
J Supercomput (2007) 40: 269–280
DOI 10.1007/s11227-006-0022-3

Improvements on dynamic adjustment mechanism
in co-allocation data grid environments

Chao-Tung Yang · I-Hsien Yang · Kuan-Ching Li ·
Shih-Yu Wang

Published online: 31 March 2007
© Springer Science+Business Media, LLC 2007

Abstract Several co-allocation strategies have been coupled and used to exploit rate
differences among various client-server links and to address dynamic rate fluctua-
tions by dividing files into multiple blocks of equal sizes. However, a major obstacle,
the idle time of faster servers having to wait for the slowest server to deliver the fi-
nal block, makes it important to reduce differences in finishing time among replica
servers. In this paper, we propose a dynamic co-allocation scheme, namely Recursive-
Adjustment Co-Allocation scheme, to improve the performance of data transfer in
Data Grids. Our approach reduces the idle time spent waiting for the slowest server
and decreases data transfer completion time.

Keywords Data Grid · Dynamic · Recursive · GridFTP · Co-allocation · Data
transfer

1 Introduction

In Data Grid environments, access to distributed data is typically as important as ac-
cess to distributed computational resources [1, 2, 4, 7, 9]. Distributed scientific and

C.-T. Yang (�) · I.-H. Yang · S.-Y. Wang
High-Performance Computing Laboratory, Department of Computer Science and Information
Engineering, Tunghai University, Taichung City 40704, Taiwan R.O.C.
e-mail: ctyang@thu.edu.tw

I.-H. Yang
e-mail: g922906@thu.edu.tw

S.-Y. Wang
e-mail: g932813@thu.edu.tw

K.-C. Li
Department of Computer Science and Information Engineering, Providence University,
Taichung 43301, Taiwan R.O.C.
e-mail: kuancli@pu.edu.tw



270 C.-T. Yang et al.

engineering applications require transfers of large amounts of data between storage
systems, and access to large amounts of data generated by many geographically dis-
tributed applications and users for analysis and visualization, among others. Unfor-
tunately, the lack of standard protocols for transferring and accessing data in Grids
has led to a fragmented Grid storage community. Users wishing to access various
storage systems are forced to use multiple protocols, and it is difficult to transfer data
efficiently between these various storage systems [2, 9].

Replicating popular content in distributing servers is widely used in practice
[11, 13, 15]. Recently, large-scale, data-sharing scientific communities such as those
described in [1, 4] used this technology to replicate their large datasets over several
sites. Downloading large datasets from several replica locations may result in varied
performance rates, because the replica sites may have different architectures, system
loadings, and network connectivity. Bandwidth quality is the most important factor
affecting transfers between clients and servers since download speeds are limited by
the bandwidth traffic congestion in the links connecting the servers to the clients
[17, 18].

The co-allocation of data transfers enables the clients to download data from mul-
tiple locations by establishing multiple connections in parallel [6, 13]. This can im-
prove the performance compared to the single-server cases and alleviate the internet
congestion problem [13]. Several co-allocation strategies were provided in the pre-
vious work [13]. An idle-time drawback remains since faster servers must wait for
the slowest server to deliver its final block. Therefore, it is important to reduce the
differences in finish time among replica servers. In this paper, we propose a dynamic
co-allocation scheme based on co-allocation Grid data transfer architecture called
Recursive-Adjustment Co-Allocation that can reduce the idle time spent waiting for
the slowest server and improves data transfer performance. Experimental results show
that our approach is superior to previous methods and achieved the best overall per-
formance.

The remainder of this paper is organized as follows. Related studies are presented
in Sect. 2 and the co-allocation architecture is introduced in Sect. 3. Our research
approaches are outlined in Sect. 4, and experimental results and a performance eval-
uation of our scheme are presented in Sect. 5. Section 6 concludes this research paper.

