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Abstract

In this paper we discuss the construction of the coherent spin-network states for
loop quantum gravity. These states capture properties of curved space-time of the
Schwarzschild metric on which they are peaked. For calculation purposes, we employ
the heat-kernel method and the complex SL(2, C) variables of the labeled states used
in the spin foam setting.
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1 Introduction

The loop representation for quantum gravity is a natural development from the Ashtekar’s
reformulation of general relativity [1][2] and Jacobson and Smolin’s discovery [3] of a large
class of solutions of the full set of quantum constraints equations. The theory is formulated
in a background independent and essentially nonperturbative fashion. This theory is based
on the canonical quantization of general relativity in terms of variables that are different
from the standard metric variables. In terms of these variables general relativity can
be cast into the form of background independent SU(2) gauge theory partly analogous
to SU(2) Yang-Mills theory. A key ingredient in loop quantum gravity is semiclassical
states.These semiclassical coherent states in the Hilbert space of quantum general relativity
are states that are able to reproduce a given classical geometry in terms of their expectation
values and peak on a prescribed space-time. The relation between quantum states and the
classical theory is clarified by the construction of the coherent states. In some graviton
calculations [4][5][6] , these states associated to a spin-network graph Γ are labeled by a
spin jl, an angle ξl per link l of the graph, and two unit vectors for the nodes of the link l.
The graph Γ is dual to a simplicial decomposition of the spatial manifold, the unit vectors
n̂l are associated to the unit-normals of tetrahedra, the spin jl is the average area of a face,
and the simplicial extrinsic curvature is the angle ξl shared by the faces of tetrahedra.

In this paper, we discuss a class of coherent states on the background of Schwarzschild
space-time. To construct the coherent states [7][8][9][10], we consider a spatial hyper-
surface Σ of the constant proper time of the Schwarzschild in the Lemaitre coordinates.
Take a regular cellular decomposition of ΔΣ and associated with it its dual graph. This
decomposition provides us with a set of curves and surfaces to be used for the smearing
process. Then compute the the holonomies hl of the Ashtekar connection along links and
fluxes Xl of the gravitational electric fields through the surface Sl dual to the link l.

The Hilbert space of the loop quantum gravity for each graph Γ isHΓ = L2(SU(2)L/SU(2)N ),
where L is the number of links of the graph and N the number of nodes, L2 means the
square-integrable functions. Holomorphic states in the space are functions of group ele-
ments hl that are invariant under SU(2) transformations at nodes,

Ψ(hl) = Ψ(gs(l) hl g
−1
t(l)), (1)

where s(l) and t(l) are the nodes that are source and target of the link l respectively.
For general relativity, the classical configuration of the Ashtekar connection A and its
conjugate momentum E, the gravitational electric field satisfy the fundamental brackets:

{Ai
a(x), A

j
b(y)} = 0, {Ea

i (x), E
b
j (y)} = 0

{Ai
a(x), E

b
j (y)} = 8πGγ�δijδ

b
aδ(x− y). (2)

The speed of light is set for one throughout this paper. The non-vanishing real number γ
is the Barbero-Immirzi parameter. The cellular decomposition of the spatial hypersurface
Σ provides a discretization of the manifold. The Ashtekar connection A is a su(2)-valued
one form over links, while the E is a su(2)-valued densitized inverse triad over the dual
surfaces. The connection is smeared along half-link l of the graph Γ, that is from the source
node s(l) to the point of intersection with the surface. The path-ordered exponential hl
is defined as

hl = Pexp

∫
l
A, (3)

which is defined on half of the link l. The flux is defined as

El =

∫
Sl

Adh ∗ E (4)
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Here Ad stands for the action of the adjoint representation of SU(2) on Lie algebra ele-
ments. ∗ is the Hodge dual operator. The densitized inverse triad E is parallel-transported
by the holonomy U . The holonomy h is computed along a path which is starts at the base-
point σ0 and ends at the integration point σ. The set of couples (hl, El), one per each
link of the graph, can be viewed as a point in a truncation of the phase space of General
Relativity as captured by the graph Γ. The smeared Poisson algebra reads

