
J Supercomput (2007) 40: 249–267
DOI 10.1007/s11227-006-0025-0

A resource broker with an efficient network
information model on grid environments

Chao-Tung Yang · Po-Chi Shih · Cheng-Fang Lin ·
Sung-Yi Chen

Published online: 31 March 2007
© Springer Science+Business Media, LLC 2007

Abstract This paper describes a resource broker whose main function is to match
available resources to user needs. The resource broker provides a uniform interface
for accessing available and appropriate resources via user credentials. We also fo-
cus on providing approximate measurement models for network-related information
using NWS for future scheduling and benchmarking. We first propose a network mea-
surement model for gathering network-related information (including bandwidth, la-
tency, forecasting, error rates, etc.) without generating excessive system overhead.
Second, we constructed a grid platform using Globus Toolkit that integrates the re-
sources of five schools in Taichung integrated grid environment resources (TIGER).
The resource broker runs on top of TIGER. Therefore, it provides security and cur-
rent information about available resources and serves as a link to the diverse systems
available in the Grid.

Keywords Resource broker · Grid computing · Globus toolkit · MDS · NWS ·
Efficient network model

C.-T. Yang (�) · C.-F. Lin · S.-Y. Chen
High-Performance Computing Laboratory, Department of Computer Science and Information
Engineering, Tunghai University, Taichung City 40704, Taiwan, R.O.C.
e-mail: ctyang@thu.edu.tw

C.-F. Lin
e-mail: superfun@sslab.cs.nthu.edu.tw

S.-Y. Chen
e-mail: g942805@thu.edu.tw

P.-C. Shih
Department of Computer Science, National Tsing Hua University, Hsinchu,
30013 Taiwan, R.O.C.
e-mail: shedoh@gmail.com

250 C.-T. Yang et al.

1 Introduction

Grids offer a way to solve Grand Challenge problems like protein folding, drug dis-
covery, financial modeling, earthquake simulation, and climate/weather forecasting,
among others. Grids enable organizations to make optimal use of information tech-
nology resources. And grids offer a means to act as a utility bureau in providing
information technology to commercial clients who pay only for what they use, as
with electricity or water [1, 3–12, 14–21].

Grid computing involves sharing, over an open-standards network, heterogeneous
resources from various hardware and software platforms, computer architectures, and
computer languages located in different places and belonging to different administra-
tive domains. In short, it involves vitalizing computing resources. Functionally, one
can classify grids as:

• computational and
• data.

Regardless of grid type, bandwidth management is a question of manipulating
a number of variables to support the system and maximizing grid performance.
As Grid Computing becomes a reality, there is a need to manage and monitor avail-
able resources worldwide, as well as a need to convey these resources to everyday
users.

Most grids serving research and academic communities in North America and
Europe utilize the Globus Toolkit® as their core middleware. The Globus Informa-
tion Service, Monitor and Discover Service (MDS) provides good system-related in-
formation support on CPU speeds, CPU loading, memory utilization, etc., but no
network-related information support. Therefore, we use the open-source program,
Network Weather Service (NWS) [2], for network information.

NWS can measure point-to-point network bandwidth and latency that may be im-
portant for grid scheduling and load balancing. NWS detects all network states during
time periods selected by the user. Because this kind of side-to-side measure results in
N(N − 1) network measurement processes, the time complexity is O(N2). Our net-
work model focuses on solving the problem of reducing this time complexity without
losing too much precision. There is another question. We want to know how NWS
parameters (time period, frame size) influence our model and whether the NWS mea-
surement value is inaccurate compared with real-world networks.

In this paper, we first describe a resource selection consideration and strategy
which contains four phases and ten steps. And we implement a Grid resource bro-
ker based on these strategies. Second, we provide approximate measurement models
for network-related information using NWS for future scheduling and benchmark-
ing. Third, we provides a uniform interface for using our resource broker to access-
ing available and appropriate resources via user credentials. Fourth, we constructed
a grid platform using Globus Toolkit that integrates the resources of five schools in
Taichung integrated grid environment resources (TIGER). The resource broker runs
on top of TIGER. Therefore, it provides security and current information about avail-
able resources and serves as a link to the diverse systems available in the Grid.

