chunk sizes are likely to produce excessive
scheduling overhead [9].

Guided Self-Scheduling (GSS) can dynamically change the numbers of iterations
assigned to idle processors [10]. More specifically, the next chunk size is determined
by dividing the number of remaining iterations of a parallel loop by the number of
available processors. The property of decreasing chunk size implies that an effort is
made to achieve load balancing and to reduce the scheduling overhead. By assigning
large chunks at the beginning of a parallel loop, one can reduce the frequency of
communication between master and slaves. The small chunks at the end of a loop
partition serve to balance the workload across all working processors.

Factoring Self-Scheduling (FSS) assigns loop iterations to working processors in
phases [7]. During each phase, only a subset of remaining loops iterations (usually
half) is equally divided among available processors. Because FSS assigns a subset of
the remaining iterations in each phase, it balances workloads better than GSS when
loop iteration computation times vary substantially. The synchronization overhead of
FSS is not significantly greater than that of GSS.

Trapezoid Self-Scheduling (TSS) tries to reduce the need for synchronization
while still maintaining reasonable load balances [16]. TSS(Ns,Nf ) assigns the first
Ns iterations of a loop to the processor starting the loop and the last Nf iterations to
the processor performing the last fetch, where Ns and Nf are both specified by ei-
ther the programmer or parallelizing compiler. This algorithm allocates large chunks
of iterations to the first few processors and successively smaller chunks to the last
few processors. Tzen and Ni [16] proposed TSS(N/2p,1) as a general selection.
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In this case, the first chunk is of size N/2p, and consecutive chunks differ in size
N/8p2 iterations. The size difference of successive chunks is always a constant in
TSS, whereas it is a decreasing function in GSS and in FSS.

In [17], the authors revise known loop self-scheduling schemes to fit all hetero-
geneous PC clusters environment when loop is regular. An approach is proposed to
partition loop iterations by two phases and it achieves good performance in any het-
erogeneous environment: partition α% of workload according to their performance
weighted by CPU clock in the first phase and the rest (100 − α)% of workload ac-
cording to known self-scheduling in the second phase. The experimental results are
conducted on a cluster environment with six nodes and the fastest computer is 6 times
faster than the slowest ones in CPU-clock cycle. Many various α values are applied
to the matrix multiplication and a best performance is obtained with α = 75.

3 The proposed approach: HPLS (Heuristic Parallel Loop Scheduling)

In this section, the performance function is defined first, and then the proposed algo-
rithm is described.

3.1 Performance function

We propose to partition α% of workload according to the performance ratio of
all nodes, and the remaining workload is dispatched by some well-known self-
scheduling scheme, such as GSS [10]. Using this approach, we do not need to know
the real computer performance. However, a good performance ratio is desired to es-
timate performance of nodes accurately.

To estimate the performance of each slave node, we define a performance function
(PF) for a slave node j as

PFj (V1,V2, . . . , VM), (2)

where Vi,1 < i < M , is a variable of the performance function. In this paper, our PF
for node j is defined as

PFj = w × 1/tj
∑

∀nodei∈S 1/ti
, (3)

where S is the set of all cluster nodes, ti is the execution time (sec.) of node i for
some application program, such as matrix multiplication, and w is the weight of this
term.

The performance ratio (PR) is defined to be the ratio of all performance functions.
For instance, assume the PF of three nodes are 1/2, 1/3 and 1/4. Then, the PR is
1/2 : 1/3 : 1/4; i.e., the PR of the three nodes is 6 : 4 : 3. In other words, if there are
13 loop iterations, 6 iterations will be assigned to the first node, 4 iterations will be
assigned to the second node, and 3 iterations will be assigned to the last one.

In this paper, we do not define performance function explicitly. Instead, applica-
tion execution time is used to estimate the value of PF for all nodes. The PF obtained
by simulation execution can estimate performance of computing nodes accurately.
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Fig. 1 Performance ratio of 16
processors for our
heterogeneous cluster

The calculation of PR is presented as follows, and the performance ratio is illustrated
in Fig. 1.

