
J Supercomput (2012) 59:42–60
DOI 10.1007/s11227-010-0418-y

Designing parallel loop self-scheduling schemes using
the hybrid MPI and OpenMP programming model
for multi-core grid systems

Chao-Chin Wu · Chao-Tung Yang ·
Kuan-Chou Lai · Po-Hsun Chiu

Published online: 12 March 2010
© Springer Science+Business Media, LLC 2010

Abstract Loop scheduling on parallel and distributed systems has been thoroughly
investigated in the past. However, none of these studies considered the multi-core ar-
chitecture feature for emerging grid systems. Although there have been many studies
proposed to employ the hybrid MPI and OpenMP programming model to exploit dif-
ferent levels of parallelism for a distributed system with multi-core computers, none
of them were aimed at parallel loop self-scheduling. Therefore, this paper investigates
how to employ the hybrid MPI and OpenMP model to design a parallel loop self-
scheduling scheme adapted to the multi-core architecture for emerging grid systems.
Three different featured applications are implemented and evaluated to demonstrate
the effectiveness of the proposed scheduling approach. The experimental results show
that the proposed approach outperforms the previous work for the three applications
and the speedups range from 1.13 to 1.75.

Keywords Grid computing · Loop scheduling · Multi-core computer · MPI ·
OpenMP

C.-C. Wu (�) · P.-H. Chiu
Department of Computer Science and Information Engineering, National Changhua University
of Education, Changhua City, 500, Taiwan
e-mail: ccwu@cc.ncue.edu.tw

C.-T. Yang
High-Performance Computing Laboratory, Department of Computer Science
and Information Engineering, Tunghai University, Taichung, 40704, Taiwan

K.-C. Lai
Department of Computer and Information Science, National Taichung University, Taichung City,
403, Taiwan

mailto:ccwu@cc.ncue.edu.tw

Designing parallel loop self-scheduling schemes using the hybrid MPI 43

1 Introduction

As computers become more and more inexpensive and powerful, computational grids
which consist of various computational and storage resources have become promising
alternatives to traditional multiprocessors and computing clusters [6, 7]. Basically,
grids are distributed systems which share resources through the Internet. Users can
access more computing resources through grid technologies. However, bad manage-
ment of grid environments might result in using grid resources in an inefficient way.
Moreover, the heterogeneity and dynamic changing of the grid environment makes it
different from conventional parallel and distributed computing systems, such as mul-
tiprocessors and computing clusters. Therefore, it becomes more difficult to utilize
the grid efficiently.

Loop scheduling on parallel and distributed systems is an important problem,
and has been thoroughly investigated on traditional parallel computers in the past
[11, 12, 17, 22]. Traditional loop scheduling approaches include static scheduling and
dynamic scheduling. The former is not suitable in dynamic environments. The latter,
especially self-scheduling, has to be adapted to be applied to heterogeneous plat-
forms. Therefore, it is difficult to schedule parallel loops on heterogeneous and dy-
namic grid environments. In recent years, several pieces of work have been devoted to
parallel loop scheduling for cluster computing environments [1, 3, 4, 23–26, 28, 29],
addressing the heterogeneity of computing power.

To adapt to grid systems, we have an approach to enhance some well-known loop
self-scheduling schemes [27]. The HINT Performance Analyzer [10] is used to deter-
mine whether target systems are relatively homogeneous or relatively heterogeneous.
We then partition loop iterations into four classes to achieve good performance in any
given computing environment. Finally, a heuristic approach based upon α-based self-
scheduling scheme is used to solve parallel regular loop scheduling problem on an
extremely heterogeneous Grid computing environment. Furthermore, we have pro-
posed another improved loop self-scheduling approach called PLS (Performance-
based Loop Scheduling) for grid systems [18]. In this work, dynamic information
acquired from a monitoring tool is utilized to adapt to the dynamic environment. Fur-
thermore, a sampling method is proposed to estimate the proportion of the workload
to be assigned statically.

Although our previous approaches improved system performance, they did not in-
vestigate multi-core architecture [18, 27] or they did not consider the feature of grid
systems [23, 24]. Recently, more grid systems are including multi-core computers
because nearly all commodity personal computers have the multi-core architecture.
The primary feature of multi-core architecture is multiple processors on the same
chip that communicate with each other by directly accessing the data in shared mem-
ory. Unlike multi-core computers, each computer in a distributed system has its own
memory system and thus relies on a message-passing mechanism to communicate
with other computers. The MPI library is usually used for parallel programming in
the grid system because it is a message-passing programming model [14]. However,
MPI is not the best programming model for multi-core computers. OpenMP is suit-
able for multi-core computers because it is a shared-memory programming model.
Therefore, we propose using hybrid MPI and OpenMP programming mode to design

44 C.-C. Wu et al.

the loop self-scheduling scheme for a grid system with multi-core computers. Three
different featured applications, Matrix Multiplication, sparse Matrix Multiplication
and Mandelbrot set calculation, are implemented and evaluated to demonstrate the
effectiveness of the proposed scheduling approach. These applications are featured
according to whether the workload distribution is regular and whether data commu-
nication is needed at each scheduling step. The experimental results show that the
proposed approach outperforms the PLS approach with the speedups ranging from
1.13 to 1.75.

