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Abstract. We consider in this work hexagonal finite volume methods for two-dimensional applications. Ordi-
nary and compact seven-point schemes with three-color iterative updates are investigated with application to elliptic
equations and reaction-diffusion systems. In particular, electrical activity of human ventricular tissue is observed.
Monodomain model for human ventricular cell is used to simulate action membrane potential, and electrical wave
propogation acrossing two dimensional myocardiac tissue can be obtained. The results have shown good agreement
with previous research works.
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1. Introduction. In a recent study of the origin of U-wave in ECG (electrocardiogram)
[2], hexagonal subregions are adopted in numerical simulation of human heart electrophysiol-
ogy. However, it was a pure algebraic approach in obtaining the ECG phenomena. Actually,
cardiac electrical activity can be described by a system of reaction-diffusion equations and
we refer to [3] for general references. Numerical simulation of cardiac electrophysiology can
provide detailed observations for electrical activities of the heart. It is also a useful tool for
understanding the mechanism of heart rhythm dynamics.

We consider in this study the hexagonal FV (finite volume) scheme with three-color iter-
ative updates and its validation on elliptic equations and reaction-diffusion systems. Also, we
investigate its application to the study of cardiac electrophysiology. In our work, a realistic
human ventricular cell model developed by ten Tusscher et.al [14] is adopted. This model has
incorporated recent experimental data from human myocardium and is capable of reproduc-
ing experimentally observed results, such as major ionic currents, action potential duration
resitution and heart arrhythmias. In this work, the monodomain model is used and solved
efficiently by three-color hexagonal FV method to simulate the eletrical activity of ventricu-
lar tissue. Linear electrical wave propagation on a two-dimensional cardiac tissue has been
successfully observed and show satisfactory consistency with literature results.

Note that the slice of human ventricular tissue can be approximated by an ellipsoid of
revolution. Hexagonal FVs are more flexible and relatively easy to construct for such irregular
geometric region, thus yielding significant reduction in computational complexity.

As for the remaining sections, the concept and notations of a regular hexagon in general
configuration are introduced in Section 2. Hexagonal FVM (finite volume method) in solving
Poisson equation is discussed in Section 3, in which an ordinary seven-point scheme is ob-
tained. This leads to a compact scheme with application to solving differential equations in
Section 4. Numerical experiments and observations are given in Section 5, and conclusions
drawn in the final section. In appendices, we highlight some theories for ease of reference
and present a conventional FD approach to the special case of type II hexagons.

2. Preliminaries. In two-dimensional applications of configurations consisting of carte-
sian type (regular) hexagons, we denote by r the radius of hexagons and h(=

√
3

2 r) half of
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(a) Type I, phase angle ϕ = 0.
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(b) Type II, phase angle ϕ = −

π
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FIG. 2.1. Hexagonal finite volumes in three colors.

the center-to-center distance. The area of a hexagon is |Ω| = 3
√

3
2 r2 = 2

√
3h2. Based on

two configurations as indicated in Fig.2.1, coordinates of centers are given in Tables 2.1-2.2
and are indexed as for a cartesian mesh. The centers are in three different colors as to enable
a three-color iterative method, that we will discuss in Section 4.4.

TABLE 2.1
Net of hexagons in configuration type I.

Phase angle : ϕ = 0

Center point ieven iodd
cx(i, j) (1.5i − 0.5)r
cy(i, j) 2jh (2j − 1)h

TABLE 2.2
Net of hexagons in configuration type II.

Phase angle : ϕ = −π
6

Center point jeven jodd
cx(i, j) 2ih (2i − 1)h
cy(i, j) (1.5j − 0.5)r

Our goal is to investigate hexagonal FVM and apply the technique to solve elliptic and
parabolic type partial differential equations.

For a hexagon Ω in general configuration with phase angle ϕ, we consider the center
node P0 = (x0, y0), its associated vertices,

Vk = (xk, yk) = (x0, y0) + r(cos θk, sin θk),

and neighbor centers,

Pk = (x0, y0) + 2h
(
cos(θk +

π

6
), sin(θk +

π

6
)
)
,
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FIG. 3.1. Boundary integral on edges of a type II hexagon.

with θk = ϕ + kπ
3 , k = 1, · · · , 6. We assume that V6+k = Vk periodically extended for

convenience.

