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Abstract

Current status data arise from the basic version of the interval censoring where the
observation consists only of an examination time and knowledge of whether the failure time
has occurred before the examination time. In some cases, the failure time also suffers left-
truncation, which results in left-truncated current status (LTCS) data. In this article, we first
point out that for LTCS data the nonparametric estimator using Turnbull’s EM algorithm is
not the NPMLE since left-truncation times can also be left-censoring times. However, based
on innermost sets, we can still obtain a nonparametric estimate using Turnbull’s algorithm.

Simulation study indicates that both estimators perform adequately and are consistent.

Key Words: current status da truncation; interval-eensoring; self-consistent.
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Figure 1. Schematic depiction of LTCS data

1. Introduction

Left truncated and interval-censored data often-arise in epidemiology and individual
follow-up studies and possibly.invother fields: Current'status.data result from the most basic
version of the interval-cengoring model, known as the current status model or case 1 interval
censoring. For current status data, the individual is checked only at a single point in time,
denoted by C, and the status of the individual ascertained: 1 if the infection/failure time 7'
has occurred by ¢ and 0 otherwise. In some cases, T also suffers left-truncation. Consider

the following example.
Example: AIDS Cohort Studies

In cohort studies, we are interested in the;incubation time of the disease. An individual is
selected only when he (or she) has alrecady.entered status 0 (e.g. HIV-positive or diagnosis of
diabetes) sometime prior to calendar time-r, andyet hasnot entered status 1 (e.g. developed
AIDS or retinopathy). Hence, earlier onset of AIDS /retinopathy would then be a truncating
force for the variable of interest. Suppose that for each individual ¢ the infection time
(denoted by Ty;) can be quite accurately determined (e.g. due to blood transfusion). The
recruitment starts at 7y and the follow-up is terminated at 7.. For each individual 7, let T}
denote the time from 7j; to the calendar time of entering status 1. Let V* = 75 — T§; if
Ty <19 and V* =0if Ty; > 7. Hence, T} is observable only when T7* > V*. Let C denote
the time from T; to the single examination time and ¢; = 1 if 7;* < C} and equal to zero
otherwise. Thus, for left-truncated current status (LTCS) data, we can observe (C},d7) if
Ty > V;* and observe nothing if 77" < V;*. Figure 1 highlights all the different times for
LTCS data as described in Example.



When there is no truncation, statistical inference methods for the nonparametric max-
imum likelihood estimator (NPMLE) have been extensively. For example, the algorithms
for obtaining the NPMLE of the distribution function of T;* were proposed by Ayer et al.
(1955), Peto (1973), Turnbull (1976) and Groeneboom and Wellner (1992) under the as-
sumption that 77 and C} are independent. Furthermore, Groenboom and Wellner (1992)

showed that the NPMLE converges pointwise at rate n'/?

to a complex limiting distribution
related to Brownian motion. They also studied the efficacy of smooth functionals of the

estimator.

When truncation is present, Pan and Chappell (1999) showed that the NPMLE is incon-
sistent from LTCS data. Using log-likelihood increment as the convergence criterion, their
simulation study indicated that the NPMLE can still be seriously biased when sample size
is 1000. In Section 2, we first point outthat the nenparametrie estimator using Turnbull’s
EM algorithm is not the NPMLE since left-truncation times, can also be left-censoring times.
However, based on a generalized definition of innermost.set; we can still obtain a nonpara-
metric estimate using Twrnbull’s algorithm. Furthermore, based on'an integral equation, we
propose a self-consistent estimator (SCE) of survival function of 7;*. In Section 3, a simula-
tion study is conducted to.investigate the performance of the two proposed estimators. Our

simulation study indicated that both estimators perform adequately and are consistent.



2. The Proposed Estimators
2.1 The Nonparametric Estimator Using Turnbull’s Algorithm

Let (V1,Ch,61), ..., (Vy, Cy,d,) denote the observed LTCS data, where P(V; < C;) =
Let F(t) denote the distribution function of 7}, and G(z) and Q(x) denote the distribution
function of V* and C7, respectively. For any distribution function W denote the left and
right endpoints of its support by ay = inf{t : W(t) > 0} and by = inf{t : W(t) = 1},
respectively. Throughout this article, for identifiability of 7}, we assume that 7}, V* and

C are all continuous, T is independent of (V;*, CF) and
ag.<ar and bg <bp < bg. (2.1)