First, the PFs of all nodes are estimated by experimental simulation. Execution
time of the target program on all computing nodes is recorded, and their reciprocals
are taken to form the performance function values. A good performance ratio is de-
sired to predict performance of nodes accurately. The proposed approach is based
on the simulated performance of computing nodes to distributed work load, so it is
important to know the simulated performance of all nodes. For example, NGSS [17]
is executed on each node, and the size of input matrix is 512 × 512.

To normalize the values of performance functions, we compute performance ratios
(PR) as follows. First, the reciprocal of performance function of each node is taken.
Then, the ratios of these reciprocals are defined as PR of cluster nodes. For instance,
assume the PF of two nodes are 1/2 and 1/3. Then, the PR is 1/2 : 1/3. Consequently,
the PR of the two nodes is 3 and 2, respectively. In other words, if there are 5 loop
iterations, 3 will be assigned to the former and 2 will be assigned to the latter.

3.2 Algorithm

With this approach, the computing node with better performance will get more data
to process. The parameter α should not be too large or too small. In former case, the
dominant computer will not finish its work. In the latter case, the dynamic schedul-
ing overhead is significant. In both cases, good performance can not be attained. An
appropriate α value will lead to good performance.

Based on the information of workload distribution and node performance, we pro-
pose an algorithm for performance-based loop scheduling on heterogeneous cluster
environments. This algorithm is based on a message-passing paradigm, and consists
of two modules: a master module and a slave module. The master module makes
the scheduling decision and dispatches workloads to slaves. Then, the slave mod-
ule processes the assigned work. This algorithm is just a skeleton, and the detailed
implementation, such as data preparation, parameter passing, and so forth, might be
different according to requirements of various applications.

The algorithm is composed of several steps. First, the related information are ac-
quired. Then, the performance ratio is calculated. Next, α percent of the total work-
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load is statically scheduled according to the performance ratio among all slave nodes.
Finally, the remainder of the workload is dynamically scheduled by guided self-
scheduling for load balancing. The algorithm is described as follows.

4 Experimental results

To verify our approach, a heterogeneous PC-based cluster is built, and three types of
application programs are implemented with MPI to be executed on this testbed. To
begin with, our cluster environment is illustrated, and terminologies for our programs
are described. Next, performance of our scheme is compared with that of other static
and dynamic schemes on the heterogeneous cluster, with respect to matrix multipli-
cation, Mandelbrot and circuit satisfiability. Finally, performance comparison on a
homogeneous cluster is discussed.
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Table 2 Hardware configuration

Host CPU type CPU speed Number of CPU RAM

Cluster 1: Heterogeneous cluster

hpc Intel XeonTM 2.4 GHz 2 1 GB

amd1 AMD AthlonTM MP 1.8 GHz 2 2 GB

amd1-dual1 AMD AthlonTM MP 2.2 GHz 2 512 MB

amd1-dual01 AMD AthlonTM MP 2.0 GHz 2 2 GB

dna2 AMD AthlonTM MP 2.0 GHz 2 2 GB

piii-dual1 Intel Pentium III 866 MHz 2 1 GB

xeon2 Intel XeonTM 3.0 GHz 2 512 MB

hpc2 Intel XeonTM 3.0 GHz 2 1 GB

Cluster 2: Homogeneous cluster

amd1 AMD AthlonTM MP 1.8 GHz 2 2 GB

amd2 AMD AthlonTM MP 1.8 GHz 2 2 GB

amd3 AMD AthlonTM MP 1.8 GHz 2 2 GB

amd4 AMD AthlonTM MP 1.8 GHz 2 2 GB

4.1 Grid hardware configuration and terminology

We have built a heterogeneous cluster and a homogeneous one. The former consists of
8 PCs, and each has 3COMTM 3C9051 10/100 Fast Ethernet NIC interconnected via
an Accton CheetahSwitch AC-EX3016B Switch HUB. Similarly, the latter is com-
posed of 4 PCs, and each has 3COMTM 3C9051 10/100 Fast Ethernet NIC inter-
connected via an Accton CheetahSwitch AC-EX3016B Switch HUB. The hardware
configuration of the two clusters is specified in Table 2.

