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Abstract

For left-truncated and right-censored (LTRC) data, many researches have been

done based on the assumption that the failure and truncation time are independent,

which can be unrealistic in application. To take dependence into consideration, we

utilize a semiparametric transformation model where the truncation time is both

a truncated variable and a predictor of the time to failure. Simulation studies are

conducted to investigate finite sample performance of the proposed estimator. An

inverse-probability-weighted estimator is proposed for estimate the distribution of

left-truncated variable. We also apply our methods to heart transplant survival

data.

Key Words: Dependent truncation; Semiparametric transformation model; Inverse

probability weighted estimator.



2

1. Introduction

Left-truncated and right-censored (LTRC) data often arise in epidemiology and

individual follow-up studies (see Wang, (1991)). Their importance stems from the

common use of prevalent cohort study designs to estimate survival from onset of a

specified disease. Consider the following applications.

Example 1: Heart Transplant Data

The study cohorts obtained from heart transplant data (Crowley and Hu (1977))

are commonly recognized as truncated sample, the time-to-failure is truncated by

the transplant time. According to the description of Crowley and Hu’s paper (1977),

the patients agreed to participate in the Stanford program after a medical conference

at which it was decided that they were not likely to respond to other forms of

therapy. Associated with each patient is a calendar date of acceptance τ0, a date

of transplantation τ1 and a data last seen min(C, τd), where τd is the calendar time

at death and C = min(C1, C2) is the calendar censoring time, where C1 = V + d0

denotes the time from τ0 to the end of study and C2 denotes the time from τ0 to

drop-out. The survival time of interest is T = τd − τ0. Let V = τ1 − τ0 denote

the waiting time before receiving a heart transplant. If we define the population

as those patients who consented to receive a heart transplant, the data set of heart

recipients is a LTRC sample since the patients must survive long enough to receive

a heart transplant, i.e. T ≥ V . The patients who died before a suitable heart is

found are left-truncated. In the Stanford Heart Transplant data set, there were

47 truncated observations (recipients), among which, 30 were dead (δ = 1) and 17

were censored (δi = 0). The main purpose was to explore the relationship between

certain covariates (e.g. the age of surgery and mismatch sore) and T .

Following the notations in Example 1, let (T,C, V ) denote the lifetime, censoring

time and truncation time, respectively. Figure 1 highlights all the different times

for LTRC data as described in Example 1.

Let Z = [z1, . . . , zp]
T represent a p × 1 vector of covariates. Assume that T ,

V and C are continuous. Many statistical methods for LTRC data rely on the

assumption that T and V are independent, which can be unrealistic in application.

There are clinical evidences that a longer transplant waiting time (i.e. a larger

value of V ) can be worse prognosis of survivorship. When there is no covariate,
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Figure 1. Schematic depiction of LTRC data described in Example 1

Chaieb et al. (2006) provided a nonparametric estimate of distribution function of

T using a copula to model the joint distribution of T and V . Furthermore, Emura

and Wang (2012) proposed a likelihood-based inference approach and developed a

model selection method for choosing the best-fitted copula among a broad class of

model alternatives. Under the assumption that C is independent of (V, T ) given

V ≤ T , the copula approach can be extended to the case when right censoring is

present (Beaudoin and Chaieb and (2008)). However, this assumption usually does

not hold since C1 = V + d0. Mackenzie (2012) considered an alternative approach

by modelling the dependence of survival time T on the truncation time V using Cox

model (Cox, 1972), i.e. P (T > t|V ) = exp[−q(V ; γ)Λ0(t)] if T > V , where Λ0(t) is

the baseline cumulative hazard function and q(v; γ) is some continuous function of

some unknown regression parameter γ for which q(v; 0) = 1, e.g. q(v; γ) = exp(γv).

When covariate is present, Liu and Zhang (2011) also utilize a Cox analysis with

truncation variable V included as a covariate, i.e. P (T > t|V, Z) = exp[−exp(βTZ+

γk(V ))Λ0(t)], where k(·) is a known function.

