# Classical r-matrices for the Elliptic Calogero Model in Harmonic Potential

Shyang-Ling Lou and Yih-Shyan Su\* Department of Physics, Tunghai University Taichung, 407, Taiwan

June 27, 2013

#### Abstract

For the classical elliptic Calogero system in an external harmonic potential it is shown that the Lax operator  $L^+L^-$  possesses a classical r-matrix structure. The relation of the r-matrix and the Yang-Baxter equation involving another dynamical matrix are discussed.

Keywords: elliptic Calogero model, r-matrix.

 $<sup>^*</sup>$  Email: sllou@thu.edu.tw

#### 1 Introduction

The Hamiltonian of the elliptic Calogero system [1] with N particles on a circle, interacting with potential  $\sum_{\alpha<\beta}^{N} \wp(q_{\alpha}-q_{\beta})$  and an external harmonic potential [3], reads

$$H = \frac{1}{2} \sum_{\alpha=1}^{N} (p_{\alpha}^{2} + q_{\alpha}^{2}) + \sum_{\alpha < \beta}^{N} \wp(q_{\alpha\beta}), \quad q_{\alpha\beta} \equiv q_{\alpha} - q_{\beta},$$
 (1)

where  $\wp(q) = \wp(q; \omega_1, \omega_2)$  is the Weierstrass elliptic function

$$\wp(q;\omega_1,\omega_2) = \sum_{m,n\in\mathbb{Z}} (q + m\omega_1 + n\omega_2)^{-2}, \qquad \omega_2/\omega_1 \notin R.$$
 (2)

It is straightforward to show that the equations of motion are

$$\dot{q_{\alpha}} = p_{\alpha}$$
 (3)

$$\dot{p_{\alpha}} = -q_{\alpha} - \sum_{\alpha \neq \beta} \wp'(q_{\alpha\beta}).$$
(4)

Let us introduce the following  $N \times N$  matrices:

$$X^{\alpha}_{\beta}(u) = \delta_{\alpha\beta}q_{\alpha}, \tag{5}$$

$$L^{\alpha}_{\beta}(u) = p_{\alpha}\delta_{\alpha\beta} + i(1 - \delta_{\alpha\beta})Q(q_{\alpha\beta}, u), \tag{6}$$

$$L^{\pm} = L \pm iX, \tag{7}$$

$$M_{\beta}^{\alpha}(u) = -\delta_{\alpha\beta} \left( \sum_{\gamma \neq \alpha} \wp(q_{\alpha\gamma}) - \wp(u) \right) - (1 - \delta_{\alpha\beta}) Q'(q_{\alpha\beta}, u), \tag{8}$$

where u is the spectral parameter,  $L^{\alpha}_{\beta}(u)$  in (6) is called the Krichever's L-operator [2] and

$$Q(q, u) = \frac{\sigma(q - u)}{\sigma(q) \sigma(u)} \exp(\zeta(u)q), \tag{9}$$

$$\sigma(q) = q \prod_{m,n\neq 0} \left(1 - \frac{q}{\omega_{mn}}\right) exp\left[\frac{q}{\omega_{mn}} + \frac{1}{2}\left(\frac{q}{\omega_{mn}}\right)^2\right], \quad (10)$$

$$\zeta(q) = \frac{\sigma'(q)}{\sigma(q)} \quad \wp(q) = -\zeta'(q),$$
(11)

$$\omega_{mn} = m\omega_1 + n\omega_2 \tag{12}$$

$$Q(q, u) Q(-q, u) = \wp(u) - \wp(q). \tag{13}$$

Then the equations of motion of the system are equivalent to the following matrix equations

$$\dot{X} + i[M, X] = L, \tag{14}$$

$$\dot{L} + i[M, L] = -X, \tag{15}$$

or equivalently

$$\dot{L}^{\pm} + i[M, L^{\pm}] = \pm iL^{\pm}. \tag{16}$$

It follows from (16) that

$$\partial_t(L^+L^-) + i[M, L^+L^-] = 0.$$
 (17)

Now  $L^+L^-$  and M are regarded as the Lax pair of this system. The Lax operator  $L^+L^-$  defines N integrals of motion,

$$\mathcal{I}_k(p,q) = \frac{1}{k} \operatorname{tr}(L^+ L^-)^k = \frac{1}{k} \operatorname{tr}(L^- L^+)^k, \quad k = 1, 2..., N.$$
 (18)

As for k = 1,

$$\mathcal{I}_1 = tr(L^+L^-) \propto H \tag{19}$$

is the Hamiltonian (1) itself. The higher integrals of motion  $\mathcal{I}_k$ , k=2,3... are in involution, i.e. have vanishing Poisson's bracket with each other. The existence of a high number of conserved quantities is the result of integrability of this system in the Jacobi-Liouville sense.