Based on (V;, C;, ;) i = 1§..., n, we can-definie the observed interval [L;, R;], where [L;, R;] =
Vi, C;] if 6; = 1 and [Lg R;| = |C;,00).if 0; ="0.+Note-that [L;, R;] C [V;, 0], i.e. V; < L;.
For arbitrarily truncated and censored data, Turnbull ((1976) introduced a self-consistent
algorithm to compute the NPMLE of F. Without. loss of generality, suppose the observed
interval [L;, R;]’s are ordered according to L;such that L < Ly, <--- < L,. Following
Turnbull (1976), Frydman (1994) and Alioum and Commenges (1996), we consider nonpara-
metric estimation of Sg(t)="1 = F(t)using-the mindependent pairs {A;, B1}, ..., {An, Bn},
where A; = [L;, R;] and By= [V}, oc]._The conditional likelihood is:

G e oy o 22

=1

where Pg(I) denotes the probability*that is assigned to the interval I by S. We define an
NPMLE as Sy = argmaxg.s{ Le(S)}, wheré S ‘denotes the class of survival functions such
that Ps(Ul,B;) = 1 and L.(S) is defined, i.e. Ps(B;) > 0 for all ¢ = 1,...,n. Define
L={L:i=1,...,nfand R={R; :i=1,....,n}U{V; :i=1,...,n} U{oo}. For
left-truncated and strictly interval censored data, the individual is checked more than one
point, we have V; # L;. In this case, as pointed out by Alioum and Commenges (1999), the
conditional likelihood (2.2) will be maximized when the value of Sg(t) are as large as possible
for t € £ and as small as possible for t € R. This can be achieved by constructing innermost
sets (see Hudgens) Hy, ..., H; such that H; = [g;, p;] is to the left of H; 1 = [gj41,p;41] for
Jg=1...,J =1 ie [q,pi];[qe;p2];---,[qs,ps], where ¢t <p1 < qo <pa < -+ < qs < py.
Notice that the interval [g;, p;] can also be constructed (see Alioum and Commenges (1999))

by representing on the real line the elements of £ and R by left hooks and right hooks,



respectively, i.e. ¢; € £ and p; € R. By Lemma 1 of Hudgens (2005), any distribution
function which increases outside U}J:lH ; cannot be an NPMLE. By Lemma 2 of Hudgens
(2005), for fixed value of Pp(H;), the likelihood is independent of the values of F within
the region H;. However, for LTCS data, if R; < oo, we have V; = L; € £ and V; € Ry, i.e.
left-truncation variables belongs to both sets. Hence, for LTCS data, there may exists many
intervals [¢;, p;] with ¢; = p; = V} for some k. In this case, conditional likelihood L. would
not be maximized by representing on the real line the elements of £ and R by left hooks

and right hooks, respectively.

Now, for each H; € H, let s; = Prp(H,) and let s be an J-dimension column vector with
elements s;. Define
LD i1 i
Lsy=1]&—— (2.3)
i=1 Zj:l Birs;
where «,; = I[H; C Ajl, Bi; = I[H; C*B;] and I[] s thesual indicator function. For left-
truncated and strictly interval censored data, the NPMLE can be obtained by maximizing the
reduced likelihood 1(2.3). However, for LTCS data; the estimator obtained by maximizing
(2.3) is no longer the NPMLE. The goal is to maximize likelihood (2.3) subject to the

constraints ;
D si=1, (2.4)
j=1
5120 (j = Lt D), (2.5)
and
J
> sy 0, (i=1 . n). (2.6)
j=1
We shall use 2 to denote the parameter space that is given by constraints (2.4)-(2.6), i.e.
J J
Q:{SERJ:ZSj =1;s; zOforjzl,...,,];Zaijsj >0fori=1,...n}.
j=1 j=1

To find the maximum likelihood estimate of the vector s, we can use an EM algorithm and
the resulting self-consistent estimate of s is exactly the Turnbull’s (1976) self-consistency

algorithm as follows:

(561
SO _ {1 n M}S@—” (1<j<J), (2.7)



where . .
dj(s*7Y) = Z{ <0‘ij/ > aiksl(gb_l)> - (Bij/ Zﬂiksl(cb_l)> },
=1 k=1 k=1

- 1

M(s®Y) = E _—
J b—1
o sy

Let 3; (j = 1,...,J) denote the estimators obtained from (2.7). Then based on the the

estimators §,’s, an estimator Sy (t) of Sg(t) can be uniquely defined for t € [p;,q;41) by

and

Su(p;) = Sul(gjs1i—) = 1 — (3, + --- + §;), but is not uniquely defined for ¢ being in
an open innermost interval (g;,p;) with ¢; < p;. To avoid ambiguity we define S'M(t) =
1—1[81+ -+ 81 +s;(t —q)Apj=q;)] 1 p;] and 0 < ¢; < p; < co. In simulation
study, the convergence criterio L a e SU(t)| < 0.0001. Although Sy is

not the NPMLE, simula i ot | tes ; performs adequately and

1S consistent.