3. Hexagonal Finite Volume Method. We consider Poisson equation, ∇(k∇u) = f ,
and apply FVM [15] to its integral formulation on a hexagon Ω,

1

|Ω|
∫∫

Ω

div(k∇u)dxdy =
1

|Ω|
∫∫

Ω

fdxdy. (3.1)

Discretization of the left-hand side is discussed below, while the right-hand side is discretized
in various ways in Section 4.

3.1. Mid-point rule. We assume unit constant diffusivity for simplicity and note that

1
|Ω|

∫∫
Ω

div(k∇u)dxdy = 1
|Ω|

∫
∂Ω

k ∂u
∂−→n dγ(t) ≈ 1

|Ω|

6∑
i=1

(
k ∂u

∂−→n (mi)
) |Δγi|

≈ 1
2
√

3h2

6∑
i=1

u(Pi)−u(P0)√
3r

r = 1
6h2

6∑
i=1

(u(Pi) − u(P0)),

(3.2)

where |Δγi| denotes the length of the i-th boundary edge and mi the mid-point of that edge.
The boundary integral is thus approximated by a discrete seven-point stencil. We investigate
below alternative views of numerical approximations to the path-integral.

3.2. Trapezoid rule. Up to rotation, we refer our argument to the configuration indi-
cated in Fig.3.1, in which P , P

E
, P

SE
, P

NE
denotes the cell center, the east neighbor (center)

node, the south-east neighbor node and the north-east neighbor node, respectively.

Let
−−→
AB be a positively oriented directed edge on the boundary, we consider at the end point

A the truncated Taylor expansion in the normal-tangent coordinates (−→n ,
−→
T ). Explicitly, the

local coordinates are
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P − A = r(cos 5π
6 , sin 5π

6 ) = (−
√

3r
2 , r

2 ) ,

P
E
− A = r(cos π

6 , sin π
6 ) = (

√
3r
2 , r

2 ) ,
P

SE
− A = r(cos −π

2 , sin −π
2 ) = (0,−r) .

The truncated Taylor expansion yields⎡
⎢⎢⎢⎣

1
−√

3r

2

r

2

1

√
3r

2

r

2
1 0 −r

⎤
⎥⎥⎥⎦

⎛
⎝ u(A)

∂nu(A)
∂

T
u(A)

⎞
⎠ =

⎛
⎝ u(P )

u(P
E
)

u(P
SE

)

⎞
⎠ ,

which implies, among other things,

∂nu(A) =
u(P

E
) − u(P )√

3r
=

u(P
E
) − u(P )

2h
.

Similarly, at the endpoint B,
P − B = r(cos −5π

6 , sin −5π
6 ) = (−

√
3r
2 ,− r

2 ) ,

P
E
− B = r(cos −π

6 , sin −π
6 ) = (

√
3r
2 ,− r

2 ) ,
P

NE
− B = r(cos π

2 , sin π
2 ) = (0, r) ,

and ⎡
⎢⎢⎢⎣

1
−√

3r

2

−r

2

1

√
3r

2

−r

2
1 0 r

⎤
⎥⎥⎥⎦

⎛
⎝ u(B)

∂nu(B)
∂

T
u(B)

⎞
⎠ =

⎛
⎝ u(P )

u(P
E
)

u(P
NE

)

⎞
⎠ .

We obtain the same identical expression for approximated normal flux

∂nu(B) =
u(P

E
) − u(P )√

3r
=

u(P
E
) − u(P )

2h
.

Thus the trapezoid rule is identical to the mid-point rule in current application.

3.3. Simpson’s rule. Usually, the Simpson’s rule can be derived as a nontrivial convex
combination of mid-point and trapezoid rules so as to eliminate the leading (second-order)
error term and result in a fourth-order scheme in the presence of symmetry in the error expan-
sion. This idea is not applicable in current situation. However, to derive a possible Simpson’s
rule for the line integrals, we try

∂nu(mi) :=
u(Pi) − u(P )√

3r
, ∂nu(Vi) :=

∂nu(mi) + ∂nu(mi−1)

2
, i = 1, ..., 6.

Applied to the three points, Vi(≡ A), Vi+1(≡ B) and mi(≡ Vi+Vi+1

2 ), Simpson’s rule reads

6∑
i=1

∫
ViVi+1

(∂nu) dγ ≈
6∑

i=1

r
∂nu(Vi) + 4 ∂nu(mi) + ∂nu(Vi+1)

6

= r

6∑
i=1

∂nu(mi−1) + 10 ∂nu(mi) + ∂nu(mi+1)

12
= r

6∑
i=1

∂nu(mi).