2 Related work

Data grids consist of scattered computing and storage resources located in differ-
ent countries/regions yet accessible to users [7]. In this study we used the grid
middleware Globus Toolkit [8, 10, 12] as the data grid infrastructure. The Globus
Toolkit provides solutions for such considerations as security, resource management,
data management, and information services. One of its primary components is MDS
[5, 8, 10, 12, 20], which is designed to provide a standard mechanism for discovering
and publishing resource status and configuration information. It provides a uniform
and flexible interface for data collected by lower-level information providers in two
modes: static (e.g., OS, CPU types, system architectures) and dynamic data (e.g.,
disk availability, memory availability, and loading). And it uses GridFTP [1, 8, 12],
a reliable, secure, and efficient data transport protocol to provide efficient manage-
ment and transfer of terabytes or petabytes of data in a wide-area, distributed-resource
environment.



Improvements on dynamic adjustment mechanism 271

As datasets are replicated within Grid environments for reliability and perfor-
mance, clients require the abilities to discover existing data replicas, and create and
register new replicas. A Replica Location Service (RLS) [3, 15] provides a mech-
anism for discovering and registering existing replicas. Several prediction metrics
have been developed to help replica selection. For instance, Vazhkudai and Schopf
[14, 16, 17] used past data transfer histories to estimate current data transfer through-
puts.

In our previous work [19], we proposed a replica selection cost model and a replica
selection service to perform replica selection. In [13], the author proposes a co-
allocation architecture for co-allocating Grid data transfers across multiple connec-
tions by exploiting the partial copy feature of GridFTP. It also provides Brute-Force,
History-Base, and Dynamic Load Balancing for allocating data block. Brute-Force
Co-Allocation works by dividing file sizes equally across available flows without ad-
dressing bandwidth differences among the various client-server links. The History-
based Co-Allocation scheme keeps block sizes per flow proportional to predicted
transfer rates.

The Conservative Load Balancing dynamic co-allocation strategy divides re-
quested datasets into “k” disjoint blocks of equal size. Available servers are assigned
single blocks to deliver in parallel. When a server finishes delivering a block, an-
other is requested, and so on, till the entire file is downloaded. The loadings on the
co-allocated flows are automatically adjusted because the faster servers will deliver
more quickly providing larger portions of the file. The Aggressive Load Balancing
dynamic co-allocation strategy presented in [13] adds functions that change block
size de-liveries by: (1) progressively increasing the amounts of data requested from
faster servers, and (2) reducing the amounts of data requested from slower servers or
ceasing to request data from them altogether.

The co-allocation strategies described above do not handle the shortcoming of
faster servers having to wait for the slowest server to deliver its final block. In most
cases, this wastes much time and decreases overall performance. Thus, we propose
an efficient approach called Recursive-Adjustment Co-Allocation and based on a co-
allocation architecture. It improves dynamic co-allocation and reduces waiting time,
thus improving overall transfer performance.

3 Co-allocation architecture

The co-allocation of data transfers enables the clients to download data from multi-
ple locations by establishing multiple connections in parallel [6, 13]. Figure 1 shows
the co-allocation of data transfers in Grid, which is an extension of the basic template
for resource management [6] provided by Globus Toolkit. The architecture consists of
three main components: an information service, broker/co-allocator, and local storage
systems. Applications specify the characteristics of desired data and pass the attribute
description to a broker. The broker queries available resources and gets replica loca-
tions from information services [5] and replica management services [13, 15], and
then gets a list of physical locations for the desired files.

The candidate replica locations are passed to a replica selection service [13, 15],
which was presented in a previous work [19]. This replica selection service provides
estimates of candidate transfer performance based on a cost model and chooses ap-



272 C.-T. Yang et al.

Fig. 1 Data Grid co-allocation
architecture [13, 15]

propriate amounts to request from the better locations. The co-allocation agent then
downloads the data in parallel from the selected servers. In this research, we use
GridFTP [1, 8, 12] to enable parallel data transfers. GridFTP is a high-performance,
secure, reliable data transfer protocol optimized for high-bandwidth wide-area net-
works. Among its many features are security, parallel streams, partial file transfers,
third-party transfers, and reusable data channels. Its partial file transfer ability allows
files to be retrieved from data servers by specifying the start and end offsets of file
sections.