The remainder of this paper is organized as follows. Related studies are presented
in Sect. 2 and the resource selection and strategy is introduced in Sect. 3. Our network

A resource broker with an efficient network information model on grid environments 251

information model is outlined in Sect. 4, and experimental results and a performance
evaluation of our broker are presented in Sect. 5. Section 6 concludes this research
paper.

2 Background review

2.1 Globus toolkit

The Globus Toolkit® is the open-source product of the Globus Project. It can imple-
ment large grid infrastructures and is freely available in [13]. The Globus Toolkit has
emerged as the de facto standard for grid middleware with protocols to handle these
four services:

• Resource management: Grid Resource Allocation & Management Protocol
(GRAM)

• Information Services: Monitoring and Discovery Service (MDS)
• Security Services: Grid Security Infrastructure (GSI)
• Data Movement and Management: Global Access to Secondary Storage (GASS)

and GridFTP

The Monitoring and Discovery Service (MDS) is the information service component
of the Globus Toolkit. It provides information on available resources and computa-
tional states. The information may include machine properties, grid computers and
networks, available processors, CPU loading, network interfaces, and file system in-
formation, bandwidth, storage devices, and memory. [4, 7, 8].

2.2 Network weather service

The Network Weather Service, though not targeted on Beowulf clusters, is a distrib-
uted system that periodically monitors and dynamically forecasts the performance
various network and computational resources can deliver over a given time inter-
val. The service operates a distributed set of performance sensors (network monitors,
CPU monitors, etc.) from which it gathers system condition information. NWS is
a widely used measurement tool for grid environments. Studies on topics, such as
load balancing, scheduling, brokering, etc. are available [4, 5, 10].

2.3 Java CoG Kit

The Java CoG Kit [9] provides access to Grid services through the Java framework.
Components providing client and limited server side capabilities are included. The
Java CoG Kit provides a framework for utilizing the many Globus services as part of
the Globus metacomputing toolkit. Many of the classes are provided as pure Java im-
plementations. Thus, writing client-side applets without installing the Globus toolkit
is possible. However, some of the components are provided as prototypes in JNI
wrappers; we may work on a pure Java implementation of them, time permitting.

252 C.-T. Yang et al.

2.4 MPICH-G2

MPICH-G2 [2] is a grid-enabled implementation of the MPI v1.1 standard. That is,
using services from the Globus Toolkit® (e.g., job startup, security); MPICH-G2 en-
ables coupling of multiple machines, potentially with different architectures, to run
MPI applications. MPICH-G2 automatically converts data in messages sent between
machines with different architectures and supports multi-protocol communication
by automatically selecting TCP for inter-machine messaging and, where available,
vendor-supplied MPI for intra-machine messaging. Existing parallel programs writ-
ten for MPI can be executed over the Globus infrastructure after just recompilation.

3 Resource selection and strategy

Our resource broker is built on top of the Globus Toolkit. It makes use of Globus
services, such as resource allocation, information, and GridFTP service. Our network
monitor includes a measurement tool, cluster information provider, as well as NWS
for forecasting network bandwidth (see Fig. 1).

Grid Resource Brokering involves four main phases: Resource Discovery, which
generates lists of potential resources, Application Modeling, which enables users to
characterize application behavior, Information Collection, which collects dynamical
resource information, System Selection, which filters out resources that do not sat-
isfy user requirements, then selects the best set of resources depending on system
information, and Job Execution, which includes file transferring, pre-compilation,
job execution, and result retrieval. These phases and the steps are shown in Fig. 2.

Fig. 1 Resource broker architecture

A resource broker with an efficient network information model on grid environments 253

Fig. 2 Resource broker phases

Phase 1 Resource Discovery The first stage of Resource Brokering determines
which resources are available to various users. This is done in two steps: resource
domain definition and authorization filtering.

Step 1: Resource Domain Definition The first step of resource discovery is
choosing a set of resources jobs can submitted to. This is implemented in a host-list
file showing all resources the user can access.

Step 2: Authorization Filtering The second step “authorizes” the user to go any-
where in the grid environment. The essence of a grid is that jobs can be submitted
to anywhere from anywhere. So in this step the user gets a passport to access the
resources defined in Step 1. We used GIS in Globus to implement this authorization,
and the Java Cog Kit to develop a GUI, as shown in Fig. 3.