Cox proportional hazard model is the special case of the well-known class of

semiparametric liner transformation model as follows: (see Cheng et al. (1995), Cai
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et al. (2000) and Chen et al. (2002)):

S(t|Z) = g{h(t) + βTZ}, (1.1)

where S(t|Z) = P (T > t|Z) is the survival function of T given Z, the continuous,

strictly decreasing link function g(·) is given or specified up to a finite-dimensional

parameter and h(·) is a completely unspecified strictly increasing function. In the

case of g(·) = exp{−exp(·)}, (1.1) gives the Cox proportional hazard model and

when g(·) = 1/{1 + exp(·)} it gives the proportional odds model (Bennett (1983),

Murphy et al. (1997), Ying and Prentice (1991)). Furthermore, model (1.1) has an

equivalent form

h(T ) = −βTZ + ε,

where the distribution of the error ε is P (ε ≤ x) = Fε(x) = 1− g(x).

For right-censored data, based on martingale arguments, Chen et al. (2002)

proposed an estimation procedure for β and h(·), which is easily implemented nu-

merically and the estimator of β is the same as the Cox partial likelihood estimator

in the case of the proportional hazards model. Under the independence of V and

T , Shen (2011) extended Chen et al. (2002)’s approach to LTRC data. In Section

2, to take into account dependence between V and T , using the approaches of Liu

and Zhang (2011) and Mackenzie (2012), we include the truncation variable V in

model (1.1) as a predictor/covariate of the failure time T . The estimating proce-

dure proposed by Chen et al. (2002) is used to obtain estimators for regression

coefficients. The distribution function V is estimated using the inverse probability

weighted (IPW) approach (Satten and Datta (2001) and Shen (2003)). Based on

the IPW estimator, the estimator of S(t|Z) = P (T > t|Z) can be obtained. In Sec-

tion 3, simulation studies are conducted to investigate finite sample performance

of the proposed estimator. In Section 4, we apply our methods to heart transplant

survival data.
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2. The Proposed Estimators

To take into account the dependence between T and V , suppose that the sur-

vival function of T , given the left-truncated variable V and covarites Z follows the

semiparametric transformation model:

S(t|Z, V ) = g{h(t) + βTZ + γk(V )} = g{h(t) + θT Z̃}, (2.1)

where Z̃i = [Zi, k(Vi)]
T and θ = (β, γ)T . Let F (t|Z) = P (T ≤ t|Z) denote the

cumulative distribution function of T given Z. Let Q(t) = P (C ≤ t) and G(t) =

P (V ≤ t) denote the cumulative distribution functions of C and V , respectively.

Suppose that the left and right endpoints of T are independent of Z. Let aF and bF

denote the left and right endpoints of F , and similarly, define (aG, bG) and (aQ, bQ)

as the left and right endpoint of V , and C, respectively. Throughout this article,

for identifiabilities of F (t|Z), we assume that

aG = aF = aQ = 0, bG ≤ min(bF , bQ) and bF ≤ bQ. (2.2)

Let (Xi, Vi, δi, Zi) (i = 1, . . . , n) be the observed truncated sample. Let Yi(t) =

I[Vi≤t≤Xi] and Ni(t) = I[Xi≤t,δi=1]. Let F(t) denote the complete σ-field generated

by

{Vi, Zi, Yi(x), I[Vi≤Xi], δiI[Vi<Xi≤t], I[Vi<Xi≤x], x ≤ t; i = 1, . . . , n}.

Let λε(·) and Λε(·) denote the hazard and cumulative hazard functions of ε, re-

spectively. Let h0(·), β0 and γ0 denote the true values of h(·), β and γ, respec-

tively. Let Mi(t) = Ni(t) −
∫ t
0
Yi(s)dΛε(θ

T
0 Z̃i + h0(s)), where θ0 = (β0, γ0)

T . Since

h(T ) = −θT0 Z̃ + ε, we have

S(t|Z) = P (T > t|Z) = P (h(T ) > h(t)|Z) = P (ε > h(t) + θT0 Z̃) = Sε(h(t) + θT0 Z̃),

where Sε(t) = g(t) is the survival function of ε. Thus, we have Λ(t|Z) = Λε(θ
T
0 Z̃i +

h0(t)). Under model (2.1), since

E[dNi(t)|F(t−)] = Yi(t)dΛ(t|Z) = Yi(t)dΛε(θ
T
0 Z̃i + h0(t)),

It follows that E[dMi(t)|F(t−)] = 0 and Mi(t) is a martingale process with respect

to F(t). Similar to the approach of Chen et al. (2002), we consider the following

two estimating equations:

U(β, h) =
n∑
i=1

∫ τc

0

Z̃i[dNi(t)− Yi(t)dΛε(θ
T Z̃i + h(t))] = 0, (2.3)
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and
n∑
i=1

[dNi(t)− Yi(t)dΛε(θ
T Z̃i + h(t))] = 0, (2.4)

where h is a nondecreasing function satisfying h(0) = −∞ and τc < bF is a pre-

specified constant . This requirement ensures that Λε(a + h(0)) = 0 for any finite

a.

Let θ̂n = (β̂n, γ̂n)T and ĥ(t; θ̂n) denote the solution of (2.3) and (2.4). Note that

ĥ(t; θ̂n) is a step function in t that rises at the distinct jump points of {I[Xi≤t,δi=1]; i =

1, . . . , n}. Equations (2.2) and (2.3) suggest the following iterative algorithms for

computing θ̂n and ĥ(t; θ̂n):

Step 0: Choose an initial value of θ, denoted by θ̂
(0)
n .

Step 1: Let t1 < t2 < · · · < tnd
< τc denote the distinct uncensored points. Obtain

ĥ(0)(t1; θ̂
(0)
n ) by solving

n∑
i=1

Yi(t1)Λε(θ
T Z̃i + h(t1)) = 1,

with θ = θ̂
(0)
n . Then, obtain ĥ(tk) for k = 2, . . . , nd, one-by-one by solving the

equation

n∑
i=1

Yi(tk)Λε(θ
T Z̃i + h(tk)) = 1 +

n∑
i=1

Yi(tk)Λε(θ
T Z̃i + h(tk−)),

with θ = θ̂
(0)
n .

Step 2: Obtain a new estimate of θ by solving (2.2) with h(tk) = ĥ(0)(tk; θ̂
(0)
n ).

Step 3: Set θ̂
(0)
n to be the estimate obtained in Step 2 and repeat Steps 1 and 2

until prescribed convergence criteria are met.

Consider the special case of the Cox model, in which λε = exp(t). It then follows

from (2.3) and (2.4) that the estimator θ̂n satisfies the following equation:

n∑
i=1

∫ τc

0

{
Z̃i −

∑n
j=1 Z̃jYj(t)exp(θT Z̃j)∑n
j=1 Yj(t)exp(θT Z̃j)

}
dNi(t) = 0,

which is precisely the Cox partial likelihood score equation with truncation variable

included as a covariate (see Liu and Zhang (2011)). This can be shown as follows:
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Proof:

Since

dΛε(h(t) + θT Z̃i)) = exp(θT Z̃i)d(exp(h(t)),

we have
n∑
i=1

[dNi(t)− Yi(t)exp(θT Z̃i)d(exp(h(t))] = 0,

which implies that

d(exp(h(t)) =

∑n
i=1 dNi(t)∑n

i=1 Yi(t)exp(θT Z̃i)
.

By (2.3), we obtain

n∑
i=1

∫ τc

0

Z̃i[dNi(t)− Yi(t)exp(θT Z̃i)d(exp(h(t))] = 0.

Hence,

n∑
i=1

∫ τc

0

Z̃i

[
dNi(t)− Yi(t)exp(θT Z̃i)

∑n
i=1 dNi(t)∑n

j=1 Yj(t)exp(θT Z̃j)

]
= 0,

i.e.
n∑
i=1

∫ τc

0

{
Z̃i −

∑n
j=1 Z̃jYj(t)exp(θT Z̃j)∑n
j=1 Yj(t)exp(θT Z̃j)

}
dNi(t) = 0.

The proof is complete.

Equations (2.3) and (2.4) can be solved iteratively using a similar algorithm

proposed by Chen et al. (2002).

For any vector x, let x⊗2 = xxT . Similar to Proposition of Chen et al. (2002),

under suitable regularity conditions, we have the following proposition.