We have implemented three categories of application programs in C language,
with message passing interface (MPI) directives for parallelizing code segments to
be processed by multiple CPUs. For readability of experimental results, the descrip-
tion of our implementation for all programs is listed in Table 3. In this paper, the
scheduling parameter α is set to be 50 for all hybrid schemes, except for the schemes
by [17], of which α is dynamically adjustable according to cluster heterogeneity.

4.2 Application 1: matrix multiplication

The matrix multiplication is a fundamental operation in many numerical linear al-
gebra applications. Many parallel algorithms have been designed, implemented, and
tested on different parallel computers or cluster of workstations for matrix multipli-
cation. This operation derives a resultant matrix by multiplying two input matrices,
A and B , where A is a matrix of m rows by p columns and matrix B is one of p rows
by n columns. The resultant matrix is one of m rows by n columns.

We have implemented the proposed algorithm for matrix multiplication. The mas-
ter module is responsible for the distribution of workloads. When a slave node be-
comes idle, the master node sends two integers to the slave. The two numbers repre-
sent the beginning and ending pointers to the assigned chunk, respectively. In other
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Table 3 Description of our implementation for all programs

AP Name Description Reference

Matrix multiplication matstat Static scheduling [9]

matgss Dynamic scheduling (GSS) [10]

matngss0 Fixed α scheduling + GSS [17]

matngss2 Adaptive α scheduling + GSS [5]

mathgss Our hybrid scheduling + GSS

matfss Dynamic scheduling (FSS) [7]

matnfss0 Fixed α scheduling + FSS [17]

matnfss2 Adaptive α scheduling + FSS [5]

mathfss Our hybrid scheduling + FSS

mattss Dynamic scheduling (TSS) [16]

matntss0 Fixed α scheduling + TSS [17]

matntss2 Adaptive α scheduling + TSS [5]

mathtss Our hybrid scheduling + TSS

Mandelbroot set manstat Static scheduling [9]

mangss Dynamic scheduling (GSS) [10]

manngss0 Fixed α scheduling + GSS [17]

manngss2 Adaptive α scheduling + GSS [5]

manhgss Our hybrid scheduling + GSS

manfss Dynamic scheduling (FSS) [7]

mannfss0 Fixed α scheduling + FSS [17]

mannfss2 Adaptive α scheduling + FSS [5]

manhfss Our hybrid scheduling + FSS

mantss Dynamic scheduling (TSS) [16]

manntss0 Fixed α scheduling + TSS [17]

manntss2 Adaptive α scheduling + TSS [5]

manhtss Our hybrid scheduling + TSS

Circuit satisfiability satstat Static scheduling [9]

satgss Dynamic scheduling (GSS) [10]

satngss0 Fixed α scheduling + GSS [17]

satngss2 Adaptive α scheduling + GSS [5]

sathgss Our hybrid scheduling + GSS

satfss Dynamic scheduling (FSS) [7]

satnfss0 Fixed α scheduling + FSS [17]

satnfss2 Adaptive α scheduling + FSS [5]

sathfss Our hybrid scheduling + FSS

sattss Dynamic scheduling (TSS) [16]

satntss0 Fixed α scheduling + TSS [17]

satntss2 Adaptive α scheduling + TSS [5]

sathtss Our hybrid scheduling + TSS
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words, every node has a copy of the input matrices locally, so data communication
is not significant in this kind of implementation. Therefore, communication cost be-
tween the master and the slave is low, and the dominant cost is the computation of
matrix multiplication. The C/MPI code fragment of the slave module for matrix mul-
tiplication is listed as follows. As the source code shows, a column is the atomic unit
of allocation. The workload for each column can be considered equal, which is com-
posed of a fixed number of computation. Therefore, the distribution of workload can
attain good performance.

