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Abstract

Current status data arise from the basic version of the interval censoring where the

observation consists only of an examination time and knowledge of whether the failure time

has occurred before the examination time. In some cases, the failure time also suffers left-

truncation, which results in left-truncated current status (LTCS) data. In this article, we first

point out that for LTCS data the nonparametric estimator using Turnbull’s EM algorithm is

not the NPMLE since left-truncation times can also be left-censoring times. However, based

on innermost sets, we can still obtain a nonparametric estimate using Turnbull’s algorithm.

Simulation study indicates that both estimators perform adequately and are consistent.

Key Words: current status data; left truncation; interval censoring; self-consistent.
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Figure 1. Schematic depiction of LTCS data

1. Introduction

Left truncated and interval-censored data often arise in epidemiology and individual

follow-up studies and possibly in other fields. Current status data result from the most basic

version of the interval-censoring model, known as the current status model or case 1 interval

censoring. For current status data, the individual is checked only at a single point in time,

denoted by C, and the status of the individual ascertained: 1 if the infection/failure time T

has occurred by C and 0 otherwise. In some cases, T also suffers left-truncation. Consider

the following example.

Example: AIDS Cohort Studies

In cohort studies, we are interested in the incubation time of the disease. An individual is

selected only when he (or she) has already entered status 0 (e.g. HIV-positive or diagnosis of

diabetes) sometime prior to calendar time τ0 and yet has not entered status 1 (e.g. developed

AIDS or retinopathy). Hence, earlier onset of AIDS/retinopathy would then be a truncating

force for the variable of interest. Suppose that for each individual i the infection time

(denoted by Tsi) can be quite accurately determined (e.g. due to blood transfusion). The

recruitment starts at τ0 and the follow-up is terminated at τe. For each individual i, let T ∗i

denote the time from Tsi to the calendar time of entering status 1. Let V ∗i = τ0 − Tsi if

Tsi < τ0 and V ∗i = 0 if Tsi ≥ τ0. Hence, T ∗i is observable only when T ∗i ≥ V ∗i . Let C∗i denote

the time from Tsi to the single examination time and δ∗i = 1 if T ∗i ≤ C∗i and equal to zero

otherwise. Thus, for left-truncated current status (LTCS) data, we can observe (C∗i , δ
∗
i ) if

T ∗i ≥ V ∗i and observe nothing if T ∗i < V ∗i . Figure 1 highlights all the different times for

LTCS data as described in Example.
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When there is no truncation, statistical inference methods for the nonparametric max-

imum likelihood estimator (NPMLE) have been extensively. For example, the algorithms

for obtaining the NPMLE of the distribution function of T ∗i were proposed by Ayer et al.

(1955), Peto (1973), Turnbull (1976) and Groeneboom and Wellner (1992) under the as-

sumption that T ∗i and C∗i are independent. Furthermore, Groenboom and Wellner (1992)

showed that the NPMLE converges pointwise at rate n1/3 to a complex limiting distribution

related to Brownian motion. They also studied the efficacy of smooth functionals of the

estimator.

When truncation is present, Pan and Chappell (1999) showed that the NPMLE is incon-

sistent from LTCS data. Using log-likelihood increment as the convergence criterion, their

simulation study indicated that the NPMLE can still be seriously biased when sample size

is 1000. In Section 2, we first point out that the nonparametric estimator using Turnbull’s

EM algorithm is not the NPMLE since left-truncation times can also be left-censoring times.

However, based on a generalized definition of innermost set, we can still obtain a nonpara-

metric estimate using Turnbull’s algorithm. Furthermore, based on an integral equation, we

propose a self-consistent estimator (SCE) of survival function of T ∗i . In Section 3, a simula-

tion study is conducted to investigate the performance of the two proposed estimators. Our

simulation study indicated that both estimators perform adequately and are consistent.
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2. The Proposed Estimators

2.1 The Nonparametric Estimator Using Turnbull’s Algorithm

Let (V1, C1, δ1), . . . , (Vn, Cn, δn) denote the observed LTCS data, where P (Vi ≤ Ci) = 1.