Phase 2-1 Application modeling This lets users define application characteris-
tics and limitations. The model provides basic information that enables the broker
scheduling algorithm to select the best resource distribution strategy.

Step 3: Application Requirement Definition In order to select the proper re-
sources to execute their programs, users must be able to specify some minimal set
of job requirements and program types. Different jobs have different running require-
ments. The more details that are included, the better the matching effort will be. We
created the GUI shown in Fig. 4 to allow manual selection of some minimal require-
ments. Also you can identify what types of environment(the item named “Select Sort
Key”) you wants (CPU intensive, network intensive).

254 C.-T. Yang et al.

Fig. 3 Proxy initialization

Fig. 4 Application modeling

A resource broker with an efficient network information model on grid environments 255

Fig. 5 Dynamic machine information

Phase 2-2 Information collection This phase is used to collect information on the
machines used in the grid computing environment.

Step 4: System Information Collection Detailed dynamic information on re-
sources is needed to make the best possible job/resource matches. The information
helps the broker assess resource availability and status (speed, utilization, network
Bandwidth, etc). Because it changes dynamically, this real-time information makes
dynamic scheduling a reality. We implemented this step using Globus MDS and
NWS. Detailed information is shown in Fig. 5.

Phase 3 System selection This phase selects the most appropriate resources for
users.

Step 5: Minimal Requirement Filtering The fifth step filters out resources that
do not satisfy the application requirements described in Step 3. The main function of
this step is to reduce the size of the available and suitable resource set.

Step 6: System Selection Since dynamic information on resources is available,
system selection is easy and scalable. When application requirements are defined and
dynamic information about resources is available, users can make their own schedul-
ing algorithms to handle various situations. At the end of this step, a set of appropriate
resources has been generated, saved as a machine list, and is ready to run jobs.

Phase 4 Job execution The fourth phase of grid scheduling actually runs jobs on
those resources.

256 C.-T. Yang et al.

Fig. 6 Job has been compiled and run

Step 7: Job Submission Before actually running a job, the application must be
submitted to the resource set described in Step 6. This step is performed in two parts.
The first action transfers the machine list, needed for MPI, to the first machine on
our machine list via GridFTP because the first choice is the best based on application
modeling. The second action transfers the application to all resources.

Step 8: Preparation Tasks Preparation may involve setup, compilation, and other
actions needed to ready resources to run the application, and making sure program
files, data files, argument files, and other set files are placed correctly. After the pro-
gram is uploaded to target resources, the broker simultaneously sends the compiled
operation to all machines and to the compilation source program. When compilation
is finished, the broker begins parallel program execution.

Step 9: Progress Monitoring While the job runs, users can monitor the progress
of their application and may elect to cancel or re-submit jobs. Historically, such mon-
itoring has typically been done by repetitively querying resources for status informa-
tion. However Globus is only able to interrupt users when jobs finish. GRAM pro-
vides basic status information such as running, finished, and failed. GRAM estimates
how much time is needed to finish jobs, so only “running” is reported.

Step 10: Job Completion Users must be notified when jobs finish. The broker
must able to interrupt users upon job completion. Sending e-mail or voice messages
to user cell phones may implemented in the future.

While programs run, our broker shows a progress bar to indicate job status, and
waits for completion. When jobs finish, the broker automatically retrieves results and

A resource broker with an efficient network information model on grid environments 257

Fig. 7 Job is finished and result is shown

displays them to users. The four steps in this phase are continuous actions imple-
mented in our resource broker. Snapshots are shown in Figs. 6 and 7.

4 Network information model and analyses

We constructed a network measurement model to solve a complete point-to-point net-
work measurement problem [20]. Consider the grid environment with twelve nodes
shown in Fig. 8. The lines linking the nodes represent site-to-site network measure-
ment. This model is often used for local grids or cluster environments when the scale
is not too large. In large-scale grid environments this kind of architecture results in
excessive bandwidth overhead. In order to reduce the total number of times that NWS
measures, we proposed the “domain” concept shown in Fig. 9 to cut the network mea-
surement environment.

In our domain-based model, we treated several hosts as domains. Figure 9, shows
three domains, 5 hosts at left, 3 hosts on top, and 4 hosts at right-bottom. We linked
hosts in each domain, called Borders, with one another forming a central-domain. We
thus only needed pair measurements within domains. Domain-to-domain data was
measured by the central-domain, considerably reducing the number of measurements
required. We extend existing clique models in NWS and consider how to construct
domain-based models from geographical and real bandwidth perspectives.

