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Abstract With the rapid advance of computing technologies, it becomes more and
more common to construct high-performance computing environments with hetero-
geneous commodity computers. Previous loop scheduling schemes were not designed
for this kind of environments. Therefore, better loop scheduling schemes are needed
to further increase the performance of the emerging heterogeneous PC cluster envi-
ronments. In this paper, we propose a new heuristic for the performance-based ap-
proach to partition loop iterations according to the performance weighting of clus-
ter/grid nodes. In particular, a new parameter is proposed to consider HPCC bench-
mark results as part of performance estimation. A heterogeneous cluster and grid
were built to verify the proposed approach, and three kinds of application program
were implemented for execution on cluster testbed. Experimental results show that
the proposed approach performs better than the previous schemes on heterogeneous
computing environments.

Keywords Parallel loop · Self-scheduling · Performance · Heterogeneous · MPI

1 Introduction

Cluster computing systems usually connect several commodity computers in local-
area networks to form a single, unified resource for parallel computing [1, 18, 20].
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As more and more inexpensive personal computers (PC) become available, clusters of
PCs are becoming alternatives to the supercomputers many research projects cannot
afford. As computer architectures become more and more diverse and heterogenic,
and computer expiration rates are higher than before, we can put old and unused
computers to efficient use in our research. Therefore, it is natural because of the
fast development of information technology that clusters consist of computers with
various processors, memories and hard disk drives. However, it is difficult to deal
with such heterogeneity in a cluster [2, 7, 13, 14, 16, 19, 22–24].

Loop scheduling and load balancing on parallel and distributed systems are crit-
ical problems that are difficult to cope with, especially on the emerging PC-based
clusters [3, 4]. In this aspect, an important issue is how to assign tasks to nodes
so that the nodes’ loads are well balanced. Conventional self-scheduling loop ap-
proaches [11] include static scheduling and dynamic scheduling. However, the for-
mer considers computing nodes as homogeneous resources, and thus not suitable for
heterogeneous environments, and the latter, especially self-scheduling, can still be
improved [6, 22, 24–26].

Previous researchers proposed some useful self-scheduling schemes applicable
to PC-based clusters [6, 25, 26] and grid computing environments [22, 24]. These
schemes consist of two phases. In the first phase, system configuration information
is collected, and some portion of the workload is distributed among slave nodes ac-
cording to their CPU clock speeds [22] or HINT measurements [6, 24, 25]. After
that, the remaining workload is scheduled using some well-known self-scheduling
scheme, such as GSS [11]. The performance of this approach depends on an appro-
priate choice of scheduling parameters since it estimates node performance using
only CPU speed or HINT benchmark, which are factors affecting node performance.
In [6], an enhanced scheme, which dynamically adjusts scheduling parameters ac-
cording to system heterogeneity, is proposed.

Intuitively, we may want to partition loop iterations according to CPU clock speed.
However, the CPU clock is not the only factor which affects the node performance.
Many other factors also have dramatic influences, such as the amount of memory
available, the cost of memory accesses, and the communication medium between
nodes. Using the intuitive approach will result in degraded performance if the perfor-
mance estimation is not accurate.

In this paper, we propose a general approach that utilizes performance functions to
estimate performance weights for each node. To verify the proposed approach, a het-
erogeneous cluster was built, and three types of application program, matrix multipli-
cation, circuit satisfiability, and Mandelbrot set computation [9], were implemented
for execution on this testbed. Empirical results show that for heterogeneous cluster
environments, the proposed approach obtained improved performance compared to
the previous schemes.

Previous work in [6, 24–26] and this paper were all inspired by [22], the α self-
scheduling scheme. However, this work has a different perspective and a unique con-
tribution. First, while [6, 24] partition α% of workloads according to CPU clock
speed performance weighting in phase one, the proposed scheme partitions accord-
ing to a general performance function (PF). In this paper, we do not define an explicit
performance function. Instead, CPU clock and HPC Challenge (HPCC) [5] perfor-
mance measurement are used to estimate the value of performance weighting (PW)
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for all nodes. The PW obtained by HPCC measurement can be used to estimate clus-
ter node performance rather accurately. PW calculation is presented below.

Second, the scheme in [22] utilizes a fixed α value, and [6, 24] adaptively adjust
the α value according to the heterogeneity of the cluster. In other words, both schemes
depend on a properly chosen α value for good performance. However, the proposed
scheme focuses on accurate estimation of node performance, so the choice of α value
is not very critical. Thus, we can roughly choose an α value from a larger range than
the previous schemes can. Third, in our implementation, the master node participates
in computation, whereas in previous schemes, only slave nodes do computation work.

The rest of this paper is organized as follows. In Sect. 2, we introduce several
typical and well-known self-scheduling schemes, and a famous benchmark used to
analyze computer system performance. In Sect. 3, we define our model and describe
our approach. Next, our system configuration is specified and experimental results on
three types of application program are presented in Sect. 4. Concluding remarks and
future work are given in Sect. 5.

2 Background

In this section we first review previous loop scheduling schemes, then introduce the
HPCC performance analyzer.