The rest of this paper is organized as follows. In Sect. 2, we introduce several
typical and well-known self-scheduling schemes. In Sect. 3, we describe how to em-
ploy the hybrid MPI and OpenMP programming model to develop the two-level self-
scheduling schemes. Next, our system configuration is specified and experimental
results on three types of application programs are also presented in Sect. 4. Finally,
the conclusion remarks and future work are given in the last section.

2 Background review

In this section, the prerequisites for our research are described. First, we review pre-
vious loop scheduling schemes. Then, the evolution of grid computing and its mid-
dleware are presented.

2.1 Loop scheduling schemes

Various self-scheduling schemes have been proposed to achieve better load balance
with less scheduling overhead, including Pure Self-Scheduling (PSS) [12], Chunk
Self-Scheduling (CSS) [12], Guided Self-Scheduling (GSS) [17], Factoring Self-
Scheduling (FSS) [11] and Trapezoid Self-Scheduling (TSS) [22]. The rules of calcu-
lating the next chunk size for the five self-scheduling schemes are shown in Table 1.
Furthermore, Table 2 shows the chunk sizes for the five self-scheduling schemes with
respect to a loop with 1000 iterations. The number of available processors is 4.

Table 1 Chunk sizes assigned at each time for five self-scheduling schemes

Scheme Chunk size assigned at each time

PSS 1

CSS(k) k, users have to specify the value of k

FSS Allocation in phases. During each phase of FSS, only a subset of remaining
loop iterations (usually half) is equally distributed to available processors

GSS Dividing the number of the remaining iterations by the number of available
processors

TSS(Ns,Nf , δ) The chunk sizes decrease linearly. Users have to specify the first chunk size,
Ns , and the last chunk size, Nf , and consecutive chunks difference, δ

Designing parallel loop self-scheduling schemes using the hybrid MPI 45

Table 2 Partition sizes
Scheme Partition size

PSS 1,1,1,1,1,1,1, . . .

CSS(125) 125,125,125,125,125,125,125,125

FSS 125,125,125,125,63,63,63,63,31, . . .

GSS 250,188,141,106,79,59,45,33,25, . . .

TSS(125, 1, 8) 125,117,109,101,93,85,77,69,61, . . .

2.2 Grid computing and programming models

Grid computing [5, 6, 8] can be thought of as distributed and large-scale cluster com-
puting and as a form of networked parallel processing. It can be confined to the net-
work of computer workstations within a corporation or it can be a public collabora-
tion. In this paper, Ganglia is utilized to acquire dynamic system information, such
as CPU loading of available nodes.

MPI is a message-passing library standard that was published in May 1994.
MPICH-G2 [15] is a grid-enabled implementation of the MPI v1.1 standard. In
contrast, Open Multi-Processing (OpenMP), a kind of shared-memory architecture
API [16], provides a multi-threaded capacity. A loop can be parallelized easily by
invoking subroutine calls from OpenMP thread libraries and inserting the OpenMP
compiler directives. In this way, the threads can obtain new tasks, the un-processed
loop iterations, directly from local shared memory.

2.3 Related work

The EasyGrid middleware is a hierarchically distributed Application Management
System (AMS) which is embedded automatically into a user’s parallel MPI applica-
tion without modifications to the original code by a scheduling portal [2]. Each Easy-
Grid AMS is a three-level hierarchical management system for application-specific
self-scheduling and distinct scheduling policies can be used at each level, even within
the same level. A low intrusion implementation of a hybrid scheduling strategy has
been proposed to cope with the dynamic behavior of grid environments.

TITAN is a multi-tiered scheduling architecture for grid workload management,
which employs a performance prediction system (PACE) and task distribution bro-
kers to meet user-defined deadlines and improve resource usage efficiency [19]. The
PACE system is developed to facilitate model generation for applications. The sched-
uler uses the evaluation engine to identify expected execution run-time from the ap-
plication models and from the resource models that represent the cluster or multi-
processor system of homogeneous processing nodes.

Herrera et al. proposed a new loop distribution scheme to overcome the follow-
ing three limitations when the MPI programming model is adopted in computational
Grids [9]. (1) All required resources must be simultaneously allocated to begin execu-
tion of the application. (2) The whole application must be restarted when a resource
fails. (3) Newly added resources cannot be allocated to a currently running appli-
cation. Their approach is implemented using the Distributed Resource Management
Application API (DRMAA) standard and the GridWay meta-scheduling framework.