Thus yields the same expression as the mid-point rule.
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Now these three discretization schemes are identical for the flux integral. The order of
the above Simpson’s rule remains two, locally on each edge of a hexagon. Actually, the
accuracy of the estimated value of ∂nu(mi) is of second-order only. One should not expect
a fourth-order scheme. It turns out a surprise that the mid-point rule, obviously just a local
second-order approximation to each line integral, achieves the same order of global accuracy
(Theorem A.2) for the whole boundary and domain integral, due to the symmetry of global
geometry. We refer to [6] for a general proof. Given below is an argument for special cases
of type I and II hexagons.

THEOREM 3.1. ( H7 - Ordinary seven-point scheme.) Assume u(x, y) is sufficiently
smooth, then

1

|Ω|
∫∫

Ω

�u dxdy =
1

6h2

6∑
j=1

(u(Pj) − u(P0)) + O(h2).

Proof. We show the discretization is exact for low degree shifted monomial test functions,
u = (x − x0)

m(y − y0)
n, 0 ≤ m,n ≤ 2. The case m = n = 0 (u = 1) is trivial. For the

other five cases, (m,n) ∈ {(1, 0), (0, 1), (2, 0), (0, 2), (1, 1)}, we claim

1
|Ω|

∫∫
Ω
� ((x − x0)

m(y − y0)
n) dxdy = 1

6h2

∑6
j=1 cosm(ϕ + jπ

3 ) sinn(ϕ + jπ
3 ).

Indeed, the LHS values are respectively, {0, 0, 2, 2, 0}, by symmetry of the hexagon. For the
RHS, elementary argument applies,

m = 1, n = 0,
∑6

j=1 cos(ϕ + jπ
3 ) = 0,

m = 0, n = 1,
∑6

j=1 sin(ϕ + jπ
3 ) = 0,

m = 1, n = 1, 1
2

∑6
j=1 sin(2ϕ + 2jπ

3 ) = 0,

and, for m = 2, n = 0 and m = 0, n = 2,

1
6h2

∑6
j=1(2h)2 cos2(ϕ + jπ

3 ) = 2
3

∑6
j=1

1
2 (1 + cos(2ϕ + 2jπ

3 )) = 2,

1
6h2

∑6
j=1(2h)2 sin2(ϕ + jπ

3 ) = 2
3

∑6
j=1

1
2 (1 − cos(2ϕ + 2jπ

3 )) = 2.

This ends the proof. �

We turn to fourth-order method next.

4. Compact Schemes on Hexagons. Consider the Poisson equation in integral formula-
tion 1

|Ω|
∫∫

Ω
�u dxdy = 1

|Ω|
∫∫

Ω
f dxdy . We look for a (possible) compact scheme based on

the configuration shown in Figs.2.1,4.1. Component triangles of the hexagon Ω are denoted
by Ωj ≡ �P0VjVj+1.

4.1. A naive compact scheme. With the centroid

Mj ≡ 1

3
(P0 + Vj + Vj+1) and

dist(P0,Mj)

dist(Pj ,Mj)
=

1

2
,

a simple quadrature for domain integral on a hexagon can be derived as
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FIG. 4.1. A simple quadrature for boundary integral on a hexagon.

1
|Ω|

∫ ∫
Ω

f(x, y)dxdy = 1
|Ω|

∑6
j=1

∫ ∫
Ωj

f(x, y)dxdy ≈ 1
|Ω|

∑6
j=1

∫ ∫
Ωj

f(Mj)dxdy

≈ ∑6
j=1

2f(P0)+f(Pj)
3

|Ωj |
|Ω| = 2

3f(P0) + 1
18

∑6
j=1 f(Pj) .

This approximation to the definite integral is of second-order. Consequently, the associ-
ated compact scheme for the Poisson equation,

1
h2

(
−u(P0) + 1

6

∑6
j=1 u(Pj)

)
≈ 1

|Ω|
∫∫
Ω

�u dxdy

= 1
|Ω|

∫∫
Ω

fdxdy ≈ 2
3f(P0) + 1

18

∑6
j=1 f(Pj) ,

is of second-order only.