2.1 Review of loop self-scheduling schemes

Traditional static loop scheduling schemes make scheduling decisions at compil-
ing time, and assign equal workloads to processors. This is applied when all itera-
tions take roughly the same amount of time, and the compiler knows sufficient rel-
evant information before compilation. Its advantage is in less scheduling overhead,
while a possible disadvantage lies in load-imbalance. Well-known static scheduling
schemes include Block Scheduling, Cyclic Scheduling, Block-D Scheduling, Cyclic-
D Scheduling [10], etc. However, these schemes are not suitable for heterogeneous
clusters.

In [22], a heuristic was proposed to distribute workloads according to CPU perfor-
mance. In heterogeneous clusters, it is difficult to estimate node performance. In [12],
it is indicated that many attributes influence the system performance, including CPU
clock speed, available memory, communication cost, etc. In [24], the authors tried to
evaluate computer performance using the HINT benchmark. However, HINT requires
hours to execute, so it is not suitable for frequent use.

In contrast, dynamic scheduling is more suitable for load balancing. However, the
runtime overhead must be taken into consideration. The schemes we focus on in this
paper are self-scheduling, members of a large class of adaptive and dynamic central-
ized loop scheduling schemes. In a common self-scheduling scheme, p denotes the
number of processors, N the total iterations and f () is a function for producing the
chunk-size at each step. The design of function f depends on the scheduling strategy
of the scheme, and its output is the chunk-size for the next iteration. For example,
in GSS [10], f is defined as the number of iterations remaining in a parallel loop
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Table 1 Partition size examples
Scheme Partition size

PSS 1, 1, 1, 1, 1, 1, 1, 1, 1, . . . , 1

CSS(128) 128, 128, 128, 128, 128, 128, 128, 128

GSS [7] 256, 192, 144, 108, 81, 61, 46, 34, 26, . . .

FSS [10] 128, 128, 128, 128, 64, 64, 64, 64, 32, . . .

TSS [17] 128, 120, 112, 104, 96, 88, 80, 72, 64, . . .

divided by the number of available processors. At the ith scheduling step, the master
computes the chunk-size Ci and the remaining number of tasks Ri :

RO = N, Ci = f (i,p), Ri = Ri−1 − Ci (1)

where f () may have more parameters than just i and p, such as Ri−1. The master
assigns Ci tasks to an idle slave and the load-imbalance will depend on the execution
time gap between the nodes [7, 10]. Different ways of computing Ci have given rise
to various scheduling schemes. The most notable examples are Pure Self-Scheduling
(PSS), Chunk Self-Scheduling (CSS), Factoring Self-Scheduling (FSS), Guided Self-
Scheduling (GSS), and Trapezoid Self-Scheduling (TSS) [8, 11, 21]. Table 1 shows
the various chunk sizes for a problem with iterations numbering N = 1024 and
processors numbering p = 4.

Pure Self-Scheduling (PSS) was the first straightforward dynamic loop scheduling
algorithm. In this paper, a processor is said to be idle if it has not been assigned a
chunk of workload or it has finished its assigned workload. Whenever a processor
falls idle, iterations are assigned to it. This algorithm achieves good load balancing
but induces excessive overhead [10].

Chunk Self-Scheduling (CSS) assigns k iterations each time, where k, the chunk-
size, is fixed and must be specified by either the programmer or the compiler.
When k is 1, the scheme is purely self-scheduling, as discussed above. Large chunk
sizes cause load-imbalance, while small chunk sizes are likely to produce excessive
scheduling overhead [10].

Guided Self-Scheduling (GSS) can dynamically change the number of iterations
assigned to idle processors [11]. More specifically, the next chunk-size is determined
by dividing the number of iterations remaining in a parallel loop by the number of
available processors. The property of decreasing chunk-size implies that an effort
is made to achieve load balancing and to reduce scheduling overhead. By assigning
large chunks at the beginning of a parallel loop, one can reduce the frequency of
communication between master and slaves. The small chunks at the end of a loop
partition serve to balance the workload across all working processors.

Factoring Self-Scheduling (FSS) assigns loop iterations to working processors in
phases [8]. During each phase, only a subset of remaining loop iterations (usually
half) is divided equally among available processors. Because FSS assigns a subset of
the remaining iterations in each phase, it balances workloads better than GSS when
loop iteration computation times vary substantially. The synchronization overhead of
FSS is not significantly greater than that of GSS.
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Trapezoid Self-Scheduling (TSS) tries to reduce the need for synchronization
while still maintaining reasonable load balances [21]. TSS(Ns,Nf ) assigns the first
Ns iterations of a loop to the processor starting the loop and the last Nf iterations to
the processor performing the last fetch, where Ns and Nf are both specified by either
the programmer or parallelizing compiler. This algorithm allocates large chunks of
iterations to the first few processors and successively smaller chunks to the last few
processors. Tzen and Ni [21] proposed TSS(N/2p,1) as a general selection. In this
case, the first chunk is of size N/2p, and successive chunks differ in size N/8p2 iter-
ations. The size difference of successive chunks is always a constant in TSS, whereas
it is a decreasing function in GSS and in FSS.

In [22], the authors revise known loop self-scheduling schemes to fit all hetero-
geneous PC clusters environment when loops are regular. An approach is proposed
for partitioning loop iterations in two phases and it achieves good performance in
any heterogeneous environment: partition α% of the workload according to CPU
clock performance weighting in the first phase and the remainder (100 − α)% of the
workload according to known self-scheduling in the second phase. The experimental
results are from a cluster environment with six nodes in which the fastest computer
was 6 times faster than the slowest ones in CPU-clock cycles. Various α values were
applied to matrix multiplication with the best performance obtained at α = 75.