Let F (t) denote the distribution function of T ∗i , and G(x) and Q(x) denote the distribution

function of V ∗i and C∗i , respectively. For any distribution function W denote the left and

right endpoints of its support by aW = inf{t : W (t) > 0} and bW = inf{t : W (t) = 1},
respectively. Throughout this article, for identifiability of T ∗i , we assume that T ∗i , V ∗i and

C∗i are all continuous, T ∗i is independent of (V ∗i , C
∗
i ) and

aG ≤ aF and bG ≤ bF ≤ bQ. (2.1)

Based on (Vi, Ci, δi) i = 1, . . . , n, we can define the observed interval [Li, Ri], where [Li, Ri] =

[Vi, Ci] if δi = 1 and [Li, Ri] = [Ci,∞) if δi = 0. Note that [Li, Ri] ⊂ [Vi,∞], i.e. Vi ≤ Li.

For arbitrarily truncated and censored data, Turnbull (1976) introduced a self-consistent

algorithm to compute the NPMLE of F . Without loss of generality, suppose the observed

interval [Li, Ri]’s are ordered according to Li such that L1 < L2 < · · · < Ln. Following

Turnbull (1976), Frydman (1994) and Alioum and Commenges (1996), we consider nonpara-

metric estimation of SF (t) = 1−F (t) using the n independent pairs {A1, B1}, . . . , {An, Bn},
where Ai = [Li, Ri] and Bi = [Vi,∞]. The conditional likelihood is:

Lc(SF ) =
n∏
i=1

PSF
(Ai)

PSF
(Bi)

=
n∏
i=1

SF (Li−)− SF (Ri)

SF (Vi−)
, (2.2)

where PS(I) denotes the probability that is assigned to the interval I by S. We define an

NPMLE as ŜM = argmaxS∈S{Lc(S)}, where S denotes the class of survival functions such

that PS(∪ni=1Bi) = 1 and Lc(S) is defined, i.e. PS(Bi) > 0 for all i = 1, . . . , n. Define

L = {Li : i = 1, . . . , n} and R = {Ri : i = 1, . . . , n} ∪ {Vi : i = 1, . . . , n} ∪ {∞}. For

left-truncated and strictly interval censored data, the individual is checked more than one

point, we have Vi 6= Li. In this case, as pointed out by Alioum and Commenges (1999), the

conditional likelihood (2.2) will be maximized when the value of SF (t) are as large as possible

for t ∈ L and as small as possible for t ∈ R. This can be achieved by constructing innermost

sets (see Hudgens) H1, . . . , HJ such that Hj = [qj, pj] is to the left of Hj+1 = [qj+1, pj+1] for

j = 1, . . . , J − 1, i.e. [q1, p1],[q2, p2], . . . , [qJ , pJ ], where q1 ≤ p1 < q2 ≤ p2 < · · · < qJ ≤ pJ .

Notice that the interval [qj, pj] can also be constructed (see Alioum and Commenges (1999))

by representing on the real line the elements of L and R by left hooks and right hooks,
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respectively, i.e. qj ∈ L and pj ∈ R. By Lemma 1 of Hudgens (2005), any distribution

function which increases outside ∪Jj=1Hj cannot be an NPMLE. By Lemma 2 of Hudgens

(2005), for fixed value of PF (Hj), the likelihood is independent of the values of F within

the region Hj. However, for LTCS data, if Ri < ∞, we have Vi = Li ∈ L and Vi ∈ R〉, i.e.

left-truncation variables belongs to both sets. Hence, for LTCS data, there may exists many

intervals [qj, pj] with qj = pj = Vk for some k. In this case, conditional likelihood Lc would

not be maximized by representing on the real line the elements of L and R by left hooks

and right hooks, respectively.

Now, for each Hj ∈ H, let sj = PF (Hj) and let s be an J-dimension column vector with

elements sj. Define

Ls(s) =
n∏
i=1

∑J
j=1 αijsj∑J
j=1 βijsj

, (2.3)

where αij = I[Hj ⊂ Ai], βij = I[Hj ⊂ Bi] and I[·] is the usual indicator function. For left-

truncated and strictly interval censored data, the NPMLE can be obtained by maximizing the

reduced likelihood (2.3). However, for LTCS data, the estimator obtained by maximizing

(2.3) is no longer the NPMLE. The goal is to maximize likelihood (2.3) subject to the

constraints
J∑
j=1

sj = 1, (2.4)

sj ≥ 0 (j = 1, . . . , J), (2.5)

and
J∑
j=1

αijsj > 0, (i = 1, . . . , n). (2.6)

We shall use Ω to denote the parameter space that is given by constraints (2.4)-(2.6), i.e.

Ω = {s ∈ RJ :
J∑
j=1

sj = 1; sj ≥ 0 for j = 1, . . . , J ;
J∑
j=1

αijsj > 0 for i = 1, . . . n}.