First, execution time on the heterogeneous cluster for GSS group is investigated.
Figure 2(a) illustrates execution time of static (matstat), dynamic (matgss) and our
hybrid scheme (mathgss), with input matrix size 512×512, 1024×1024 and 1536×
1536, respectively. Experimental results show that our hybrid scheduling scheme got
better performance than static and dynamic ones. In this case, our scheme for input
size 1536 × 1536 got 37% and 26% performance improvement over the static one
and the dynamic one, respectively.

Figure 2(b) illustrates execution time of previous hybrid schemes (matngss0 and
matngss2) and our hybrid scheme (mathgss), with input matrix size 512 × 512,
1024×1024 and 1536×1536 respectively. Experimental results show that our hybrid
scheduling scheme got better performance than static and dynamic ones. In this case,
our scheme for input size 1536 × 1536 got 4% and 14% performance improvement
over the static one and the dynamic one, respectively.
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Fig. 2 Matrix multiplication
execution time on the
heterogeneous cluster for GSS
group schemes. a Static,
dynamic and our hybrid scheme;
b hybrid schemes: matngss0,
matngss2 and our mathgss

(a)

(b)

Next, execution time on the heterogeneous cluster for FSS group is investigated.
Figure 3(a) illustrates execution time of static (matstat), dynamic (matfss) and our
hybrid scheme (mathfss), with input matrix size 512 × 512, 1024 × 1024 and 1536 ×
1536, respectively. Experimental results show that our hybrid scheduling scheme got
better performance than static and dynamic ones. In this case, our scheme for input
size 1536 × 1536 got 38% and 1% performance improvement over the static one and
the dynamic one, respectively.

Figure 3(b) illustrates execution time of previous hybrid schemes (matnfss0 and
matnfss2) and our hybrid scheme (mathfss), with input matrix size 512 × 512,
1024 × 1024 and 1536 × 1536, respectively. Experimental results show that our hy-
brid scheduling scheme got better performance than static and dynamic ones. In this
case, our scheme for input size 1536 × 1536 got 5% and 15% performance improve-
ment over the static one and the dynamic one, respectively.

Finally, execution time on the heterogeneous cluster for TSS group is investigated.
Figure 4(a) illustrates execution time of static (matstat), dynamic (mattss) and our
hybrid scheme (mathtss), with input matrix size 512 × 512, 1024 × 1024 and 1536 ×
1536, respectively. Experimental results show that our hybrid scheduling scheme got
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Fig. 3 Matrix multiplication
execution time on the
heterogeneous cluster for FSS
group schemes. a Static,
dynamic and our hybrid scheme;
b hybrid schemes: matnfss0,
matnfss2 and our mathfss

(a)

(b)

better performance than static and dynamic ones. In this case, our scheme for input
size 1536 × 1536 got 23% and 13% performance improvement over the static one
and the dynamic one, respectively.

Figure 4(b) illustrates execution time of previous hybrid schemes (matntss0 and
matntss2) and our hybrid scheme (mathtss), with input matrix size 512 × 512,
1024 × 1024 and 1536 × 1536, respectively. Experimental results show that our hy-
brid scheduling scheme got better performance than static and dynamic ones. In this
case, our scheme for input size 1536 × 1536 got 6% performance improvement over
the static one.