2.2 Grid computing and its middleware

2.2.1 Globus toolkits

The Globus Project provides software tools that make it easier to build computational
Grids and Grid-based applications. These tools are collectively called The Globus
Toolkit (http://www.globus.org/). We adopted it as infrastructure for our Grid test-
bed. The toolkit includes software for security, information infrastructure, resource
management, data management, communication, fault detection, and portability.

The composition of the Globus Toolkit can be pictured as three pillars: Resource
Management, Information Services, and Data Management. Each pillar represents
a primary component of the Globus Toolkit and makes use of a common founda-
tion of security. The Globus Resource Allocation Manager (GRAM) implements a
resource management protocol, the Metacomputing Directory Service (MDS) im-
plements an information services protocol, and GridFTP implements a data transfer
protocol. They all use the GSI security protocol at the connection layer.

GRAM provides an API for submitting and canceling job requests, as well as
checking the statuses of submitted jobs. The specifications are written by the Re-
source Specification Language (RSL) and processed by GRAM as part of each job
request.

MDS is the information services component of the Globus Toolkit and provides
information about available resources on the Grid and their statuses. Via the default
LDAP scheme distributed with Globus, it gives current information about the Globus
gatekeeper including CPU type and number, real memory, virtual memory, file sys-
tems and networks.

GridFTP is a high-performance, secure, reliable data transfer protocol optimized
for high-bandwidth wide-area networks. GridFTP protocol is based on FTP, the
highly popular Internet file transfer protocol.

http://www.globus.org/
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2.2.2 MPICH-G2

MPI is a message-passing library standard that was published in May 1994. The
“standard” of MPI is based on the consensus of the participants in the MPI Fo-
rums [2], organized by over 40 organizations. Participants include vendors, re-
searchers, academics, software library developers and users. MPI offers portability,
standardization, performance and functionality [2].

MPICH-G2 [1, 2] is a Grid-enabled implementation of the MPI v1.1 standard.
That is, using services from the Globus Toolkit (e.g., job startup, security), MPICH-
G2 allows you to couple multiple machines, potentially of different architectures, to
run MPI applications. MPICH-G2 automatically converts data in messages sent be-
tween machines of different architectures and supports multi-protocol communica-
tion by automatically selecting TCP for inter-machine messaging and (where avail-
able) vendor-supplied MPI for intra-machine messaging. Existing parallel programs
written for MPI can be executed over the Globus infrastructure just after recompila-
tion [1].

2.3 HPC challenge benchmark

The HPC Challenge (HPCC) is a useful computer benchmarking tool [5]. It first ex-
amines the performance of HPC architectures using kernels with more challenging
memory access patterns than High Performance Linpack (HPL). It also augments the
TOP500 list. It provides benchmarks that bound the performance of many real ap-
plications as a function of memory access characteristics—e.g. spatial and temporal
locality. Unlike conventional benchmarks, the HPCC benchmark consists of 7 basic
tests, consisting of HPL, DGEMM, STREAM, PTRANS, Random Access, FFT, and
Communication bandwidth and latency. In our work, we use the HPL measurement
as a performance value and include it in our scheduling algorithm.

3 Proposed approach

Cluster computers have different performance scales in heterogeneous environments.
In such situations, additional slave computers may not perform well because known
self-scheduling schemes partition workloads according to formulas rather than com-
puter performance. The aim of this work is to promote the performance of loop
scheduling for the emerging heterogeneous computing environments. By considering
a new parameter, β (proportion of HPCC benchmark results in performance estima-
tion), performance of loop scheduling can benefit from more balanced load distrib-
ution. In FSS, for example, every slave gets a workload of size N/2P , where N is
the total workload and P is the number of processors. If the performance difference
between the fastest and the slowest computer is larger than N/2P , a load-imbalance
occurs. In this section, we first introduce the system model, then describe the per-
formance weighting parameters and static–workload ratio, and finally, present the
skeleton algorithm for performance-based loop scheduling.
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3.1 Performance function

In this context, we propose to partition α% of the workload according to CPU clock
speed performance weighting and HPCC [5] measurement of all nodes, and dis-
patch the remaining workload via some well-known self-scheduling scheme, such
as GSS [11]. To use this approach, we need to know the real computer performance
on the HPCC benchmark. We can then distribute appropriate workloads to each node
and achieve load balancing. The more accurate the estimation is, the better the load
balance will be.

To estimate node performance, we define a performance weighting (PW) for
node j as

PWf (V1,V2, . . . , VM) (2)

where Vi , 1 < i < M , is a variable of the performance weighting. In this paper, our
PW for node j is defined as

PWf = β
CSf

∑
∀nodei∈S CSi

+ (1 − β)
HPLf

�∀nodei∈SHPLi

, 0 ≤ β ≤ 1 (3)

where S is the set of all cluster nodes, CSi is the CPU clock speed of node i, and is
a constant attribute. HPLi is the HPL measurement of HPCC, this value is analyzed
above; β is the ratio between the two values.