To find the maximum likelihood estimate of the vector s, we can use an EM algorithm and

the resulting self-consistent estimate of s is exactly the Turnbull’s (1976) self-consistency

algorithm as follows:

s
(b)
j =

{
1 +

dj(s
(b−1))

M(s(b−1))

}
s
(b−1)
j (1 ≤ j ≤ J), (2.7)
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where

dj(s
(b−1)) =

n∑
i=1

{(
αij

/ J∑
k=1

αiks
(b−1)
k

)
−
(
βij

/ J∑
k=1

βiks
(b−1)
k

)}
,

and

M(s(b−1)) =
n∑
i=1

1∑J
j=1 βijs

(b−1)
j

.

Let ŝj (j = 1, . . . , J) denote the estimators obtained from (2.7). Then based on the the

estimators ŝj’s, an estimator ŜM(t) of SF (t) can be uniquely defined for t ∈ [pj, qj+1) by

ŜM(pj) = ŜM(qj+1−) = 1 − (ŝ1 + · · · + ŝj), but is not uniquely defined for t being in

an open innermost interval (qj, pj) with qj < pj. To avoid ambiguity we define ŜM(t) =

1− [ŝ1 + · · ·+ ŝj−1 + sj(t− qj)/(pj − qj)] if t ∈ (qj, pj] and 0 < qj < pj <∞. In simulation

study, the convergence criterion was set as |Ŝ(r+1)
M (t) − Ŝ(r)

M (t)| < 0.0001. Although ŜM is

not the NPMLE, simulation study in Section 3 indicates that ŜM performs adequately and

is consistent.
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2.2 The SCE

In this section, based on an integral equation, we propose an alternative estimator, the

self-consistent estimator. Let p = P (V ∗i ≤ T ∗i ) denote the proportion of un-truncation. We

have the following equation:

SF (t) = P (T ∗i > t, V ∗i ≤ t) + P (T ∗i > t, V ∗i > t)

= pP (V ∗i ≤ t < C∗i , δ
∗
i = 0|T ∗i ≥ V ∗i ) + pP (C∗i ≤ t, T ∗i > t|T ∗i ≥ V ∗i )

+pP (V ∗i ≤ t,min(T ∗i , C
∗
i ) > t, δ∗i = 1|T ∗i ≥ V ∗i ) + P (T ∗i > t, V ∗i > t)

= pP (Vi ≤ t < Ci, δi = 0) + pP (Ci ≤ t, Ti > t)

+pP (Vi ≤ t,min(Ti, Ci) > t, δi = 1) + P (T ∗i > t, V ∗i > t). (2.8)

Motivated by (2.8), given p, we consider the following SCE:

Ŝ(t) =
1

np−1

{ n∑
i=1

I[Vi≤t<Ci,δi=0] +
n∑
i=1

I[Ci≤t,δi=0]
Ŝ(t)

Ŝ(Ci)

+
n∑
i=1

I[Vi≤t<Ci,δi=1]
Ŝ(t)− Ŝ(Ci)

Ŝ(Vi)− Ŝ(Ci)
+

n∑
i=1

I[Vi>t]
Ŝ(t)

Ŝ(Vi)

}
. (2.9)

Notice that the last term of the equation (2.9) is to recover the missing information due to

left-truncation. Given the observation Vi > t, a pseudo observation is recovered by adding

the weight Ŝ(t)/Ŝ(Vi). Let G̃(t) = P (Vi ≤ t) denote the sub-distribution function of Vi.

Since G̃(t) = p−1
∫ t
0
SF (v)dG(v). It follows that np−1 can be estimated by

∑n
i=1 1/SF (Vi)

(see Shen (2005)). Hence, an SCE Ŝn of SF is defined to be the solution of the following

equation:

Ŝn(t) =

[ n∑
i=1

1

Ŝn(Vi)

]−1{ n∑
i=1

I[Vi≤t<Ci,δi=0] +
n∑
i=1

I[Ci≤t,δi=0]
Ŝn(t)

Ŝn(Ci)

+
n∑
i=1

I[Vi≤t<Ci,δi=1]
Ŝn(t)− Ŝn(Ci)

Ŝn(Vi)− Ŝn(Ci)
+

n∑
i=1

I[Vi>t]
Ŝn(t)

Ŝn(Vi)

}
and Ŝn ∈ Θ, (2.10)

where Θ = {f : f is a nonincreasing function from [0,∞] to [0, 1], f(0) = 1 and f(∞) = 0}.
Let G̃n(v) denote the empirical version of G̃(v). Similarly, Let Q̃0n(c), H̃0n(v, c) and H̃1n(v, c)

denote the empirical versions of the joint sub-distributions of Q̃0(c) = P (Ci ≤ c, δi = 0),
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H̃0(v, c) = P (Vi ≤ v, Ci ≤ c, δi = 0) and H̃1(v, c) = P (Vi ≤ v, Ci ≤ c, δi = 1), respectively.

