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Abstract

Let G = (V(G), E(Q)) be a finite simple graph with p = |V (G)| vertices
and ¢ = |F(G)| edges. An antimagic labeling of G is a bijection from
the set of edges to the set of integers {1,2,--- , ¢} such that the vertex sums
are pairwise distinct, where the vertex sum at a vertex is the sum of labels
of all edges incident to such vertex. A vertex magic total labeling is a
bijection from V(G) U E(G) to the set of integers 1,2,--- ,p + ¢, with the
property that, for every vertex u in V(G), one has f(u)+3,,cpq) f(w) =k
for some constant k. On the other hand, for an undirected graph G, a
zero-sum flow is an assignment of possibly repeated non-zero integers to
the edges such that the sum of the values of all edges incident with each
vertex is zero. In this thesis we study the above graph labeling problems
of magic and antimagic types. In particular, we identify classes of graphs
admitting antimagic labeling and vertex magic total labeling respectively,
which generalize and extend previous results. We also consider zero-sum flow
problems for the hexagonal graphs, for which infinite families of hexagonal

grid graphs with small zero-sum flow numbers are presented.



11

Publication From This Thesis

[1] Tao-Ming Wang, Guang-Hui Zhang, On Antimagic Labeling of
Odd Regular Graphs, the 23th International Workshop On Combi-
natorial Algorithms (IWOCA 2012, Krishnankoil, India), Lecture Notes
in Computer Science (LNCS), 7643, pp. 162-168, 2012. (EI)

2] Tao-Ming Wang, Guang-Hui Zhang, Zero-Sum Flow Numbers
of Hexagonal Grids, presented in FAW-AAIM 2013, Dalian, China,
June 26-28, Lecture Notes in Computer Science (LNCS) 7924, pp. 339-
349, 2013. (EI)

[3] Tao-Ming Wang, Guang-Hui Zhang, On Antimagic Labeling of
Regular Graphs with Particular Factors, to appear in a special
issue of the Journal of Discrete Algorithms, 2013 (EI)

[4] Tao-Ming Wang, Guang-Hui Zhang, A Note on E-super Vertex
Magic Graphs, submitted and under review, 2012.

[5] Tao-Ming Wang, Guang-Hui Zhang, On Vertex Magic Total La-
beling of Disjoint Union of Sun Graphs, Utilitas Math. (SCI),
accepted, 2013.



Contents

Introduction and Background . . . . ... ... ... ... ..

Technical Preliminaries . . . . . . . .. .. ... ........
Odd Regular Graphs With Particular 3-Factors . . . . . . ..
Odd Regular Graphs With Odd Claw Factors . . . ... ...

3.1 Even Regular Hamiltonian Graphs . . . . . .. ... ... ..

3.2  Even Regular Graphs With Particular 2-Factors . . . . . . . .

Introduction and Background . . . . . . ... ... ... ...

Even Regular Hamiltonian Graphs of Odd Order. . . . . . . .
Even Regular Graphs of Odd Order . . . . . .. ... .. ...

1 Introduction
1.1 Magic Labeling . .
1.2 Antimagic Labeling
1.3 Applications . . . .
2 Antimagic Labeling of Odd Regular Graphs
2.1
2.2
2.3
24
2.5 Concluding Remarks
3 Antimagic Labeling of Even Regular Graphs
4 Edge-Super Magic Labeling
4.1
4.2
4.3
4.4 Conclusion Remark

v

10
16
20

22
22
24



CONTENTS

5 Vertex Magic Total Labeling

5.1
5.2
5.3

Introduction and Background . . . . .. ... ... ... ...
Main Results . . . . .. ... oo

Conclusion Remark . . . . . . . . . . . ...

6 Zero-Sum Flows

6.1
6.2
6.3
6.4

Background and Motivation . . . . . ... ... ... ... ..
Preliminaries of Zero-Sum Flow Numbers . . . . . . . .. . ..
Zero-Sum Flow Numbers of Hexagonal Grid Graphs . . . . . .
Concluding Remark and Open Problems . . . . ... ... ..

37
38
40
45



List of Figures

1.1.1 vertex-magic labeling . . . . . ... ... ... .. ... ..
1.2.1Cy has VAE | Cs has (a,1)-VAE . . . ... ... ... ...

2.3.1 Examples of generalized Petersen graphs . . . . . . . ... ..
2.3.2 The Cayley graph CIR14({4,6,7}) of Z14 . . . . . . . . .. ..
2.4.1 A Cubic Graph without any Perfect Matching but with a 3-
(PERA G e—— ey~ [ ORI FEN
2.4.2 The disjoint union of 5 copies of K, is antimagic . . . . . . . .
2.4.3 5-Regular Graph without Perfect Matching but with a 5-Claw

Fadgtorgd” . # W  —m————— . 4 L ... " F . B
3. 28T ransl§tion St Riinces e . 4¢ Tty . . &

5.1.1 Example of Disjoint Union of Sun Graphs . . . ... ... ..

5.2.1 The Vertex-Magic Labeling of Disjoint Union of Three Suns

5.3.1 A Vertex-Magic Labeling of Pseudo-Suns with Magic Constant
37. . ... Y. . ... ... ..

6.1.1 Example of a Hexagonal Grid Graph . . . . . . ... ... ..
6.3.1 A Hexagonal Grid Graph with its Dual Graph . . . . . . . ..
6.3.2 Fundamental Hexagons with Zero-Sum 2-Flows and 3-Flows