Assume there are 24 loop iterations to be scheduled, and the value of parameter
α is 50%, and the PW values of the three nodes are 3, 2, and 1. In other words, the
scheduler will assign 6 iterations to the first node, 4 iterations to the second, and 2 to
the third.

3.2 Algorithm

With this approach, the computing node with better performance gets more work-
load. Note that parameter α should not be too large or too small. If it is too large,
the dominant computer will not finish its work, and if it is too small, the dynamic
scheduling overhead will be significant. In any case, good performance cannot be
attained without an appropriate α value.

We propose an algorithm for performance-based loop scheduling in heterogeneous
cluster environments based on workload distribution and node performance infor-
mation. This algorithm employs a message-passing paradigm, and consists of two
modules: a master module and a slave module. The master module makes schedul-
ing decisions and dispatches workloads to slaves, which then process the assigned
work. This algorithm is just a skeleton, and detailed implementations, such as data
preparation, parameter passing, etc., might differ according to the requirements of the
various applications.

The algorithm consists of several steps. First, relevant information is acquired.
Then, the Performance Weighting is calculated. Next, α percent of the total workload
is statically scheduled according to the performance ratio among all slave nodes.
Finally, the remainder of the workload is dynamically scheduled by some well-known
self-scheduling scheme for load balancing. The algorithm is described below.
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Algorithms MASTER and SLAVE in pseudo code:
Module MASTER /* scheduler */
/* perform task scheduling, load balancing and some computation */
[Initialization]
/* Stage 1: Gathering the information. */
Collect CPU clock speed and HPL measurements
/* Stage 2: Calculate the performance weighted */
Calculate PWj by formula (3)
/* Stage 3: Static Scheduling */
r=0;
for (i= 1; i< member_of_nodes; i+
{

partition α% of loop iterations according to the performance
weighted;
send data to all nodes;

r+
}

Master does its own computation work
/* Stage 4: Dynamic Scheduling */
Partition (100−α) of loop iterations into the task queue using
some well-known self-scheduling scheme
/* Stage 5: Probe for returned results */
Do{
Distinguish source and receive returned data
If the task queue is not empty then
Send another data to the idle slave
r−

else
send TAG= to the idle slave

}while (r >
[Finalization]
END MASTER

Module SLAVE /* worker */
[Initialization]
Probe if some data in
While (TAG>

{
Receive initial solution and size of subtask work and
compute fine solution
Send the result to the master
Probe if some data in
}

[Finalization]
END SLAVE

3.3 System model

The HPCC benchmark assisted us in comparatively analyzing all cluster nodes. We
must have a proper response and an appropriate self-scheduling scheme for change-
able system architectures and loop styles.
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Fig. 1 The self-scheduling flow
chart

We implemented dynamic adjustment of scheduling parameters to fit multiform
system architectures, and message-passing interface (MPI) directives for parallelizing
code segments to be executed by multiple CPUs. We chose MPI for our programming
environment since MPI is more suited to cluster computing than other programming
environments such as the Parallel Virtual Machine (PVM) and the Meta-System Ap-
proach. In the MPI programming environment, we write just one program for both
master and slave nodes. Thus, MPI code is easy to use and maintain. The Parallel Vir-
tual Machine (PVM) requires the development of two individual program modules,
one for the master node and the other for the slave nodes, which makes it inefficient
and hard to maintain. Our scheduling codes must be easy to insert into the target
source code in regions where loop parts may be parallelized as much as possible. An
example of how our new self-scheduling scheme works is illustrated in Fig. 1.

4 Experiments and results

A heterogeneous PC-based cluster was built to verify our approach, and three types
of application program were implemented for execution on this testbed with MPI.
We first illustrate our cluster environment and describe the terminology for our pro-
grams. The performance of our scheme is then compared with that of other static
and dynamic schemes on the heterogeneous cluster, using matrix multiplication and
Mandelbrot sets.
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Table 2 Our implementation of
all matrix multiplication
programs

Master Name Description Reference #

compute

Y matstat Static scheduling [10]

N matgss GSS [11]

N matngss0 Fixed α scheduling + GSS [22]

Y matngss1 Fixed α scheduling + GSS [26]

N matngss2 Adaptive α scheduling + GSS [24, 25]

N matngss3 Proposed scheduling + GSS

Y matngss4 Proposed scheduling + GSS

N matfss FSS [8]

N matnfss0 Fixed α scheduling + FSS [22]

Y matnfss1 Fixed α scheduling + FSS [26]

N matnfss2 Adaptive α scheduling + FSS [24, 25]

N matnfss3 Proposed scheduling + FSS

Y matnfss4 Proposed scheduling + FSS

N mattss TSS [21]

N matntss0 Fixed α scheduling + TSS [22]

Y matntss1 Fixed α scheduling + TSS [26]

N matntss2 Adaptive α scheduling + TSS [24, 25]

N matntss3 Proposed scheduling + TSS

Y matntss4 Proposed scheduling + TSS

Conventional static scheduling schemes distribute the total workload equally to
all workers at compiling time. However, such schemes are obviously not suitable for
dynamic and heterogeneous environments. Therefore, a weighted static scheduling
scheme is adopted in this experiment. The partitioning principle follows PWs ratios.
Faster nodes get proportionally more workload than the slower ones.

