
J Supercomput (2007) 41: 247–267
DOI 10.1007/s11227-007-0115-7

A performance-based parallel loop scheduling on grid
environments

Wen-Chung Shih · Chao-Tung Yang ·
Shian-Shyong Tseng

Published online: 6 April 2007
© Springer Science+Business Media, LLC 2007

Abstract The effectiveness of loop self-scheduling schemes has been shown on tra-
ditional multiprocessors in the past and computing clusters in the recent years. How-
ever, parallel loop scheduling has not been widely applied to computing grids, which
are characterized by heterogeneous resources and dynamic environments. In this pa-
per, a performance-based approach, taking the two characteristics above into con-
sideration, is proposed to schedule parallel loop iterations on grid environments. Fur-
thermore, we use a parameter, SWR, to estimate the proportion of the workload which
can be scheduled statically, thus alleviating the effect of irregular workloads. Exper-
imental results on a grid testbed show that the proposed approach can reduce the
completion time for applications with regular or irregular workloads. Consequently,
we claim that parallel loop scheduling can benefit applications on grid environments.

Keywords Parallel loop scheduling · Performance · Self-scheduling ·
Grid computing · Globus Toolkit

W.-C. Shih · S.-S. Tseng
Department of Computer Science, National Chiao Tung University, Hsinchu, 30010, Taiwan

W.-C. Shih
e-mail: gis90805@cis.nctu.edu.tw

S.-S. Tseng
e-mail: sstseng@cis.nctu.edu.tw

C.-T. Yang (�)
High-Performance Computing Laboratory, Department of Computer Science and Information
Engineering, Tunghai University, Taichung, 40704, Taiwan
e-mail: ctyang@thu.edu.tw

S.-S. Tseng
Department of Information Science and Applications, Asia University, Taichung, 41354, Taiwan
e-mail: sstseng@asia.edu.tw



248 W.-C. Shih et al.

1 Introduction

As computers become more and more inexpensive and powerful, computational grids
which consist of various computational and storage resources have become promising
alternatives to traditional multiprocessors and computing clusters [1, 6–8]. Basically,
grids are distributed systems which share resources through the internet. Users can
access more computing resources through grid technologies. However, bad manage-
ment of grid environments might result in using grid resources in an inefficient way.
Moreover, the heterogeneity and dynamic changing of the grid environment make it
different from conventional parallel and distributed computing systems, such as mul-
tiprocessors and computing clusters. Therefore, it becomes more difficult to utilize
the grid efficiently.

Loop scheduling on parallel and distributed systems is an important problem, and
has been thoroughly investigated on traditional parallel computers in the past [11, 12,
15, 20, 22]. Traditional loop scheduling approaches include static scheduling and dy-
namic scheduling. The former is not suitable in dynamic environments. The latter, es-
pecially self-scheduling, has to be adapted to be applied to heterogeneous platforms.
Therefore, it is difficult to schedule parallel loops on the heterogeneous and dynamic
grid environments. In recent years, several pieces of work has been devoted to paral-
lel loop scheduling for cluster computing environments [2, 4, 5, 23, 25], addressing
the heterogeneity of computing power. In [23], a useful self-scheduling scheme was
proposed to be applicable to extremely heterogeneous PC clusters. This two-phased
scheme collects system configuration information, and distributes α percentage of
the total workload to slave nodes according to their CPU clock speed. After that, the
remainder of the workload is scheduled by a conventional scheme, such as Guided
Self-scheduling (GSS) [15]. Nevertheless, the performance of this approach depends
on the appropriate choice of the parameter, α. In fact, it estimates node performance
only by CPU speed, which is one of the factors affecting node performance. In [25],
an enhanced scheme was proposed, which dynamically adjusted the parameter α ac-
cording to system heterogeneity. However, the value of α should depend on dynamic
environments and workloads, instead of the heterogeneity of systems.

Intuitively, we would partition the total workload according to CPU clock speed.
However, the CPU speed is not the only factor which affects node performance. Many
other factors also have dramatic influences in this respect, such as the amount of
memory available, the cost of memory accesses, and the communication bandwidth
between nodes, etc. Using this intuitive approach, the result will be degraded if the
performance estimation is not accurate.

In this paper, we propose a general approach called PLS (Performance-based Loop
Scheduling). This approach utilizes performance functions to estimate the perfor-
mance of each node. To verify our approach, a grid testbed was built, and two types
of applications, matrix multiplication and Mandelbrot set computation, were imple-
mented and executed in this testbed. Experimental results showed that our approach
could obtain performance improvement on grid environments.

Previous work in [16, 17] and this paper are all inspired by [23]. However, this
work has different viewpoints and unique contributions. First, we show that paral-
lel loop scheduling can still be applied to grid environments to reduce the completion



A performance-based parallel loop scheduling on grid environments 249

time of a program. Second, we put great emphasis on accurate estimation of node per-
formance, rather than dynamically adjust scheduling parameters as in [25], to achieve
efficient loop scheduling. In addition, both static configuration and dynamic environ-
mental information are taken into consideration for estimation of node performance,
which is not found in previous work. Finally, we have implemented two types of
applications and investigate the setting of parameters on a grid testbed to verify our
approach. Our previous work [16, 17] used a performance function to estimate the
heterogeneous performance of nodes. However, the characteristics of dynamic grid
environments and irregular workloads are not considered. In this paper, a more ac-
curate performance function is proposed. In addition, dynamic information acquired
from a monitoring tool is utilized to adapt to the dynamic environment. Furthermore,
a sampling method is proposed to estimate the proportion of the workload to be as-
signed statically.

