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Abstract

The well known Graceful Tree Conjecture(GTC) claimed that all trees

are graceful, which still remains open until today. It was proved in 1999

by H. Broersma and C. Hoede that there is an equivalent conjecture for

GTC that all trees containing a perfect matching is strongly graceful. In

this thesis we verify by extending the above result that there exist infinitely

many equivalent versions of the GTC. More precisely, for a fixed graceful

tree Tk of order k, we show that for each k ≥ 2, the conjecture that all trees

containing a graceful Tk-factor is strongly Tk-graceful is equivalent to the

conjecture that all trees are graceful. More applications are also included

by way of identifying new classes of graceful graphs. In particular we verify

infinitely many equivalent Tk-version conjectures of GTC for those trees of

diameter no more than 2⌈D(Tk)
2

⌉+ 5, where D(Tk) is the diameter of Tk.
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Chapter 1

Introduction

1.1 Preliminary Background

Throughout this paper, by a graph we mean an undirected finite graph with-

out multiple edges and loops. All terminologies and notations on graph

theory not mentioned or defined here can be referred to the textbook by

D. West [23]. Let G be a graph with q edges. A one-to-one function

f : V (G) → {0, 1, · · · , q} from the vertex set V (G) (if any) is said to be

a graceful labeling of G, if the absolute value |f(u) − f(v)| is assigned

to the edge uv as its label and the resulting edge labels are pairwise dis-

tinct. This is equivalent to requiring the set of induced edge labels is exactly

{1, 2, · · · , q}. A graph admitting such a graceful labeling is called a graceful

graph. We focus on the graceful labeling of trees in this paper however. We

reformulate the definition of graceful labeling for trees as follows:

Definition 1.1.1. A nontrivial tree T with p vertices and q edges is called

graceful if there exists a bijection f from the vertex set V (T ) onto {1, 2, · · · , p}

such that the induced edge labels are exactly 1, 2, · · · , q, where the induced

1



CHAPTER 1. INTRODUCTION 2

edge label for an edge uv is the absolute value of the difference of two end

vertex labels |f(u)− f(v)|.

Originally A. Rosa called a function f a β-valuation of a graph G with q

edges if f is an injection from the vertices of G to the set {0, 1, · · · , q} such

that, when each edge xy is assigned the label |f(x)−f(y)|, the resulting edge

labels are distinct. S. W. Golomb subsequently [10] called such labelings

graceful and this is now the popular term. A. Rosa introduced β-valuations

as well as a number of other labelings as tools for decomposing the complete

graph into isomorphic subgraphs. For example he defined an α-labeling (or

α-valuation) as a graceful labeling with the additional property that there

exists an integer k so that for each edge xy either f(x) ≤ k < f(y) or f(y) ≤
k < f(x). (Other names for such labelings are balanced, interlaced, and

strongly graceful.) Also, a graph with an α-labeling is necessarily bipartite

and therefore can not contain a cycle of odd length.

In particular, β-valuations originated as a means of attacking the con-

jecture of Ringel [19] that K2n+1 can be decomposed into 2n + 1 subgraphs

that are all isomorphic to a given tree with n edges. For this reason A. Rosa

raised theGraceful Tree Conjecture(GTC) (which implies the conjecture

of Ringel)that every tree is graceful [20], which is one of most challenging

problems in graph theory and remains wide open until today.

Among the trees known to be graceful are: caterpillars (a caterpillar is a

tree with the property that the removal of its endpoints leaves a path); trees

with at most 4 end-vertices; trees with diameter at most 5; symmetrical trees

(i.e., a rooted tree in which every level contains vertices of the same degree);

rooted trees where the roots have odd degree and the lengths of the paths

from the root to the leaves differ by at most one and all the internal vertices

have the same parity; rooted trees with diameter D where every vertex has

even degree except for one root and the leaves in level ⌊D
2
⌋; rooted trees with

diameter D where every vertex has even degree except for one root and the

leaves, which are in level ⌊D
2
⌋; rooted trees with diameter D where every

vertex has even degree except for one root, the vertices in level ⌊D
2
⌋ − 1,

and the leaves which are in level ⌊D
2
⌋, etc. Among other results, in 1999
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Broersma and Hoede [4] proved that the following conjecture is equivalent

to the Graceful Tree Conjecture: Every tree containing a perfect matching

is strongly graceful, where a tree T on n vertices is strongly graceful if T

contains a perfect matching M and T admits a graceful labeling f such that

f(u) + f(v) = n + 1 for every edge uv ∈ M . We generalize the above result

to obtain infinitely many equivalent versions of GTC. In this article we make

the following strongly Tk-graceful tree conjecture (SGTC) and prove that

the GTC is equivalent to the SGTC.