46 C.-C. Wu et al.

Chronopoulos et al. proposed a distributed self-scheduling algorithm which takes
CPU computation powers as weights that scale the size of iterations each computer
is assigned to compute [2, 3]. Their method can be used to improve the performance
of various self-scheduling algorithms.

This paper is a continuation of our earlier work. We proposed several loop self-
scheduling schemes for heterogeneous cluster systems [23–26, 28, 29]. In our first
work [25], a heuristic was proposed for distributing workloads according to CPU
performance when loops are regular. It partitions loop iterations in two phases. In
the first phase, α% of the workload is partitioned according to performance weighted
by CPU clock. In the second phase, the remaining (100 − α)% of the workload is
distributed according to a conventional self-scheduling scheme. However, many fac-
tors influence system performance, including CPU clock speed, available memory,
communication cost, and so forth. Therefore, in our second work, we tried to eval-
uate computer performance using the HINT benchmark [26]. We also adjusted the
value of α adaptively according to the heterogeneity of the cluster. In the most recent
scheme [28], we use application execution times to estimate performance function
values for all nodes. The performance function values are then used for iteration par-
titioning. We also proposed a loop self-scheduling approach based on the hybrid MPI
and OpenMP programming model for cluster systems [23, 24]. For each scheduler
of the proposed two-level software architecture, each application adopts one kind of
well-known self-scheduling schemes to allocate loop iterations in one phase. In [29],
we proposed an approach that combines both the advantages of static and dynamic
schemes and uses the HPC Challenge Benchmarks to define each node’s performance
weighting. Because grid systems have long communication latency and their com-
puting resources are highly heterogeneous, this paper proposes a new algorithm es-
pecially for grid systems.

3 Hierarchical loop scheduling

3.1 The main idea

A grid system is comprised of multiple computational nodes connected by the In-
ternet. If multi-core computational nodes are included, this kind of system can be
regarded as a two-level hierarchical structure. The first level consists of computa-
tional nodes and the second level consists of processor cores. Because each compu-
tational node has its own memory system and address space, it must communicate
with others by explicitly sending messages through the Internet. In contrast, because
the processor cores on a multi-core computational node all share the same mem-
ory, they can communicate with each other by accessing the data in shared memory.
Accordingly, the communications can be divided into inter-node and intra-node com-
munications. Because the inter-node communications have longer latencies than the
intra-node communications, the former should be minimized for optimized communi-
cations. However, the previously proposed self-scheduling schemes for grid systems
totally ignored such a communication issue [18, 27]. Intra-node communications are
all based on message-passing paradigms, rather than share-memory paradigms.

Designing parallel loop self-scheduling schemes using the hybrid MPI 47

Each computational node runs an MPI process regardless how many processor
cores it has. However, OpenMP is used for intra-node communications. Each MPI
process will fork OpenMP threads depending on the number of processor cores in
its underlying computational node. Every processor core runs one OpenMP thread.
OpenMP is a shared-memory multi-threaded programming model, which matches
the multi-core computational node feature.

The scheduling scheme we proposed consists of one global scheduler and multi-
ple local schedulers. Each worker computational node has one local scheduler. One
processor core from each worker computational node is responsible for local sched-
uler execution. The processor core running the local scheduler is called the master
core and the others are called worker cores. The global scheduler and the local sched-
ulers are all MPI processes.

In the first-level scheduling, the global scheduler is responsible for deciding how
many iterations will be assigned whenever a local scheduler issues a request. The
number of processor cores in the computational node, from which the request comes,
should be taken into consideration when the decision is made. In the second-level
scheduling, because all of the processor cores are homogeneous, the local scheduler
dispatches the iterations assigned by the global scheduler to all processor cores pri-
marily based on whether the iteration workload is regular or not. The iteration work-
load of a loop is regular if the difference between the execution times for any two of
the iterations is very small. Otherwise, the iteration workload is irregular. Basically,
static scheduling is preferred in the second level. However, dynamic scheduling is
adopted if the iteration workload distribution is irregular. Nevertheless, the default
OpenMP built-in self-scheduling scheme, i.e., static scheduling, is adopted for the
second level in this work.

3.2 Proposed approach

In the first-level scheduling, we propose a two-phase scheduling approach as fol-
lows. In the first phase, the SWR (Static-Workload Ratio) and Performance Ratio are
calculated and then SWR percentage of the total workload is statically scheduled ac-
cording to the performance ratio among all worker nodes [18]. In the second phase,
the remainder of the workload is dynamically scheduled using any well-known self-
scheduling scheme such as CSS, GSS, FSS or TSS. When an MPI process requests
new iterations at each scheduling step, we must take the number of processor cores
into consideration when the master core determines the number of iterations to be
allocated for the worker core because the assigned iterations will be processed by
parallel OpenMP threads. If there are pi processor cores in the computational node i,
the master will use the applied self-scheduling scheme, such as GSS, to calculate the
total number of iterations by adding up the next pi allocations. For instance, if there
are 4 processor cores in a computational node and the CSS scheme with a chunk size
of 128 iterations adopted, the master will assign 512 iterations whenever the MPI
process running on the computational node asks for new iterations.

