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Abstract Several co-allocation strategies have been coupled and used to exploit rate
differences among various client-server links and to address dynamic rate fluctua-
tions by dividing files into multiple blocks of equal sizes. However, a major obstacle,
the idle time of faster servers having to wait for the slowest server to deliver the fi-
nal block, makes it important to reduce differences in finishing time among replica
servers. In this paper, we propose a dynamic co-allocation scheme, namely Recursive-
Adjustment Co-Allocation scheme, to improve the performance of data transfer in
Data Grids. Our approach reduces the idle time spent waiting for the slowest server
and decreases data transfer completion time.

Keywords Data Grid · Dynamic · Recursive · GridFTP · Co-allocation · Data
transfer

1 Introduction

In Data Grid environments, access to distributed data is typically as important as ac-
cess to distributed computational resources [1, 2, 4, 7, 9]. Distributed scientific and
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engineering applications require transfers of large amounts of data between storage
systems, and access to large amounts of data generated by many geographically dis-
tributed applications and users for analysis and visualization, among others. Unfor-
tunately, the lack of standard protocols for transferring and accessing data in Grids
has led to a fragmented Grid storage community. Users wishing to access various
storage systems are forced to use multiple protocols, and it is difficult to transfer data
efficiently between these various storage systems [2, 9].

Replicating popular content in distributing servers is widely used in practice
[11, 13, 15]. Recently, large-scale, data-sharing scientific communities such as those
described in [1, 4] used this technology to replicate their large datasets over several
sites. Downloading large datasets from several replica locations may result in varied
performance rates, because the replica sites may have different architectures, system
loadings, and network connectivity. Bandwidth quality is the most important factor
affecting transfers between clients and servers since download speeds are limited by
the bandwidth traffic congestion in the links connecting the servers to the clients
[17, 18].

The co-allocation of data transfers enables the clients to download data from mul-
tiple locations by establishing multiple connections in parallel [6, 13]. This can im-
prove the performance compared to the single-server cases and alleviate the internet
congestion problem [13]. Several co-allocation strategies were provided in the pre-
vious work [13]. An idle-time drawback remains since faster servers must wait for
the slowest server to deliver its final block. Therefore, it is important to reduce the
differences in finish time among replica servers. In this paper, we propose a dynamic
co-allocation scheme based on co-allocation Grid data transfer architecture called
Recursive-Adjustment Co-Allocation that can reduce the idle time spent waiting for
the slowest server and improves data transfer performance. Experimental results show
that our approach is superior to previous methods and achieved the best overall per-
formance.

The remainder of this paper is organized as follows. Related studies are presented
in Sect. 2 and the co-allocation architecture is introduced in Sect. 3. Our research
approaches are outlined in Sect. 4, and experimental results and a performance eval-
uation of our scheme are presented in Sect. 5. Section 6 concludes this research paper.

2 Related work

Data grids consist of scattered computing and storage resources located in differ-
ent countries/regions yet accessible to users [7]. In this study we used the grid
middleware Globus Toolkit [8, 10, 12] as the data grid infrastructure. The Globus
Toolkit provides solutions for such considerations as security, resource management,
data management, and information services. One of its primary components is MDS
[5, 8, 10, 12, 20], which is designed to provide a standard mechanism for discovering
and publishing resource status and configuration information. It provides a uniform
and flexible interface for data collected by lower-level information providers in two
modes: static (e.g., OS, CPU types, system architectures) and dynamic data (e.g.,
disk availability, memory availability, and loading). And it uses GridFTP [1, 8, 12],
a reliable, secure, and efficient data transport protocol to provide efficient manage-
ment and transfer of terabytes or petabytes of data in a wide-area, distributed-resource
environment.
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As datasets are replicated within Grid environments for reliability and perfor-
mance, clients require the abilities to discover existing data replicas, and create and
register new replicas. A Replica Location Service (RLS) [3, 15] provides a mech-
anism for discovering and registering existing replicas. Several prediction metrics
have been developed to help replica selection. For instance, Vazhkudai and Schopf
[14, 16, 17] used past data transfer histories to estimate current data transfer through-
puts.