Theorem 1. Under assumption (2.2) and regularity conditions (Fleming and Har-

rington, 1991), we have that n
1
2 (θ̂n − θ) → N(0,Σθ̂n

) in distribution, as n → ∞,

where Σθ̂n
= Σ−1

2 Σ1(Σ
−1
2 )T

Σ1 = E

[∫ τc

0

[Z̃1 − µz(t; θ0)]⊗2λε(h0(t) + θT0 Z̃1)Y1(t)]dh0(t)

]
,

Σ2 = E

[∫ τc

0

[Z̃1 − µz(t; β0)]Z̃T
1 λ̇ε(h0(t) + θT0 Z̃1)Y1(t)]dh0(t)

]
,



8

where

µz(t) =
E[Z̃1λε(h0(X1) + θT0 Z̃1)Y1(t)B(t;X1)]

E[λε(h0(t) + θT0 Z̃1)Y1(t)]
,

where

B(t, s) = exp

(∫ t

s

E[λ̇ε(h0(x) + θT0 Z̃1)Y1(x)]

E[λε(h0(x) + θT0 Z̃1)Y1(x)
dh0(x)

)
.

Proof: The proof is similar to Appendix of Chen et al. (2002) and is omitted.

Note that Σ1 and Σ2 can be consistently estimated by

Σ̂1 = n−1

n∑
i=1

∫ τc

0

[Z̃i − Z̄(t; θ̂n)]⊗2λε(θ̂
T
n Z̃i + ĥ(t; θ̂n))Yi(t)dĥ(t; θ̂n),

and

Σ̂2 = n−1

n∑
i=1

∫ τc

0

[Z̃i − Z̄(t; θ̂n)]Z̃T
i λ̇ε(θ̂

T
n Z̃i + ĥ(t; θ̂n))Yi(t)dĥ(t; θ̂n),

respectively, where λ̇ε(x) = dλε(x)/dx,

Z̄(t; θ̂n) =
n∑
i=1

Z̃iλε(θ̂
T
n Z̃i + ĥ(t; θ̂n))Yi(t)B̂(t,Xi)∑n

i=1 λε(θ̂
T
n Z̃i + ĥ(t; θ̂n))Yi(t)

,

B̂(t, s) = exp

(∫ t

s

∑n
i=1 λ̇ε(θ̂

T
n Z̃i + ĥ(x; θ̂n))Yi(x)∑n

i=1 λε(θ̂
T
n Z̃i + ĥ(x; θ̂n))Yi(x)

dĥ(x; θ̂n)

)
.

Hence, a consistent estimator of Σθ̂n
is given by Σ̂θ̂n

= Σ̂−1
2 Σ̂1(Σ̂

−1
2 )T .

The survival function of T given Z is given by

S(t|Z) =

∫ bG

aG

S(t|Z, v)G(dv) =

∫ bG

0

g{h(t) + βTZ + γk(v)}G(dv).

For heart transplant data, the left-truncated variable is the transplant waiting time,

which is determined by the donor searching process. The information about the

amount of time spent on the donor searching is very important in efficiently allo-

cating resources to assist patients in finding donors. Next, we discuss the estimator

of the distribution of left-truncated variable, i.e. G(v). Let p = P (V ≤ T ). Under

model (2.1), we have

E

[
I[Vi≤t]

g{h(Vi) + βTZi + γk(Vi)}

]
=

∫
z

∫
v≤t

p−1 S(v|v, z)
g{h(v) + βT z + γk(v)}

dG(v)dA(z) = p−1G(t),
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where A(z) is the cumulative distribution function of Z. Let t → ∞. It follows

that E[1/(g{h(Vi) + βTZi + γk(Vi)})] = p−1. Hence, p can be estimated by

p̂(θ̂n; ĥ(·; θ̂n)) = n

[ n∑
i=1

1

g{ĥ(Vi; θ̂n) + β̂TnZi + γ̂nVi}

]−1

,

and G(t) can be estimated by

Ĝ(t; θ̂n; ĥ(·; θ̂n)) = p̂(θ̂n; ĥ(·; θ̂n))n−1

n∑
i=1

I[Vi≤t]

g{ĥ(Vi; θ̂n) + β̂TnZi + γ̂nk(Vi)}
.