Conjecture. Every nontrivial tree admitting a graceful Tk-factor is strongly

Tk-graceful, where Tk is fixed tree of order k ≥ 2 with graceful labeling.

The related terminology here, such as a graceful Tk-factor and strongly Tk-

graceful-ness, will be defined in next chapter. We therefore obtain infinitely

many equivalent versions of GTC, since Tk could be assigned to any given

known graceful trees, say paths Pk, caterpillars, etc., in particular the case

Tk = P2 coincides with previous result of Broersma and Hoede. For more

updated information about graceful graphs see the dynamic survey by J.

Gallian [9].

1.2 Variants of β-Valuations by Rosa

In addition to graceful labeling, which Rosa called β-valuation, he also intro-

duced three other kinds of valuations: α, σ, and ρ-valuation. In what follows

we refer to them as labelings rather than valuations. We say that these four

labelings are hierarchically related and we write that as α < β < σ < ρ,

where a-labeling is also a b-labeling if a < b. For example, a labeling that

satisfies the requirements for α-labeling also qualifies as a β, σ and ρ-labeling,

and every σ-labeling is also a ρ-labeling. Rosa defined these four labelings

as follows [20]:

1. α-labeling of a graph G with n vertices and m edges is a one-to-one

mapping f from the set of vertices of G to the set {0, 1, 2, · · · ,m}
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such that all induced edge labels are distinct, where the induced edge

label of the edge uv is |f(u) − f(v)|, and such that there exists a

number x ∈ {0, 1, 2, · · · ,m} such that for an arbitrary edge uv either

f(u) ≤ x < f(v) or f(v) ≤ x < f(u).

2. β-labeling of a graph G with n vertices and m edges is a one-to-one

mapping f from the set of vertices of G to the set {0, 1, 2, · · · ,m} such

that all induced edge labels are distinct, where the induced edge label

of the edge uv is |f(u) − f(v)|. In 1972 S. W. Golomb independently

introduced the same labeling and called it graceful.

3. σ-labeling of a graphG with n vertices andm edges is a one-to-one map-

ping f from the set of vertices of G to the set {0, 1, 2, · · · , 2m} such that

all induced edge labels are distinct and in the range {0, 1, 2, · · · ,m},
where the induced edge label of the edge uv is |f(u)− f(v)|.

4. ρ-labeling of a graph G with n vertices and m edges is a one-to-one

mapping f from the set of vertices of G to the set {0, 1, 2, · · · , 2m} such

that the set of induced edge labels is {x1, x2, · · · , xm}, where xi = i or

xi = 2m+ 1− i.

1.3 Results of Broersma and Hoede

Broersma and Hoede proved in [4] that the conjecture that very tree con-

taining a perfect matching is strongly graceful is equivalent to the Graceful

Tree Conjecture. We recall their methods in this section.

Definition 1.3.1. The spike-tree spik(T ) of a tree T on n vertices is obtained

by adding n new vertices to T along with n edges. The con-tree con(T ) of

a tree T with a perfect matching M is obtained from T by contracting the

edges of M .
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The way Broersma and Hoede proved the equivalence of the two con-

jectures is by first using a graceful labeling of the con-tree of a tree with

a perfect matching to show that a tree with a perfect matching is strongly

graceful. This is done by finding vertex labels that sum to n − 1 and have

absolute difference as prescribed.

The other direction is proved by taking the spike-tree Spik(T ) of an

arbitrary tree T . Spik(T ) is strongly graceful since it has a perfect matching,

and has 2n vertices. Define the two sets matched by the perfect matching

to be those containing odd and even labels. By giving labels to vertices of

T according to half the even vertex label of the corresponding edge in the

strong graceful labeling of Spik(T ), one produces a graceful labeling of T .