In the second-level scheduling, the local scheduler dispatches the iterations as-
signed by the global scheduler to the parallel OpenMP threads by invoking the
OpenMP built-in scheduling routine. The scheduling scheme can be any one of

48 C.-C. Wu et al.

the following OpenMP built-in schemes: static, GSS and CSS schemes. Note that
there is implicit barrier synchronization at the end of every parallel OpenMP sec-
tion, which will cause additional run-time overhead. Whenever all assigned iterations
are processed by OpenMP threads, the local scheduler issues another request to the
global scheduler for the next chunk of iterations.

We describe the performance function used in this paper as follows. Let M de-
note the number of computational nodes, P denote the total number of processor
cores. Computational node i is represented by mi , and the total number of processor
cores in computational node mi is represented by pi , where 1 ≤ i ≤ M . In conse-
quence, P = ∑M

i=1 pi . The j th processor core in computational node i is represented
by cij , where 1 ≤ i ≤ M and 1 ≤ j ≤ pi . N denotes the total number of iterations
in some application program and f () is an allocation function to produce the chunk
size at each step. The output of f is the chunk size for the next iteration. At the sth
scheduling step, the global scheduler computes the chunk size Cs for the computa-
tional node i and the remaining number of tasks Rs ,

R0 = N, Cs = f (s, i), Rs = Rs − 1 − Cs, (1)

where f () possibly has more parameters than just s and i, such as Ri−1. The con-
cept of performance ratio is previously defined in [20, 21] in different forms and
parameters, according to the requirements of applications. In this work, a different
formulation is proposed to model the heterogeneity of the dynamic grid nodes.

The purpose of calculating performance ratio is to estimate the current capability
of processing for each node. With this metric, we can distribute appropriate work-
loads to each node, and load balancing can be achieved. The more accurate the esti-
mation is, the better the load balance is.

To estimate the performance of each computational node, we define a performance
function (PF) for a computational node i as

PFi (V1,V2, . . . , VX), (2)

where Vr , 1 ≤ r ≤ X, is a variable of the performance function. In this paper, our PF
for a computational node i is defined as

PFi =
∑pi

k=1
CSik

CLik
∑M

q=1
∑pi

k=1
CSqk

CLqk

, (3)

where CSij is the CPU clock speed of processor core j in computational node i, and
it is a constant attribute. The value of this parameter is acquired by the MDS service;
CLij is the CPU loading of processor core j in computational node i, and it is a
variable attribute. The value of this parameter is acquired by the Ganglia tool.

The performance ratio (PR) is defined to be the integer-ratio of all performance
functions. For instance, assume the values of PFs of three nodes are 1/2, 1/3 and
1/4. Then, the PR of the three nodes is 6:4:3. In other words, if there are 13 loop
iterations, 6 iterations will be assigned to the first node, 4 iterations will be assigned
to the second node, and 3 iterations will be assigned to the last one.

Designing parallel loop self-scheduling schemes using the hybrid MPI 49

We also propose to use a parameter, SWR, to alleviate the effect of irregular work-
load. In order to take advantage of static scheduling, SWR percentage of the total
workload is dispatched according to Performance Ratio. We propose to randomly
take five sampling iterations, and compute their execution time. Then, the SWR of
the target application i is determined by the following formula.

SWR = mini

MAXi

(4)

where mini is the minimum execution time of all sampled iterations for application i;
MAXi is the maximum execution time of all sampled iterations for application i. If
the workload of the target application is regular, SWR can be set to be 100. However,
if the application has an irregular workload, it is efficient to reserve some amount of
workload for load balancing.

For example, for a regular application with uniform workload distribution, the
five sampled iterations are the same. Therefore, the SWR is 100%, and the whole
workload can be dispatched according to Performance Ratio, with good load balance.
However, for another application, the five sampling execution times might be 7, 7.5,
8, 8.5 and 10 seconds, respectively. Then the SWR is 7/10, i.e. a percentage of 70.
Therefore, 70 percentages of the iterations would be scheduled statically according
to PR, while 30 percentages of the iterations would be scheduled dynamically by any
one of the well-known self-scheduling scheme such as GSS.

4 Performance evaluations

To verify our approach, we constructed a Grid system consisting of four sites, 19
computational nodes and 49 processor cores. The configurations of the constituent
computational nodes are shown in Tables 3 and 4 in Appendix. The four sites are
built at four educational institutions, including National Changhua University of Ed-
ucation (NCUE), Tatung University (TTU), National Taichung University (NTCU)
and A-Lien Elementary School (ALES). The locations, machine types, node counts
and core counts per node of the four Grid sites are shown in Table 3 in Appendix.
These four Grid sites are distributed over Taiwan as shown in Fig. 8 in Appendix.