4.2. A second hexagonal compact seven-point scheme. Based on Theorem A.1, it is
natural to propose the following scheme

1
h2

(
−u(P0) + 1

6

∑6
j=1 u(Pj)

)
+ O(h2) = 1

|Ω|
∫∫
Ω

�u dxdy

= 1
|Ω|

∫∫
Ω

fdxdy = f(P0) + 5
36h2�f + O(h4)

= f(P0) + 5
36

(
−f(P0) + 1

6

∑6
j=1 f(Pj) + O(h4)

)
+ O(h4)

= 31
36f(P0) + 5

36

(
1
6

∑6
j=1 f(Pj)

)
+ O(h4) .

We have analyzed this and it is not fourth-order. Because the right-hand side of the Poisson
equation is replaced by the analytic fourth-order approximation, while the left-hand side is
replaced by only a second-order scheme. The overall order of approximation to the Poisson
equation is of second-order. Certainly, numerical experiments confirmed this.

4.3. Fourth-order hexagonal compact seven-point scheme. A third scheme reads

1

h2

⎛
⎝−u(P0) +

1

6

6∑
j=1

u(Pj)

⎞
⎠ =

3

4
f(P0) +

1

24

6∑
j=1

f(Pj) + O(h4),

54



which is Theorem A.3 restated for ease of comparison. We describe a different approach
here. The stencil can be derived for hexagons with general phase angle by the method of
undetermined coefficients. It is indeed fourth-order by construction below and also confirmed
numerically. In the second compact scheme discussed in subsection 2, the stencil for the
right-hand side is of fourth-order, but that for the left-hand side is not of as high order as
required. To set up the stencil to achieve the highest possible order, we approximate the
Poisson equation �u = uxx + uyy = f(x, y) by an algebraic linear seven-diagonal system

6∑
j=0

Aju(Pj) =

6∑
j=0

Rjf(Pj).

The fourteen coefficients {Ai
′s,Ri

′s} are determined by imposing a normalization con-
straint ∑6

j=0 Rj = 1

and several interpolation conditions that the approximation be exact for some test functions,
typically low degree monomials. Up to twenty-eight monomial test functions (u(x, y) =
xmyn, 0 ≤ m + n ≤ 6) are considered as listed in Table 4.1. Several subsets of these are to
be used.

TABLE 4.1
Shifted monomial test functions.

u f = �u u f = �u u f = �u
1 0 x4 12x2 x6 30x4

x 0 y4 12y2 y6 30y4

y 0 x3y 6xy x5y 20x3y
x2 2 xy3 6xy xy5 20xy3

y2 2 x2y2 2x2 + 2y2 x4y2 2x4 + 12x2y2

xy 0 x5 20x3 x2y4 12x2y2 + 2y4

x3 6x y5 20y3 x3y3 6xy3 + 6x3y
y3 6y x4y 12x2y
x2y 2y xy4 12xy2

xy2 2x x3y2 2x3 + 6xy2

x2y3 6x2y + 2y3

In this framework, the stencils for the three schemes discussed in current section are,
R =

(
12.0
18 , 1

18 , 1
18 , 1

18 , 1
18 , 1

18 , 1
18

)
,
(

15.5
18 , 5

216 , 5
216 , 5

216 , 5
216 , 5

216 , 5
216

)
,
(

13.5
18 , 1

24 , 1
24 , 1

24 , 1
24 , 1

24 , 1
24

)
,

respectively, and
A = 1

h2

(−1, 1
6 , 1

6 , 1
6 , 1

6 , 1
6 , 1

6

)
.

The third scheme is exact at least for monomials {xmyn | 0 ≤ m + n ≤ 6}, except for
{x6, y6, x4y2, x2y4}. Notably, the 13 monomials best-chosen as test functions differed be-
tween configurations type I and II in a numerical approach.

4.4. Net of three-color finite volumes. To accelerate the convergence in an iterative
procedure, we propose
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ALGORITHM 1. (Three-color algorithm.) With i, j = 1, 2, · · · , we define color ∈
{0, 1, 2} at each FV (center) of a cartesian net of type I or II hexagons (Fig.2.1), respectively,
by

color = mod
(

j + 1 − 2 · mod (i, 2), 3
)
,

or
color = mod

(
i + 1 − 2 · mod (j, 2), 3

)
.

In C-language, the expressions are(
j + 1 − 2 ∗ (i%2)

)
%3 , and

(
i + 1 − 2 ∗ (j%2)

)
%3 .