In [3, 24], the authors enhanced their self-scheduling schemes for clusters and
applied this approach to grid platforms. However, the dynamically changing char-
acteristic of computing grids has not been investigated. The reliability issue of the
grid is addressed in [10], but this is out of the scope of this paper, which is focused
on the performance issue. Besides, a theoretical view of dynamic loop scheduling is
presented in [19], but its assumptions are not specific to grid environments.

The remainder of this paper is organized as follows. In Sect. 2, background on
parallel loop scheduling and grid computing is reviewed. In Sect. 3, we describe our
methodology to solve the parallel loop scheduling problem. Next, the configuration
of our grid testbed is specified and experimental results on two types of applications
are also presented in Sect. 4. Finally, the concluding remarks are given in the last
section.

2 Background review

In this section, a prerequisite for our research is described. First, we review previous
loop scheduling schemes. Then, the evolution of grid computing and its middleware
are presented.

2.1 Loop scheduling schemes

Conventionally, loop scheduling schemes are classified according to the time when
the scheduling decision is made. Static loop scheduling schemes make a scheduling
decision at compile time, and equally assign the total iterations of a loop to proces-
sors. It is applied when each iteration of a loop takes roughly the same amount of
time, and the compiler knows enough related information before compilation. Its
advantage is less overhead at runtime, while the disadvantage is possible load im-
balance. Well-known static scheduling schemes include Block Scheduling, Cyclic
Scheduling, Block-D Scheduling, Cyclic-D Scheduling, etc. However, these schemes
are not suitable for dynamic grid environments.

Dynamic loop scheduling schemes make a scheduling decision at runtime. Its dis-
advantage is more overhead at runtime, while the advantage is load balance. The
schemes we focus in this paper are self-scheduling, which a large class of dynamic



250 W.-C. Shih et al.

loop scheduling schemes. Several self-scheduling schemes have been reviewed in
[25], and they are restated here as follows.

• Pure Self-scheduling (PSS) This is a straightforward dynamic loop scheduling
algorithm [12]. Whenever a processor becomes idle, a loop iteration is assigned to
it. This algorithm achieves good load balance but also induces excessive overhead.

• Chunk Self-scheduling (CSS) Instead of assigning one iteration to an idle proces-
sor at one time, CSS assigns k iterations each time, where k, called the chunk size,
is a constant. When the chunk size is one, this scheme is PSS, as discussed above.
If the chunk size is set to the bound of the parallel loop equally divided by the
number of processors, this scheme becomes static scheduling. A large chunk size
will cause load imbalance while a small chunk size is likely to result in too much
runtime overhead.

• Guided Self-scheduling (GSS) This scheme can dynamically change the number
of iterations assigned to each processor [15]. More specifically, the next chunk size
is determined by dividing the number of remaining iterations of a parallel loop by
the number of available processors. The property of decreasing chunk size implies
an effort is made to achieve load balance and to reduce the runtime overhead.
By assigning large chunks at the beginning of a parallel loop, one can reduce the
frequency of communication between the master and slaves.

• Factoring Self-scheduling (FSS) In some cases, GSS might assign too much work
to the first few processors, so that the remaining iterations are not time-consuming
enough to balance the workload. The Factoring algorithm addresses this problem
[11]. The assignment of loop iterations to working processors proceeds in phases.
During each phase, only a subset of the remaining loop iterations (usually half) is
divided equally among the available processors. Therefore, it balances loads better
than GSS does when the computation times of loop iterations vary substantially. In
addition, the synchronization overhead of Factoring is not significantly larger than
that of GSS.

• Trapezoid Self-scheduling (TSS) This approach tries to reduce the need for syn-
chronization while still maintaining a reasonable load balance [22]. TSS(Ns,Nf )

assigns the first Ns iterations of a loop to the processor starting the loop and the last
Nf iterations to the processor performing the last fetch, where Ns and Nf are both
specified by the programmer or the system. This algorithm allocates large chunks
of iterations to the first few processors and successively smaller chunks to the last
few processors. Tzen and Ni proposed TSS(N/2p,1) as a general selection. In this
case, the first chunk is of size N/2p, and consecutive chunks differ in size N/8p2

iterations.

Table 1 shows the chunk sizes for the self-scheduling schemes above with respect
to a loop with 1000 iterations. Besides, the number of available processors is 4.

In [23], the authors enhanced well-known loop self-scheduling schemes to fit an
extremely heterogeneous PC cluster environment. A two-phased approach was pro-
posed to partition loop iterations and it achieved good performance in heterogeneous
testbeds. For example, GSS can be enhanced by partitioning α percentage of the total
iterations according to their performance weighted by CPU clock in the first phase.
Then, the remainder of the workload is still scheduled by GSS. In this paper, this
enhanced scheme is called NGSS.



A performance-based parallel loop scheduling on grid environments 251

Table 1 Sample partition size
Scheme Sample partition size

PSS 1, 1, 1, 1, 1, 1, 1, 1, 1, . . .

CSS(125) 125, 125, 125, 125, 125, 125, 125, 125

GSS 250, 188, 141, 106, 79, 59, 45, 33, 25, . . .

FSS 125, 125, 125, 125, 63, 63, 63, 63, 31, . . .

TSS 125, 117, 109, 101, 93, 85, 77, 69, 61, . . .

In [25], NGSS was further enhanced by dynamically adjusting the parameter α

according to system heterogeneity. A performance benchmark was used to determine
whether target systems are relatively homogeneous or relatively heterogeneous. In
addition, the types of loop iterations were classified into four classes, and were ana-
lyzed respectively. The scheme enhanced from GSS is called ANGSS in this paper.