4.1 Experiments on three applications

We implemented three classes of application in C language, with message-passing
interface (MPI) directives to parallelize code segments for execution on our testbed:
Matrix Multiplication, Mandelbrot Set Computation, and Circuit Satisfiability. The
first has regular workloads, the last irregular workloads. To enhance the readability
of experimental results, brief descriptions of all implemented programs are given in
Tables 2– 4.

4.2 Hardware configuration and terminology

We built a heterogeneous cluster consisting of eleven nodes. The hardware and soft-
ware configurations are specified in Tables 5 and 6, respectively. Figures 2 and 3
show, respectively, the network route state and topology.
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Table 3 Our implementation of
all Mandelbrot set programs Master Name Description Reference #

compute

Y manstat Static scheduling [10]

N mangss GSS [11]

N manngss0 Fixed α scheduling + GSS [22]

Y manngss1 Fixed α scheduling + GSS [26]

N manngss2 Adaptive α scheduling + GSS [24, 25]

N manngss3 Proposed scheduling + GSS

Y manngss4 Proposed scheduling + GSS

N manfss FSS [8]

N mannfss0 Fixed α scheduling + FSS [22]

Y mannfss1 Fixed α scheduling + FSS [26]

N mannfss2 Adaptive α scheduling + FSS [24, 25]

N mannfss3 Proposed scheduling + FSS

Y mannfss4 Proposed scheduling + FSS

N mantss TSS [21]

N manntss0 Fixed α scheduling + TSS [22]

Y manntss1 Fixed α scheduling + TSS [26]

N manntss2 Adaptive α scheduling + TSS [24, 25]

N manntss3 Proposed scheduling + TSS

Y manntss4 Proposed scheduling + TSS

Table 4 Our implementation of
all circuit satisfiability programs Master Name Description Reference #

compute

Y satstat Static scheduling [10]

N satgss GSS [11]

N satngss0 Fixed α scheduling + GSS [22]

Y satngss1 Fixed α scheduling + GSS [26]

N satngss2 Adaptive α scheduling + GSS [24, 25]

N satngss3 Proposed scheduling + GSS

Y satngss4 Proposed scheduling + GSS

N satfss FSS [8]

N satnfss0 Fixed α scheduling + FSS [22]

Y satnfss1 Fixed α scheduling + FSS [26]

N satnfss2 Adaptive α scheduling + FSS [24, 25]

N satnfss3 Proposed scheduling + FSS

Y satnfss4 Proposed scheduling + FSS

N sattss TSS [21]

N satntss0 Fixed α scheduling + TSS [22]

Y satntss1 Fixed α scheduling + TSS [26]

N satntss2 Adaptive α scheduling + TSS [24, 25]

N satntss3 Proposed scheduling + TSS

Y satntss4 Proposed scheduling + TSS
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Table 6 CPU clock speeds and OS, compiler, and LAM/MPI versions

Hostname Clock BogoMIPS HPCC LAM/MPI ver. GCC ver.

amd64-dual21 2000.080 MHz 4000.31 11.68 Gflops (N = 15k) lam-7.1.2-10.fc7 gcc-4.1.2-27.fc7

amd64-dual11 1992.128 MHz 3983.54 6.376 Gflops (N = 15k) lam-7.1.2-10.fc7 gcc-4.1.2-27.fc7

amd64-dual31 1991.652 MHz 3983.45 6.100 Gflops (N = 15k) lam-7.1.2-8.fc6 gcc-4.1.1-30

xeon2 3056.757 MHz 6112.98 5.312 Gflops (N = 13k) lam-7.1.2-1.fc5 gcc-4.1.0-3

quad1 2699.986 MHz 5399.77 24.61 Gflops (N = 15k) lam-7.1.2-10.fc7 gcc-4.1.2-33

omega 3000.240 MHz 6000.62 5.372 Gflops (N = 7k) lam-7.1.2-1.fc5 gcc-4.1.1-51.fc5

circa 1666.794 MHz 3333.05 3.732 Gflops (N = 10k) lam-7.1.2-10.fc7 gcc-4.1.2-12

amd-mpdual1 1666.787 MHz 3333.77 3.837 Gflops (N = 13k) lam-7.1.2-8.fc6 gcc-4.1.1-30

condor1 2806.465 MHz 5613.16 3.302 Gflops (N = 7k) lam-7.1.2-8.fc6 gcc-4.1.1-30

condor2 2806.471 MHz 5613.14 3.317 Gflops (N = 7k) lam-7.1.2-8.fc6 gcc-4.1.2-13.fc6

s1 1596.476 MHz 3192.85 14.39 Gflops (N = 20k) lam-7.1.2-10.fc7 gcc-4.1.2-33

Fig. 2 Network route state

4.3 Experimental results

In our experiments, we first collected HPL measurements for all nodes, and then in-
vestigated the impact of parameters α,β , on performance. Parameters α and β are
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Fig. 3 Network topology

set by the programmer and choosing appropriate values adaptable to dynamic en-
vironments is difficult. In this work, the master node also participated in computa-
tion.

4.3.1 Application 1: matrix multiplication

Matrix multiplication is a fundamental operation in many numerical linear alge-
bra applications. Its efficient implementation on parallel computers is an issue of
prime importance when providing such systems with scientific software libraries.
Consequently, considerable effort has been devoted in the past to developing effi-
cient parallel matrix multiplication algorithms, and this will remain a task in the
future as well. Many parallel algorithms for matrix multiplication have been de-
signed, implemented, and tested on various parallel computers and clusters of work-
stations.