Thus, S(t|Zi) can be estimated by

Ŝ(t; θ̂n; ĥ(·; θ̂n)|Zi) =

∫ bG

0

g{ĥ(t; θ̂n) + β̂TnZi + γ̂nv}Ĝ(dv; θ̂n; ĥ(·; θ̂n)).

The asymptotic normality of n1/2[Ĝ(t; θ̂n; ĥ(·; θ̂n))−G(t)] can be established by the

following expression:

n1/2[Ĝ(t; θ̂n; ĥ(·; θ̂n))−G(t)] = n1/2[Ĝ(t; θ̂n; ĥ(·; θ̂n))− n1/2[Ĝ(t; θ0;h0(·))]

+n1/2[Ĝ(t; θ0;h0(·))−G(t)].
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3. Simulation Studies

Case 1: Proportional Odds Model

We generated T following the proportional odds model with h(t) = log(t/10)

and T has the survivorship function

P (T > t|V, Z) =
1

1 + exp{log(t/10) + V + z1}
,

where z1 is a Bernoulli random variable with probability 0.5. Hence, θ0 = (β0 =

1, γ0 = 1)T . Note that under this set-up, the pth percentile of T at (V, z1) is

tp = 10exp{log((1 − p)/p) − (V + z1)}, which decreases as V or z1 increases. The

left-truncation variable V was generated from exponential distribution with mean

θg = 0.5, 1.0, 2.0, and right censoring variable C was generated from D + V , where

D is exponentially distributed with mean θd = 10, 100. Sample size is set at n =

200, 400. The replication time is 1000. The values of τa and τb are set at the smallest

and largest values of Xi’s, respectively. For each simulated dataset, we obtained

the estimator θ̂n = (β̂n, γ̂n)T . Using Σ̂θ̂n
, we also calculated the estimated standard

deviations of β̂n and γ̂n. Table 1 shows the simulated biases, simulated standard

deviations (std), and the estimated standard deviation (estd). Table 1 also shows

the proportion of left-truncation P (T ≤ V ) (denoted by q) and right-censoring

(denoted by pc = P (δi = 0)).

Case 2: Cox Model

We generated T following the proportional hazards model with h(t) = t and

θ0 = (β0 = −1, γ0 = −0.5)T . The resulting T has the survivorship function

P (T > t|V, z1) = e−e
t−z1−0.5V

,

where z1 is a Bernoulli random variable with probability 0.5 equal to 5 and 10. Note

that under this set-up, the pth percentile of T at (z1, V ) is tp = log(−logp)+z1+0.5V ,

which is a linear function of z1 and V , and increases as z1 or V increases. The V

and C are generated as described in Case 1. The values of (θg, θd) are set at (6,7.5),

(6,28), (10,6.8), (10,25), (16,6) and (16,22). Sample size is set at n = 200, 400. The

replication time is 1000. Table 2 shows the simulation results of the estimators β̂n

and γ̂n.



11

Table 1 (Case 1). Simulated biases, std and estd of β̂n and γ̂n

β̂n γ̂n
θg θd q pc n bias std estd bias std estd

0.5 10 0.14 0.46 200 -0.015 0.372 0.341 -0.068 0.617 0.566
0.5 10 0.14 0.46 400 -0.010 0.219 0.200 -0.014 0.384 0.357
0.5 100 0.14 0.13 200 -0.017 0.353 0.326 -0.022 0.566 0.524
0.5 100 0.14 0.13 400 0.008 0.202 0.193 0.015 0.357 0.338
1.0 10 0.30 0.44 200 -0.061 0.518 0.518 -0.125 0.744 0.744
1.0 10 0.30 0.44 400 -0.035 0.275 0.251 -0.067 0.495 0.450
1.0 100 0.30 0.13 200 0.046 0.443 0.443 0.086 0.726 0.675
1.0 100 0.30 0.13 400 0.023 0.258 0.245 0.007 0.472 0.453
2.0 10 0.50 0.43 200 -0.045 0.370 0.338 -0.132 0.765 0.697
2.0 10 0.50 0.43 400 -0.035 0.275 0.262 -0.067 0.525 0.493
2.0 100 0.50 0.12 200 -0.043 0.343 0.318 0.082 0.746 0.684
2.0 100 0.50 0.12 400 0.007 0.329 0.313 0.023 0.517 0.489

