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Abstract

A class of vortex solutions of the Gr(n,N) Grassmannian σ-Model in (3+1) di-
mensions are presented. These solutions may be regarded as the generalization of the
vortex solutions of the CPN model [1]. The energy density of the vortices are related
to the Noether charge and topological charge.
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1 Introduction

The nonlinear σ-models in two dimensions are special interest because they bear many
similarities to the nonabelian gauge theory in four dimensions and have a property of being
an integrable system. However, the Exact topological soliton solutions are rare specialty
in dimensions higher than two. The most well known examples are those provided by
self-dual or BPS solutions like instantons and monopoles. In this paper we present the
vortex-like solutions [1] [2] [3] [4] in (3+1)-dimensional for the Gr(n,N) Grassmannian
σ-Model [5] which is based on the homogeneous spaces

Gr(n,N) =
SU(N)

SU(n)× SU(N − n)
. (1)

Grassmannian sigma models are a generalization of CPN−1 sigma models [6]. They share
some common features such as the Euler-Lagrange equations can be written in terms
of projectors, infinite number of conserved quantities and the existence of multisoliton
solutions etc.

We express elements Gr(n,N) using the equivalent class of elements g ∈ SU(N) as

[g] = {gΨ |Ψ =

(
Un 0
0 UN−n

)
, Un ∈ SU(n), UN−n ∈ SU(N − n)}, (2)

and decompose g ∈ SU(N) into submatrices X, Y

g = (φ1, ..., φN ) = (X,Y ), X = (φ1, ..., φn), Y = (φn+1, ..., φN ) (3)

where X is an N ×n matrix and Y is an N × (N −n) matrix. Since the unitary condition

g†g = IN , i.e. φ†
jφk = δjk, we find

X†X = In, X†Y = 0, Y †X = 0, Y †Y = IN−n. (4)

Let x0, x1, x2, x3 be the standard Minkowski coordinates in R4, with the metric

ds2 = −(dx0)2 + (dx1)2 + (dx2)2 + (dx3)2. (5)

In what follows we shall use the notation

z ≡ x1 + ix2, z̄ ≡ x1 + ix2, y± ≡ x3 ± x0. (6)

2 Euler-Lagrange Equations

Let us assume that Ω is an open,connected and simply connected subset in R4 with
Minkowski metric (5). We define covariant derivative Dμ acting on maps X : Ω →
Gr(n,N) by

DμX = ∂μX −XX†∂μX, μ = 0, 1, 2, 3. (7)

In the study of Grassmannian sigma models we are interested in maps X : Ω → Gr(n,N)
which are stationary points of the action functional

S =

∫
Ω
tr{(DμX)†(DμX)} d4x. (8)

The Lagrangian density can be further developed to get

L = tr{(DμX)†(DμX)} = tr{∂μX(∂μX)†P} =
1

2
tr{∂μP∂μP} (9)
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where
P = I −XX† (10)

is an orthogonal projector, i.e. P2 = P, P† = P satisfying PX = 0, X†P = 0.
The action (8) has the local (gauge) SU(n) symmetry

X → Xh, h ∈
(

SU(n) 0
0 I

)
(11)

proving that the model doesn’t depend on the choice of representatives X of the elements
of Gr(n,N). The action also invariant under the SU(N) global symmetry transformation

X → gX, g ∈ SU(N). (12)

These invariance properties are naturally reproduced on the level of Euler-Lagrange equa-
tions.

Taking into account the constraint

P2 − P = 0, (13)

the action (8) becomes

S =

∫ (
1

2
tr{∂μP∂μP}+ λ tr{P2 − P}

)
d4x. (14)

Variating the action about P and using the boundary condition δP = 0 on the surface
integral, we get the equation of motion as

∂μ∂μP − λ (2P − I) = 0. (15)

Next, if we multiply this equation by P from the right and left separately, then we have
two equations

∂μ∂μPP − λ (2P − I)P = 0 (16)

P∂μ∂μP − λP (2P − I) = 0. (17)

Subtracting (16) from (17), we get the equation of motion in matrix form

[∂μ∂μP,P] = 0 (18)

or in the form of a conservation law

∂μ[∂
μP,P] = 0. (19)

The conserved current density
Jμ = [∂μP,P] (20)

are invariant under local SU(n) and global SU(N − n) transformations.
The equation (18) can also be written as

P
(
∂μ∂μX − 2∂μXX†∂μX

)
= 0 (21)
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3 Vortex Solutions

To find the solutions of (18), one can parametrize φi in X of (3),

φj =

⎛
⎜⎝

u1j
...

uNj

⎞
⎟⎠ , (22)

where

φ†
jφk =

N∑
A=1

u∗AjuAk = δjk. (23)

In terms of uAj the Lagrangian density (9) takes the form

L =
∑
A

∑
j

∂μu∗Aj ∂μuAj −
∑
A

∑
B

∑
k

∑
j

uAj u
∗
Bk ∂μu∗Aj ∂μuBk (24)

and the Euler-Lagrangian equation reads

∂μ∂μuAj − 2

(∑
B

u∗Bk ∂μuBk

)
∂μuAj − uAj∂

μ

(∑
B

u∗Bk ∂μuBk

)
= 0 (25)