We assign three colors to hexagonal FVs and make use even in a time march procedure.
Plain Jacobi type explicit forward Euler schemes are usually adopted for time-dependent
problems. However, we can rearrange the order of updates at hexagonal centers. The same
idea certainly applies to cartesian quadrangle type FVs. This is further investigated in sub-
section 5.3.

REMARK 1. The three-color ordering update on a net of hexagonal FVs is applicable
in a parallel fashion. The model of parallel computation better be SPMD (single-program-
multiple-data) with shared memory. We note, without giving the algorithmic detail, that part
of the computation in a time march demands for synchronous (Jacobi) update while the others
need asynchronous (GS) update for faster convergence. The multicolor update algorithm may
help in this respect.

4.5. Solving time-dependent problems. We consider for simplicity the linear diffusion
equation ut = D(uxx+uyy) with constant diffusivity. Proper initial and boundary conditions
are assumed. In application of a standard time-marching procedure with ht denoting the
temporal stepsize, we note the followings ([6]).

1. Second-Order Implicit Scheme.

un+1
P0

− un
P0

ht

=
D

h2

(
−un+1

P0
+

1

6

6∑
i=1

un+1
Pi

)
. (4.1)

2. Fourth-Order Fully-Implicit Scheme.

3

4

un+1
P0

− un
P0

ht

+
1

24

6∑
i=1

un+1
Pi

− un
Pi

ht

=
D

h2

(
−un+1

P0
+

1

6

6∑
i=1

un+1
Pi

)
. (4.2)

These schemes are tested next.

5. Numerical Experiments and Discussions. Test runs are conducted on both static
and time-dependent problems.

5.1. Seven-point methods on elliptic equations. Poisson and Helmholtz equations are
tested on square regions.

1. A Poisson equation. This is similar to model problem G from Ellpack [9], but here
with a slightly more singular solution u(x, y) = (xy)2.1 on domain [1, 2]2. As
shown in Table 5.1, the H7 and H7c schemes (4.1,4.2) are of second and fourth-
order respectively, and the three-color (3c-gs) hexagonal FVM is indeed effective.
The Ratio column in the table refers to the discrete normalized 2-norm of errors at
FV centers. The 3c-gs update algorithm achieved the same accuracy as Jac and GS
methods in about half many iterations as the Jac method. Indeed, even in sequential
computation the iteration count of 3c-gs is slightly fewer than that of the GS method.
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TABLE 5.1
Seven-point methods with three-color vs Jacobi and Gauss-Seidel iterations on Poisson equation, using tolx =

1.0e − 14 and tolf = 1.0e − 15 for Cauchy convergence and residual check.

Method Gridsize Errmax Err2 Ratio Iter
Jac

Iter
GS

Iter
3c−gs

H7 15x15 3.5548e-04 2.1054e-04 1346 691 689
H7 30x30 8.7683e-05 5.0565e-05 4.16 4881 2506 2501
H7 60x60 2.1797e-05 1.2383e-05 4.08 18123 9299 9286
H7c 15x15 1.7353e-08 1.0608e-08 1345 691 689
H7c 30x30 1.0930e-09 6.4749e-10 16.39 4880 2504 2499
H7c 60x60 6.2416e-11 3.6847e-11 17.57 18122 9299 9287

TABLE 5.2
Seven-point method with three-color vs Jacobi and Gauss-Seidel iterations on Helmholtz equation, using

tolx = 1.0e − 15 and tolf = 1.0e − 18 for Cauchy convergence and residual check.

Method Gridsize Errmax Err2 Ratio Iter
Jac

Iter
GS

Iter
3c−gs

H7 15x15 4.7586e-03 1.8958e-03 231 125 120
H7 30x30 9.3584e-04 3.7005e-04 5.12 839 440 432
H7 60x60 2.0649e-04 8.1292e-05 4.55 3135 1626 1610

2. A Helmholtz equation. The hexagonal seven-point scheme (H7) is also effective on
Helmholtz equations (model problem C from Ellpack on [0, 1]2). Results shown in
Table 5.2 justifies this. The compact H7c stencil, as stated in Section 4.3, does not
yield fourth-order convergence in the Helmholtz equation. The weights need to be
modified depending on each application, particularly in case of variable coefficients
in a time march problem.