Another result that Broersma and Hoede obtained is the following:

Lemma 1.3.2. Let T be a tree containing a perfect matching and let con(T )

be the con-tree of T . Then, T is strongly graceful if and only if the spike-tree

Spik(T ) with con-tree T is strongly graceful.

This result is that, in order to prove the Graceful Tree Conjecture, it

is sufficient to show that every spike-tree is strongly graceful. However,

as the authors observed, since a strongly graceful labeling of a spike-tree

immediately yields a graceful labeling of its con- tree, this is not a substantial

improvement. Moreover, the label 1 cannot be assigned to an arbitrary vertex

of a spike-tree, the same obstacle that arises in attempts to prove the original

Graceful Tree Conjecture.

Another result that Broersma and Hoede proved in [4] is the following:

Theorem 1.3.3. Every tree containing a perfect matching and having a

caterpillar as its con-tree is strongly graceful.

Thus, trees meeting this hypothesis can be used to generate new strongly

graceful trees with the original tree as their con-trees, by successively tak-

ing the spike-trees of a sequence of trees. This procedure generates what

Broersma and Hoede called strongly graceful long-edged caterpillars.



Chapter 2

Main Results

2.1 Graceful Factors and Strongly Graceful-

ness

We first define related terminologies in order to describe our main results. Let

Tk = (V (Tk), E(Tk)) be a fixed tree of order k with a given graceful labeling λ.

Without loss of generality we may name the vertices by assuming λ(vj) = j

for vj ∈ V (Tk) and 1 ≤ j ≤ k, such that the differences |λ(vi)−λ(vj)| = |i−j|
are all distinct for vivj ∈ E(Tk). Assume that a tree T of order nk admits

a Tk-factor, namely a spanning subgraph T ∗
k = T 1

k ⊕ T 2
k ⊕ · · · ⊕ T n

k , where

T i
k ≃ Tk are vertex disjoint isomorphic copies of Tk for each 1 ≤ i ≤ n. As in

Tk we name the vertices in T ∗
k in a similar fashion. Let vij ∈ V (T i

k) be the

corresponding vertex of vj ∈ V (Tk) via the isomorphism of T i
k
∼= Tk for 1 ≤

i ≤ n and 1 ≤ j ≤ k. Note that by the notation d(H1, H2) = min d(h1, h2)

where h1 ∈ V (H1) and h2 ∈ V (H2), we denote the distance for two subgraphs

H1 and H2 of G.

Definition 2.1.1. Let Tk be a fixed tree of order k with a given graceful

6
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labeling. We say a tree T of order nk admits a graceful Tk-factor, if it

contains a Tk-factor as stated above, and also for each edge e in E(T )−E(T ∗
k )

there exist T s
k and T t

k with d(T s
k , T

t
k) = 1, where 1 ≤ s ̸= t ≤ n, and a unique

j, 1 ≤ j ≤ k, such that e = vsjvtj.

Remark. Note that in order for a tree T of order nk to admit a grace-

ful Tk-factor, one simply requires that for each of the extra n − 1 edges in

E(T )−E(T ∗
k ), their end vertices should be in the corresponding positions of

both copies of T i
k’s.

In the following we define the strongly Tk-graceful-ness for a tree T with

a graceful Tk-factor. We denote the graceful Tk-factor of T by T ∗
k = T 1

k ⊕
T 2
k ⊕ · · · ⊕ T n

k . Since trees are bipartite, we may assume the bi-partitions

of V (Tk) = A ∪ B and V (T i
k) = Ai ∪ Bi for 1 ≤ i ≤ n, where Ai = {vij ∈

V (T i
k) : vj ∈ A} contains corresponding vertices with that in A, and Bi =

{vij ∈ V (T i
k) : vj ∈ B} contains corresponding vertices with that in B.

Obviously |Ai| = |A| and |Bi| = |B| for each i.

Definition 2.1.2. Let Tk be a fixed tree of order k with a given graceful

labeling and T be a tree of order nk with a graceful Tk-factor, where the

graceful Tk-factor of T is denoted as above by T ∗
k = T 1

k ⊕ T 2
k ⊕ · · · ⊕ T n

k .

Also let the bi-partition of V (T i
k) = Ai ∪ Bi for 1 ≤ i ≤ n be as above.