{hl, hl′} = 0, {Ei
l , E

j
l′} = δll′ε

ijkEk
l

{Ei
l , hl′} = δll′8πGγ�τ ihl. (5)

τ i = iσi/2 are su(2) generators defined in terms of Pauli matrices σi The couple (hl, El)
can be identified with an element of SL(2, C), the complexification of SU(2), using the
polar decomposition

Hl = hle
Xl ∈ SL(2, C) (6)

where

Xl ≡ i
αlEl

8πGγ�
. (7)

αl in (7) called the heat-kernel time is a positive real number.
To construct the coherent states for quantum general relativity, we relies on the heat-

kernel method. Apply the heat-kernel evolution to the Dirac delta distribution over the
group,

Kαl
(h, h′) = e−

αl
2
Δh δ(h, h′), (8)

where the Laplace-Beltrami operator Δh on SU(2) is defined with respect to the unique
bi-invariant metric tensor. Kαl

is the heat-kernel on SU(2), which can written explicitly
as

Kαl
(g) =

∑
j

(2j + 1)e−j(j+1)
αl
2 TrD(j)(g) (9)

where D(j)is the Wigner representation matrix of the representation j. g = h−1h′ ∈
SL(2, C). Then applying the heat-kernel several copies of SU(2) and considering the
gauge-invariant projection of a product over the links of a graph Γ allows us to define the
coherent spin-network states [11][12][13] as

ΨHl
(hl) =

∫ ∏
n

dgn
∏
l

Kαl
(hl, gs(l)Hl g

−1
t(l)), (10)

where we have a SU(2) integration for each node n. The coherent spin-network states
provide a Segal-Bargmann transform for loop quantum gravity, that has been lifted to
spin foams. An element Hl of SL(2, C) can be written as

Hl = gn̂s(l)
e(ηl+iξl)σ3/2g−1

n̂t(l)
. (11)

Freidel and Speziale discuss a compelling geometrical interpretation for the

(n̂s(l), n̂t(l), ξl, ηl) (12)

labels defined on of each link by (11). For appropriate four-valent states representing a
Regge 3-geometry with intrinsic and extrinsic curvature, the unit vectors n̂s(l), n̂t(l) are
3d normals to the triangles of the tetrahedra bounded by the triangles. ηl is the area of
the triangle divided by 8πGγ�. ξl is a sum of two parts: the extrinsic curvature at the
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triangle and the 3d rotation due to the spin connection at the triangle. We will see how
Hl, hence ξl, is determined from the Schwarzschild geometry.

In terms of these variables, the large η asymptotic behavior for the coherent spin-
network states can be found

ΨHl
(hl) ≈

∑
jl,il

∏
l

e
− (jl−j0l )2

2σ2
l e−iξljl(

∏
n

Φin)Ψjl,il(hl) (13)

The position of the peak j0l is related to ηl by (2j0l + 1) = 2ηl/αl, and the spread of the
Gaussian around j0l is governed by the parameter σl = 1/

√
αl. Φin is the coefficient for

the expansion of the Livine-Speziale coherent interwiner [10] on a orthonormal basis labels
by in, and carries the dependence on the unit vectors.

2 Schwarzschild Spacetime

The usual Schwarzschild metric has the following form:

ds2 = −(1− rs
r
) dt2 +

dr2

(1− rs
r )

+ r2dΩ2. (14)

rs = 2GM . This coordinate chart only covers r > rs. It would not be convenient to work
with the t constant flat slices that the coherent states need to be defined on the spatial
slice at a fixed time. One possible choice is the Lemaitre coordinate expression of the
metric, where space-time is foliated by a set of proper-time observers. A transformation
of the Schwarzschild coordinate system from {t, r} to the new coordinates {τ,R},

dτ = dt+

√
rs
r

1

1− rs
r

dr (15)

dR = dt+

√
r

rs

1

1− rs
r

dr, (16)

lead to the Lemaitre coordinate expression of the metric

ds2 = −dτ2 +
rs
ρ
dR2 + ρ2dΩ2 (17)

where

ρ = [
3

2
(R− τ)]