2.2 Grid computing and its middleware

The term “metacomputing” was first proposed in [18] and its goal was to provide
the research community with a “Seamless Web” linking the user interface on the
workstation and supercomputers. With the advent of networking technologies such as
Ethernet and ATM, it has become possible to connect computers for the widespread,
efficient sharing of data. As high performance networks have become less expensive,
and as the price of commodity computers has dropped, it is now possible to connect
a number of inexpensive computers through a high-speed network to conduct high
performance computing.

Grid computing [6–8] can be thought of as distributed and large-scale cluster com-
puting and as a form of networked parallel processing. It can be confined to the net-
work of computer workstations within a corporation or it can be a public collabora-
tion (in which case it is also sometimes known as a form of peer-to-peer computing).
Grid computing appears to be a promising trend for three reasons. First, it promises
to make more cost-effective use of a given amount of computer resources. Second,
it has potential to solve problems that can not be approached without an enormous
amount of computing power. Finally, it suggests that the resources of many comput-
ers can be cooperatively harnessed and managed as collaboration toward a common
objective.

The Globus Project [9] provides software tools that make it easier to build com-
putational grids and grid-based applications. These tools are collectively called the
Globus Toolkit. The Globus Toolkit is used by many organizations to build com-
putational grids that can support their applications. The composition of the Globus
Toolkit can be pictured as three pillars: Resource Management, Information Services,
and Data Management. Each pillar represents a primary component of the Globus
Toolkit and makes use of a common foundation of security. GRAM implements a
resource management protocol, MDS implements an information services protocol,
and GridFTP implements a data transfer protocol. They all use the GSI security pro-
tocol at the connection layer.

The Monitoring and Discovery Service (MDS) is the information service com-
ponent of the Globus Toolkit. It provides Grid information, such as resources that



252 W.-C. Shih et al.

are available and the state of the computational Grid. This information may include
properties of the machines, computers, and networks in your Grid, such as the num-
ber of processors available, CPU load, network interfaces, file system information,
bandwidth, storage devices, and memory.

2.2.1 Dynamic monitoring tools

Several tools have been developed to monitor a large number of machines in a stand-
alone host as well as hosts in a cluster. For examples, Ganglia is an Open Source
project and available on SourceForge at http://ganglia.sourceforge.net. It grew out
from the University of California, Berkeley, Millennium Cluster Project in collab-
oration with the National Partnership for Advanced Computational Infrastructure
(NPACI) Rocks Cluster Group. Ganglia provide a complete, real-time monitoring
and execution environment based on a hierarchical design. It uses a multicast lis-
ten/announce protocol to monitor node status, and uses a tree of point-to-point con-
nections to coordinate clusters of clusters and aggregate their state information. Gan-
glia uses the eXtensible Markup Language (XML) to represent data, eXternal Data
Representation (XDR) for compact binary data transfers, and an open source pack-
age called RRDTool for data storage (in Round Robin databases) and for graphical
visualization.

These tools can be useful because they monitor the availability of services on a
host and detect if a host is overloaded, but they do not generally provide performance
monitoring information at the level of detail needed to tune the performance of a
Beowulf cluster. In this paper, Ganglia is utilized to acquire dynamic system infor-
mation, such as CPU loading of available nodes.

2.2.2 MPI

MPI is a message-passing library standard that was published in May 1994. The
“standard” of MPI is based on the consensus of the participants in the MPI Forums,
organized by over 40 organizations. Participants include vendors, researchers, acad-
emics, software library developers and users. MPI offers portability, standardization,
performance and functionality. MPICH-G2 [14] is a grid-enabled implementation of
the MPI v1.1 standard. That is, using services from the Globus Toolkit, MPICH-
G2 allows you to couple multiple machines, potentially of different architectures, to
run MPI applications. MPICH-G2 automatically converts data in messages sent be-
tween machines of different architectures and supports multiprotocol communication
by automatically selecting TCP for inter-machine messaging and (where available)
vendor-supplied MPI for intra-machine messaging. Existing parallel programs writ-
ten for MPI can be executed over the Globus infrastructure just after recompilation. In
this paper, we used the C language associated with MPI to program the applications,
such as Matrix Multiplication and Mandelbrot Set Computation [13].

3 Proposed approach

In this section, the system model is introduced first. Then, the parameters of perfor-
mance ratio and static-workload ratio are described. Finally, we present the skeleton
algorithm for the performance-based loop scheduling.



A performance-based parallel loop scheduling on grid environments 253

Fig. 1 The system model

3.1 The system model

The system in this work is modeled by a master-slave paradigm, which is represented
by a star graph, G = (N,E). In this graph, N means the set of all nodes on the grid,
and E is the set of all edges between the master and the slaves. For example, as shown
in Fig. 1, N is {P0,P1, . . . ,Pn} and E is {L1,L2, . . . ,Ln}. In this example, P0 is the
master node and the other n nodes, P1, . . . ,Pn, are slave nodes. Conceptually, there
is a virtual link Li connecting the master node and a slave node Pi . In reality, Li may
be composed of several networking segments connected by switches or/and routers.

In this model, there are two kinds of attributes associated with nodes, constants and
variables. The values of the constant attributes do not vary during the lifetime of the
node. For example, CPU clock speed, memory size, etc. are all constant attributes. On
the other hand, the values of the variable attributes may fluctuate during the lifetime
of the node. For example, CPU loading, available memory size, etc. are all constant
attributes. In the following sections, the two kinds of attributes are utilized to model
the heterogeneity of the dynamic grid.