We implemented the proposed scheme for matrix multiplication. The master mod-
ule is responsible for distributing workloads. When a slave node becomes idle, the
master node sends two integers to it representing the beginning and end pointers to
an assigned chunk. In other words, every node has a local copy of the input matrices,
so data communication is not significant in this kind of implementation. This means
the communication cost between the master and the slave is low, and the dominant
cost is the matrix multiplication computation. The slave module C/MPI code frag-
ment for matrix multiplication is listed below. As the source code shows, the column
is the atomic unit of allocation.
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Fig. 4 Execution times for
parameter α influence on matrix
multiplication performance with
matrix size 4096 × 4096

MPI_Recv(buf, count, MPI_FLOAT, source, tag. MPI_COMM_WORLD,
&status);
f=0;
while (status.MPI_TAG > 0)
{
for (i= 0; 1< (count/SIZE); i+ +)
for (j= 0; j< SIZE; j+ +)
c[i × SIZE+ j]= 0.0;

/* computing */
for (i= 0; i< (count/SIZE); i+ +)
for (j= 0; j< SIZE; j+ +)
for (k= 0; k< SIZE; k+ +)

c[i× SIZE+ j]+ = buf[i × SIZE+ k] × b[k × SIZE+ j];

/* sent result */
MPI_Send(c, count, MPI_FLOAT, 0, tag, MPI_COMM_WORLD);
free(buf);
free(c);

/* get another size */
MPI_Probe(0, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
source= status.MPI_SOURCE;
tag= status.MPI_TAG;
MPI_Get_count(&status, MPI_FLOAT,&count);
buf= (float*)malloc(count × size of(float));
c= (float*)malloc(count × size of(float));
MPI_Recv(buf, count, MPI_FLOAT, 0, MPI_ANY_TAG,
MPI_COMM_WORLD, &status);
}

Figures 4 and 5 show how parameters influence the performance. In the experi-
ment, we found that the proposed schemes got better performance when α was 30
and β had various optimum values based on scheduling. After selecting α and β val-
ues, we carried out a set of experiments with them, and compared the results with the
previous scheduling algorithms. Each experiment was run ten times and the average
fetched in order to achieve a better accuracy.

We first investigated execution times on the heterogeneous cluster for the GSS
group, then for the FSS group, and finally for the TSS group. In our experiments, the
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Fig. 5 Execution times for
parameter β influence on matrix
multiplication performance with
matrix size 4096 × 4096

Fig. 6 Execution times for the proposed matrix multiplication scheduling compared with the previous
GSS group schemes

execution times for static partitioning (matstat) were orders of magnitude worse than
any of the dynamic approaches and made the results of the dynamic systems very
difficult to distinguish visually from one another, so we state them as follows: matrix
size 1024×1024 cost 57.83 seconds, matrix size 2048×2048 cost 251.7 seconds, and
matrix size 4096 × 4096 cost 1853.27 seconds. Figures 6–8 show execution times for
the conventional scheme (mat*ss), dynamic hybrid (matn*ss0-2), and the proposed
scheme (matn*ss3-4), on the FSS, GSS, and TSS group approaches with input matrix
sizes of 1024 × 1024, 2048 × 2048 and 4096 × 4096. Experimental results show that
the proposed scheduling scheme got better performance than the static and previous
schemes. Note that on the 4096 × 4096 matrix, our approach achieved speedups of
1.17, 1.27 and 1.07 over GSS, FSS and TSS in non-master participation, and speedups
of 1.17, 1.22 and 1.05 in master participation.
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Fig. 7 Execution times for the proposed matrix multiplication scheduling compared with the previous
FSS group schemes

Fig. 8 Execution times for the proposed matrix multiplication scheduling compared with the previous
TSS group schemes

4.3.2 Application 2: Mandelbrot set computation

A Mandelbrot set is a problem involving the same computation on different data
points with different convergence rates [15]. Named after Benoit Mandelbrot, the
Mandelbrot set is a fractal, a class of objects that display self-similarity at various
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scales. Magnifying a fractal reveals small-scale details similar to its large-scale char-
acteristics. Although the Mandelbrot set is self-similar at magnified scales, its small-
scale details are not identical to the whole. In fact, the Mandelbrot set is infinitely
complex. Yet the process of generating it is based on an extremely simple equation
involving complex numbers. This operation derives a resultant image by processing
an input matrix, A, where A is an image of m by n pixels. The resultant image is one
of m by n pixels.

The proposed scheme was implemented for Mandelbrot set computation. The mas-
ter module is responsible for workload distribution. When a slave node becomes idle,
the master node sends two integers to it representing the beginning and end point-
ers to an assigned chunk. As in the matrix multiplication implementation, this keeps
communication costs between the master and the slave low, and the dominant cost is
the Mandelbrot set computation. The slave module C/MPI code fragment for Man-
delbrot set computation is listed below. In this application, the workloads for outer
loop iterations are irregular because the number of executions required for conver-
gence is not fixed. Therefore, the workload distribution performance depends on the
degree of variation between iterations.