2
3 r

1
3
s (18)

The trajectories R constant are time-like geodesics with τ the proper time along these
geodesics. In Lemaitre coordinates there is no singularity at the gravitational radius,
which instead corresponds to the point 3

2(R− τ) = rs . However, there remains a genuine
gravitational singularity at the centrum, where R − τ = 0, which cannot be removed
by a coordinate change. The Lemaitre coordinate system is synchronous, that is, the
global time coordinate of the metric defines the proper time of co-moving observers. The
constant τ slices are flat. The flat metric dρ2 + ρ2dΩ2 can be derived from (17), (18), and
the relation

ρ′ ≡ ∂ρ

∂R
=

√
rs
ρ
. (19)

The constant τ slices across some finite range in time are enough for us to built the
coherent states.
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Consider a foliation of space-time in terms of space-like three dimensional surfaces Σ
with induced metric qab. Define a triad in terms of the metric qab such that

qab = eiae
j
bδij (20)

where i, j = 1, 2, 3. From (17), we have the triad

e1R =

√
rs
ρ

= ρ′, e2θ = ρ, e3φ = ρ sinθ. (21)

Using these variables we introduce the densitized triad

Ea
i =

1

2
εabcεijke

j
be

k
c , (22)

the densitized triad for the Lemaitre coorinate expression of Schwarzschild Space-time are

ER
1 = ρ2sinθ, Eθ

2 =
√
rsρ sinθ Eφ

3 =
√
rsρ. (23)

Using these definition, the inverse metric qab can be related to the densitized triad as
follows

qqab = Ea
i E

b
jδ

ij . (24)

The constant τ slices are flat, and there are no intrinsic curvature. The extrinsic curvatures
given by Kab =

1
2∂τqab are

KRR =
1

2
ρ−

5
2 (rs)

3
2 = −ρ′ρ′′, (25)

Kθθ = −ρ
1
2 (rs)

1
2 = −ρρ′, (26)

Kφφ = −ρ
1
2 (rs)

1
2 sin2θ = −ρρ′sin2θ, (27)

Let us define

Ki
a =

1√
det(E)

KabE
b
jδ

ij (28)

, then we have

K1
R =

rs
2ρ2

= −ρ′′, (29)

K2
θ = −ρ−

1
2 (rs)

1
2 = −ρ′, (30)

K3
φ = −ρ−

1
2 (rs)

1
2 sinθ = −ρ′sinθ, (31)

and get

Ki
a = − ∂

∂R
eia. (32)

3 Holonomies and Fluxes

We can then introduce the Ashtekar-Barbero connection, in this constant-proper-time
gauge,

Ai
a = γKi

a = c eia (33)

with

c = −γ
∂

∂R
, (34)
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where γ is any non-vanishing real number called Immirzi parameter. The holonomy of the
connection A along the link l for the cellular decomposition is the path-ordered exponential

hl(A) = Pexp

∫
A =

∞∑
m=0

Im, (35)

where the m-th integral has the form

Im =

∫ L

0
ds1

∫ s1

0
ds2 · · ·

∫ sm−1

0
dsmζ̇(s1) · · · ζ̇(sm)A(s1) · · ·A(sm). (36)

Here we have used an explicit parametrization of the geodesic ζ(s) in terms of the proper
distance along the link l and L is the proper length of the link. The components of the
vector

ni ≡ eiaζ̇
a (37)

are conserved quantities, i.e. constant along spatial geodesics. The holonomy of the
connection

hl(A) =
∞∑

m=0

1

m!
(cL�n · �τ)m = e

i
2
cL	n·	σ. (38)