Programming models are generally classified by the way memory is used. In the
shared memory model each process accesses a shared address space, while in the
message passing model processes communicate with other processes by sending and
receiving messages. The message-passing paradigm is adopted in this paper. Basi-
cally, the programmer assumes the system consists of several processors, each with
its own memory space, and writes a program to run on each processor. However, par-
allel programming generally requires communication between the processors to com-
plete a task. The characteristic of the message-passing paradigm is that the proces-
sors communicate by sending messages instead of shared memory. Therefore, in the
message-passing model, processors can not access each other’s memory directly.

3.2 Performance ratio

The concept of performance ratio is previously defined in [18–20] in different forms
and parameters, according to the requirements of applications. In this work, a differ-
ent formulation is proposed to model the heterogeneity of the dynamic grid nodes.
The purpose of calculating performance ratio is to estimate the current capability of



254 W.-C. Shih et al.

processing for each node. With this metric, we can distribute appropriate workloads
to each node, and load balancing can be achieved. The more accurate the estimation
is, the better the load balance is.

To estimate the performance of each slave node, we define a performance function
(PF) for a slave node j as

PFj (V1,V2, . . . , Vm) (1)

where Vi , 1 < i < m, is a variable of the performance function. In more detail, the
variables could include CPU speed, networking bandwidth, memory size, etc. We
propose to utilize a Grid Resource Monitoring Tool [21] to acquire the values of
variable attributes for all slaves, and to acquire the values of constant attributes by
MDS. In this paper, the PF for node j is defined as

PFj = CSj /CLj
∑

∀nodei∈N CSi/CLi

(2)

where N is the set of all grid nodes; CSi is the CPU clock speed of node i, and it
is a constant attribute. The value of this parameter is acquired by the MDS service,
as described in Sect. 2.2.1; CLi is the CPU loading of node i, and it is a variable
attribute. The value of this parameter is acquired by the Ganglia tool, as described in
Sect. 2.2.2.

The performance ratio (PR) is defined to be the ratio of all performance functions.
For instance, assume the values of PFs of three nodes are 1/2, 1/3 and 1/4. Then,
the PR is 1/2:1/3:1/4; i.e., the PR of the three nodes is 6:4:3. In other words, if there
are 13 loop iterations, 6 iterations will be assigned to the first node, 4 iterations will
be assigned to the second node, and 3 iterations will be assigned to the last one.

3.3 Static-workload ratio (SWR)

Another important factor to be estimated is the degree of variation for applications
with irregular workload. For example, the Mandelbrot set computation is a problem
involving the same computation on different data points which have different con-
vergence rates [13]. This operation derives a resultant image by processing an input
matrix which is an image of m pixels by n pixels. The resultant image is one of m

pixels by n pixels. Figure 2 illustrates the workload distribution of a Mandelbrot set
on [−1.8,0.5] to [−1.2,1.2] using a 800 × 800 pixel window. Obviously, a schedul-
ing scheme which does not consider the effect of fluctuating workload would result
in load imbalancing.

We propose to use a parameter, SWR (Static-Workload Ratio), to alleviate the ef-
fect of irregular workload. In order to take advantage of static scheduling, SWR per-
centage of the total workload is dispatched according to Performance Ratio. If the
workload of the target application is regular, SWR can be set to be 100. However,
if the application has irregular workload, such as Mandelbrot Set Computation, it is
efficient to reserve some amount of workload for load balancing.

We propose to randomly take five sampling iterations, and compute their execu-
tion time. Then, the SWR of the target application i is determined by the following



A performance-based parallel loop scheduling on grid environments 255

Fig. 2 The Mandelbrot set on [−1.8,0.5] to [−1.2,1.2] an 800 × 800 pixel window

formula.

SWRi = mini

MAXi

(3)

where mini is the minimum execution time of all sampled iterations for application i;
MAXi is the maximum execution time of all sampled iterations for application i.

For example, for a regular application with uniform workload distribution, the five
sampled iterations are the same. Therefore, the SWR is 100%, and the whole workload
can be dispatched according to Performance Ratio, with good load balance. However,
for another application, the five sampling execution time might be 7, 7.5, 8, 8.5 and
10 seconds, respectively. Then the SWR is 7/10, i.e. a percentage of 70. Therefore,
70 percentages of the iterations would be scheduled statically according to PR, while
30 percentages of the iterations would be scheduled dynamically by GSS.

3.4 The skeleton algorithm

Based on the information of workload distribution and node performance, we pro-
pose a skeleton algorithm for performance-based loop scheduling on grid environ-
ments. This algorithm is based on a message-passing paradigm, and consists of two
modules: a master module and a slave module. The master module makes the schedul-
ing decision and destinies workloads to slaves. On the other hand, the slave module
processes the assigned work. This algorithm is just a skeleton, and the detailed im-
plementation, such as data preparation, parameter passing, etc., might be different
according to requirements of various applications.

Our algorithm is composed of four stages. In stage one, the related information
are acquired. Then, stage two calculates the SWR and Performance Ratio. Next, SWR
percentage of the total workload is statically scheduled according to the performance
ratio among all slave nodes in stage three. Finally, the remainder of the workload is
dynamically scheduled by Guided Self-Scheduling for load balancing. The algorithm
of our approach is described as follows.