MPI_Probe(0, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
source= status.MPI_SOURCE;
tag= status.MPI_TAG;
MPI_Get_count(&status, MPI_INT, &count);
MPI_Recv(&b[0], count, MPI_INT, source, tag, MPI_COMM_WORLD,
&status);
while (status.MPI_TAG> 0) {

/* Compute pixels in parallel */
for (i= 0; i< Nx × NY; i+ +)pix_tmp[i]= 0.0;
for (y= b[0]; y< b[1]; y+ +){
for (x= 0; x< Nx; x+ +){
c.real= Rx_min+ ((double)x× (Rx_max− Rx_min)/(double)(Nx− 1));
c.imag= Ry_min+ ((double)y× (Ry_max− Ry_min)/(double)(Ny− 1));
pix_tmp[y × Nx+ x]= cal_pixel(c);
}//for x

}//for y

/* sent result */
MPI_Send(&b[0], count, MPI_INT, 0, tag, MPI_COMM_WORLD);

/* get another size */
MPI_Probe(0, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
source= status.MPI_SOURCE;
tag= status.MPI_TAG;
MPI_Get_count(&status, MPI_INT, &count);
MPI_Recv(&b[0], count, MPI_INT, source, tag, MPI_COMM_WORLD,
&status);
}

Figures 9 and 10 show how parameters influence the performance. In this experi-
ment, we found that the proposed schemes got better performance when α was 40 and
β was about 0.7. After selecting α and β values, we carried out a set of experiments
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Fig. 9 Execution times for
parameter α influence on
Mandelbrot set computation
performance at image size
2048 × 2048

Fig. 10 Execution times for
parameter β influence on
Mandelbrot set computation
performance at image size
2048 × 2048

with them, and compared the results with the previous scheduling algorithms. Each
experiment was averaged over ten time runs in order to achieve a better accuracy.

We first investigated GSS group execution times on the heterogeneous cluster,
then FSS group execution times, and finally TSS group execution times. In this ex-
periment, static partitioning (manstat) execution times were: image size 512 × 512
cost 194.04 seconds, image size 1024 × 1024 cost 688.1 seconds, and image size
2048 × 2048 cost 3125.3 seconds.

Figures 11–13 show execution times for the static (manstat), conventional
(man*ss), and dynamic hybrid (mann*ss0-2) schemes, and for the proposed scheme
(mann*ss3-4), on the FSS, GSS, and TSS group approaches with input image sizes of
512 × 512, 1024 × 1024, and 2048 × 2048, respectively. Experimental results show
the proposed scheduling scheme got better performance than the static and previous
schemes. Master node participation in computation did not raise the performance
in our experiments. Note that on image size 2048 × 2048, our approach achieved
speedups of 1.17, 1.27 and 1.07 over GSS, FSS and TSS in non-master participation
and of 1.17, 1.22 and 1.05 in master participation.

The largest size used in these experiments was 2048 × 2048, which is not very
big but wastes a great deal of time when run with a node. It is hard to experiment
with bigger sizes due to memory capacity and cache considerations, but we may
find that the bigger the size the greater the efficiency. Note that in a heterogeneous
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Fig. 11 Execution times for the proposed Mandelbrot set scheduling and the previous GSS group schemes

Fig. 12 Execution times for the proposed Mandelbrot set scheduling and the previous FSS group schemes
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Fig. 13 Execution times for the proposed Mandelbrot set scheduling and the previous TSS group schemes

environment, manngss2 performed worse than any other schemes merely because the
adaptive α value is not suitable to this environment.

4.3.3 Application 3: circuit satisfiability

The circuit satisfiability problem is one involving a combinational circuit composed
of AND, OR, and NOT gates. Simply speaking, a circuit is satisfiable if there exists
a set of Boolean input values that makes the output of the circuit be 1. The circuit
satisfiability problem is NP-complete, and no known algorithms can solve it in poly-
nomial time. In the experiment, we found the solutions through an exhaustive search.
This operation gets a number as an input, the number of Boolean variables in the
expression. After that, the algorithm exhaustively computes all combinations of these
values. The circuit satisfiability problem is implemented in a similar way. The master
module is responsible for workload distribution. When a slave node becomes idle, the
master node sends two integers to it representing the beginning and end pointers to
an assigned chunk. As in the matrix multiplication implementation, this keeps com-
munication costs between the master and the slave low, and the dominant cost is the
Mandelbrot set computation. The slave module C/MPI code fragment for Mandelbrot
set computation is listed below. In this application, outer loop iteration workloads are
irregular because the number of executions required to test for satisfiability is not
fixed. Therefore, the workload distribution performance depends on the degree of
variation between iterations.
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MPI_Probe(0, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
source= status.MPI_SOURCE;
tag= status.MPI_TAG;
MPI_Get_count(&status, MPI_INT, &count);
MPI_Recv(&b[0], count, MPI_INT, source, tag, MPI_COMM_WORLD,
&status);
while (status.MPI_TAG> 0) {

/* Compute pixels in parallel */
Count_true− 0;
for (y= b[0]; y< b[1]; y+ +){
count_true+ = check_circuit (rank_no, y);

}//for y

/* sent result */
MPI_Send(&b[0], count, MPI_INT, 0, tag, MPI_COMM_WORLD);

/* get another size */
MPI_Probe(0, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
source= status.MPI_SOURCE;
tag= status.MPI_TAG;
MPI_Get_count(&status, MPI_INT, &count);
MPI_Recv(&b[0], count, MPI_INT, source, tag, MPI_COMM_WORLD,
&status);
}

Figures 14 and 15 show how parameters influence the performance. In this experi-
ment, we found that the proposed schemes got better performance when α was 40 and
β was about 0.6. After selecting α and β values, we carried out a set of experiments
with them, and compared the results with the previous scheduling algorithms. Each
experiment was averaged over ten time runs in order to achieve a better accuracy.