We may separate schools or organizations into domains on the basis of geography.
Hosts in each domain are thought as tightly coupled, and it’s convenient for each

258 C.-T. Yang et al.

Fig. 8 Network measurement
model

Fig. 9 Domain-based network
measurement model

domain to control and maintain its hosts. The domains may each use a different net-
work infrastructure: Fast Ethernet, Gigabit, or InfiniBand. This design ensures that
local fluctuations won’t affect the entire grid system.

Some questions about the model remain:

• how to select a representative host in each domain to form a central domain without
loss of generality?

• how to accurately evaluate host-to-host network information?

These questions are explored in detail below. Constructing a domain-based grid is
the key issue. Domains must first be constructed by the schools or organizations. One

A resource broker with an efficient network information model on grid environments 259

Fig. 10 Network estimate
model

way to select the best Border in each domain is to conduct an all-pair network test.
But this may not work in a real grid environment because each organization controls
its hosts according to a different policy. Another way is to let domain administrators
select Borders according to network topology or architecture. Both methods are not
smart and are hard to scale, so we propose an alternative way to select Borders.

First, when the grid is just being built up, pick partial domains (maybe 2–4 do-
mains) to start with. Second, let administrators select Borders or perform an all-pair
test to select the best starting Borders. Then save these hosts in a Border list. Third,
let each group administrator select a Border according to network topology or archi-
tecture, or test all hosts in each domain against each Border on the list to find the
best one and add it to the list. Fourth, repeat the third step until every domain finds a
best Border. This method simplifies the construction complexity and makes the grid
environment scalable. When a new member joins this grid, only steps 3 and 4 need be
performed to select its Border. There will be no need to change the original settings
of the other domains.

In order to determine the all-pair network value, we use a few measured values
from NWS to estimate other point-to-point values. Figure 10 shows an example of
a network estimate model. The line connecting Alpha1 and Lz01 is part of the central-
domain, which we called the Bridge in our experimental environment. The solid lines
mean that our domain model has gotten the network information; the dotted lines are
examples of many lines our model has not measured, so we use an evaluation model
to calculate them. We use this notation throughout the paper:

• B_inavg: Average inner-domain bandwidth.
• B_outavg: Average outer-domain bandwidth.
• Pflu: Bandwidth fluctuation rate.
• Nflu: Number of times fluctuation occurs.
• Pvaflu: Valid fluctuation rate.
• Lij(Nflu): Latest Nflu measured from host i to host j .

B_inavg and B_outavg are obtained by averaging the bandwidth history or from the
beginning value assigned by the administrator. Pflu detects bandwidth use. Nflu traces
network fluctuations in a given time period ignoring pulse or bandwidth noise. Pvaflu

shows how much fluctuation during Nflu time is treated as actual bandwidth use. We
employ our algorithm in three separate cases in order to consider possible bandwidth
usage patterns.

260 C.-T. Yang et al.

Fig. 11 Bandwidth usage in
case 1

Case 1:
Assume the inner domain bandwidth use shown in Fig. 11. This is complex be-

cause the usage between Alpha2 and Alpha3 may not affect the Bridge bandwidth
much. We use an algorithm to calculate target bandwidth.

First, left domain bandwidth fluctuation is examined, ignoring pulse or bandwidth
noise fluctuation:

Use = CountIf

(|Lij [k] − B_inavg|
B_inavg

> Pflu

)
> (Nflu ∗ Pvaflu), k = 1, . . . ,Nflu∀ij

in left domain (1)

We then calculate the remaining bandwidth use, ignoring the maximal and mini-
mal bandwidth values by first Sort (Lij), then compute:

Brem =
∑Nflu−1

k=2 Lij [k]
Nflu − 2

(2)

Finally, the target bandwidth is calculated as follows:

Btar = Brem

B_inavg
× B_outavg × α (3)

The symbol α here indicates a value converted from internet bandwidth to LAN
and is used throughout.
Case 2:

We assumed that bandwidth use occurs in the same organization but not with other
members of the domain, as shown in Fig. 12. Figure 13 shows the general topology
of this network architecture. Using a simple test, we discovered that target bandwidth
almost always follows bridge bandwidth. So we summarize briefly that target band-
width is almost always equal to bridge bandwidth.
Case 3:

We assumed that bandwidth use occurs between two domains, as shown in Fig. 14.
Bandwidth use between Alpha2 and Lz02 will affect the available bridge bandwidth,
so we summarize briefly that target bandwidth is almost always equal to bridge band-
width.