#### 2 r-matrix structure

As shown in [4][5][6], for the commutativity of the spectral invariants  $trL(u)^n$  of the Krichever's L-operator it is necessary and sufficient that the Poisson bracket  $\{L_{\beta_1}^{\alpha_1}(u), L_{\beta_2}^{\alpha_2}(v)\}$  could be represented in the commutator form

$$\begin{aligned}
\{L_{\beta_{1}}^{\alpha_{1}}(u), L_{\beta_{2}}^{\alpha_{2}}(v)\} &= \sum_{\gamma_{1}\gamma_{2}} \{ r_{\gamma_{1}\beta_{2}}^{\alpha_{1}\alpha_{2}}(u, v) L_{\beta_{1}}^{\gamma_{1}}(u) - L_{\gamma_{1}}^{\alpha_{1}}(u) r_{\beta_{1}\beta_{2}}^{\gamma_{1}\alpha_{2}}(u, v) \\
&- r_{\gamma_{2}\beta_{1}}^{\alpha_{2}\alpha_{1}}(v, u) L_{\beta_{2}}^{\gamma_{2}}(v) + L_{\gamma_{2}}^{\alpha_{2}}(v) r_{\beta_{2}\beta_{1}}^{\gamma_{2}\alpha_{1}}(v, u) \}
\end{aligned} (20)$$

or, using the notation [7]

$$L^{(1)} \equiv L \otimes \mathbb{I}, \quad L^{(2)} \equiv \mathbb{I} \otimes L$$
 (21)

as

$$\{L^{(1)}(u), L^{(2)}(v)\} = [r^{(12)}, L^{(1)}(u)] - [r^{(21)}, L^{(2)}(v)]$$
(22)

where  $r^{(12)}$  is an  $N^2 \times N^2$  matrix and  $r^{(21)}$  is

$$r^{(21)}(u,v) \equiv \mathbb{P} r^{(12)}(u,v)\mathbb{P},$$
 (23)

 $\mathbb{P}$  being the permutation,  $\mathbb{P}x \otimes y = y \otimes x$ .

For the Krichever's L-operator, in terms of the basic matrices  $e_{\alpha\beta}$ 

$$(e_{\alpha\beta})_{\alpha'\beta'} = \delta_{\alpha\alpha'}\delta_{\beta\beta'} \tag{24}$$

expressed by

$$L(u) = \sum_{\alpha=1}^{N} p_{\alpha} e_{\alpha\alpha} + i \sum_{\beta \neq \alpha} Q(q_{\alpha\beta}, u) e_{\alpha\beta},$$
 (25)

the identity (22) holds with the matrix  $r^{(12)}$ ,

$$r^{(12)}(u,v) = a \sum_{\alpha=1}^{N} e_{\alpha\alpha} \otimes e_{\alpha\alpha} + \sum_{\alpha \neq \beta} c_{\alpha\beta}(e_{\alpha\beta} \otimes e_{\beta\alpha}) + \sum_{\alpha \neq \beta} d_{\alpha\beta}(e_{\alpha\alpha} \otimes e_{\alpha\beta} + e_{\beta\beta} \otimes e_{\alpha\beta})$$
 (26)

where

$$a = r_{\alpha\alpha}^{\alpha\alpha} = -\zeta(u - v) - \zeta(v), \qquad c_{\alpha\beta} = r_{\beta\alpha}^{\alpha\beta} = -Q(q_{\alpha\beta}, u - v),$$
 (27)

$$d_{\alpha\beta} = r_{\alpha\beta}^{\alpha\alpha} = r_{\beta\beta}^{\beta\alpha} = -\frac{1}{2}Q(q_{\alpha\beta}, v). \tag{28}$$

Now for the type of ours described by (1), we have to define

$$L^{+(1)} \equiv L^{+} \otimes \mathbb{I}, \quad L^{+(2)} \equiv \mathbb{I} \otimes L^{+} \tag{29}$$

$$L^{-(1)} \equiv L^{-} \otimes \mathbb{I}, \quad L^{-(2)} \equiv \mathbb{I} \otimes L^{-} \tag{30}$$

The Poisson algebra of these operators are related to commutation relations of the r-matrix,

$$\{L^{+(1)}(u), L^{+(2)}(v)\} = [r^{(12)}, L^{+(1)}(u)] - [r^{(21)}, L^{+(2)}(v)]$$
 (31)

$$\{L^{-(1)}(u), L^{-(2)}(v)\} = [r^{(12)}, L^{-(1)}(u)] - [r^{(21)}, L^{-(2)}(v)]$$
(32)

$$\{L^{+(1)}(u), L^{-(2)}(v)\} = [r^{(12)}, L^{+(1)}(u)] - [r^{(21)}, L^{-(2)}(v)] + i\Pi,$$
 (33)

where

$$\Pi \equiv \sum_{\alpha \neq \beta} e_{\alpha\beta} \otimes e_{\beta\alpha} + \sum_{\gamma} e_{\gamma\gamma} \otimes e_{\gamma\gamma}. \tag{34}$$