It follows that (2.10) can be written as

Ŝn(t) =

[ ∫
1

Ŝn(v)
G̃n(dv)

]−1{∫
v≤t<c

H̃0n(dv, dc) +

∫
c≤t

Ŝn(t)

Ŝn(c)
Q̃0n(dc)

+

∫
c>t

Ŝn(t)− Ŝn(c)

Ŝn(v)− Ŝn(c)
H̃1n(dv, dc) +

∫
v>t

Ŝn(t)

Ŝn(v)
G̃n(dv)

}
. (2.11)

When there is no truncation, (2.11) is reduced to:

Ŝn(t) =

{∫
t<c

Q̃0n(dc) +

∫
c≤t

Ŝn(t)

Ŝn(c)
Q̃0n(dc) +

∫
v≤t<c

Ŝn(t)− Ŝn(c)

1− Ŝn(c)
Q̃1n(dc),

where Q̃1n is the empirical function of Q̃1(c) = P (Ci ≤ c, δi = 0).
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3. Simulation Results

Case 1: C∗i = V ∗i + 0.5

A simulation study is conducted to investigate the performance of the estimator ŜM and

SCE. The simulation set-up is the same as in Pan and Chappell (1999). The left-truncation

time V ∗i ∼ U(0, θ) is uniformly distributed and the censoring time C∗i = V ∗i + 0.5. The

values of θ were set at θ = 4, 8 such that proportions of left-truncation are equal to 0.53

and 0.76, respectively. The survival time T ∗i is distributed as Gamma with shape and scale

parameters 2 and 1, respectively. We consider the estimation of SF (tP ) where tP is the 100

P th percentile point. Turnbull’s EM algorithm is used to compute ŜM(tP ) with a starting

distribution which puts an equal probability mass in each sj (j = 1, . . . , J). The convergence

criterion was set as |Ŝ(r+1)
M (tP ) − Ŝ(r)

M (tP )| < 0.0001. Notice that the convergence criterion

for the ŜM differs from that used by Pan and Chappell (1999). They use the log-likelihood

increment as the criterion. To obtain an initial estimator of Ŝn, the exponential distribution

with mean equal to 2, i.e. Ŝ
(0)
n = e−x/2, was used as an initial estimator. The convergence

criterion was set as |Ŝ(r+1)
n (tP ) − Ŝ(r)

n (tP )| < 0.0001. The values of P are chosen as 0.2, 0.5

and 0.8 and the sample sizes are chosen as 100, 200 and 1000. The replication is 1000 times.

The simulation results were reported in Table 1. Table 1 also lists proportion of truncation

P (T ∗i < V ∗i ) (denoted by qT ) and proportion of left censoring P (δi = 1) (denoted by pL).

Case 2: C∗i = V ∗i +D∗i

The distribution of T ∗i is the same as case 1. The left-truncation time V ∗i is exponentially

distributed with mean θ and the censoring time C∗i = V ∗i + D∗i , where D∗i is exponentially

distributed with mean equal to 2. The values of θ were set at θ = 2, 4 such that proportions

of left-truncation are equal to 0.43 and 0.65, respectively. Simulation results are reported in

Table 2.
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Table 1. Simulation results for bias, standard deviation and

rmse for left-truncated and current status data (case 1)