A resource broker with an efficient network information model on grid environments 261

Fig. 12 Bandwidth usage in
case 2

Fig. 13 Topology for case 2

Fig. 14 Bandwidth usage in
case 3

5 Experimental results of resource broker

We used the grid test setup shown in Fig. 15 on experiments with Taichung inte-
grated grid environment resources (TIGER). TIGER contained four domains, with
four hosts in THU, 8 hosts in PU, 4 hosts in HIT, and 4 hosts in LZ. The resource
specifications are shown in Table 1. We ran three well-known parallel applications:
Matrix Multiplication, the Prime problem, and CFD.

In our first experiment, we ran all four jobs with 1 to 8 CPUs using our resource
broker and on other random hosts. The results are shown in Figs. 16 to 20.

The list below shows the experimental variables for our broker scheduling step.

• IST—Information Search Time.
• BST—Broker Scheduling Time.
• TMT—Machine File Transfer Time.

262 C.-T. Yang et al.

Fig. 15 The TIGER experimental environment

Table 1 Resource specification

Resource CPU Type speed Mem Network OS kernel

THU alpha1 AMD Athlon(tm) MP 2400+ x 2 1G 10/100 fedora core 1 2.4.22

alpha2 AMD Athlon(tm) MP 2000+ x 2 768 MB 10/100 fedora core 1 2.4.22

alpha3 AMD Athlon(tm) MP 1800+ x 2 512 MB 10/100 fedora core 1 2.4.22

alpha4 AMD Athlon(tm) MP 1800+ x 2 512 MB 10/100 fedora core 1 2.4.22

LZ lz01 Celeron 900 256 MB 10/100 fedora core 1 2.4.20-31.9

lz02 Celeron 900 256 MB 10/100 fedora core 1 2.4.20-31.9

lz03 Celeron 900 384 MB 10/100 fedora core 1 2.4.20-31.9

lz04 Celeron 900 256 MB 10/100 fedora core 1 2.4.20-31.9

HIT gridhit0 Pentium 4 2.8G 512 MB 10/100 fedora core 1 2.4.20-8

gridhit1 Pentium 4 2.8G 512 MB 10/100 fedora core 1 2.4.20-8

gridhit2 Pentium 4 2.8G 512 MB 10/100 fedora core 1 2.4.20-8

gridhit3 Pentium 4 2.8G 512 MB 10/100 fedora core 1 2.4.20-8

PU hpc09 AMD Athlon(tm) XP 2400+ 1G 10/100 fedora core 1 2.4.22

hpc10 AMD Athlon(tm) XP 2400+ 1G 10/100 fedora core 1 2.4.22

hpc11 AMD Athlon(tm) XP 2400+ 1G 10/100 fedora core 1 2.4.22

hpc12 AMD Athlon(tm) XP 2400+ 1G 10/100 fedora core 1 2.4.22

hpc13 AMD Athlon(tm) XP 2400+ 1G 10/100 fedora core 1 2.4.22

hpc14 AMD Athlon(tm) XP 2400+ 1G 10/100 fedora core 1 2.4.22

hpc15 AMD Athlon(tm) XP 2400+ 1G 10/100 fedora core 1 2.4.22

hpc16 AMD Athlon(tm) XP 2400+ 1G 10/100 fedora core 1 2.4.22

A resource broker with an efficient network information model on grid environments 263

Fig. 16 Execution times for 4
CPUs using resource broker

Fig. 17 Execution times for 8
CPUs using resource broker

• JRT—Job Run Time.
• RRT—Result Retrieval Time.
• TTT—Total Turnaround Time.

Figures 16 and 17 show that when the broker schedules with a small matrix, the
overhead seems large relative to JRT, but when the matrix size is increased, the over-
head decreases compared with JRT. Grid computing is suitable for large-scale prob-
lems, thus our broker overhead was constant and did not increase linearly with prob-
lem size. This means overhead can be ignored for large problems.