2.2 The SCE

In this section, based on an integral equation, we propose an alternative estimator, the
self-consistent estimator. Let p = P(V;* < T}) denote the proportion of un-truncation. We

have the following equation:
Sp(t)=P(IT; >tV <t)+ P(I; >tV >1t)

=pP(V <t <C7,6; =0[T7 2 V") + pP(C7 < . T7 > 1|17 2 V")
+pP (V' <t,min(T),C}) > t,6; = T} > V') + P(T; > t, V" > t)
=pP(V; <t < Cioi=0)+pP(C; <t,T; > t)
+pP(V; <tsymin(T,00) > ¢, 8 =1) + P(TF > t, V7 > t). (2.8)
Motivated by (2.8), given p, we consider the-following SCE:

A 1 S(t)
S(t 1 + I -
(t) - np—l{Z o Z e

. S(t) — S(Cy) R S(t)
+ I[V;-gt C;,0i=1]"72 "~ ——— S [[V2 1= . (29)
Z SRSW) - (6 Z 8

Notice that the last term of the equation (2:9)is to recover the missing information due to
left-truncation. Given the observation.V; >, a pseude observation is recovered by adding
the weight S(t)/S(Vi). \Let ‘G(t)= P(V; < t). deriote’ thesub-distribution function of V;.
Since G(t) = p~' [ Sp(v)dG (v)=It follows that np '.can be estimated by 37, 1/Sk(V;)
(see Shen (2005)). Hence, an'SCE S, 6t Sz-is defined 46 be the solution of the following

equation:

1-[Y e ] {Zl 3 s )

Sa(t) — a S (t) } A
+ _ and S, € O, 2.10
Z Vi<e<Cy,6; I]S (V) Z [V>t] V) ( )

where © = {f : f is a nonincreasing function from [0, co] to [0, 1], f(0) = 1 and f(o0) = 0}.
7

Let G,(v) denote the empirical version of G/(v). Similarly, Let Qo (c), Hon (v, ¢) and Hy, (v, ¢)
denote the empirical versions of the joint sub-distributions of Qo(c) = P(C; < ¢,0; = 0),
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I:Io(v,c) =PV, <v,C; <¢d; =0) and ﬁl(v,c) = P(V; <v,C; < ¢,6; = 1), respectively.
It follows that (2.10) can be written as

Sa(t) [ / () } { / Hy, (dv, dc) / ::EZ;QOn(dc)

Si(t) = Su(c) Slt) =
—l—/ 3.(0) 5, (C)Hln(dv dc)—l—/v>1t S'n(v)Gn(dv) . (2.11)

When there is no truncation, (2.11) is reduced to:




3. Simulation Results
Case 1: C; =V +0.5

A simulation study is conducted to investigate the performance of the estimator Sy and
SCE. The simulation set-up is the same as in Pan and Chappell (1999). The left-truncation
time V* ~ U(0,6) is uniformly distributed and the censoring time C;} = V;* + 0.5. The
values of 6 were set at § = 4,8 such that proportions of left-truncation are equal to 0.53
and 0.76, respectively. The survival time 77} is distributed as Gamma with shape and scale
parameters 2 and 1, respectively. We consider the estimation of Sg(tp) where tp is the 100
P™ percentile point. Turnbull’s EM algorithm is used to compute S v (tp) with a starting
distribution which puts an equal probability mass in each.s; (j = 1,...,J). The convergence
criterion was set as ]5'](\2“)@13) — 5'](\? (tp)}=< 0:0001Notice that the convergence criterion
for the Sy, differs from that uséd by, Pan and .Chappell(1999). They use the log-likelihood
increment as the criterion. To-obtain an initial estimator.of S’n, the.exponential distribution
with mean equal to 2, i.e: SO Zigee/ 2 was used. as an'initial estimator. The convergence
criterion was set as |S’,(f+1)(tp) S5 (tp)] < 0:0001. The values of P.are chosen as 0.2, 0.5
and 0.8 and the sample sizes are chosen as 100, 200 and 1000. The replication is 1000 times.
The simulation results were.reported in Table 1. Table 1 also lists proportion of truncation
P(T; < V*) (denoted by gz)rand proportion of left censoring=P(5; = 1) (denoted by py).

Case 2: Cf =V + D7

The distribution of 7;"is the 'same as case 1. The left-truncation time V;* is exponentially
distributed with mean 6 and the censoring-time-C;” = V;*+ D7, where D] is exponentially
distributed with mean equal to 2. The values of & were set at § = 2,4 such that proportions
of left-truncation are equal to 0.43 and 0.65, respectively. Simulation results are reported in

Table 2.