Table 2 (Case 2). Simulated biases, std and estd of β̂n and γ̂n

β̂n γ̂n
θ θd q pc n bias std estd bias std estd
6 7.5 0.15 0.44 200 -0.042 0.379 0.350 -0.032 0.226 0.208
6 7.5 0.15 0.44 400 -0.024 0.272 0.258 -0.018 0.181 0.173
6 28 0.15 0.16 200 -0.010 0.360 0.334 -0.012 0.214 0.187
6 28 0.15 0.16 400 -0.004 0.252 0.238 -0.005 0.175 0.164

10 6.8 0.30 0.44 200 -0.041 0.396 0.364 -0.032 0.252 0.227
10 6.8 0.30 0.44 400 -0.018 0.274 0.262 -0.011 0.166 0.154
10 25 0.30 0.16 200 -0.046 0.417 0.382 -0.030 0.240 0.217
10 25 0.30 0.16 400 0.019 0.259 0.244 -0.012 0.149 0.140
16 6 0.45 0.44 200 -0.066 0.437 0.407 -0.053 0.285 0.249
16 6 0.45 0.44 400 -0.025 0.273 0.254 -0.019 0.172 0.164
16 22 0.45 0.16 200 -0.049 0.428 0.394 -0.035 0.276 0.253
16 22 0.45 0.16 400 0.011 0.269 0.256 -0.013 0.163 0.154

Based on the results of Tables 1 and 2, we have the following conclusions:

(1) Given proportion of left-truncation q, the standard deviations of both β̂n and

γ̂n increase as proportion of right-censoring (pc) increases. Given proportion of

right censoring pc, the standard deviations of both β̂n and γ̂n increase as proportion

of left-truncation increases. When both truncation and censoring are heavy (i.e.

q = 0.50; pc = 0.43 for case 1 and q = 0.45; pc = 0.44 for case 2), the biases of γ̂n

can be large.
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(2) When n = 200, the estimated standard deviation underestimates the empirical

standard deviation. However, when n = 400, the estimated standard deviation is

close to the empirical standard deviation for most of the cases considered.
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4. Analysis of Heart Transplant Data

The proposed estimators were applied to the Heart Transplant Data (Crowley

and Hu (1977)) described in Example 2. The main purpose was to explore the

relationship between certain covariates and the cause of death due to transplant

rejection. We consider proportional odds and Cox regression analysis for all the

patients and the patients over 45 years old. The age of surgery (z1), mismatch score

(z2) and left-truncated variable V are included in the model (2.1) with k(v) = v.

Table 3 lists the estimated parameters β̂1n, β̂2n and γ̂n for age, mismatch score and

V , respectively.

Table 3. The estimated parameters β̂n and γ̂n
all the patients (proportional odds model)

β̂1n(p-value) β̂2n(p-value) γ̂n (p-value)
2.231(0.106) 0.079(0.0013) 0.141(0.224)

patients over 45 (proportional odds model)

β̂1n(p-value) β̂2n(p-value) γ̂n (p-value)
1.758(0.104) 0.264(0.011) 0.471(0.077)

all the patients (Cox regression model)

β̂1n(p-value) β̂2n(p-value) γ̂n (p-value)
0.045(0.093) 0.025(0.0002) 0.006(0.258)

patients over 45 (Cox regression model)

β̂1n(p-value) β̂2n(p-value) γ̂n (p-value)
0.087(0.082) 0.028(0.003) 0.009(0.108)
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5. Conclusion

In this article, to take dependence into account, the truncation variable V is in-

cluded in transformation model as a predictor/covariate of the failure time T . Using

the approach of Chen et al. (2002), we obtain estimators for regression coefficients.

Furthermore, we also propose an inverse-probability-weighted estimator to estimate

the distribution of left-truncated variable, i.e. the distribution of transplant waiting

time. Simulation results indicate that the proposed estimators perform adequately.

Further research is required to develop goodness-of-fit tests for the proposed model.
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