Module MASTER
Initialization

/* Stage 1: Gathering the information */



256 W.-C. Shih et al.

collect the following information from
Grid_Monitoring_Tool and MDS:

(1) CPU_Loading
(2) CPU_Clock_Speed

collect the execution time of 5 sampled iterations

/* Stage 2: Calculate two scheduling parameters */
calculate SWR of the workload
calculate Performance Ratio of all slave nodes

/* Stage 3: Static Scheduling */
dispatch SWR percentage of workload according
to Performance Ratio
probe and receive for returned results

/* Stage 4: dynamic Scheduling */
dispatch the (100-SWR)percentage of workload by GSS

Finalization
END MASTER

Module SLAVE
Initialization
While (a chunk of workload arrives) {
receive the chunk of workload
Compute on this chunk

Send the result to the Master

}
Finalization
END SLAVE

4 Experimental results

To verify our approach, a grid testbed was built, and two types of application pro-
grams were implemented: Matrix Multiplication and Mandelbrot Set Computation.
While the former has regular workload, the latter has irregular workload. First, the
execution time of the PLS scheme was compared with those of previous schemes.
Next, the impact of the parameter, SWR, on performance was investigated.

4.1 Grid testbed: TIGER Project [21]

A metropolitan-scale Grid computing platform named TIGER Grid [21] (standing
for Taichung Integrating Grid Environment and Resource) has been built in a project
leaded by Tunghai University. The TIGER grid interconnects computing resources of



A performance-based parallel loop scheduling on grid environments 257

Fig. 3 The logical diagram of our grid test-bed

universities and high schools and shares available resources among them, for investi-
gations in system technologies and high performance applications. This novel project
shows the viability of implementation of such a project in a metropolitan city. The
TIGER Grid computing platform consists of three universities and two high schools,
all located in Taichung, Taiwan. The project of constructing such a grid infrastructure
was to share computational resources of each institution.

The educational institutions participating in this project are Tunghai University
(THU), Providence University (PU), HsiuPing Institute of Tech (HIT), National Dali
High School (DL) and Li-Zen High School (LZ). They are interconnected by TANet
(Taiwan Academic Network) with bandwidth of 1 Gbps. The TIGER Grid platform
consists of 33 computing nodes, with 58 CPUs of different speed and total storage of
more than 2TB. All these institutions are in Taiwan, and each is at least 10 kilometers
away from THU geographically. All machines in this grid have Globus 3.2.1 or above
installed.

In this paper, we have built a grid testbed based on part of the TIGER Grid and
executed parallelized MPI programs on it. The master node is at Tunghai University
(THU), and the slave nodes are located at Tunghai University (THU), Providence
University (PU), Li-Zen High School (LZ), and Hsiuping Institute of Technology
School (HIT). Figure 3 shows our grid testbed, and the specifications of the grid
testbed are shown in Table 2. Figure 4 shows the real-time status of the grid testbed
acquired by the monitoring tool, which is based on Ganglia [21].

4.2 Experiments on two applications

In this study, we have implemented two classes of applications in C language, with
message passing interface (MPI) directives for parallelizing code segments to be
processed by multiple CPUs. For readability of experimental results, the brief de-
scription of all implemented programs is listed in Table 3.

The conventional static scheduling scheme is to equally distribute the total work-
load to each worker at compile time. However, this scheme is obviously not suitable



258 W.-C. Shih et al.

F
ig

.4
T

he
sn

ap
sh

ot
of

th
e

m
on

ito
ri

ng
to

ol
on

th
e

T
IG

E
R

G
ri

d



A performance-based parallel loop scheduling on grid environments 259

Table 2 Specifications of computing resources on the test-bed

Site Host CPU type Clock RAM NIC Linux Globus

(MHz) kernel version

THU Delta1 Intel Pentium 4 3001 1 GB 1 G 2.6.12 4.0.1

Delta2 Intel Pentium 4 3001 1 GB 1 G 2.6.12 4.0.1

Delta3 Intel Pentium 4 3001 1 GB 1 G 2.6.12 4.0.1

Delta4 Intel Pentium 4 3001 1 GB 1 G 2.6.12 4.0.1

LZ lz01 Intel Celeron 898 256 MB 10/100 2.4.20 3.2.1

lz02 Intel Celeron 898 256 MB 10/100 2.4.20 3.2.1

lz03 Intel Celeron 898 384 MB 10/100 2.4.20 3.2.1

lz04 Intel Celeron 898 256 MB 10/100 2.4.20 3.2.1

HIT Gridhit0 Intel Pentium 4 2800 512 MB 10/100 2.6.12 3.2.1

Gridhit1 Intel Pentium 4 2800 512 MB 10/100 2.6.12 3.2.1

Gridhit2 Intel Pentium 4 2800 512 MB 10/100 2.6.12 3.2.1

Gridhit3 Intel Pentium 4 2800 512 MB 10/100 2.6.12 3.2.1

PU hpc09 AMD Athlon XP 1991 1 GB 1 G 2.4.22 3.2.1

hpc10 AMD Athlon XP 1991 1 GB 1 G 2.4.22 3.2.1

hpc11 AMD Athlon XP 1991 1 GB 1 G 2.4.22 3.2.1

hpc12 AMD Athlon XP 1991 1 GB 1 G 2.4.22 3.2.1

Table 3 Description of all
implemented programs Scheduling scheme Description Reference

static Weighted static scheduling

gss Dynamic scheduling (GSS) [15]

fss Dynamic scheduling (FSS) [11]

tss Dynamic scheduling (TSS) [22]

ngss Fixed α scheduling + GSS [23]

angss Adaptive α scheduling + GSS [25]

pls Proposed scheduling

for dynamic and heterogeneous environments. Therefore, a weighted static schedul-
ing scheme is adopted in this experiment. The principle of partitioning is according
to the CPU clock speed of each processor. A faster node will get more workloads
than a slower one proportionally.