From (31) (32) it immediately follows that the invariants  $tr(L^{\pm})^k$  Poisson-commute when having the same  $\pm$  gradation. From (33) one can deduce, not so straightforwardly, that the conserved quantities  $tr(L^+L^-)^k$  Poisson-commute. More precisely one has

$$\begin{aligned}
\{L^{+(1)}L^{-(1)}, L^{+(2)}L^{-(2)}\} &= [r^{(12)}L^{-(2)} + L^{+(2)}r^{(12)}, L^{+(1)}L^{-(1)}] \\
&- [L^{+(1)}r^{(21)} + r^{(21)}L^{-(1)}, L^{+(2)}L^{-(2)}] \\
&+ i L^{+(2)}\Pi L^{-(1)} - i L^{+(1)}\Pi L^{-(2)}.
\end{aligned} (35)$$

Incidently the r-matrix structure in the first two terms of (35) is an example of a second Poisson structure obtained from the first structure by a Sklyanin-type bracket [10]. Hence in computing the brackets  $\{tr(L^{+(1)}L^{-(1)})^n, tr(L^{+(2)}L^{-(2)})^m\}$  the contribution from the commutators vanish and one is left with

$$\{tr(L^{+(1)}L^{-(1)})^n, tr(L^{+(2)}L^{-(2)})^m\} = +iL^{-(1)}(L^{+(1)}L^{-(1)})^{n-1}(L^{+(2)}L^{-(2)})^{m-1}L^{+(2)}\Pi$$

$$-i(L^{+(1)}L^{-(1)})^{n-1}L^{+(1)}L^{-(2)}(L^{+(2)}L^{-(2)})^{m-1}\Pi$$

$$(36)$$

The r.h.s. of (36) will change sign when  $L^{+(1)} \leftrightarrow L^{-(1)}$  and  $L^{+(2)} \leftrightarrow L^{-(2)}$ . However,  $tr(L^{+(1)}L^{-(1)})^n = tr(L^{-(1)}L^{+(1)})^n$  and  $tr(L^{+(2)}L^{-(2)})^m = tr(L^{-(2)}L^{+(2)})^m$  by cyclicity and therefore the l.h.s. of (36) does not change sign. It follows that both sides must vanish. Hence the conserved quantities  $tr(L^+L^-)^n$  are Poisson-commute quantities and the potential in (1) is integrable in the sense of Liouville.

## 3 Yang-Baxter equation

It is known that it is sufficient for a purely numeric r matrix to satisfy the Yang-Baxter equation [7],

$$[r^{(12)}, r^{(13)}] + [r^{(12)}, r^{(23)}] + [r^{(13)}, r^{(23)}] = 0, (37)$$

if the Poisson bracket defined by (22) satisfies the Jacobi identity. The generalization of (37) for the r matrices, related to the system (1) but without an external harmonic potential, comes from the Jacobi identity

$$\{\{L^{(1)}, L^{(2)}\}, L^{(3)}\} + \{\{L^{(2)}, L^{(3)}\}, L^{(1)}\} + \{\{L^{(3)}, L^{(1)}\}, L^{(2)}\} = 0$$
(38)

where

$$L^{(1)} \equiv L \otimes \mathbb{I} \otimes \mathbb{I}, \quad L^{(2)} \equiv \mathbb{I} \otimes L \otimes \mathbb{I}, \quad L^{(3)} \equiv \mathbb{I} \otimes \mathbb{I} \otimes L.$$
 (39)

Using (22), then we obtain the equality [8][9]

$$[R^{(123)}, L^{(1)}] + [R^{(231)}, L^{(2)}] + [R^{(312)}, L^{(3)}] = 0, (40)$$

where

$$R^{(123)} \equiv r^{(123)} - \{r^{(13)}, L^{(2)}\} + \{r^{(12)}, L^{(3)}\},\tag{41}$$