4.3 Application 2: Mandelbrot set computation

The Mandelbrot set is a problem involving the same computation on different data
points which have different convergence rates [8]. The Mandelbrot set, named after
Benoit Mandelbrot, is a fractal. Fractals are objects that display self-similarity at
various scales. Magnifying a fractal reveals small-scale details similar to the large-
scale characteristics. Although the Mandelbrot set is self-similar at magnified scales,
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Fig. 4 Matrix multiplication
execution time on the
heterogeneous cluster for TSS
group schemes. a Static,
dynamic and our hybrid scheme;
b hybrid schemes: matntss0,
matntss2 and our mathtss

(a)

(b)

the small scale details are not identical to the whole. In fact, the Mandelbrot set is
infinitely complex. Yet the process of generating it is based on an extremely simple
equation involving complex numbers. This operation derives a resultant image by
processing an input matrix, A, where A is an image of m pixels by n pixels. The
resultant image is one of m pixels by n pixels.

The PLS scheme has been implemented for Mandelbrot set computation. The
master module is responsible for the distribution of workload. When a slave node
becomes idle, the master node sends two integers to the slave. As implemented in
matrix multiplication, communication cost between the master and the slave is low,
and the dominant cost is the computation of Mandelbrot set. The C/MPI code frag-
ment of the slave module for Mandelbrot set computation is listed as follows. In
this application, the workload for each iteration of the outer loop is irregular be-
cause the number of execution for convergence is not a fixed number. Therefore, the
performance for workload distribution depends on the degree of variation for each
iteration.
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First, execution time on the heterogeneous cluster for GSS group is investigated.
Figure 5(a) illustrates execution time of static (manstat), dynamic (mangss) and our
hybrid scheme (manhgss), with input image size 64 × 64, 128 × 128 and 192 × 192,
respectively. Experimental results show that our hybrid scheduling scheme got better
performance than static and dynamic ones. In this case, our scheme for input size
192 × 192 got 95% and 29% performance improvement over the static one and the
dynamic one, respectively.

Figure 5(b) illustrates execution time of previous hybrid schemes (manngss0
and manngss2) and our hybrid scheme (manhgss), with input image size 64 × 64,
128 × 128 and 192 × 192, respectively. Experimental results show that our hybrid
scheduling scheme got better performance than static and dynamic ones. In this case,
our scheme for input size 192 × 192 got no performance improvement over the static
one and the dynamic one, respectively.

Next, execution time on the heterogeneous cluster for FSS group is investigated.
Figure 6(a) illustrates execution time of static (manstat), dynamic (manfss) and our
hybrid scheme (manhfss), with input image size 64 × 64, 128 × 128 and 192 × 192,
respectively. Experimental results show that our hybrid scheduling scheme got better
performance than static and dynamic ones. In this case, our scheme for input size
192 × 192 got 95% and 27% performance improvement over the static one and the
dynamic one, respectively.

Figure 6(b) illustrates execution time of previous hybrid schemes (mannfss0
and mannfss2) and our hybrid scheme (manhfss), with input image size 64 × 64,
128 × 128 and 192 × 192, respectively. Experimental results show that our hybrid
scheduling scheme got better performance than static and dynamic ones. In this case,
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Fig. 5 Mandelbrot execution
time on the heterogeneous
cluster for GSS group schemes.
a Static, dynamic and our hybrid
scheme; b hybrid schemes:
matngss0, matngss2 and our
mathgss

(a)

(b)

our scheme for input size 192×192 got 4% and 15% performance improvement over
the static one and the dynamic one, respectively.

Finally, execution time on the heterogeneous cluster for TSS group is investigated.
Figure 7(a) illustrates execution time of static (manstat), dynamic (mantss) and our
hybrid scheme (manhtss), with input image size 64 × 64, 128 × 128 and 192 × 192,
respectively. Experimental results show that our hybrid scheduling scheme got better
performance than static and dynamic ones. In this case, our scheme for input size
192 × 192 got 95% performance improvement over the static one.