4 Dynamic co-allocation strategy

Dynamic co-allocation, described above, is the most efficient approach to reducing
the influence of network variations between clients and servers. However, the idle
time of faster servers awaiting the slowest server to deliver the last block is still
a major factor affecting overall efficiency, which Conservative Load Balancing and
Aggressive Load Balancing [13] cannot effectively avoid. The approach proposed
in the present paper, a dynamic allocation mechanism called “Recursive-Adjustment
Co-Allocation” can overcome this, and thus, improve data transfer performance.

Our Recursive-Adjustment Co-Allocation can continuously adjust each replica
server’s workload to correspond to its real-time bandwidth during file transfers. The
goal is to make the expected finish time of all servers the same. As Fig. 2 shows, when
an appropriate file section is first selected, it is divided into proper block sizes accord-
ing to the respective server bandwidths. The co-allocator then assigns the blocks to
servers for transfer. At this moment, it is expected that the transfer finish time will be
consistent at E(T1). However, since server bandwidths may fluctuate during segment
deliveries, actual completion time may be dissimilar (solid line, in Fig. 2). Once the
quickest server finishes its work at time T1, the next section is assigned to the servers
again. This allows each server to finish its assigned work-load by the expected time
at E(T2). These adjustments are repeated until the entire file transfer is finished.

The Recursive-Adjustment Co-Allocation process is illustrated in Fig. 3. When
a user requests file A, the replica selection service responds with the subset of all
available servers defined by the maximum performance matrix. The co-allocation
service gets this list of selected replica servers. Assuming n replica servers are se-
lected, Si denotes server “i” such that 1� i � n. A connection for file downloading
is then built to each server.



Improvements on dynamic adjustment mechanism 273

Fig. 2 The adjustment process

Fig. 3 The flowchart of
recursive-adjustment
co-allocation

The Recursive-Adjustment Co-Allocation process is as follows. A new section of
a file to be allocated is first defined. The section size, “SEj ,” is:

SEj = UnassignedFileSize × α, (0 < α < 1), (1)

where SEj denotes the section j such that 1� j � k, assuming we allocate k times
for the download process, and thus, there are k sections, while Tj denotes the time
section j allocated. UnassignedFileSize is the portion of file A not yet distributed for
downloading; initially, UnassignedFileSize is equal to the total size of file A. α is the
rate that determines how much of the section remains to be assigned.

In the next step, SEj is divided into several blocks and assigned to “n” servers.
Each server has a real-time transfer rate to the client of Bi , which is measured by the
Network Weather Service (NWS) [18]. The block size per flow from SEj for each
server “i” at time Tj is:

Si = (SEj +
n∑

i=1

UnFinishSizei ) × Bi/

n∑

i=1

Bi − UnFinishSizei (2)



274 C.-T. Yang et al.

where UnFinishSizei denotes the size of unfinished transfer blocks that is assigned in
previous rounds at server “i.” UnFinishSizei is equal to zero in first round. Ideally,
depending to the real time bandwidth at time Tj , every flow is expected to finish its
workload in future.

This fulfills our requirement to minimize the time faster servers must wait for the
slowest server to finish. If, in some cases, network variations greatly degrade trans-
fer rates, UnFinishSizei may exceed (SEj + ∑n

i=1 UnFinishSizei ) ∗ Bi/
∑n

i=1 Bi ,
which is the total block size expected to be transferred after Tj . In such cases, the
co-allocator eliminates the servers in advance and assigns SEj to other servers.

After allocation, all channels continue transferring data blocks. When a faster
channel finishes its assigned data blocks, the co-allocator begins allocating an unas-
signed section of file A again. The process of allocating data blocks to adjust expected
flow finish time continues until the entire file has been allocated.

Our approach gets new sections from whole files by dividing unassigned file
ranges in each round of allocation. These unassigned portions of the file ranges be-
come smaller after each allocation. Since adjustment is continuous, it would run as
an endless loop if not limited by a stop condition.