Then we say a bijection f (vertex labeling) from the vertex set V (T ) onto

{1, 2, · · · , |V (T )|} is a strongly Tk-graceful labeling of T if (1) f satisfies

the following conditions:

f(vij) = j + (i− 1)k, if vij ∈ Ai,
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f(vij) = j + (n− i)k, if vij ∈ Bi.

for vij ∈ V (T i
k) = Ai ∪ Bi, where 1 ≤ i ≤ n and 1 ≤ j ≤ k. And (2) f is a

graceful labeling.

Remark. Note that
∪n

i=1(Ai ∪Bi) is exactly {1, 2, · · · , nk}.

Definition 2.1.3. We say a tree T ′ of order n is a contraction tree of the

tree T of order nk admitting a graceful Tk-factor T
∗
k , if it can be obtained by

using the T i
k copies as vertices of T

′, and two copies of T s
k and T t

k are adjacent

if d(T s
k , T

t
k) = 1 for 1 ≤ s, t ≤ n.

Remark. Note that we contract edges in one copy of T i
k to one vertex for

each i to form the contraction tree. Also the edges of the contraction tree T ′

are in one-to-one correspondence with the edges in E(T )− E(T ∗
k ).

2.2 Infinitely Many Equivalences

We then have the following result:

Theorem 2.2.1. Let T be a tree of order nk admitting a graceful Tk-factor

for a given graceful tree Tk of order k. If the contraction tree T ′ of the tree

T is graceful, T is strongly Tk-graceful.

Proof.

With notations defined above, let f be a vertex labeling of T such that

f(vij) = λ(vj)+ (i− 1)k = j+(i− 1)k, if vij ∈ Ai, and f(vij) = λ(vj)+ (n−
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i)k = j + (n − i)k, if vij ∈ Bi for 1 ≤ i ≤ n and 1 ≤ j ≤ k. To show f is

strongly Tk-graceful, it suffices to show that f is graceful.

Let the graceful labeling of T ′ be λ′, and identify ui ∈ V (T ′) with T i
k

via λ′(ui) = i for each 1 ≤ i ≤ n. For an edge uiuj ∈ E(T ′) is in one-

to-one correspondence with some unique edge vi,mvj,m ∈ E(T ) − E(T ∗
k )

where vi,m ∈ V (T i
k) and vj,m ∈ V (T j

k ). Note that vi,m and vj,m are ei-

ther simultaneously in Ai and Aj respectively, or simultaneously in Bi and

Bj respectively. Thus for edges in E(T ) − E(T ∗
k ), the induced edge labels

|f(vi,m)− f(vj,m)| = k|i− j| are distinct, since |λ′(ui)− λ′(uj)| = |i− j| are
distinct for edges uiuj ∈ E(T ′). Also note that particularly the induced edge

labels |f(vi,m)− f(vj,m)| in E(T )− E(T ∗
k ) are multiples of k.

On the other hand, we consider the remaining edge labels for edges in

E(T ∗
k ). Assume vi,avi,b ∈ E(T i

k) and vj,cvj,d ∈ E(T j
k ), where vi,a ∈ Ai,

vi,b ∈ Bi, vj,c ∈ Aj, and vj,d ∈ Bj, for 1 ≤ i, j ≤ n and 1 ≤ a, b, c, d ≤ k.

We prove in the following that the induced edge labels are all distinct over

the edges in T ∗
k . Assume (i, a, b) ̸= (j, c, d). Suppose on the contrary that

|f(vi,a)− f(vi,b)| = |f(vj,c)− f(vj,d)|. Then there are two cases:

Case 1: (n− 2i+ 1)k + (b− a) = (n− 2j + 1)k + (d− c).

⇒ 2(j − i)k = −(b− a) + (d− c).

⇒ 2(j− i)k = −(b− a)+ (d− c) = 0 (since −2(k− 1) ≤ −(b− a)+ (d− c) ≤
2(k − 1).)

⇒ i = j, a = c, b = d since Tk
∼= T i

k
∼= T j

k is graceful. A contradiction.

Case 2: (n− 2i+ 1)k + (b− a) = −[(n− 2j + 1)k + (d− c)].

⇒ 2(n− j − i+ 1)k = −[(b− a) + (d− c)].

⇒ 2(n − j − i + 1)k = −[(b − a) + (d − c)] = 0 (since −2(k − 1) ≤ −[(b −
a) + (d− c)] ≤ 2(k − 1).)