Any set of functions uAj that depend on the coordinates xμ in special form

uAj = uAj(z, y+) (26)

is a solution of the equation (25). The Minkowski metric in the in the notation (6) becomes
ds2 = dzdz̄ + dy+dy−. It then follows that (26) satisfies simultaneously ∂μ∂μuAj = 0 and
∂μuBk∂

μuAj = 0. Amongst the very many solutions of the type (26), there have been
considered in the CPN model in 3+ 1 dimensions [ ]. In this paper we shall consider only
some very special form, i.e.

uAj(z, y+) = (z − δ)nAj (z + δ)mAj eikAjy+ , (27)

where δ is a real constant and nAj , mAj are integers. The energy density of solutions (26)
takes the form

H =
∑
A

∑
B

∑
j

∑
k

(
∂z̄u

†
Aj (Δ

2)AB, jk ∂zuBk + ∂y+u
†
Aj(Δ

2)AB, jk ∂y+uBk

)
, (28)

where
(Δ2)AB, jk ≡ δABδjk − uAju

∗
Bk. (29)

When integrated over the x1-x2 plane the first term in (28) becomes proportional to the
topological charge of the vortex solution as we will explain below. The second term in
(28) is related to some Noether charges of the Gr(n,N) model. To see this we note that
Gr(n,N) Lagrangian (9) is invariant under the SU(N) global symmetry transformation.
The parametrization of the fields in terms of the u fields given by (22) transform under
the SU(n) gauge symmetry. The Noether currents associated with these symmetries are
given by

J (Aj)
μ = i

N∑
B=1

n∑
i=1

(
u∗Aj(Δ

2)AB, jk∂μuBk − ∂μu
∗
Bk(Δ

2)BA, kjuAj

)
. (30)
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The total energy density H is split into two parts,i.e.

H = H(1) +H(2), (31)

where H(1) is the first term in (28) and H(2) is the second term in (28). One can show
that ∑

A

∑
B

∑
j

∑
k

∂y+u
†
Aj(Δ

2)AB, jk ∂y+uBk =
N∑

A=1

n∑
j=1

kAjJ
(Aj)
0 , (32)

where kAj being the inverse of a wavelength. The Noether charge can be defined as

Q
(Aj)
Noether ≡

∫
dx1dx2J

(Aj)
0 (33)

For a solution of the type (27) the first term of H reduces to

H(1) =
∑
A

∑
j

ψAA, jj |uAj |2 +
∑
A

∑
B

∑
j

∑
k

(ψAA, jj − ψAB, jk)|uAj |2|uBk|2, (34)

where, if we define wδ ≡ z − δ and w−δ ≡ z + δ, the function ψAB, jk are given by

ψAB, ij(z, z̄) ≡ nAj nBk

|wδ|2 +
mAj mBk

|w−δ|2 + (nAj mBk + nBk mAj)
w̄δw−δ + wδw̄−δ

2|wδ|2|w−δ|2 . (35)

The second term of H reduces to

H(2) =
∑
A

∑
j

k2Aj |uAj |2 + 1

2

∑
A

∑
B

∑
j

∑
k

(kAj − kBk)
2|uAj |2|uBk|2. (36)

Therefore, the energy per unit length of the vortex solutions has the form

E =

∫
dx1dx2H(1) +

∫
dx1dx2H(2) = π

⎛
⎝Qtop. +

∑
A

∑
j

kAjQ
(Aj)
Noether

⎞
⎠ (37)

where Qtop. is the topological charge.

4 Conclusions

In this paper we have shown that the Gr(n,N) Grassmannian σ-Model in (3 + 1) dimen-
sions has many classical solutions. A class of vortex solutions are suggested. These solu-
tions may be regarded as the generalization of vortex solutions, proposed by L.A.Ferreira
et.al. [1], of the CPN model in (3+ 1) dimensions. The energy density are also related to
topological charge and Noether charge as expected.

References

[1] L.A. Ferreira, P.Klimas and Zakrzewski, Some (3 + 1)-dimensional vortex solutions of
the CPN model, Phys.Rev. D83, 105018 (2011)[ arXive: 1103.0559].

[2] L.A. Ferreira, Exact vortex solutions in an extended Skyrme-Faddeev model, JHEP
05, 001 (2009) [ arXive: 0809.4303 ].

[3] L.A. Ferreira, P.Klimas, Exact vortex solutions in a CPN Skyrme-Faddeev type model
, JHEP 10 008 (2010).[ arXive: 1007.1667 ]

27 



[4] R.A.Leese, Q-lumps and their interactions , Nucl.Phys. B 366 283 (1991).

[5] A.M. Din, Nonlinear technique in two dimensinal Grassmannian sigma models, Lecture
Notes Math. 1139253 (1983)

[6] A.D. D’Adda, P.Di Vecchia and M.Luscher, A 1/N expandable series of nonlinear σ
models with instantons, Nucl.Phys. B 146 (1978)63.

28



 
(3+1) Gr(n,N) -  

 
 

      
 

 

  
 
  Gr(n,N) - (3+1) (3+1) NCP  

- Noether  
     
 
 
     :  Grassmannian sigma ,  
 

 

29 



30