In our previous work [19], we proposed a replica selection cost model and a replica
selection service to perform replica selection. In [13], the author proposes a co-
allocation architecture for co-allocating Grid data transfers across multiple connec-
tions by exploiting the partial copy feature of GridFTP. It also provides Brute-Force,
History-Base, and Dynamic Load Balancing for allocating data block. Brute-Force
Co-Allocation works by dividing file sizes equally across available flows without ad-
dressing bandwidth differences among the various client-server links. The History-
based Co-Allocation scheme keeps block sizes per flow proportional to predicted
transfer rates.

The Conservative Load Balancing dynamic co-allocation strategy divides re-
quested datasets into “k” disjoint blocks of equal size. Available servers are assigned
single blocks to deliver in parallel. When a server finishes delivering a block, an-
other is requested, and so on, till the entire file is downloaded. The loadings on the
co-allocated flows are automatically adjusted because the faster servers will deliver
more quickly providing larger portions of the file. The Aggressive Load Balancing
dynamic co-allocation strategy presented in [13] adds functions that change block
size de-liveries by: (1) progressively increasing the amounts of data requested from
faster servers, and (2) reducing the amounts of data requested from slower servers or
ceasing to request data from them altogether.

The co-allocation strategies described above do not handle the shortcoming of
faster servers having to wait for the slowest server to deliver its final block. In most
cases, this wastes much time and decreases overall performance. Thus, we propose
an efficient approach called Recursive-Adjustment Co-Allocation and based on a co-
allocation architecture. It improves dynamic co-allocation and reduces waiting time,
thus improving overall transfer performance.

3 Co-allocation architecture

The co-allocation of data transfers enables the clients to download data from multi-
ple locations by establishing multiple connections in parallel [6, 13]. Figure 1 shows
the co-allocation of data transfers in Grid, which is an extension of the basic template
for resource management [6] provided by Globus Toolkit. The architecture consists of
three main components: an information service, broker/co-allocator, and local storage
systems. Applications specify the characteristics of desired data and pass the attribute
description to a broker. The broker queries available resources and gets replica loca-
tions from information services [5] and replica management services [13, 15], and
then gets a list of physical locations for the desired files.

The candidate replica locations are passed to a replica selection service [13, 15],
which was presented in a previous work [19]. This replica selection service provides
estimates of candidate transfer performance based on a cost model and chooses ap-
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Fig. 1 Data Grid co-allocation
architecture [13, 15]

propriate amounts to request from the better locations. The co-allocation agent then
downloads the data in parallel from the selected servers. In this research, we use
GridFTP [1, 8, 12] to enable parallel data transfers. GridFTP is a high-performance,
secure, reliable data transfer protocol optimized for high-bandwidth wide-area net-
works. Among its many features are security, parallel streams, partial file transfers,
third-party transfers, and reusable data channels. Its partial file transfer ability allows
files to be retrieved from data servers by specifying the start and end offsets of file
sections.

4 Dynamic co-allocation strategy

Dynamic co-allocation, described above, is the most efficient approach to reducing
the influence of network variations between clients and servers. However, the idle
time of faster servers awaiting the slowest server to deliver the last block is still
a major factor affecting overall efficiency, which Conservative Load Balancing and
Aggressive Load Balancing [13] cannot effectively avoid. The approach proposed
in the present paper, a dynamic allocation mechanism called “Recursive-Adjustment
Co-Allocation” can overcome this, and thus, improve data transfer performance.

Our Recursive-Adjustment Co-Allocation can continuously adjust each replica
server’s workload to correspond to its real-time bandwidth during file transfers. The
goal is to make the expected finish time of all servers the same. As Fig. 2 shows, when
an appropriate file section is first selected, it is divided into proper block sizes accord-
ing to the respective server bandwidths. The co-allocator then assigns the blocks to
servers for transfer. At this moment, it is expected that the transfer finish time will be
consistent at E(T1). However, since server bandwidths may fluctuate during segment
deliveries, actual completion time may be dissimilar (solid line, in Fig. 2). Once the
quickest server finishes its work at time T1, the next section is assigned to the servers
again. This allows each server to finish its assigned work-load by the expected time
at E(T2). These adjustments are repeated until the entire file transfer is finished.