4.2.1 Application 1: Matrix Multiplication

Matrix Multiplication is a fundamental operation in many numerical linear algebra
applications. Its efficient implementation on parallel computers is an issue of prime
importance when providing such systems with scientific software libraries. Conse-
quently, considerable effort has been devoted in the past to the development of effi-
cient parallel matrix multiplication algorithms, and this will remain a task in the fu-



260 W.-C. Shih et al.

ture as well. Many parallel algorithms have been designed, implemented, and tested
on different parallel computers or cluster of workstations for matrix multiplication.

We have implemented the PLS scheme for Matrix Multiplication. The Master
module is responsible for the distribution of workloads. When a slave node becomes
idle, the master node sends two integers to the slave. The two numbers represent the
beginning and ending pointers to the assigned chunk respectively. In other words,
every node has a copy of the input matrices locally, so data communication is not
significant in this kind of implementation. Therefore, communication cost between
the master and the slave is low, and the dominant cost is the computation of matrix
multiplication. The C/MPI code fragment of the Slave module for Matrix Multipli-
cation is listed as follows. As the source code shows, a column is the atomic unit of
allocation.

MPI_Recv(buf, count, MPI_FLOAT, source, tag,
MPI_COMM_WORLD, &status);
f=0;
while (status.MPI_TAG >0)
{
for (i=0; i<(count/SIZE); i++)

for (j=0; j<SIZE; j++)
c[i*SIZE+j]=0.0;

/* computing */
for (i=0; i<(count/SIZE); i++)

for (j=0; j<SIZE; j++)
for (k=0; k<SIZE; k++)

c[i*SIZE+j] += buf[i*SIZE+k]*b[k*SIZE+j];

/* sent result*/
MPI_Send(c, count, MPI_FLOAT, 0, tag,
MPI_COMM_WORLD);
free(buf);
free(c);

/* get another size */
MPI_Probe(0, MPI_ANY_TAG, MPI_COMM_WORLD,
&status);
source = status.MPI_SOURCE;
tag = status.MPI_TAG;
MPI_Get_count(&status, MPI_FLOAT, &count);
buf = (float*)malloc(count*sizeof(float));
c = (float*)malloc(count*sizeof(float));
MPI_Recv(buf, count, MPI_FLOAT, 0, MPI_ANY_TAG,

MPI_COMM_WORLD, &status);
}

}



A performance-based parallel loop scheduling on grid environments 261

Fig. 5 Execution time for
Matrix Multiplication with
different input sizes

First, we want to compare the proposed PLS scheme with previous schemes with
respect to the execution time. Figure 5 illustrates the execution time of weighted static
scheduling, GSS, FSS, TSS, NGSS, ANGSS and our PLS scheme, with input matrix
size 512 × 512, 1024 × 1024 and 1536 × 1536 respectively. The results are shown as
follows.

• Among these schemes, PLS performs better than other schemes. The reason is that
PLS accurately estimates the PR, and takes the advantage of static scheduling, thus
reducing the runtime overhead.

• The static scheme obviously performs worse than other dynamic schemes. It is
reasonable to say that the static scheme is not suitable for a dynamic environment,
with respect to performance.

• It is interesting that traditional self-scheduling schemes (FSS and TSS) perform
slightly better than NGSS and ANGSS. However, this result is inconsistent with
that of previous research. The reason might be that the parameter α is set too high,
75. If the parameter α is set appropriately, it is possible for NGSS and ANGSS
to perform better, as previous work has shown. This claim will be validated in the
following experiment.

Next, it is interesting to compare the parameter α in NGSS and the SWR in PLS.
Basically, the parameter α is set by the programmer, and it is difficult to choose an
appropriate value adaptive to the dynamic environment. In contrast, SWR is auto-
matically set by the algorithm. Figure 6 shows how scheduling parameters influence
performance. As the figure shows, the behavior of PLS is more robust than the α self-
scheduling schemes, NGSS. In this experiment, we find that NGSS gets near-optimal
performance when α is 30. However, PLS shows very stable performance at every
value of SWR. The reason is that PLS can accurately estimate the performance ratio
and thus performs well when the workload is regular, even without the help of SWR.

4.2.2 Application 2: Mandelbrot set computation

The Mandelbrot set is a problem involving the same computation on different data
points which have different convergence rates [13]. The Mandelbrot set, named after



262 W.-C. Shih et al.

Fig. 6 Execution time for Matrix Multiplication with different values of parameters

Benoit Mandelbrot, is a fractal. Fractals are objects that display self-similarity at
various scales. Magnifying a fractal reveals small-scale details similar to the large-
scale characteristics. Although the Mandelbrot set is self-similar at magnified scales,
the small scale details are not identical to the whole. In fact, the Mandelbrot set is
infinitely complex. Yet the process of generating it is based on an extremely simple
equation involving complex numbers. This operation derives a resultant image by
processing an input matrix, A, where A is an image of m pixels by n pixels. The
resultant image is one of m pixels by n pixels.

The PLS scheme has been implemented for Mandelbrot Set Computation. The
Master module is responsible for the distribution of workload. When a slave node
becomes idle, the master node sends two integers to the slave. As implemented in
Matrix Multiplication, communication cost between the master and the slave is low,
and the dominant cost is the computation of Mandelbrot Set. The C/MPI code frag-
ment of the Slave module for Mandelbrot Set Computation is listed as follows.