5.2. Monodomain model of electrical wave propagation in cardiac tissue. To sim-
ulate electrical activation of cardiac tissue, there are two available models, bidomain and
monodomain models. The bidomain equations[12] consist of an elliptic partial differential
equation and a parabolic differential equation, coupled with a system of nonlinear ordinary
differential equations for ionic dynamics. Although bidomain model can provide more infor-
mation such as anisotropy effect of tissue conductivity, solving bidomain equations is com-
putationally expensive [16]. The system of bidomain equations is reduced to monodomain
equations as a reaction-diffusion (R-D) system, under the assumption of equal anisotropies.
For electrical wave propagation, differences between bidomain and monodomain equations
are relatively small [8]. The system of monodomain equations is numerically efficient and
accepted by many in studying electrical wave propagation of cardiac tissue [1, 11, 13].

The monodomain equation reads

∂u

∂t
= ∇(M∇u) − Iion(t, u(t, x, y)) − Istim(t, x, y),

where Iion is the ionic currents through cell membrane and Istim represents stimulation
current given to the cell. In this work, the human ventricular cell model developed by ten
Tusscher et.al.[14] is used to simulate the ionic activity and action potential of myocardium.
Both linear and spiral wave phenomena are studied using explicit forward Euler time march.
For all test runs, computational domains consist of quadrangle (Quad) or hexagonal (Hexa)
FVs. Twenty-five tracers are deployed. The calculated values of the primitive variable u are
recorded at these tracers at various times. We discuss the details next.

5.3. Three-color ordering update in time march.. To investigate linear wave propa-
gation in cardiac tissue in an approximated square region, a uni-direction linear wave started
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FIG. 5.1. A stable linear wave.

initially at the left edge of the region, caused by electrical stimulation at the whole edge in a
short time frame. Tests are using Quad FVs or type I,II Hexa FVs approximating the square
region, with computation on boundary-fitted cell-centered FVs. Simulation time is up to 100
or 1000. Time plots of the dependent variables at twenty-five tracers are shown in Figs. 5.1,
5.2 using Hexa I FVs. These figures indicate clearly a linear wave solution, which is well-
developed after some time. We note the time span needs to be as large as about 500 for a full
cycle of the wave. Visually identical results were obtained using Hexa II and Quad FVs.

Numerical data are collected in Table 5.3. Explicit forward Euler method is applied in a time
march procedure. This corresponds to a regular (natural order) Jacobi type update. Symmet-
ric multicolor ordering updates are also adopted for comparison. In the Quad FV case, the
update order is odd-even at odd time steps and even-odd at even time steps, so as to be fair in
operation complexity. when compared with regular Jacobi update. Similar simple design is
adopted in three-color update on Hexa FVs, i.e., forward or backward in the ordered colors
alternatingly in all time steps. We note this is not a full symmetric version. Wave speeds
s(2 : 5, 2 : 5) are measured using twenty-five tracers, with speeds s(i = 5, j = 1 : 5)
shown in the table. Based on the results of Quad method as benchmark values, relative ratios
(last column in table) are calculated, separately, for the Jacobi iterations and the multi-color
ones. The physics being a travelling wave towards the right, the Quad FVs are certainly best
suited. Results of the Hexa II FVs are close within 0.5% in Jacobi update, and within 0.2%
in three-color update. We recall the Type I and II Hexa FVs, with phase angle ϕ = 0,−π/6
respectively, are the two extremes of all possible configurations of hexagons (Fig.2.1). The
corresponding computational results in the table shows a 5.4% deviation between these two
extremes. With multicolor update algorithms, the deviation is 6.7%. We conclude that, (even)
on a square domain, the computational results using hexagonal FVs are not very different
from using rectangular (Quad) FV, while hexagonal FVM can be applied in general appli-
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FIG. 5.2. Action potential for human ventricular M-cells.

TABLE 5.3
Wave speeds using symmetric multicolor GS vs Jacobi updates in time march.

FV Euler method s(5, 1) s(5, 2) s(5, 3) s(5, 4) s(5, 5) Speedav Ratio

Quad Jocobi 0.556 0.556 0.556 0.556 0.556 0.556 1.000
Quad symm BW-order 0.579 0.579 0.579 0.579 0.579 0.579 1.000

Hexa II Jocobi 0.550 0.553 0.553 0.550 0.568 0.553 0.995
Hexa II symm 3-color 0.572 0.577 0.577 0.573 0.591 0.578 0.998

Hexa I Jocobi 0.510 0.524 0.527 0.527 0.529 0.523 0.941
Hexa I symm 3-color 0.527 0.540 0.543 0.541 0.544 0.539 0.931

cation that may exhibit various kinds of wave phenomena, especially in curved regions [6].