For the cellular decomposition of the constant proper time surface the four links emanate
from a node in isotropic directions, the four unit vectors defined in (37) are such that
�nl · �nl′ = cos−1(−1

4) for l �= l′, and �nl = −�nl−1 . Moreover the length of a full link, a link
goes from the source node s(l) to the target node t(l) of the geodesic link l, is

L = 2Θ, Θ = cos−1(
−1

4
). (39)

With the standard embedding of SU(2) in R
4, the two nodes Ns(l), Nt(l), viewed as vectors

in R
4, have the scalar product Ns(l) · Nt(l) = cosΘ. From the other side, the geodesic,

embedded in R
4, has the form N(s) = (cos s

2 , sin
s
2 , 0, 0), and then

N(s) ·N(0) = cos
s

2
= cosΘ. (40)

We find the value s = 2Θ for the geodesic length. Thus One has the holonomy of the
Ashtekar-Barbero connection along half-link,

hl(A) = ecΘ	nl·	τ . (41)

The computation of fluxes is more tricky as it relies on the definition (4). The flux
El(S) = Ei

l (S)τ
i depends on the surfaces as well as on the holonomies along a path. El(S)

is the flux across the oriented surface Sl punctured by the link l. Now we can take a family
of geodesics joining the intersection point σ0 with the generic point σ of the integration
on the surface. One has

Ei
l (S) =

∫
S
ni det h d2σ (42)

where hab, a, b = 1, 2, is the metric induced on the surface from qab, and ni is the compo-
nents of a unit vector given by

ni =
N i

√
N iN i

(43)

with
N i(σ) = Rijeaj(σ0)na(σ). (44)
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The rotation matrix Rij is the holonomy in the adjoint representation of the SU(2), that
acts on the internal indices. It performs the parallel transport of the triad from the base
point σ0 to the point of integration σ, along a geodesic path. Since we are averaging ni

around the barycenter σ0, we have

Ei
l (S) = |El(S)|ni(σ0) (45)

where |El(S)| denotes the modulus of the flux, whose time dependence is |El(S)| ∝ ρ(τ)2.
We have

El(S) = |El| �nl · �τ . (46)

It is important to remark that the unit flux �nl = �El/|El| in the last equation coincide
with the unit direction of the Ashtekar-Barbero holonomy hl in(41). This is because the
orientation of the link l and the surface Sl coincides.

4 Coherent Spin-Network States

We can now define the coherent spin-network states for for Loop Quantum Gravity in
Schwarzschild Space-time as the one labeled by SL(2, C) variables on links as defined by
the smearing process in (6), (7). We apply the decomposition (11) to obtain:

Hl = g	nl
ecΘτ3+i|X|τ3 g−1

	nl
. (47)

By the asymptotic formula (13), the asymptotic behavior of the coherent spin-network for
large |X| ∝ ρ(τ)2 can be found. The Schwarzschild Space-time coherent state is

ΨHl
(jl, in) ≈

∏
l

e−
(jl−j0l )2

2σ2 eicΘjl(
∏
n

Φin) (48)

with

j0l =
|El|

8πG�γ
, (49)

Θ = cos−1(−1

4
). (50)

Remarkably, these coefficients are similar to those ones used in order to define correlation
functions over flat space in the Spin Foam setting []. Moreover, in the Spin Foam setting,
the angle Θ = cos−1(−1

4) is interpreted as a 4-dimensional dihedral angle between two
tetrahedra lying in the boundary of an equilateral, flat 4-simplex.

5 Some Remarks

We provided a class of coherent spin-network states for Loop Quantum Gravity which
are peaked around the Schwarzschild Space-time. We can compare the result with the
standard boundary states of Spin Foam vertex amplitudes. The applications of such a
class of coherent states in the context of cosmological interest could open new perspectives
within the semiclassical analysis of the Spin Foam dynamics, as a possible development
of a cosmological perturbation theory. We hope the simple coherent states discussed here
could shed some light on the relationship with the full quantum cosmological.
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