Figures 18 and 19 show JRT times compared to those for Linux console execution
without our broker interface. We can see that constant overhead existed for Globus
and Java Cog, but was acceptable compared with job size.

Figure 20 shows comparisons of execution times for our resource broker (left)
and random host selections (right) with various numbers of CPUs (“m1_512” means
matrix multiplication of a 512∗512 matrix using 1 CPU). It shows using our resource
broker and achieves better performance compare with random select resources. But
the key point is user need to know detail behavior of their jobs to select “right” types
of job in order to get best performance.

264 C.-T. Yang et al.

Fig. 18 Console execution vs.
RB execution with 1 CPU

Fig. 19 Console execution vs.
RB execution with 2 CPU

Fig. 20 Resource Broker vs.
random host selection

A resource broker with an efficient network information model on grid environments 265

6 Conclusions

As Grid Computing becomes a reality, there is a need to manage and monitor avail-
able resources worldwide, as well as a need to convey these resources to everyday
users. This paper describes a resource broker whose main objective is to match avail-
able resources to user needs. The resource broker provides a uniform interface for ac-
cessing available and appropriate computing resources. Our experiments showed that
our resource broker is able to find suitable resources that reduce total execution times.
We proposed a network measurement model for gathering network-related informa-
tion (including bandwidth, latency, forecasting, error rates, etc.) without generating
excessive system overhead. We constructed a grid platform using Globus Toolkit that
integrates the resources of five schools in Taichung integrated grid environment re-
sources (TIGER). The resource broker runs on top of TIGER. Therefore, it provides
security and current information about available resources and serves as a link to
the diverse systems available in the Grid. In the future, we will plan to construct an
efficient network measurement model to enable our broker to handle large communi-
cation jobs and predict execution times.

Acknowledgements This paper is supported in part by National Science Council Taiwan R.O.C., under
grants no. NSC93-2213-E-029-026, NSC94-2213-E-029-002, and NSC95-2221-E-029-004. The authors
would like to acknowledge the National Center for High-Performance Computing in providing resources
under the National project “Taiwan Knowledge Innovation National Grid.”

References

1. Allcock B, Bester J, Bresnahan J, Chervenak AL, Foster I, Kesselman C, Meder S, Nefedova V,
Quesnal D, Tuecke S (2002) Data management and transfer in high performance computational grid
environments. Parallel Comput 28(5):749–771

2. Allcock B, Tuecke S, Foster I, Chervenak A, Kesselman C (2000) Protocols and services for distrib-
uted data-intensive science. In: ACAT2000 proceedings, 2000, pp 161–163

3. Allcock W, Bester J, Bresnahan J, Chervenak A, Liming L, Meder S, Tuecke S (2002) GridFTP
protocol specification. GGF GridFTP working group document, September 2002

4. Czajkowski K, Foster I, Kesselman C (1999) Resource co-allocation in computational grids. In:
Proceedings of the 8th IEEE international symposium on high performance distributed computing
(HPDC-8), 1999, pp 219–228

5. Czajkowski K, Fitzgerald S, Foster I, Kesselman C (2001) Grid information services for distributed
resource sharing. In: Proceedings of the 10th IEEE international symposium on high-performance
distributed computing (HPDC-10), August 2001

6. Foster I, Kesselman C, Tuecke S (2001) The anatomy of the grid: enabling scalable virtual organiza-
tions. Int J Supercomput Appl High Perform Comput, 15(3):200–222

7. Global grid forum. http://www.ggf.org/
8. IBM Redbooks (2003) Introduction to grid computing with globus. http://www.redbooks.ibm.com/

redbooks/pdfs/sg246895.pdf, IBM Press, September 2003
9. Laszewski V, Foster I, Gawor J, Lane P (2001) A Java commodity grid kit. Concurr Comput Pract

Exp 13:645–662
10. MPICH-G2. http://www.hpclab.niu.edu/mpi/
11. Network weather service. http://nws.cs.ucsb.edu/
12. Park SM, Kim JH (2003) Chameleon: a resource scheduler in a data grid environment. In: Proceedings

of the 3rd IEEE/ACM international symposium on cluster computing and the grid, May 2003, pp 258–
265