 $r^{(123)}$  being the left-hand-side of (37).  $R^{(123)}$  satisfy (40) with the form [6]

$$R^{(123)} = [X^{(123)}, L^{(2)}] - [X^{(312)}, L^{(3)}], \tag{42}$$

where

$$X^{(123)} \equiv X_{\beta_1\beta_1\beta_1}^{\alpha_1\alpha_2\alpha_3}(u, v, w)$$

$$= -i \sum_{\alpha \neq \beta} Q(q_{\alpha\beta}, w) \{ -\frac{5}{8} e_{\alpha\alpha} \otimes e_{\alpha\alpha} \otimes e_{\alpha\beta} + \frac{1}{8} e_{\beta\beta} \otimes e_{\beta\beta} \otimes e_{\alpha\beta}$$

$$+ \frac{1}{4} e_{\alpha\alpha} \otimes e_{\beta\beta} \otimes e_{\alpha\beta} + \frac{1}{4} e_{\beta\beta} \otimes e_{\alpha\alpha} \otimes e_{\alpha\beta} \}.$$

$$(43)$$

Thus we have the following generalization of the Yang-Baxter equation for the r matrices

$$[r^{(12)}, r^{(13)}] + [r^{(12)}, r^{(23)}] + [r^{(13)}, r^{(23)}] - \{r^{(13)}, L^{(2)}\} + \{r^{(12)}, L^{(3)}\} - [X^{(123)}, L^{(2)}] + [X^{(312)}, L^{(3)}] = 0.$$
(45)

Now the system (1) involving an external harmonic potential, the Lax operator  $L^+L^-$  will satisfy the Jacobi identity

$$\{\{L^{+(1)}L^{-(1)}, L^{+(2)}L^{-(2)}\}, L^{+(3)}L^{-(3)}\}$$
+ 
$$\{\{L^{+(2)}L^{-(2)}, L^{+(3)}L^{-(3)}\}, L^{+(1)}L^{-(1)}\}$$
+ 
$$\{\{L^{+(3)}L^{-(3)}, L^{+(1)}L^{-(1)}\}, L^{+(2)}L^{-(2)}\} = 0.$$
(46)

It is interesting to obtain the generalized Yang-Baxter equation by using  $(31)\sim(33)$ to satisfy the equality

$$[\widetilde{R}^{(123)}, L^{+(1)}L^{-(1)}] + [\widetilde{R}^{(231)}, L^{+(2)}L^{-(2)}] + [\widetilde{R}^{(312)}, L^{+(3)}L^{-(3)}] = 0$$

$$(47)$$

with the ansatz

$$\widetilde{R}^{(123)} = [\widetilde{X}^{123}, L^{+(2)}L^{-(2)}] - [\widetilde{X}^{(312)}, L^{+(3)}L^{-(3)}]. \tag{48}$$

However, to solve  $\widetilde{X}^{(123)}$  is an intricate problem. We hope it may be obtained in the future.

## 4 Concluding Remarks

We have shown that the Lax operator  $L^+L^-$  possesses a classical r-matrix structure for the classical elliptic Calogero system in an external harmonic potential and discussed the relation of the r-matrix and the Yang-Baxter equation. There are many questions still waiting for an investigation. It is expected that some properties of the higher r matrices will hold. So far almost nothing is known about the quantum version of this model. .

### References

- [1] F.Calogero, Exactly solvable one-dimensional many-body problems, Lett.Nuovo.Cim. 13,411-415.
- [2] I.M.Krichever, Elliptic solutions of the Kadomtsev-Petviashvili equation and integrable systems of particles., Func.Anal.Appl. 14, 282 (1980).
- [3] Alexander G. Abanov, Andrey Gromov, Manas Kulkarni, Soliton solutions of Calogero model in harmonic potential, J.Phys.A:Math.Theor.44 295203 (2011).
- [4] H.W.Braden, Takashi Suzuki, *R-matrices for Elliptic Calogero-Moser Models*, Lett.Math.Phys. **30** 147 (1994) [arXiv:hep-th/9309033].
- [5] J.Avan, M.Talon, Classical R-matrix structure for the Calogero, Phys.Lett. **B303** (1993) 33-37 [arXiv:hep-th/9210128].
- [6] E.K.Sklyanin, Dynamical r-matrices for the Elliptic Calogero-Moser Model, St.Petersburg Math.J.6, (1995) 397-406; arXiv:hep-th/9308060.
- [7] L.D.Faddeev, L.A.Takhtajan, *Hamiltonain methods in the theory of solitons*, Berlin, Heidelberg, New York: Springer 1987.
- [8] O.Babelon, C.M.Viallet Hamiltonian structures and lax equations, Phys.Lett.237 (1990) 411.
- [9] J.M.Maillet, New integrable canonical structures in two-dimensional models, Nucl.Phys.**B239**, (1986)54.
- [10] E.K.Sklyanin, Funct. Anal. Appl. 16, (1982) 27.

### 在外加簡諧位能橢圓 Calogero 模型中的 r 矩陣

婁祥麟 蘇懿賢

### 摘要

考慮外加簡諧位能,古典橢圓 Calogero 模型中,探討其 Lax 算符具有 r 矩陣的結構。並討論此 r 矩陣和 Yang-Baxter 方程式的關係。

關鍵字: 橢圓 Caloger 模型, r 矩陣