However, when is it appropriate to stop continuous adjustment? We provide two
monitoring criteria, LeastSize and ExpectFinishedTime, to enable users to define stop
thresholds. When a threshold is reached, the co-allocation server stops dividing the
remainder of the file and assigns that remainder as the final section. The LeastSize cri-
terion specifies the smallest file we want to process, and when the unassigned portion
of UnassignedFileSize drops below the LeastSize specification, division stops. Ex-
pectFinishedTime criterion specifies the remaining time transfer is expected to take.
When the expected transfer time of the unassigned portion of a file drops below the
time specified by ExpectFinishedTime, file division stops. The expected rest time
value is determined by:

UnAssignedFileSize/
n∑

i=1

Bi (3)

5 Experimental results and analyses

In this section, we evaluate four co-allocation schemes: (1) Brute-Force (Brute),
(2) History-based (History), (3) Conservative Load Balancing (Conservative) and
(4) Recursive-Adjustment Co-Allocation (Recursive). We analyze the performance of
each scheme by comparing their transfer finish time, and the total idle time faster
servers spent waiting for the slowest server to finish delivering the last block. Fig-
ure 4 shows a snapshot of our GridFTP client tool.

In our example, we assumed that a client site at Tunghai University (THU),
Taichung city, Taiwan, was fetching a file from three selected replica servers: one at
Providence University (PU), one at Li-Zen High School (LZ), and one at Da-Li High
School (DALI). We monitored the bandwidth variations from THU to each server us-
ing NWS [18] probes. Network environment variations of each connection are shown
in Fig. 5.

We assign α = 0.5 and experiment it over several file sizes, such as 500 MB,
1000 MB, 2000 MB, and 4000 MB. We set the LeastSize limit threshold to 100 MB,
which result in 12, 15, 17, and 19 block numbers. As mater of comparison, we use



Improvements on dynamic adjustment mechanism 275

F
ig

.4
O

ur
G

ri
dF

T
P

cl
ie

nt
to

ol



276 C.-T. Yang et al.

Fig. 5 Network variation
between client and each server

Fig. 6 Completion times for
various methods

the equal block numbers above to calculate the performance of each size, when using
the Conservative Load Balancing. In Fig. 6, we show the cost time of each scheme
that transfers different file sizes. Obviously, Fig. 6 shows that our approach reduces
the time efficiently when compared with the other three schemes.

For each of schemes, we analyzed the effect of faster servers waiting for the slow-
est server to deliver the last block. In Fig. 7, we calculate the total waiting idle time
with different file sizes, and it shows that our Recursive-Adjustment Co-Allocation
scheme offers significant performance improvements in every file size case when
compared with other schemes. This result is due to our approach reduces the differ-
ence of each server’s finished time efficiently.

For the Recursive-Adjustment technique, we study the effects of various α values
on the block numbers and the total idle times. Figure 8 shows for an assigned file
size of 10 MB to LeastSize, the total idle time increased and the total block number
decreased as the α value increased. When the α value was greater then 0.7, the wait
time grew rapidly, and although the wait time performance was good when the α

value was less than 0.4, it resulted in a great increase in block numbers, which may
cause high co-allocation costs. This experiment indicates that the assigned α value
should be neither too large nor too small.



Improvements on dynamic adjustment mechanism 277

Fig. 7 Idle times for various
methods

Fig. 8 Idle times for various α

values and block numbers for
various α values

Fig. 9 Idle times for various
LeastSize values and block
numbers for various LeastSize
values

Figure 9 shows that the LeastSize threshold value in our Recursive-Adjustment
method is also an important factor affecting total wait time and block numbers. In this
experiment, we set the α value to 0.5 and tested various LeastSize values. The results
indicate that decreasing the LeastSize threshold value effectively reduces the total
wait time. Although this results in more block numbers, the increase is not excessive.
Figure 9 also indicates we may infer that the Recursive-Adjustment scheme performs



278 C.-T. Yang et al.

better with smaller LeastSize threshold values for most file sizes because smaller size
final blocks are less influenced by network variations.