13. The globus alliance. http://www.globus.org/

266 C.-T. Yang et al.

14. Yang C-T, Chu WC (2004) Grid computing in Taiwan. In: Proceedings of 10th international workshop
on future trends of distributed computing systems (FTDCS 2004), Suzhou, China, May 26–28, 2004,
pp 201–204

15. Yang C-T, Ho H-C (2005) An e-learning platform based on grid architecture. J Inf Sci Eng 21(5):115
16. Yang C-T, Kuo Y-L, Lai C-L (2005) Designing computing platform for BioGrid. Int J Comput Appl

Technol (IJCAT), special issue applications for high performance systems 22(1):3–13, Inderscience
Publishers, ISSN (Paper): 0952-8091, UK

17. Yang C-T, Lai C-L (2004) Apply cluster and grid computing on parallel 3D rendering. In: Proceedings
of the 2004 IEEE international conference on multimedia and expo (ICME 2004), Grand Hotel, Taipei,
Taiwan, June 27–30, vol 2, 2004, pp 859–862

18. Yang C-T, Lai C-L, Shih P-C, Li K-C (2004) A resource broker for computing nodes selection in
grid environments. In: Jin H, Pan Y, Xiao N (eds), Grid and cooperative computing—GCC 2004:
third international conference, lecture notes in computer science, vol 3251. Springer, Oct 2004, pp
931–934

19. Yang C-T, Shih P-C, Li K-C (2005) A high-performance computational resource broker for grid com-
puting environments. In: Proceedings of the international conference on advanced information net-
working and applications (AINA 2005), 2005, Tamkang University, Taipei, Taiwan, March 28–30,
vol 2, pp 333–336

20. Yang C-T, Shih P-C, Chen S-Y (2006) A domain-based model for efficient network information on
grid computing environments. IEICE Trans Inf Syst, special issue on parallel/distributed computing
and networking E89-D(2):738–742

21. Yang C-T, Yang I-H, Li K-C, Wang S-Y (2006) Improvements on dynamic adjustment mechanism in
co-allocation data grid environments. J Supercomput (accepted)

22. Zhang X, Freschl JL, Schopf JM (2003) A performance study of monitoring and information services
for distributed systems. In: Proceedings of HPDC, IEEE CS Press, August 2003, pp 270–282

Chao-Tung Yang received a B.S. degree in computer science and information engineering from Tunghai
University, Taichung, Taiwan in 1990, and the M.S. degree in computer and information science from
National Chiao Tung University, Hsinchu, Taiwan in 1992. He received the Ph.D. degree in computer and
information science from National Chiao Tung University in July 1996. He won the 1996 Acer Dragon
Award for outstanding Ph.D. Dissertation. He has worked as an associate researcher for ground operations
in the ROCSAT Ground System Section (RGS) of the National Space Program Office (NSPO) in Hsinchu
Science-based Industrial Park since 1996. In August 2001, he joined the faculty of the Department of
Computer Science and Information Engineering at Tunghai University, where he is currently an associate
professor. His researches have been sponsored by Taiwan agencies National Science Council (NSC), Na-
tional Center for High Performance Computing (NCHC), and Ministry of Education. His present research
interests are in grid and cluster computing, parallel and high-performance computing, and internet-based
applications. He is both member of the IEEE Computer Society and ACM.

Po-Chi Shih received the B.S. and M.S. degrees in Computer Science and Information Engineering from
Tunghai University in 2003 and 2005, respectively. He now is studying Ph.D. degree at Computer Science
in National Tsing Hua University, Hsinchu, Taiwan from September 2005. His present research interests
are grid computing and internet-based applications.

A resource broker with an efficient network information model on grid environments 267

Cheng-Fang Lin received a B.S. and M.S. degree in Department of Computer Science and Information
Engineering from Tunghai University in 2004 and 2006, respectively. He is studying Ph.D. degree in
Department of Computer Science at National Tsing Hua University, Hsinchu, Taiwan from September
2006. His research interests include parallel and distributed processing, high-performance computing, grid
and pervasive computing.

Sung-Yi Chen received a B.S. degree in Department of Computer Science and Information Engineering
from Tunghai University in 2005. He is studying M.S. degree in Department of Computer Science and
Information Engineering from Tunghai University from September 2005. His research interests include
grid and cluster computing, parallel and high-performance computing, grid and pervasive computing.