However (b − a) + (d − c) = 0 is impossible, since if a = c and b = d,

then 2(b − a) = 0, a contradiction because va ∈ A and vb ∈ B. Other-

wise a ̸= c or b ̸= d, that is vavb and vcvd are two distinct edges in Tk, hence
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|a−b| ̸= |c−d| because Tk is graceful. Therefore (b−a)+(d−c) cannot be 0.

Therefore |f(vi,a)−f(vi,b)| ̸= |f(vj,c)−f(vj,d)| whenever (i, a, b) ̸= (j, c, d),

that is, the induced edge labels are all distinct for edges in E(T ∗
k ). Further-

more, it is not hard to see that these induced edge labels are not multiples of

k, since |f(vi,a)− f(vi,b)| = |(a− b)+ (2i−n− 1)k| and −(k− 1) ≤ (a− b) ≤
(k − 1). Combining all cases above, we see that all induced edge labels are

all distinct, that is, f is a graceful labeling, hence a strongly Tk-graceful la-

beling. 2

Conversely we have the following:

Theorem 2.2.2. Let T be a tree of order nk admitting a graceful Tk-factor

for a given graceful tree Tk of order k. If T is strongly Tk-graceful, then the

contraction tree T ′ of the tree T is graceful.

Proof. Let f be the strongly Tk-graceful labeling of T defined as above.

Identify T i
k with a vertex ui in T ′ for each 1 ≤ i ≤ n and assign the label

i to the vertex ui in T ′, via λ(ui) = i. As above for an edge uiuj ∈ E(T ′)

is in one-to-one correspondence with some unique edge vi,mvj,m ∈ E(T ) −
E(T ∗

k ) where vi,m ∈ V (T i
k) and vj,m ∈ V (T j

k ). Thus the induced edge label

|f(vi,m) − f(vj,m)| = k|i − j| are all distinct since f is strongly Tk-graceful.

Therefore |i− j| = |λ(ui)− λ(uj)| are all distinct, hence λ is graceful. 2

Here we are in a position to state our main result:

Theorem 2.2.3. The Graceful Tree Conjecture GTC is equivalent to the

Strongly Graceful Tree Conjecture SGTC for k ≥ 2.

Proof.

(GTC ⇒ SGTC)

Assume T is an arbitrary tree with a graceful Tk-factor. Then its contraction
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tree T ′ is a tree, which is graceful by GTC. Therefore by Theorem 2.2.1, we

see T is strongly Tk-graceful.

(SGTC ⇒ GTC)

Assume T is an arbitrary tree. Consider the extension T̃ of the tree T by

attaching one copy of Tk at each vertex of T on the same corresponding

positions, say attaching the first (with the vertex order determined by the

graceful-ness) vertex of Tk if one will, which makes T̃ to be a tree with a

graceful Tk-factor, and its contraction tree is T . By SGTC the extension T̃

admits a strongly Tk-graceful labeling f , thus the contraction tree T is also

graceful by Theorem 2.2.2. 2

Example 2.2.4. When Tk = P2, the above Theorem reduces to previous

result of Broersma and Hoede [4], which is the equivalence of the GTC and

the conjecture that every tree with a perfect matching is strongly graceful.



Chapter 3

Applications

3.1 Graceful m-Distance Trees

In this section we make use of above results to identify new classes of strongly

Tk-graceful trees, hence graceful graphs. First we need the following defini-

tion:

Definition 3.1.1. Let m be a non-negative integer. A tree T is called an

m-distance tree if it becomes a path after at least m recursive steps of

leaf removal, where one step of leaf removal for a tree T means removing all

leaves from T .

Remark. Therefore a 0-distance tree is a path, a 1-distance tree is a cater-

pillar (not a path), and a 2-distance tree is a lobster (neither a caterpillar

12
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nor a path).

Lemma 3.1.2. Let Tk be a graceful tree with diameter D(Tk), and T be a m-

distance tree with a graceful Tk-factor. Let T
′ be the contraction m′-distance

tree of T . Then m ≥ ⌈D(Tk)
2

⌉+m′.