Figure 7(b) illustrates execution time of previous hybrid schemes (manntss0 and
manntss2) and our hybrid scheme (manhtss), with input image size 64×64, 128×128
and 192 × 192, respectively. Experimental results show that our hybrid scheduling
scheme got better performance than static and dynamic ones. In this case, our scheme
for input size 192 × 192 got no performance improvement over the static one and the
dynamic one, respectively.
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Fig. 6 Mandelbrot execution
time on the heterogeneous
cluster for FSS group schemes.
a Static, dynamic and our hybrid
scheme; b hybrid schemes:
matnfss0, matnfss2 and our
mathfss

(a)

(b)

4.4 Application 3: circuit satisfiability

The circuit satisfiability problem is one involving a combinational circuit composed
of AND, OR, and NOT gates. Simply speaking, the question can be described as
follows: is there an assignment of Boolean values to the inputs that makes the output
to be 1? A circuit is satisfiable if there exists a set of Boolean input values that makes
the output of the circuit to be 1. The circuit satisfiability problem is NP-complete,
and no known algorithms can solve it in polynomial time. In the experiment, we find
the solutions through an exhaustive search. This operation gets a number as input,
which is the number of Boolean variables in the expression. After that, the algorithm
exhaustively computes all combinations of these Boolean values.

The circuit satisfiability problem is also implemented in a similar way. The master
module is responsible for the distribution of workload. When a slave node becomes
idle, the master node sends two integers to the slave. As implemented in matrix multi-
plication, communication cost between the master and the slave is low, and the dom-
inant cost is the computation of Mandelbrot set. The C/MPI code fragment of the
slave module for Mandelbrot set computation is listed as follows. In this application,
the workload for each iteration of the outer loop is irregular because the number of
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execution for testing satisfiability is not a fixed number. Therefore, the performance
for workload distribution depends on the degree of variation for each iteration.

First, execution time on the heterogeneous cluster for GSS group is investigated.
Figure 8(a) illustrates execution time of static (satstat), dynamic (satgss) and our hy-
brid scheme (sathgss), with input variable numbers 14, 15 and 16, respectively. Ex-
perimental results show that our hybrid scheduling scheme got better performance
than static and dynamic ones. In this case, our scheme for input size 16 got 47%
performance improvement over the static one.

Figure 8(b) illustrates execution time of previous hybrid schemes (satngss0 and
satngss2) and our hybrid scheme (sathgss), with input size 14, 15 and 16, respec-
tively. Experimental results show that our hybrid scheduling scheme got better per-
formance than static and dynamic ones. In this case, our scheme for input size 16 got
no performance improvement over the static one and the dynamic one, respectively.

Next, execution time on the heterogeneous cluster for FSS group is investigated.
Figure 9(a) illustrates execution time of static (satstat), dynamic (satfss) and our hy-
brid scheme (sathfss), with input variable numbers 14, 15 and 16, respectively. Ex-
perimental results show that our hybrid scheduling scheme got better performance
than static and dynamic ones. In this case, our scheme for input size 16 got 50%
performance improvement over the static one.

Figure 9(b) illustrates execution time of previous hybrid schemes (satnfss0 and
satnfss2) and our hybrid scheme (sathfss), with input size 14, 15 and 16, respectively.
Experimental results show that our hybrid scheduling scheme got better performance
than static and dynamic ones. In this case, our scheme for input size 16 got no per-
formance improvement over the static one and the dynamic one, respectively.

Finally, execution time on the heterogeneous cluster for TSS group is investigated.
Figure 10(a) illustrates execution time of static (satstat), dynamic (sattss) and our
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Fig. 7 Mandelbrot execution
time on the heterogeneous
cluster for TSS group schemes.
a Static, dynamic and our hybrid
scheme; b hybrid schemes:
matntss0, matntss2 and our
mathtss

(a)

(b)

hybrid scheme (sathtss), with input variable numbers 14, 15 and 16, respectively.
Experimental results show that our hybrid scheduling scheme got better performance
than static and dynamic ones. In this case, our scheme for input size 16 got 49%
performance improvement over the static one.