Ŝn(tP ) ŜM(tP )
θ n qT pL P bias std rmse bias std rmse
4 100 0.53 0.24 0.2 -0.024 0.087 0.079 -0.002 0.080 0.080
4 200 0.53 0.24 0.2 -0.012 0.056 0.057 -0.001 0.050 0.050
4 1000 0.53 0.24 0.2 -0.008 0.024 0.025 0.005 0.024 0.024
8 100 0.76 0.23 0.2 -0.029 0.071 0.077 0.014 0.071 0.072
8 200 0.76 0.23 0.2 -0.016 0.051 0.053 0.006 0.045 0.045
8 1000 0.76 0.23 0.2 -0.007 0.022 0.022 0.005 0.020 0.020
4 100 0.53 0.24 0.5 -0.035 0.103 0.109 -0.004 0.095 0.095
4 200 0.53 0.24 0.5 -0.017 0.062 0.064 -0.002 0.057 0.057
4 1000 0.53 0.24 0.5 -0.006 0.031 0.031 0.003 0.028 0.028
8 100 0.76 0.23 0.5 -0.029 0.088 0.092 0.004 0.095 0.095
8 200 0.76 0.23 0.5 -0.016 0.061 0.063 0.005 0.059 0.059
8 1000 0.76 0.23 0.5 -0.011 0.025 0.027 0.006 0.023 0.024
4 100 0.53 0.24 0.8 -0.031 0.105 0.109 -0.027 0.098 0.102
4 200 0.53 0.24 0.8 -0.022 0.076 0.079 -0.015 0.071 0.073
4 1000 0.53 0.24 0.8 -0.010 0.027 0.029 0.008 0.028 0.029
8 100 0.76 0.23 0.8 -0.028 0.107 0.111 -0.024 0.101 0.104
8 200 0.76 0.23 0.8 -0.017 0.082 0.084 -0.013 0.076 0.077
8 1000 0.76 0.23 0.8 0.008 0.032 0.033 0.007 0.030 0.031



11

Table 2. Simulation results for bias, standard deviation and

rmse for left-truncated and current status data (case 2)

Ŝn(tP ) ŜM(tP )
θ n qT pL P bias std rmse bias std rmse
2 100 0.43 0.49 0.2 -0.010 0.084 0.085 -0.016 0.088 0.089
2 200 0.43 0.49 0.2 -0.020 0.053 0.057 -0.012 0.051 0.052
2 1000 0.43 0.49 0.2 -0.012 0.024 0.027 -0.008 0.021 0.022
4 100 0.65 0.55 0.2 -0.017 0.074 0.076 -0.015 0.080 0.081
4 200 0.65 0.55 0.2 -0.032 0.049 0.059 -0.014 0.050 0.052
4 1000 0.65 0.55 0.2 -0.018 0.020 0.027 -0.016 0.019 0.025
2 100 0.43 0.49 0.5 -0.020 0.135 0.136 -0.027 0.128 0.131
2 200 0.43 0.49 0.5 -0.016 0.093 0.094 -0.019 0.089 0.091
2 1000 0.43 0.49 0.5 -0.013 0.048 0.050 -0.011 0.046 0.047
4 100 0.65 0.55 0.5 -0.035 0.132 0.136 -0.030 0.127 0.130
4 200 0.65 0.55 0.5 -0.029 0.086 0.091 -0.023 0.083 0.086
4 1000 0.65 0.55 0.5 -0.012 0.045 0.047 -0.015 0.044 0.046
2 100 0.43 0.49 0.8 -0.037 0.135 0.140 -0.032 0.131 0.135
2 200 0.43 0.49 0.8 -0.028 0.097 0.104 -0.022 0.092 0.095
2 1000 0.43 0.49 0.8 -0.014 0.043 0.045 -0.012 0.044 0.045
4 100 0.65 0.55 0.8 -0.042 0.140 0.146 -0.036 0.137 0.142
4 200 0.65 0.55 0.8 -0.031 0.102 0.107 -0.028 0.095 0.099
4 1000 0.65 0.55 0.8 -0.017 0.058 0.060 -0.014 0.056 0.058

Tables 1 and 2 indicate that (i) For case 1, when n = 100, 200, the biases of the estimator

ŜM are smaller than that of Ŝn. For case 2, when n = 100, the biases of both estimators can

be large. (ii) When n = 100, 200, in terms of rmse, the estimator ŜM performs better than

the SCE Ŝn for most of the cases considered. (iii) When n = 1000, the performance of the

estimators Ŝn and ŜM are close to each other.
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4. Discussions

For left truncated and current status data, we have pointed out that the nonparametric

estimator using Turnbull’s EM algorithm is not the NPMLE since left-truncation times

can also be left-censoring times. However, based on innermost sets, we can still obtain a

nonparametric estimate Ŝm using Turnbull’s algorithm and simulation results indicates that

the estimator performs adequately. Furthermore, we have presented a SCE using an integral

equation and simulation study indicates that the SCE performs adequately. Further research

is required to establish the consistency of the SCE.
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