Three types of application programs are implemented to verify our approach in
this testbed: Matrix Multiplication, sparse matrix multiplication and Mandelbrot set
computation. The Performance-based Loop Scheduling (PLS) proposed by Yang
et al. [18] is compared with our approach, Hierarchical Loop Scheduling (HLS).
The PLS approach adopts the single-level, two-phase scheduling method. The pure
MPI programming paradigm is used for parallel programming in PLS. The two-phase
scheduling adopted by PLS is similar to that in HLS except the following two designs.
(1) Each processor core, instead of a computational node, has its own performance
ratio. Therefore, the performance functions adopted by PLS and HLS are different.
(2) GSS is the only scheme adopted in the second phase. In the following subsections,
the experimental results from the three applications are presented.

50 C.-C. Wu et al.

4.1 Application 1: Matrix Multiplication

We implemented the proposed scheme for Matrix Multiplication. The input matrix A

will be partitioned into a set of rows and kept in the global scheduler. At run-time,
after the global scheduler decides which rows will be assigned at each scheduling
step, the corresponding row data will be sent to the requesting worker process. On
the other hand, every local scheduler has a copy of the input matrix B because it is
needed to calculate every row of matrix C. Since the result of one row of matrix C

can be derived from multiplying one row of matrix A by the whole matrix B , Matrix
Multiplication can be parallelized in this way to become an embarrassingly parallel
computation.

The global scheduler, viz. the Master module, is responsible for the workload dis-
tribution to the local schedulers, viz. worker nodes. When a local scheduler becomes
idle, the global scheduler sends the local scheduler one integer indicating how many
rows will be assigned. The global scheduler then sends the corresponding data to
the local scheduler. Finally, the OpenMP threads will follow the specified schedul-
ing scheme such as guided self-scheduling to calculate the assigned rows. The Ma-
trix Multiplication application has a regular workload distribution and requires data
communication at each scheduling step. The C/MPI+OpenMP code fragment of the
Worker module for Matrix Multiplication is listed as shown in Fig. 1. As the source
code shows, a row is the atomic unit of allocation.

We compare Yang’s proposed PLS approach and our proposed HLS approach us-
ing execution time, as shown in Fig. 2. The label PLS(X) in the legend denotes Yang’s
proposed PLS approach [27] where the X scheme is adopted in the second phase.
The label HLS(X) in the legend represents our proposed HLS approach where the X

scheme is adopted by the global scheduler in the second phase. In this experiment,
HLS outperforms PLS if the same self-scheduling scheme is adopted. Therefore, the
local HLS scheduler plays a key role in performance. In HLS, only the local sched-
uler, rather than every processor core, will request tasks from the global scheduler,
resulting in reduced message traffic between master and worker cores at a compu-
tational node. Furthermore, the local scheduler will adopt the OpenMP built-in self-
scheduling scheme to assign the received tasks to all the processor cores in the same
node. The local assignment is through low-latency shared memory.

Observe the case that the matrix size is 4096 × 4096. The FSS scheme provides
the best performance for PLS while the TSS scheme has the shortest execution time
for HLS. Theoretically, FSS and TSS are both designed to address the problem that
GSS might assign too much work to the first few processors. The FSS feature as-
signs iterations in phases. During each FSS phase, only a subset of the remaining
loop iterations (usually half) is equally distributed to the available processors. In con-
trast, the chunk sizes decrease linearly in TSS. For PLS, each processor core requests
tasks from the global scheduler. If FSS is adopted in PLS, each processor core in
the same computational node acquires the same number of iterations during the same
phase. However, if TSS is adopted for PLS, processor cores in the same computa-
tional node acquire different numbers of iterations even though they are assigned
consecutively. Because the workload distribution of Matrix Multiplication is regular,
PLS favors FSS. On the other hand, for HLS, only the local scheduler, rather than

Designing parallel loop self-scheduling schemes using the hybrid MPI 51

Fig. 1 The local scheduler algorithm of Matrix Multiplication

every processor core, requests tasks from the global scheduler. After receiving tasks
form the global scheduler, the local scheduler assigns the tasks to all processor cores
in the same computational node. Therefore, no matter the global scheduler adopts

52 C.-C. Wu et al.

Fig. 2 Execution time comparisons for Matrix Multiplication. The chunk size of CSS is 64

Fig. 3 The algorithm of sparse
Matrix Multiplication

FSS or TSS in HLS, the local scheduler can balance workload distribution among the
processor cores in the same computational node. In fact, HLS(FSS) and HLS(TSS)
have similar execution times while PLS(FSS) has much shorter execution time than
that of PLS(TSS).