MPI_Probe(0, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
source = status.MPI_SOURCE;
tag = status.MPI_TAG;
MPI_Get_count(&status, MPI_INT, &count);
MPI_Recv(&b[0], count, MPI_INT, source, tag,
MPI_COMM_WORLD, &status);
while (status.MPI_TAG >0) {
/* Compute pixels in parallel */

//t1 = MPI_Wtime();
for (i = 0; i < Nx*Ny; i++)pix_tmp[i]=0.0;

for (y = b[0]; y < b[1]; y++){
for (x = 0; x < Nx; x++){

c.real = Rx_min +
((double) x * (Rx_max - Rx_min)/
(double) (Nx - 1));



A performance-based parallel loop scheduling on grid environments 263

c.imag = Ry_min +
((double) y * (Ry_max - Ry_min)/
(double) (Ny - 1));

pix_tmp[y*Nx+x] = cal_pixel(c);
}//for x

}//for y
/* sent result*/
MPI_Send(&b[0], count, MPI_INT, 0, tag,
MPI_COMM_WORLD);
/* get another size */
MPI_Probe(0, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
source = status.MPI_SOURCE;
tag = status.MPI_TAG;
MPI_Get_count(&status, MPI_INT, &count);
MPI_Recv(&b[0], count, MPI_INT, source, tag,
MPI_COMM_WORLD,&status);
}

Fig. 7 Execution time for
Mandelbrot set computation
with different input sizes

In the following experiment, we want to compare the execution time of previous
schemes with the proposed PLS. Figure 7 illustrates the execution time of GSS, FSS,
TSS, NGSS, ANGSS and our PLS scheme, with input image size 64×64,128 × 128
and 192×192 respectively. The execution time of weighted static scheduling is omit-
ted due to its bad performance. According to the experience in Matrix Multiplication,
the parameter α is set to 30. The results are shown as follows.

• Among these schemes, PLS still performs better than other schemes. The reason
is also that PLS accurately estimates the PR, and takes the advantage of static
scheduling, thus reducing the runtime overhead.

• Traditional self-scheduling schemes (GSS, FSS and TSS) perform worse than
NGSS and ANGSS. The reason is that irregular workload is difficult to sched-
ule. If the parameter α is set appropriately, it is certain for NGSS and ANGSS to
perform better, as previous work has shown.



264 W.-C. Shih et al.

Fig. 8 Execution time for Mandelbrot set computation with different values of parameters

Next, the parameter α in NGSS and the SWR in PLS are compared for irregular
workload. Figure 8 shows how scheduling parameters influence performance. In this
experiment, we find that NGSS gets near-optimal performance when α = 50. How-
ever, PLS shows stable performance at every value of SWR. In other words, PLS is
more robust. However, the degree of fluctuation of PLS becomes larger than that for
Matrix Multiplication. The reason is that, when the workload is irregular, the accu-
racy of estimation would be reduced slightly.

4.2.3 Characterization of irregular workload

In this section, we propose a parameter to characterize irregular workload. Based on
this characterization, five types of irregular workloads are generated manually, and
execution times of aforementioned schemes for these workloads are compared.

Figure 9 shows the proposed workload distribution model and two special cases.
In this model, as shown in Fig. 9a, the x-axis means the workload size of one iter-
ation, and the x-axis represents the frequency of some workload size. For example,
the coordinate pair (9,5) means that there are 5 iterations and each has a workload
size of 9 (units). This model represents a workload distribution by two parameters:
Width and Height. The distribution shown in Fig. 9b means all iterations have almost
the same workload size. Therefore, this special case is an example of regular work-
load. For example, the workload distribution of Matrix Multiplication is like Fig. 9b.
However, Fig. 9c illustrates a special case of irregular workload. In this figure, there
are iterations with almost all sizes. In other words, the degree of workload variation
is large, and it is a extreme irregular workload.

We define the Width-Height Ratio (WHR) as follows.

WHR = Width

Height
(4)

In (4), the parameters Width and Height are those shown in Fig. 9a.
To study the impact of irregular workload on execution time of loop scheduling

schemes, we generate five workloads with different Width-Height Ratio (WHR), and
execute aforementioned loop scheduling schemes on them. The results are shown in
Fig. 10.



A performance-based parallel loop scheduling on grid environments 265

Fig. 9 Workload distribution model

Fig. 10 Execution time for five
types of synthetic irregular
workloads

4.2.4 Overhead

The overhead of the proposed approach results mainly from Stage 1 and Stage 2,
in the Master module. The additional cost consists of information reading, sampled
iteration execution, and parameter calculation.

The first step of Stage 1 is to collect information of CPU loading and CPU clock
speed of each node. In our grid test-bed, the information is stored in the Master node
and updated periodically by the Grid Monitoring Tool. Therefore, the cost of this step
is n × Tread, where n is the number of available nodes in the grid and Tread is the time
to read a local variable.

The second step of Stage 1 is to gather the execution time of five sampled it-
erations, which are five quantile-numbers. For example, assume that there are 100
iterations. The five samples are: the first, 25th, 50th, 75th, and 100th iteration. The
cost of this sampling process is a few simple arithmetic operations. Then, the five
samples are executed. When the problem size is large enough, the execution time of
the samples can be neglected. In Stage 2, SWR and PR are calculated. The cost is to
evaluate formula (2) and (3).