Figure 10(b) illustrates execution time of previous hybrid schemes (satntss0 and
satntss2) and our hybrid scheme (sathtss), with input size 14, 15 and 16, respectively.
Experimental results show that our hybrid scheduling scheme got better performance
than static and dynamic ones. In this case, our scheme for input size 16 got no per-
formance improvement over the static one and the dynamic one, respectively.

4.5 Performance on the homogeneous cluster

For comparison, execution time on the homogeneous cluster for GSS group is investi-
gated. Figure 11 illustrates execution time of static (matstat), α scheduling (matngss0)
and our hybrid scheme (mathgss), with input matrix size 512 × 512, 1024 × 1024,
1536 × 1536 and 2048 × 2048, respectively. Experimental results show that our hy-
brid scheduling scheme got slightly worse performance than static one.
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Fig. 8 Circuit satisfiability
execution time on the
heterogeneous cluster for GSS
group schemes. a Static,
dynamic and our hybrid scheme;
b hybrid schemes: matngss0,
matngss2 and our mathgss

(a)

(b)

4.6 Summary and discussion

We have conducted experiments for three types of applications. In this section, ex-
perimental results are summarized, and descriptions for analysis and justification are
given.

• Our HPLS got performance improvement on static scheduling schemes for het-
erogeneous clusters. Among these schemes, HPLS performs better than other
schemes. The reason is that HPLS accurately estimates the PR, and takes the ad-
vantage of static scheduling, thus reducing the runtime overhead. The static scheme
obviously performs worse than other dynamic schemes. It is reasonable to say that
the static scheme is not suitable for a dynamic and heterogeneous environment,
with respect to performance.

• Our scheme also got performance improvement on self-scheduling schemes for
heterogeneous cluster environments. Traditional self-scheduling schemes (GSS,
FSS and TSS) perform worse than HPLS. The reason is that HPLS takes hetero-
geneity of computing nodes into account. Traditional schemes might assign a large
chunk of workload to a slower CPU, thus resulting in a bottleneck.
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Fig. 9 Circuit satisfiability
execution time on the
heterogeneous cluster for FSS
group schemes. a Static,
dynamic and our hybrid scheme;
b hybrid schemes: matnfss0,
matnfss2 and our mathfss

(a)

(b)

• The workload distribution of matrix multiplication is more regular than the other
two applications. When the workload of each iteration is roughly the same as other
ones, it is easier for scheduling schemes to make scheduling decisions, attaining
load balance. Although HPLS does not consider the effect of irregular workload, its
two-phased dispatching strategy can alleviate the performance degradation proba-
bly brought by the irregularity.

• In homogeneous cluster environments, our scheme got slightly worse performance
than static scheme did. The main reason is the overhead of HPLS for collecting
and calculating performance ratio. The static scheme does not consider the het-
erogeneity of computing nodes, and always equally dispatches workload to each
node. When the environment is homogeneous and the application has regular work-
load distribution, the static scheme can attain good performance. However, real
world environments are usually not like this case. A small variation in the com-
puting platform or workload distribution can result in disaster for the static ap-
proach.
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Fig. 10 Circuit satisfiability
execution time on the
heterogeneous cluster for TSS
group schemes. a Static,
dynamic and our hybrid scheme;
b hybrid schemes: matntss0,
matntss2 and our mathtss

(a)

(b)

Fig. 11 Matrix multiplication
execution time on the
homogeneous cluster for GSS
group schemes: static, matngss0
and our hybrid scheme
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5 Conclusions and future work

In this paper, we propose a heuristic scheme, which combines the advantages of static
and dynamic loop scheduling schemes, and compare it with previous algorithms by
experiments on three types of application programs in heterogeneous cluster environ-
ment. In each case, our approach can obtain performance improvement on previous
schemes. Besides, our approach is less sensitive to α values than previous schemes;
in other words, it is more robust. In our future work, we will implement more types
of application programs to verify our approach. Furthermore, we hope to find bet-
ter ways of modeling the performance function, incorporating network information.
Also, a theoretical analysis of the proposed method will be addressed.
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