4.2 Application 2: Sparse Matrix Multiplication

Sparse Matrix Multiplication is the same as Matrix Multiplication, as described in
Sect. 4.1, except that the input matrix A is a sparse matrix. Assume that 50% of
elements in matrix A are zero and all the zeros are in the lower rectangular. If an
element in matrix A is zero, the corresponding calculation is omitted as shown in
Fig. 3. Therefore, Sparse Matrix Multiplication has irregular workload distribution
and requires data communication at each scheduling step.

We compare Yang’s proposed PLS approach and our proposed HLS approach by
execution time, as shown in Fig. 4. If the same self-scheduling scheme is adopted by
the global scheduler, HLS always outperforms PLS. Although FSS and TSS are both
proposed to improve GSS performance, FSS cannot outperform GSS for PLS when
the matrix size is 1024×1024 or 2048×2048. This is because the workload distribu-
tion of Sparse Matrix Multiplication is irregular but FSS assigns a subset of remaining
loop iterations equally to available processors during each phase. Only when the ma-
trix size is large enough can FSS outperform GSS. On the other hand, FSS and TSS
both outperform GSS for HLS. For any matrix size, TSS always provides the best
performance for both PLS and HLS.

Designing parallel loop self-scheduling schemes using the hybrid MPI 53

Fig. 4 Execution time comparisons for Sparse Matrix Multiplication. The chunk size of CSS is 64

4.3 Application 3: Mandelbrot set computation

This operation derives a resultant image by processing an input matrix, A, where A

is an image of m pixels by n pixels [13]. The resultant image is one of m pixels by n

pixels.
The proposed scheme was implemented for Mandelbrot set computation. The

global scheduler is responsible for the workload distribution. When a local sched-
uler becomes idle, the global scheduler sends two integers to the local scheduler. The
two numbers represent the beginning index and the size of the assigned chunk, re-
spectively. The tasks assigned to the local scheduler are then dispatched to OpenMP
threads based on a specified self-scheduling scheme. Unlike Matrix Multiplication,
the communication cost between the global scheduler and local scheduler is low,
and the dominant cost is the Mandelbrot set computation. The C/MPI+OpenMP code
fragment for the local scheduler for Mandelbrot set computation is listed as shown
in Fig. 5. In this application, the workload for each outer loop iteration is irregular
because the number of executions for convergence is not a fixed number. Moreover, it
requires no data communication at each scheduling step. Therefore, the performance
for workload distribution depends on the degree of variation for each iteration.

We compare Yang’s proposed PLS approach and our proposed HLS approach us-
ing execution time, as shown in Fig. 6. If the same self-scheduling scheme is adopted
by the global scheduler, HLS will outperform PLS. Surprisingly, CSS has the best
performance for PLS. The reason is described as follows. The long communication
latency in Grid increases the scheduling overhead. When the execution time for run-
ning one chunk of iterations is too short, the scheduling overhead for such a small
chunk has a significantly negative effect on the overall performance. Unlike GSS,
FSS and TSS, the chunk size for CSS is fixed to 64 iterations at each scheduling step,
avoiding assigning too small chunks in the end of scheduling.

On the other hand, TSS rather than CSS provides the best performance for HLS.
It is because HLS uses another way to avoid assigning too small chunks to one com-
putational node in the end of scheduling. In HLS, all the processor cores in the same
computational node rely on the local scheduler to issue requests for them. Conse-

54 C.-C. Wu et al.

Fig. 5 The local scheduler algorithm of Mandelbrot set computation

quently, the amount of message traffic is significantly reduced. Furthermore, at each
scheduling step, the size of the chunk assigned by the global scheduler to a multi-core
computational node is proportional to the number of processor cores in the node. In

Designing parallel loop self-scheduling schemes using the hybrid MPI 55

Fig. 6 Execution time comparisons for Mandelbrot set computation. The chunk size of CSS is 64

effect, HLS uses a single message to assign a larger task to all processor cores in the
same node. Consequently, HLS can reduce the overhead of each scheduling step by
increasing the chunk size near the end of scheduling.

4.4 Summary

According to the results shown in the above three subsection, HLS outperforms PLS
for three different kinds of applications no matter which self-scheduling scheme is
adopted. Furthermore, TSS is the best choice for the global scheduler in HLS because
it requires the shortest execution time for any one of the three applications.

We summarize the performance improvements obtained by our proposed HLS for
three applications in Fig. 7. The speedup is derived from dividing the execution time
for PLS by the execution time for HLS, where the same self-scheduling scheme is
adopted. In the figure, MM represents Matrix Multiplication of size 4096 × 4096,
SMM represents Sparse Matrix Multiplication of size 4096 × 4096, and MS repre-
sents Mandelbrot set computation of size 7000 × 7000.