The Recursive-Adjustment Co-Allocation process is illustrated in Fig. 3. When
a user requests file A, the replica selection service responds with the subset of all
available servers defined by the maximum performance matrix. The co-allocation
service gets this list of selected replica servers. Assuming n replica servers are se-
lected, Si denotes server “i” such that 1� i � n. A connection for file downloading
is then built to each server.
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Fig. 2 The adjustment process

Fig. 3 The flowchart of
recursive-adjustment
co-allocation

The Recursive-Adjustment Co-Allocation process is as follows. A new section of
a file to be allocated is first defined. The section size, “SEj ,” is:

SEj = UnassignedFileSize × α, (0 < α < 1), (1)

where SEj denotes the section j such that 1� j � k, assuming we allocate k times
for the download process, and thus, there are k sections, while Tj denotes the time
section j allocated. UnassignedFileSize is the portion of file A not yet distributed for
downloading; initially, UnassignedFileSize is equal to the total size of file A. α is the
rate that determines how much of the section remains to be assigned.

In the next step, SEj is divided into several blocks and assigned to “n” servers.
Each server has a real-time transfer rate to the client of Bi , which is measured by the
Network Weather Service (NWS) [18]. The block size per flow from SEj for each
server “i” at time Tj is:

Si = (SEj +
n∑

i=1

UnFinishSizei ) × Bi/

n∑

i=1

Bi − UnFinishSizei (2)
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where UnFinishSizei denotes the size of unfinished transfer blocks that is assigned in
previous rounds at server “i.” UnFinishSizei is equal to zero in first round. Ideally,
depending to the real time bandwidth at time Tj , every flow is expected to finish its
workload in future.

This fulfills our requirement to minimize the time faster servers must wait for the
slowest server to finish. If, in some cases, network variations greatly degrade trans-
fer rates, UnFinishSizei may exceed (SEj + ∑n

i=1 UnFinishSizei ) ∗ Bi/
∑n

i=1 Bi ,
which is the total block size expected to be transferred after Tj . In such cases, the
co-allocator eliminates the servers in advance and assigns SEj to other servers.

After allocation, all channels continue transferring data blocks. When a faster
channel finishes its assigned data blocks, the co-allocator begins allocating an unas-
signed section of file A again. The process of allocating data blocks to adjust expected
flow finish time continues until the entire file has been allocated.

Our approach gets new sections from whole files by dividing unassigned file
ranges in each round of allocation. These unassigned portions of the file ranges be-
come smaller after each allocation. Since adjustment is continuous, it would run as
an endless loop if not limited by a stop condition.

However, when is it appropriate to stop continuous adjustment? We provide two
monitoring criteria, LeastSize and ExpectFinishedTime, to enable users to define stop
thresholds. When a threshold is reached, the co-allocation server stops dividing the
remainder of the file and assigns that remainder as the final section. The LeastSize cri-
terion specifies the smallest file we want to process, and when the unassigned portion
of UnassignedFileSize drops below the LeastSize specification, division stops. Ex-
pectFinishedTime criterion specifies the remaining time transfer is expected to take.
When the expected transfer time of the unassigned portion of a file drops below the
time specified by ExpectFinishedTime, file division stops. The expected rest time
value is determined by:

UnAssignedFileSize/
n∑

i=1

Bi (3)

5 Experimental results and analyses

In this section, we evaluate four co-allocation schemes: (1) Brute-Force (Brute),
(2) History-based (History), (3) Conservative Load Balancing (Conservative) and
(4) Recursive-Adjustment Co-Allocation (Recursive). We analyze the performance of
each scheme by comparing their transfer finish time, and the total idle time faster
servers spent waiting for the slowest server to finish delivering the last block. Fig-
ure 4 shows a snapshot of our GridFTP client tool.