We mention that spiral wave can be generated as shown in Fig.5.3. Linear wave started
initially as in the previous group of tests, it was then followed in a later time by a second
stimulation at the first half of the top edge, resulting in a self-sustained spiral wave. It is
noticed the contours turn from vertical to circular after the second stimulation. The simulation
time is up to 500 using Hexa II FVs.

6. Conclusions. Both ordinary and compact hexagonal seven-point stencils of two-
dimensional discrete laplacian are investigated in a finite volume approach. A three-color
algorithm is developed for use in an iterative update procedure. This is confirmed effective in
elliptic problems and also in a time march procedure. Using hexagonal finite volumes, linear
and spiral waves in a square-like region are exhibited successfully based on the monodomain
model. The application to wide range of numerical heart modeling is potentially of great
value. We think this applies in many applications in two-dimensional irregular regions.
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FIG. 5.3. Surface and contour plots of a spiral wave. The contours turn circular after the second stimulation.
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Appendix A. Functional Approximations in a Hexagon. Assume Ω is a regular hexagon
in general configuration with phase angle ϕ and centered at P0 = (x0, y0). We denote the
radius by r, and the height by h(=

√
3

2 r). The six neighbor (center) nodes are (Fig.4.1)
Pj := Vj + Vj+1 − P0. Precisely,

Pj := (xj , yj) = (x0, y0) + 2h(cos θj , sin θj), with θj = ϕ − π

6
+

jπ

3
, j = 1, · · · , 6 .

Let f(x, y) be a smooth function defined in Ω. The followings were obtained by the authors.
THEOREM A.1. The expression,

1
|Ω|

∫ ∫
Ω

f(x, y)dxdy = f(P0) + 5
48r2�f + O(r4)

= f(P0) + 5
36h2�f + O(h4),

(A.1)

is valid and implies a fourth-order analytic approximation to the definite integral of a smooth
integrand over a regular hexagon, in terms of values of the function and its laplacian at center
of the hexagon.
We note similar result is available on rectangles ([4],[5]).

In application to differential equations, we consider Poisson equation in its simplest form,
�u = uxx + uyy = f(x, y).

THEOREM A.2. The differential relation,

uxx(x0, y0) + uyy(x0, y0) = f(x0, y0),

is approximated by the discrete hexagonal ordinary seven-point (H7) scheme,

1

h2

⎛
⎝−u(x0, y0) +

1

6

6∑
j=1

u(xj , yj)

⎞
⎠ = f(x0, y0) ,
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which is second-order accurate, that is,

uxx + uyy = 1
h2

(
−u(P0) + 1

6

∑6
i=1 u(Pi)

)
− h2

4 (uxxxx + 2uxxyy + uyyyy) + O(h4)

= 1
h2

(
−u(P0) + 1

6

∑6
i=1 u(Pi)

)
+ O(h2).

(A.2)

Furthermore is true.
THEOREM A.3. (Fourth-order hexagonal compact seven-point (H7c) scheme.)

1

h2

(
−u(P0) +

1

6

6∑
i=1

u(Pi)

)
=

3

4
f(P0) +

1

24

6∑
i=1

f(Pi) + O(h4). (A.3)

We refer to [10] for a fourth-order compact scheme on rectangles.
We note that, the above result (A.3) for the special case of type II hexagons, embedded

in a mesh of triangles, was used in [7] without an explicit proof. The result in its most general
form is given in [6]. We prove the result for the special case of a type II hexagon in the next
section.

Appendix B. Finite difference method : type II hexagons. We derive Eq.(A.3) for
regular type II hexagons using conventional FD notations. We recall the center-to-center
distance d = 2h =

√
3r.

Consider the center and six neighbor nodes of a type II hexagon,
P0 = (0, 0), Pj = d (cos(jπ/3), sin(jπ/3)) , 1 ≤ j ≤ 6.