For the Matrix Multiplication, it has regular workload distribution and requires
data communications at each scheduling step. The speedups range from 1.13 to 1.30.
Because FSS is the best choice for PLS, the speedup of HLS over PLS is the smallest
if FSS is adopted. On the other hand, if CSS is adopted, HLS has the best speedup
with a factor of 1.30. For the Sparse Matrix Multiplication, it has irregular workload
distribution and requires data communications at each scheduling step. Compared
with Matrix Multiplication, HLS can provide better speedups for Sparse Matrix Mul-
tiplication. In other words, HLS is more effective than PLS for irregularly workload
distributed applications requiring data communication at each scheduling step. The
speedups range from 1.22 to 1.63. HLS can provide the best speedup when TSS is
adopted. For the Mandelbrot set computation, it has irregular workload distribution
and requires little data communications at each scheduling step. The speedups range
from 1.36 to 1.75. The best speedup is provided when FSS is adopted. It is because
FSS is not suitable for this kind of applications when PLS is applied because too much

56 C.-C. Wu et al.

Fig. 7 Speedup comparisons for three applications. MM represents the Matrix Multiplication application.
The matrix size is 4096 × 4096. SMM represents the Sparse Matrix Multiplication of 4096 × 4096 matrix
size. MS represents the Mandelbrot set computation of 7000 × 7000 image size

scheduling overhead near the end of scheduling. Compared with the other two appli-
cations, HLS can provide the best performance improvements for all self-scheduling
schemes except TSS. If TSS is adopted, HLS can improve the performance of Sparse
Matrix Multiplication most.

5 Conclusions and future work

This paper uniquely investigated how to employ the hybrid MPI and OpenMP pro-
gramming mode to design parallel loop self-scheduling schemes for emerging grid
systems with multi-core computational nodes. The proposed scheduling approach,
called HLS, is based on our previous work adopting the pure MPI model. In the pro-
posed approach, only one MPI process will be created in each computational node
no matter how many processor cores it has. The MPI process will request new loop
iterations from the master MPI process. After receiving the assigned iterations at each
scheduling step, the MPI process will fork OpenMP threads for parallel processing
on the iterations. One OpenMP thread is created for each processor core. The MPI
process will return the results to the master MPI process whenever the assigned it-
erations are finished. Because the iterations assigned to one MPI process will be
processed in parallel by the processors cores in the same computational node, the
number of loop iterations to be allocated to one computational node at each schedul-
ing step also depends on the number of processor cores in that node.

Three applications, Matrix Multiplication, Sparse Matrix Multiplication, and
Mandelbrot set computation, have been implemented to verify the effectiveness of
the proposed approach. These applications were executed and evaluated in a Taiwan-
wide grid system. The experimental results showed that the proposed approach out-
performs the previous work for all three applications regardless which self-scheduling
scheme was adopted by the global scheduler. Which extant self-scheduling scheme

Designing parallel loop self-scheduling schemes using the hybrid MPI 57

is the best choice depends on the characteristics of the respective application. The
speedups range from 1.13 to 1.75.

In our future work, we will implement more application program types to verify
our approach. Moreover, although the experiments are carried out on a Taiwan-wide
Grid system, the average parallelism per node is only 2.6, i.e., 49/19. We will study
the performance impact when the computational nodes have more cores. According
to our experiences, allocating too much workload at a time may degrade the per-
formance for GSS. Therefore, it is possible that we have to design a new approach
when the computational nodes have more cores. Furthermore, we hope to find better
ways of modeling performance weighting using factors, such as amount of memory
available, memory access costs, network information, and CPU loading. We will also
address theoretical analysis of the proposed method.

Acknowledgements The authors would like to thank the National Science Council, Taiwan, for finan-
cially supporting this research under Contract No. NSC98-2221-E-018-008-MY2 and NSC98-2220-E-
029-004.

Appendix

Table 3 The configuration of our Grid system—part 1

58 C.-C. Wu et al.

Table 4 The configuration of our Grid system—part 2

Table 5 The locations, bandwidths, machine types, node counts and core counts per node of the four
Grid sites

Designing parallel loop self-scheduling schemes using the hybrid MPI 59

Fig. 8 The distribution of the
four Grid sites over Taiwan

References

1. Banicescu I, Carino RL, Pabico JP, Balasubramaniam M (2005) Overhead analysis of a dynamic load
balancing library for cluster computing In: Proceedings of the 19th IEEE international parallel and
distributed processing symposium, pp 122.2

2. Boeres C, Nascimento AP, Rebello VEF Sena AC (2005) Efficient hierarchical self-scheduling for
MPI applications executing in computational Grids. In: Proceedings of the 3rd international workshop
on middleware for grid computing, pp 1–6

3. Chronopoulos AT, Penmatsa S, Yu N (2002) Scalable loop self-scheduling schemes for heterogeneous
clusters. In: Proceedings of the 2002 IEEE international conference on cluster computing, pp 353–
359