6 Conclusions

Data Grids enable the sharing, selection, and connection of a wide variety of ge-
ographically distributed computational and storage resources for addressing large-
scale data-intensive scientific application needs in, for instance, high-energy physics,
bioinformatics, and virtual astrophysical observatories, among others. Data sets are
replicated in Data Grids and distributed among multiple sites. Unfortunately, datasets
of interest are significantly large in size, which may lead to access efficiency over-
heads. Using the parallel-access approach to downloading data from multiple servers
reduces transfer time and increases resilience to servers.

The co-allocation architecture provides a coordinated agent for assigning data
blocks. A previous work showed that the dynamic co-allocation scheme leads to per-
formance improvements, but cannot handle the idle time of faster servers, that must
wait for the slowest server to deliver its final block. In this paper, we proposed the
Recursive-Adjustment Co-Allocation scheme to improve data transfer performances
using the co-allocation architecture in [13]. In our approach, the workloads of se-
lected replica servers are continuously adjusted during data transfers, and we provide
a function that enables users to define a final block threshold, according to their data
grid environment. Experimental results show the effectiveness of our proposed tech-
nique in improving transfer time and reducing overall idle time spent waiting for the
slowest server.

Acknowledgements This paper is supported in part by National Science Council, Taiwan R.O.C., under
grants no. NSC93-2213-E-029-026, NSC94-2213-E-029-002, and NSC95-2221-E-029-004.

References

1. Allcock B, Bester J, Bresnahan J, Chervenak A, Foster I, Kesselman C, Meder S, Nefedova V, Ques-
nel D, Tuecke V (2002) Data management and transfer in high-performance computational grid envi-
ronments. Parallel Comput 28(5):749–771

2. Allcock B, Bester J, Bresnahan J, Chervenak A, Foster I, Kesselman C, Meder S, Nefedova V, Quesnel
D, Tuecke S (2001) Secure, efficient data transport and replica management for high-performance
data-intensive computing. In: Proc of the eighteenth IEEE symposium on mass storage systems and
technologies, 2001, pp 13–28

3. Chervenak A, Deelman E, Foster I, Guy L, Hoschek W, Iamnitchi A, Kesselman C, Kunszt P, Ri-
peanu M (2002) Giggle: a framework for constructing scalable replica location services. In: Proc of
SC 2002, Baltimore, MD, 2002

4. Chervenak A, Foster I, Kesselman C, Salisbury C, Tuecke S (2001) The data grid: towards an archi-
tecture for the distributed management and analysis of large scientific datasets. J Netw Comput Appl
23:187–200

5. Czajkowski K, Fitzgerald S, Foster I, Kesselman C (2001) Grid information services for distributed
resource sharing. In: Proceedings of the tenth IEEE international symposium on high-performance
distributed computing (HPDC-10’01), August 2001, pp 181–194

6. Czajkowski K, Foster I, Kesselman C (1999) Resource co-allocation in computational grids. In: Pro-
ceedings of the eighth IEEE international symposium on high performance distributed computing
(HPDC-8’99), August 1999



Improvements on dynamic adjustment mechanism 279

7. Donno F, Gaido L, Ghiselli A, Prelz F, Sgaravatto M (2002) DataGrid prototype 1. In: TERENA
Networking Conference, June 2002. http://www.terena.nl/conferences/tnc2002/Papers/p5a2-ghiselli.
pdf

8. Global Grid Forum. http://www.ggf.org/
9. Hoschek W, Jaen-Martinez J, Samar A, Stockinger H, Stockinger K (2000) Data management in an

international data grid project. In: First IEEE/ACM international workshop on grid computing—grid
2000, Bangalore, India, December 2000

10. IBM Red Books, Introduction to Grid Computing with Globus. IBM Press, www.redbooks.ibm.com/
redbooks/pdfs/sg246895.pdf