Proof. Note that it takes at least ⌈D(Tk)
2

⌉+ 1 steps of removing leaves from

T , in order to remove one leaf of T ′. Then we see that for T with a graceful

Tk-factor, one needs at least ⌈D(Tk)
2

⌉ + 1 + (m′ − 1) = ⌈D(Tk)
2

⌉ +m′ steps of

removing leaves to make T become a path. Then m ≥ ⌈D(Tk)
2

⌉+m′. 2

Theorem 3.1.3. Let Tk be a graceful tree with diameter D(Tk), and T be

an m-distance tree with a graceful Tk-factor. If T is an m-distance tree for

m ≤ ⌈D(Tk)
2

⌉+ 1, then T is strongly Tk-graceful.

Proof. It suffices to show that the contraction tree T ′ of the m-distance

tree T is either 0 or 1-distance tree, since paths or caterpillars are known

graceful, then by Theorem 2.2.1 we are done. Therefore we assume that the

contraction tree T ′ is a m′-distance tree for m′ ≥ 2. By Lemma 3.1.2, one

needs at least ⌈D(Tk)
2

⌉ +m′ ≥ ⌈D(Tk)
2

⌉ + 2 steps of removing leaves to make

T become a path. This is a contradiction since T is an m-distance tree for

m ≤ ⌈D(Tk)
2

⌉+ 1. Therefore we are done. 2
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Example 3.1.4. When Tk = P2, and note also that D(P2) = 1, the above

theorem implies that all lobsters with a perfect matching is graceful, a result

previously shown in [17].

3.2 Strongly Graceful Trees with Bounded Di-

ameters

In 2009 B. Yao et al. [25] showed that all trees admitting a perfect match-

ing (that is admitting a graceful P2-factor) of diameter D ≤ 5 are strongly

graceful. We improve the result with the following:

Theorem 3.2.1. All trees admitting a perfect matching of diameter D ≤ 7

is strongly graceful.

In fact we prove a more general situation as follows, which verifies the

Strongly Tk-Graceful Tree Conjecture (SGTC) for such trees with diameter

no more than a bound determined by the diameter of Tk:

Lemma 3.2.2. Let T be a tree with a graceful Tk-factor, and with diameter

D(T ). Let T ′ be the contraction tree of T with diameter D(T ′). Then D(T ) ≤

2⌈D(Tk)
2

⌉+D(T ′).

Proof. There exists a path P of length D(T ′) in T ′. Consider the pull back



CHAPTER 3. APPLICATIONS 15

of the path P in T , its length is at least 2⌈D(Tk)
2

⌉ + D(T ′), where the part

2⌈D(Tk)
2

⌉ is contributed by looking at the pull back of the two end vertices

(two copies of Tk’s) of the path P . Then D(T ) ≤ 2⌈D(Tk)
2

⌉+D(T ′). 2

Theorem 3.2.3. Let T be a tree with a graceful Tk-factor, and with diameter

D(T ). Then T is strongly Tk-graceful if D(T ) ≤ 2⌈D(Tk)
2

⌉+ 5.

Proof.

It suffices to show by Theorem 2.2.1 that the diameter of the contrac-

tion tree T ′ satisfies D(T ′) ≤ 5 since all trees of diameter no more than 5 is

graceful as proved in [12]. Suppose that D(T ′) ≥ 6, then by Lemma 3.2.2

D(T ) ≥ 2⌈D(Tk)
2

⌉+ 6, a contradiction. 2

Remark. Note that in case of Tk = P2, the diameter D(P2) = 1. Thus The-

orem 3.2.3 reduces to Theorem 3.2.1, which generalizes previous result in [25].

3.3 α-Labeling and α-Factor

It is known that α-labeling is a stronger graceful labeling with additional

balanced property. We see that an α-labeling of a tree T of order k is a
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graceful labeling f with the additional property that there exists an integer

m, 1 ≤ m ≤ k, so that for the bipartition of V (T ) = A ∪ B one has that

f(A) = {1, 2, · · · ,m} and f(B) = {m+ 1, · · · , k}.

Definition 3.3.1. A tree T is equitable if for the bipartition of V (T ) =

A ∪B one has that ||A| − |B|| ≤ 1.

We call a graceful Tk-factor to be an α-factor if Tk is admitting an α-

labeling. Then one has the following result to tell when a tree with an

α-factor admits an α-labeling:

Theorem 3.3.2. Let Tk be a fixed tree of order k admitting an α-labeling.