In our example, we assumed that a client site at Tunghai University (THU),
Taichung city, Taiwan, was fetching a file from three selected replica servers: one at
Providence University (PU), one at Li-Zen High School (LZ), and one at Da-Li High
School (DALI). We monitored the bandwidth variations from THU to each server us-
ing NWS [18] probes. Network environment variations of each connection are shown
in Fig. 5.

We assign α = 0.5 and experiment it over several file sizes, such as 500 MB,
1000 MB, 2000 MB, and 4000 MB. We set the LeastSize limit threshold to 100 MB,
which result in 12, 15, 17, and 19 block numbers. As mater of comparison, we use
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Fig. 5 Network variation
between client and each server

Fig. 6 Completion times for
various methods

the equal block numbers above to calculate the performance of each size, when using
the Conservative Load Balancing. In Fig. 6, we show the cost time of each scheme
that transfers different file sizes. Obviously, Fig. 6 shows that our approach reduces
the time efficiently when compared with the other three schemes.

For each of schemes, we analyzed the effect of faster servers waiting for the slow-
est server to deliver the last block. In Fig. 7, we calculate the total waiting idle time
with different file sizes, and it shows that our Recursive-Adjustment Co-Allocation
scheme offers significant performance improvements in every file size case when
compared with other schemes. This result is due to our approach reduces the differ-
ence of each server’s finished time efficiently.

For the Recursive-Adjustment technique, we study the effects of various α values
on the block numbers and the total idle times. Figure 8 shows for an assigned file
size of 10 MB to LeastSize, the total idle time increased and the total block number
decreased as the α value increased. When the α value was greater then 0.7, the wait
time grew rapidly, and although the wait time performance was good when the α

value was less than 0.4, it resulted in a great increase in block numbers, which may
cause high co-allocation costs. This experiment indicates that the assigned α value
should be neither too large nor too small.
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Fig. 7 Idle times for various
methods

Fig. 8 Idle times for various α

values and block numbers for
various α values

Fig. 9 Idle times for various
LeastSize values and block
numbers for various LeastSize
values

Figure 9 shows that the LeastSize threshold value in our Recursive-Adjustment
method is also an important factor affecting total wait time and block numbers. In this
experiment, we set the α value to 0.5 and tested various LeastSize values. The results
indicate that decreasing the LeastSize threshold value effectively reduces the total
wait time. Although this results in more block numbers, the increase is not excessive.
Figure 9 also indicates we may infer that the Recursive-Adjustment scheme performs
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better with smaller LeastSize threshold values for most file sizes because smaller size
final blocks are less influenced by network variations.

6 Conclusions

Data Grids enable the sharing, selection, and connection of a wide variety of ge-
ographically distributed computational and storage resources for addressing large-
scale data-intensive scientific application needs in, for instance, high-energy physics,
bioinformatics, and virtual astrophysical observatories, among others. Data sets are
replicated in Data Grids and distributed among multiple sites. Unfortunately, datasets
of interest are significantly large in size, which may lead to access efficiency over-
heads. Using the parallel-access approach to downloading data from multiple servers
reduces transfer time and increases resilience to servers.

The co-allocation architecture provides a coordinated agent for assigning data
blocks. A previous work showed that the dynamic co-allocation scheme leads to per-
formance improvements, but cannot handle the idle time of faster servers, that must
wait for the slowest server to deliver its final block. In this paper, we proposed the
Recursive-Adjustment Co-Allocation scheme to improve data transfer performances
using the co-allocation architecture in [13]. In our approach, the workloads of se-
lected replica servers are continuously adjusted during data transfers, and we provide
a function that enables users to define a final block threshold, according to their data
grid environment. Experimental results show the effectiveness of our proposed tech-
nique in improving transfer time and reducing overall idle time spent waiting for the
slowest server.
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