11. Stockinger H, Samar A, Allcock B, Foster I, Holtman K, Tierney B (2002) File and object replication
in data grids. J Clust Comput 5(3):305–314

12. The Globus Alliance. http://www.globus.org/
13. Vazhkudai S (2003) Enabling the co-allocation of grid data transfers. In: Proceedings of fourth inter-

national workshop on grid computing, November 2003, pp 41–51
14. Vazhkudai S, Schopf J (2003) Using regression techniques to predict large data transfers. Int J High

Perform Comput Appl (IJHPCA) 17:249–268
15. Vazhkudai S, Tuecke S, Foster I (2001) Replica selection in the globus data grid. In: Proceedings of

the 1st international symposium on cluster computing and the grid (CCGRID 2001), May 2001, pp
106–113

16. Vazhkudai S, Schopf J (2002) Predicting sporadic grid data transfers. In: Proceedings of 11th IEEE
international symposium on high performance distributed computing (HPDC-11 ’02) July 2002, pp
188–196

17. Vazhkudai S, Schopf J, Foster I (2002) Predicting the performance of wide area data transfers. In:
Proceedings of the 16th international parallel and distributed processing symposium (IPDPS 2002),
April 2002, pp 34–43

18. Wolski R, Spring N, Hayes J (1999) The network weather service: a distributed resource performance
forecasting service for metacomputing. Future Gener Comput Syst 15(5-6):757–768

19. Yang C-T, Chen C-H, Li K-C, Hsu C-H (2005) Performance analysis of applying replica selection
technology for data grid environments. In: PaCT 2005, lecture notes in computer science, vol 3603,
Springer, September 2005, pp 278–287

20. Zhang X, Freschl J, Schopf J (2003) A performance study of monitoring and information services
for distributed systems. In: Proceedings of 12th IEEE international symposium on high performance
distributed computing (HPDC-12 ’03), August 2003, pp 270–282

Chao-Tung Yang received a BS degree in computer science and information engineering from Tunghai
University, Taichung, Taiwan in 1990, and the MS degree in computer and information science from Na-
tional Chiao Tung University, Hsinchu, Taiwan in 1992. He received the PhD degree in computer and
information science from National Chiao Tung University in July 1996. He won the 1996 Acer Dragon
Award for outstanding PhD Dissertation. He has worked as an associate researcher for ground operations
in the ROCSAT Ground System Section (RGS) of the National Space Program Office (NSPO) in Hsinchu
Science-based Industrial Park since 1996. In August 2001, he joined the faculty of the Department of
Computer Science and Information Engineering at Tunghai University, where he is currently an associate
professor. His researches have been sponsored by Taiwan agencies National Science Council (NSC), Na-
tional Center for High Performance Computing (NCHC), and Ministry of Education. His present research
interests are in grid and cluster computing, parallel and high-performance computing, and internet-based
applications. He is both member of the IEEE Computer Society and ACM.



280 C.-T. Yang et al.

I-Hsien Yang received the BS degree in business administration at National Chung-Hsing University,
Taichung, Taiwan, in July 1996. He received the MS degree in computer science and information engi-
neering at Tunghai University, Taichung, Taiwan, in July 2005. He also works at Knowledge and Service
Information Corporation in Taichung City, Taiwan. His research interests include data grid, grid comput-
ing, and cluster computing.

Kuan-Ching Li received the PhD and MS in Electrical Engineering and Licenciatura in Mathematics
from University of Sao Paulo, Brazil in 2001, 1996 and 1994, respectively. After he received his PhD,
he had been post-doc scholar in the Department of Electrical and Computer Engineering, University of
California—Irvine, California, USA and the Department of Electrical Engineering—Systems, University
of Southern California, California, USA. Professor Li is currently an Associate Professor in the Depart-
ment of Computer Science and Information Engineering at the Providence University, Taiwan. Prior to
join Providence in February 2003, he was a research scientist at the University of California—Irvine. His
research interests include cluster and grid computing, parallel software design, and life sciences comput-
ing.