Compared with the whole workload, these costs are insignificant. In fact, this
claim is consistent with the experimental results in Sects. 4.2.1 and 4.2.2. In these
experiments, the total execution time of the proposed approach includes these over-



266 W.-C. Shih et al.

head costs. When the problem size is small (64 × 64 in Mandelbrot set computation),
the proposed approach did not outperform conventional schemes. Nevertheless, as the
problem size increases, the proposed approach obviously outperforms conventional
schemes. In other words, the benefit is larger than the overhead when the problem
size is large enough.

5 Conclusions

In this paper, we have investigated the parallel loop scheduling problem on dynamic
and heterogeneous grid environments. First, a performance-based approach was pro-
posed to schedule parallel loops on grid environments. In this approach, the system
heterogeneity is estimated by performance functions, and the dynamic environment is
estimated by Static-Workload Ratio. On our grid platform, the proposed approach can
obtain performance improvement on previous schemes. In our future work, we will
implement more types of application programs to verify our approach. Furthermore,
we will take network bandwidth into consideration when estimating the performance
ratio for data-intensive applications.

Acknowledgements This paper is supported in part by National Science Council, Taiwan, ROC, under
grants no. NSC94-2213-E-029-002, NSC95-2221-E-029-004 and NSC95-2622-E-029-003-CC3.

References

1. Baker MA, Fox GC (1999) Metacomputing: harnessing informal supercomputers. In: High perfor-
mance cluster computing. Prentice-Hall

2. Banicescu I, Carino RL, Pabico JP, Balasubramaniam M (2005) Overhead analysis of a dynamic load
balancing library for cluster computing. In: Proceedings of the 19th IEEE international parallel and
distributed processing symposium, 2005

3. Cheng KW, Yang CT, Lai CL, Chang SC (2004) A parallel loop self-scheduling on grid computing
environments. In: Proceedings of the 2004 IEEE international symposium on parallel architectures,
algorithms and networks, KH, China, May 2004, pp 409–414

4. Chronopoulos AT, Penmatsa S, Xu J, Ali S (2006) Distributed loop-self-scheduling schemes for het-
erogeneous computer systems. Concurr Comput: Pract Exp 18:771–785

5. Chronopoulos AT, Andonie R, Benche M, Grosu D (2001) A class of loop self-scheduling for hetero-
geneous clusters. In: Proceedings of the 2001 IEEE international conference on cluster computing,
2001, pp 282–291

6. Foster I, Kesselman C (1997) Globus: a metacomputing infrastructure toolkit. Int J Supercomput Appl
High Perform Comput 11(2):115–128

7. Foster I, Kesselman C, Tuecke S (2001) The anatomy of the grid: enabling scalable virtual organiza-
tions. Int J Supercomput Appl High Perform Comput 15(3):200–222

8. Foster I (2002) The Grid: a new infrastructure for 21st century science. Phys Today 55(2):42–47
9. The Globus Project. http://www.globus.org/

10. Herrera J, Huedo E, Montero RS, Llorente IM (2006) Loosely-coupled loop scheduling in computa-
tional grids. In: Proceedings of the 20th IEEE international parallel and distributed processing sym-
posium, 2006

11. Hummel SF, Schonberg E, Flynn LE (1992) Factoring: a method scheme for scheduling parallel loops.
Commun ACM 35:90–101

12. Kruskal C, Weiss A (1984) Allocating independent subtaskson parallel processors. IEEE Trans Softw
Eng 11:1001–1016

13. Mandelbrot BB (1988) Fractal geometry of nature. Freeman, New York
14. MPICH-G2. http://www.hpclab.niu.edu/mpi/



A performance-based parallel loop scheduling on grid environments 267

15. Polychronopoulos CD, Kuck D (1987) Guided self-scheduling: a practical scheduling scheme for
parallel supercomputers. IEEE Trans Comput 36(12):1425–1439

16. Shih WC, Yang CT, Tseng SS (2005) A hybrid parallel loop scheduling scheme on grid environments.
In: Grid and cooperative computing—GCC 2005: fourth international conference, Lecture notes in
computer science. Springer, November 2005

17. Shih WC, Yang CT, Tseng SS (2005) A performance-based parallel loop self-scheduling on grid
environments. In: Network and parallel computing: IFIP international conference, NPC 2005, Lecture
notes in computer science, vol 3779. Springer, November 2005, pp 48–55

18. Smarr L, Catlett C (1992) Metacomputing. Commun ACM 35(6):44–52
19. Tabirca S, Tabirca T, Yang LT (2006) A convergence study of the discrete FGDLS algorithm. IEICE

Trans Inf Syst E89-D(2):673–678
20. Tang P, Yew PC (1986) Processor self-scheduling for multiple-nested parallel loops. In: Proceedings

of the 1986 international conference on parallel processing, 1986, pp 528–535
21. TIGER Grid Report. http://gamma2.hpc.csie.thu.edu.tw/ganglia/
22. Tzen TH, Ni LM (1993) Trapezoid self-scheduling: a practical scheduling scheme for parallel com-

pilers. IEEE Trans Parallel Distrib Syst 4:87–98
23. Yang CT, Chang SC (2004) A parallel loop self-scheduling on extremely heterogeneous PC clusters.

J Inf Sci Eng 20(2):263–273
24. Yang CT, Cheng KW, Li KC (2004) An efficient parallel loop self-scheduling on grid environments.

In: Jin H, Gao G, Xu Z (eds), NPC’2004 IFIP international conference on network and parallel com-
puting, Lecture notes in computer science. Springer, Heidelberg

25. Yang CT, Cheng KW, Li KC (2005) An efficient parallel loop self-scheduling scheme for cluster
environments. J Supercomput 34:315–335