We denote for convenience that
P

NE
= P1 = (d

2 ,
√

3d
2 ), P

NW
= P2 = (−d

2 ,
√

3d
2 ), P

W
= P3 = (−d, 0),

P
SW

= P4 = (−d
2 , −√

3d
2 ), P

SE
= P5 = (d

2 , −√
3d

2 ), P
E

= P6 = (d, 0).
The associated values of a function u(x, y) are denoted by

u
P
, u

NE
, u

NW
, u

W
, u

SW
, u

SE
, u

E
,

at the center and neighbor nodes, respectively. Assuming appropriate smoothness of the
function u, truncated Taylor expansions yield the following

u
E
≈ u

P
+ dux + d2

2 uxx + d3

6 uxxx + d4

24uxxxx + d5

120uxxxxx ,

u
W

≈ u
P
− dux + d2

2 uxx − d3

6 uxxx + d4

24uxxxx − d5

120uxxxxx,

u
NE

≈ u
P

+ d
2ux +

√
3d
2 uy + d2

2

(
1
4uxx + 2 ·

√
3

4 uxy + 3
4uyy

)
+ d3

6

(
1
8uxxx + 3 ·

√
3

8 uxxy + 3 · 3
8uxyy + 3

√
3

8 uyyy

)
+ d4

24

(
1
16uxxxx + 4 ·

√
3

16 uxxxy + 6 · 3
16uxxyy + 4 · 3

√
3

16 uxyyy + 9
16uyyyy

)
,

u
SE

≈ u
P

+ d
2ux −

√
3d
2 uy + d2

2

(
1
4uxx − 2 ·

√
3

4 uxy + 3
4uyy

)
+ d3

6

(
1
8uxxx − 3 ·

√
3

8 uxxy + 3 · 3
8uxyy − 3

√
3

8 uyyy

)
+ d4

24

(
1
16uxxxx − 4 ·

√
3

16 uxxxy + 6 · 3
16uxxyy − 4 · 3

√
3

16 uxyyy + 9
16uyyyy

)
,

u
NW

≈ u
P

− d
2ux +

√
3d
2 uy + d2

2

(
1
4uxx − 2 ·

√
3

4 uxy + 3
4uyy

)
+ d3

6

(
1
8uxxx + 3 ·

√
3

8 uxxy − 3 · 3
8uxyy + 3

√
3

8 uyyy

)
+ d4

24

(
1
16uxxxx − 4 ·

√
3

16 uxxxy + 6 · 3
16uxxyy − 4 · 3

√
3

16 uxyyy + 9
16uyyyy

)
,

u
SW

≈ u
P

− d
2ux −

√
3d
2 uy + d2

2

(
1
4uxx + 2 ·

√
3

4 uxy + 3
4uyy

)
+ d3

6

(
− 1

8uxxx − 3 ·
√

3
8 uxxy − 3 · 3

8uxyy − 3
√

3
8 uyyy

)
+ d4

24

(
1
16uxxxx + 4 ·

√
3

16 uxxxy + 6 · 3
16uxxyy + 4 · 3

√
3

16 uxyyy + 9
16uyyyy

)
,
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u
NE

+ u
SE

≈ 2u
P

+ 2
(

d
2ux + d2

2 ( 1
4uxx + 3

4uyy) + d3

6 ( 1
8uxxx + 9

8uxyy)

+d4

24 ( 1
16uxxxx + 18

16uxxyy + 9
16uyyyy)

)
,

u
NW

+ u
SW

≈ 2u
P

+ 2
(

−d
2 ux + d2

2 ( 1
4uxx + 3

4uyy) − d3

6 ( 1
8uxxx + 9

8uxyy)

+d4

24 ( 1
16uxxxx + 18

16uxxyy + 9
16uyyyy)

)
.

Therefore,
u

E
+ u

W
− 2u

P
= d2uxx + d4

12uxxxx + O(d6)
and

u
NE

+u
NW

+u
SE

+u
SW

−4u
P

= d2

(
1

2
uxx +

3

2
uyy

)
+d4

(
1

96
uxxxx +

18

96
uxxyy +

9

96
uyyyy

)
+O(d6).

Adding the last two equations, we obtain a second-order seven-point scheme for the laplacian

with an error estimate,

u
NE

+ u
NW

+ u
SE

+ u
SW

+ u
E

+ u
W

− 6u
P

3
2d2

=uxx + uyy +
d2

16
(uxxxx + 2uxxyy + uyyyy) + O(d4).

(B.1)

This ends proving Eq.(A.3) for the special case that phase angle ϕ = −π/6. �
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