Assume that T is a tree of order nk with a graceful Tk-factor (an α-factor),

and its contraction tree T ′ of order n admits an α-labeling. Let f be the

associated strongly Tk-graceful labeling. Then T ′ is equitable if and only if f

is an α-labeling.

Proof. With notations defined above, let f be a vertex labeling of T such

that f(vij) = λ(vj) + (i − 1)k = j + (i − 1)k, if vij ∈ Ai, and f(vij) =

λ(vj)+ (n− i)k = j+(n− i)k, if vij ∈ Bi for 1 ≤ i ≤ n and 1 ≤ j ≤ k. Note

that the bi-partition of V (T i
k) is Ai ∪Bi. Also let the graceful labeling of T ′

be λ′, and identify ui ∈ V (T ′) with T i
k via λ′(ui) = i for each 1 ≤ i ≤ n.

Let the bi-partitions of V (Tk) and V (T ′) be A∪B and A′∪B′ respectively.

Since Tk and T ′ both admit an α-labeling, we assume λ and λ′ be their grace-
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ful labelings respectively, and also there are two constants k1 and k2 such that

{λ(u)| u ∈ A} = {1, 2, · · · , k1}, {λ(u)| u ∈ B} = {k1+1, k1+2, · · · , k1+ k},

and {λ′(u)| u ∈ A′} = {1, 2, · · · , k2}, {λ′(u)| u ∈ B′} = {k2+1, k2+2, · · · , n}

respectively. Without loss of generality, one may assume |A′| ≥ |B′|.

With notations defined here and that mentioned before, we see λ′(ui) =

i ≤ k2 for ui ∈ A′ corresponding to T i
k, hence

f(vij) = j + (i− 1)k ≤ k1 + (k2 − 1)k, if vij ∈ Ai, (3.3.1)

f(vij) = j + (n− i)k ≥ (k1 + 1) + (n− k2)k, if vij ∈ Bi. (3.3.2)

Also we see λ′(ui) = i ≥ k2 + 1 for ui ∈ B′ corresponding to T i
k, hence

f(vij) = j + (i− 1)k ≥ k2k + 1, if vij ∈ Ai, (3.3.3)

f(vij) = j + (n− i)k ≤ (n− k2)k, if vij ∈ Bi. (3.3.4)

From above inequalities (3.3.1), (3.3.2), (3.3.3), and (3.3.4), we have the

following:

T ′ is equitable

⇐⇒ 0 ≤ |A′| − |B′| ≤ 1.

⇐⇒ 0 ≤ k2 − (n− k2) ≤ 1.

⇐⇒ n− k2 ≥ k2 − 1 and k2 ≥ n− k2.
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⇐⇒ max{k1 + (k2 − 1)k, (n− k2)k} < min{(k1 + 1) + (n− k2)k, k2k + 1}.

⇐⇒ max{f(vij)| vij ∈ A∗} < min{f(vij)| vij ∈ B∗}.

⇐⇒ T admits an α-labeling.

where A∗ = {vij| (vij ∈ Ai) ∧ (ui ∈ A′), or (vij ∈ Bi) ∧ (ui ∈ B′), 1 ≤ i ≤

n, 1 ≤ j ≤ k} and B∗ = {vij| (vij ∈ Bi) ∧ (ui ∈ A′), or (vij ∈ Ai) ∧ (ui ∈

B′), 1 ≤ i ≤ n, 1 ≤ j ≤ k}. 2



Chapter 4

Concluding Remarks

4.1 Summary of Results

In this thesis we give infinitely many equivalent versions of the Graceful

Tree Conjecture. Precisely, with a fixed graceful tree Tk one may define the

graceful Tk-factor. Then we prove that a tree with a graceful Tk-factor is

strongly Tk-graceful if and only if its contraction tree is graceful. Using the

above main result it is easy to identify new classes of graceful graphs.

4.2 Further Studies

It would be interesting to explore and identify more related concepts and

relationships among them. For example, it is nice trying to figure out the

19
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specific situations when a strongly Tk-graceful graph admits the α-valuations,

σ-valuations, ρ-valuations, which are hierarchically related to the graceful la-

belings (β-valuations). Also like many authors studied variants of the grace-

ful labelings in literature, one may also study similar variants for strongly

Tk-graceful labelings.
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