We first investigated GSS group execution times on the heterogeneous cluster,
then FSS group execution times, and finally TSS group execution times. Static parti-
tioning execution times (satstat) for this experiment were: 18 variable numbers cost
22.63 seconds, 19 variable numbers cost 96.12 seconds, and 20 variable numbers cost
412.45 seconds. Figures 16–18 show execution times for the static (satstat), conven-
tional (sat*ss), and dynamic hybrid (satn*ss0-2) schemes, and the proposed scheme
(satn*ss3-4), on the FSS, GSS, and TSS group approaches with 18, 19, and 20 vari-
able numbers. Experimental results show the proposed scheduling scheme got better
performance than the static and the previous ones. Master node participation in com-
putation did not raise the performance in our experiments. In this case, our scheme
achieved speedups of 1.12, 1.16, and 1.10 over GSS, FSS, and TSS for input size 20
in non-master participation and of 1.15, 1.20 and 1.10 in master participation.

We have built a Grid testbed consisting of eleven nodes. The hardware and soft-
ware configurations are specified in Tables 3 and 4, respectively. Figures 1 and 2 show
the network route state and topology.

4.4 Experimental result

In our experiments, first, the HPL measurements and CPU speed of all nodes were
collected. Next, the impact of the parameters α,β , on performance was investigated.
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Fig. 14 Execution times for
parameter α influence on
circuit-satisfiability problem
performance with 20 variable
numbers

Fig. 15 Execution times for
parameter β influence on
circuit-satisfiability problem
performance with 20 variable
numbers

With this approach, a faster node will get more workload than a slower one propor-
tionally. The principle of partitioning is according to the ratios of PWs . The parameter
α should not be too large or too small. In the former case, the dominant computer will
not finish its work. In the latter case, the dynamic scheduling overhead is significant.
In both cases, good performance cannot be attained. An appropriate parameter will
lead to good performance.

In this work, the master node also participates in computation, and the scheduling
parameter is set to be 60 for all α-scheduling schemes.

We have implemented the proposed scheme for matrix multiplication. The matrix
multiplication is a fundamental operation in many numerical linear algebra applica-
tions [24]. This operation derives a resultant matrix by multiplying two input matri-
ces, A and B , where A is a matrix of m rows by p columns and B is a matrix of p

rows by n columns. The resultant matrix is one of m rows by n columns.
Figures 21 and 22 show how parameters influence the performance. In the experi-

ment, we find that the proposed schemes get better performance when α is 50 and β

is 0.3.
After selecting α and β values, we carry out the set of experiments with those two

parameters, and compare with the previous scheduling. Each experiment is to run for
ten times and fetch the average in order to reach a better accuracy.

In this work, the execution time of static scheme with input matrix of size
1024 × 1024 is about 51 seconds, 128 seconds is for size 2048 × 2048, and about
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Fig. 16 Execution times for the proposed circuit satisfiability scheduling and the previous GSS group
schemes

Fig. 17 Execution times for the proposed circuit satisfiability scheduling and the previous FSS group
schemes

2738 seconds is for size 4096 × 4096. Figures 23–25 illustrate execution time of
traditional scheme (mat*ss), dynamic hybrid (matn*ss0-2) and the proposed scheme
(matn*ss3-4), with input matrix of size 1024 × 1024, 2048 × 2048 and 4096 × 4096,
respectively. Experimental results show that the proposed scheduling scheme got bet-
ter performance than the static and previous ones.
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Fig. 18 Execution times for the proposed circuit satisfiability scheduling and the previous TSS group
schemes

Fig. 19 Network route state
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Fig. 20 Network topology

Fig. 21 Execution time of
parameters α influence on
matrix multiplication
performance with matrix size
4096 × 4096

5 Conclusion

In this paper, we proposed a heuristic scheme that combines the advantages of static
and dynamic loop scheduling schemes, and compared it with the previous algorithms
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Fig. 22 Execution time of
parameters β influence on
matrix multiplication
performance with matrix size
4096 × 4096

Fig. 23 Execution times for the proposed matrix multiplication scheduling compared with the previous
GSS group schemes

in experiments on three types of application program in heterogeneous cluster envi-
ronments. In each case, our approach obtained performance improvement over the
previous schemes. Our approach is also less sensitive to α values than the previous
schemes, i.e., more robust. In our future work, we will implement more application
program types to verify our approach, and will carry out experiments with larger
sizes. Also, we hope to find better ways of modeling performance weighting with
other factors, such as amount of memory available, memory access costs, network
information, and CPU loading. We will also address a theoretical analysis of the pro-
posed method.
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Fig. 24 Execution times for the proposed matrix multiplication scheduling compared with the previous
FSS group schemes

x

Fig. 25 Execution times for the proposed matrix multiplication scheduling compared with the previous
TSS group schemes
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