4. Chronopoulos AT, Penmatsa S, Xu J, Ali S (2006) Distributed loop-self-scheduling schemes for het-
erogeneous computer systems. Concurr Comput Pract Experience 18(7):771–785

5. Foster I (2002) The Grid: a new infrastructure for 21st century science. Phys Today 55(2):42–47
6. Foster I, Kesselman C (1997) Globus: a metacomputing infrastructure toolkit. Int J Supercomput Appl

High Perform Comput 11(2):115–128
7. Foster I, Kesselman C (2003) The Grid 2: blueprint for a new computing infrastructure. Morgan

Kaufmann, San Mateo

60 C.-C. Wu et al.

8. Foster I, Kesselman C, Tuecke S (2001) The anatomy of the grid: enabling scalable virtual organiza-
tions. Int J Supercomput Appl High Perform Comput 15(3):200–222

9. Herrera J, Huedo E, Montero RS, Llorente IM (2006) Loosely-coupled loop scheduling in computa-
tional grids. In: Proceedings of the 20th IEEE international parallel and distributed processing sym-
posium, 6 pp

10. HINT performance analyzer. http://hint.byu.edu/
11. Hummel SF, Schonberg E, Flynn LE (1992) Factoring: a method scheme for scheduling parallel loops.

Commun ACM 35(8):90–101
12. Li H, Tandri S, Stumm M, Sevcik KC (1993) Locality and loop scheduling on NUMA multiproces-

sors. In: Proceedings of the 1993 international conference on parallel processing, vol. II, pp 140–147
13. Mandelbrot BB (1988) Fractal geometry of nature. Freeman, New York
14. MPI. http://www.mcs.anl.gov/research/projects/mpi/
15. MPICH-G2. http://www.hpclab.niu.edu/mpi/
16. OpenMP. http://en.wikipedia.org/wiki/OpenMP/
17. Polychronopoulos CD, Kuck D (1987) Guided self-scheduling: a practical scheduling scheme for

parallel supercomputers. IEEE Trans Comput 36(12):1425–1439
18. Shih W-C, Yang C-T, Tseng S-S (2007) A performance-based parallel loop scheduling on grid envi-

ronments. J Supercomput 41(3):247–267
19. Spooner DP, Jarvis SA, Cao J, Saini S, Nudd GR (2003) Local grid scheduling techniques using

performance prediction. IEE Proc-Comput Digit Tech 150(2):87–96
20. Tabirca S, Tabirca T, Yang LT (2006) A convergence study of the discrete FGDLS algorithm. IEICE

Trans Inf Syst E89-D 2:673–678
21. Tang P, Yew PC (1986) Processor self-scheduling for multiple-nested parallel loops. In: Proceedings

of the 1986 international conference on parallel processing, 1986, pp 528–535
22. Tzen TH, Ni LM (1993) Trapezoid self-scheduling: a practical scheduling scheme for parallel com-

pilers. IEEE Trans Parallel Distrib Syst 4:87–98
23. Wu C-C, Lai L-F, Chiu P-H (2008) Parallel loop self-scheduling for heterogeneous cluster systems

with multi-core computers. In: Proceedings of Asia-pacific services computing conference, vol 1,
pp 251–256

24. Wu C-C, Lai L-F, Yang C-T, Chiu P-H (2009) Using hybrid MPI and OpenMP programming to
optimize communications in parallel loop self-scheduling schemes for multicore PC clusters. J Super-
comput. doi:10.1007/s11227-009-0271-z

25. Yang C-T, Chang S-C (2004) A parallel loop self-scheduling on extremely heterogeneous PC clusters.
J Inf Sci Eng 20(2):263–273

26. Yang C-T, Cheng K-W, Li K-C (2005) An enhanced parallel loop self-scheduling scheme for cluster
environments. J Supercomput 34(3):315–335

27. Yang C-T, Cheng K-W, Shih W-C (2007) On development of an efficient parallel loop self-scheduling
for grid computing environments. Parallel Comput 33(7–8):467–487

28. Yang C-T, Shih W-C, Tseng S-S (2008) Dynamic partitioning of loop iterations on heterogeneous PC
clusters. J Supercomput 44(1):1–23

29. Yang C-T, Chang J-H, Wu C-C (2009) Performance-based parallel loop self-scheduling on heteroge-
neous multi-core PC clusters. In: Proceedings of the second international conference on high perfor-
mance computing and applications

http://hint.byu.edu/
http://www.mcs.anl.gov/research/projects/mpi/
http://www.hpclab.niu.edu/mpi/
http://en.wikipedia.org/wiki/OpenMP/
http://dx.doi.org/10.1007/s11227-009-0271-z

Copyright of Journal of Supercomputing is the property of Springer Science & Business Media B.V. and its

content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's

express written permission. However, users may print, download, or email articles for individual use.