Table 1. Simulation results for bias, standard deviation and

rmse for left-truncated and current status data (case 1)

=

0 n qr pr P bias std rmse  bias std rmse
4 100 0.53 0.24 0.2 -0.024 0.087 0.079 -0.002 0.080 0.080
4 200 0.53 0.24 0.2 -0.0120.056 0.057 -0.001 0.050 0.050
4 1000 0.53 0.24 0.2 -0.008 0.024 0.025 0.005 0.024 0.024
8 100 0.76 0.23 0.2 -0.029 0.071 0.077 0.014 0.071 0.072
8 200 0.76 0.23 0.2 -0.016 0.051 0.053  0.006 0.045 0.045
8 1000 0.76 0.23 0.2 -0.007 0.022 0.022  0.005 0.020 0.020
4 100 0.53 0.24 0.5 -0.0350.103 0.109 -0.004 0.095 0.095
4 200 0.53 0.24 0:5-0:017.0.062.0.064 -0.002 0.057 0.057
4 1000 0.53 0:2470.5 -0.006 0.031°0.031.  0.003 0.028 0.028
8 100 0.76.40.23 0.5--0.029:0:688 0.092 . 0.004 0.095 0.095
8 200 0.76 0.23+ 055 -0.016.0.061-0:6063 0.005 0.059 0.059
8 1000 #0.76 0.23.-0.5 -0.011 0:025.0.027.. 0.006 0.023 0.024
4 100 0.53 0.24-0:8 -0.0310.1050.109* -0.027 0.098 0.102
4 200 0.53 0.24° 0.8+ -0.022 0:076 0.079 -0.015 0.071 0.073
4 1000 0.53::0.24 0.8 -0.0100.027 0.029 _ 0.008 0.028 0.029
8 100 0.76 0.23 10.8 -0.028 0.107 0.111 -0.024 0.101 0.104
8 200 0.76+0.23 0.8 -0.017 0.082 0.084~. -0.013 0.076 0.077
8 1000 0.76" 0.23 “0.:8  0:008 0.032°0.033 0.007 0.030 0.031
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Table 2. Simulation results for bias, standard deviation and

rmse for left-truncated and current status data (case 2)

~

Sp(tp) Sy (tp)
0 n qr pr P bias std rmse bias std rmse
2 100 0.43 0.49 0.2 -0.010 0.084 0.085 -0.016 0.088 0.089
2 200 0.43 049 0.2 -0.020 0.053 0.057 -0.012 0.051 0.052
2 1000 0.43 049 0.2 -0.0120.024 0.027 -0.008 0.021 0.022
4 100 0.65 0.55 0.2 -0.017 0.074 0.076 -0.015 0.080 0.081
4 200 0.65 0.55 0.2 -0.0320.049 0.059 -0.014 0.050 0.052
4 1000 0.65 0.55 0.2 -0.018 0.020 0.027 -0.016 0.019 0.025
2 100 0.43 0.49 0.5 -0.020 0.135 0.136 -0.027 0.128 0.131
2 200 0.43 049 0.6.-0.016.0.093 0.094 -0.019 0.089 0.091
2 1000 0.43 049 0.5 -0.013 0.048°0.050 -0.011 0.046 0.047
4 100 0.65...0.55 0.5-0.035:0:132 0.136. -0.030 0.127 0.130
4 200 0.65 0.554 0:5 -0.029 0:086-0:091 -0.023 0.083 0.086
4 1000 #0.65 .0.55 0.5+ -0.012 0:045.0:047. -0.015 0.044 0.046
2 100" 0.43" 049 0.8 -0.0370.1350.140+ -0.032.0.131 0.135
2 200 0.43 0.49¢ 0.8.-0.028 0:097 0.104 -0.022 0.092 0.095
2 1000 0:43+0.49 0.8 -0.0140.043 0.045 -0.012'0.044 0.045
4 100 0.65 0:55 10:8 7=0.042°0.140 0.146 -0.036 0.137 0.142
4 200 0.65+0.55"0.8 -0.0310.102 0.107~_-0.028 0.095 0.099
4 1000 0.65"0.55 =0:8=0.0L70:058°0.060. -0.014 0.056 0.058

Tables 1 and 2 indicate that (i) For.case T, when'n = 100, 200, the biases of the estimator
Sy are smaller than that of S,,.-Fot case 2, when n =.100; the biases of both estimators can
be large. (ii) When n = 100, 2005.in terms of rmse, the‘estimator S performs better than
the SCE S, for most of the cases considered: (iii) Whensm = 1000, the performance of the

estimators S'n and S v are close to cachrother.
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4. Discussions

For left truncated and current status data, we have pointed out that the nonparametric
estimator using Turnbull’s EM algorithm is not the NPMLE since left-truncation times
can also be left-censoring times. However, based on innermost sets, we can still obtain a
nonparametric estimate S, using Turnbull’s algorithm and simulation results indicates that
the estimator performs adequately. Furthermore, we have presented a SCE using an integral
equation and simulation study indicates that the SCE performs adequately. Further research

is required to establish the consistency of the SCE.
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