6.3.3 A 3-Flow of the Infinite Hexagonal Grid H...........
6.3.4 A 4-Flow of the Infinite Hexagonal Grid H...........
6.3.5 A 4-Flow of Arbitrary Finite Hexagonal Grid Induced from H
6.3.6 Examples of Hexagonal Grids with Flow Number 3 . . . . . .

vi



LIST OF FIGURES vii

6.3.7 Example of Hexagonal Grid with Dual Graph Multiple Wy
Copies . . . . . . 57
6.3.8 Dual graph D(G) contains a triangle with one degree 2 vertex 57

6.3.9 Example of G whose dual contains a triangle with one degree

2vertex ..o 58
6.3.1Mual graph D(G) contains a Kite or an Antenna Triangle . . . 58
6.3.1Hexagonal Grid with Kite or Antenna Triangle as its Dual

Graillr . . . . Loew ™K N, .. 9. ... .. 59

6.3.1Hexagonal Cluster Hy, H3, Hy, Hs . . . . . . . . . . ... ... 59



Chapter 1

Introduction

A labeling of a graph is assigning labels to the vertices, edges or both
vertices and edges. In most applications labels are positive (or nonnegative)
integers, though in general real numbers could be used. In this thesis, we
focus on edge labelings and total labelings(labelings on both vertices and
edges). If the sums of labels of all edges incident with the vertex are all
constant in certain sense, we call them magic labeling. And if the sums of
labels of all edges incident with the vertices are pairwise distinct in certain

sense, we call them antimagic labeling.

1.1 Magic Labeling

Let G = (V(G), E(G)) be a finite simple graph with p = |V (G)| vertices
and ¢ = |E(G)| edges, without isolated vertices or isolated edges. A vertex
magic labeling is a bijection from F/(G) to the consecutive integers 1,2, --- g,

with the property that, for every vertex u in V(G), one has > f(uv) =k
weE(Q)

for some constant k.

Theorem 1.1.1. [30] K,,,, is magic for all n # 2.
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Theorem 1.1.2. [30] If a bipartite graph G is decomposable into Hamilton

cycles, then G is magic.

Theorem 1.1.3. [30] If a graph G is decomposable into two magic spanning

subgraphs G and G is reqular, then G is magic..

Figure 1.1.1: vertex-magic labeling

For more labelings of magic types, see Gallian’s dynamic survey paper
[15]. Note that in this thesis we deal with two types of magic labelings,
namely vertex magic total labeling and zero-sum flows, which will discussed

in later chapters.

1.2 Antimagic Labeling

An antimagic labeling of a finite simple undirected graph with ¢ edges is
a bijection from the set of edges to the set of integers {1,2,--- , ¢} such that
the vertex sums are pairwise distinct, where the vertex sum at a vertex is the
sum of labels of all edges incident to such vertex. A graph is called antimagic
if it admits an antimagic labeling. It was conjectured by N. Hartsfield and G.
Ringel in 1990 that all connected graphs besides K, are antimagic. Another

weaker version of the conjecture is every regular graph is antimagic except
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K,. Both conjectures remain unsettled so far. Note that Cranston proved
that all regular bipartite graphs are antimagic in 2009 (Regular bipartite
graphs are antimagic, JGT, Vol. 60, Issue 3, pp. 173-182.).

Definition 1.2.1. For a graph G = (V, E) with ¢ edges and without any iso-
lated vertex, an antimagic edge labeling is a bijection f : E — {1,2,--- ¢},
such that the induced vertex sum f*:V — Z* given by f*(u) = > {f(uwv) :
uv € E} is injective. A graph is called antimagic if it admits an antimagic
labeling. If moreover for G the vertex sums form an arithmetic progression
with initial term @ and common difference d, we say G admits an (a,d)-

antimagic labeling and G is (a, d)-antimagic.

NO==as"¢
=25
D—+—® D@

Figure 1.2.1: Cy has VAE | (5 has (a,1)-VAE

N. Hartsfield and G. Ringel showed that paths, cycles, complete graphs
K, (n > 3) are antimagic. They conjectured that all connected graphs
besides K, are antimagic, which remains open. In 2004 N. Alon et al [4]
showed that the last conjecture is true for dense graphs using probabilistic
method. They showed that all graphs with n(> 4) vertices and minimum
degree Q(logn) are antimagic. They also proved that if G is a graph with

n(> 4) vertices and the maximum degree A(G) > n—2, then G is antimagic
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and all complete partite graphs except K, are antimagic. In 2005 D. Hefetz
[19] proved that, among others, for k € Z* a graph G with 3* vertices is an-
timagic if it admits a K3-factor. In 2005, T.-M. Wang [38] studied antimagic
labeling of sparse graphs, and showed that 2-regular graphs and moreover the
toroidal grid graphs are antimagic. In 2008, T.-M. Wang and C.-C. Hsiao [39]
showed various types of graph Cartesian product and lexicographic product
(composition) are antimagic. Many various types of graphs have been shown
to be antimagic [28, 6, 8, 10, 11, 19, 20, 46, 48] over the years. More variations
of labelings of antimagic types, say (a, d)-antimagic labeling, edge-antimagic

vertex labeling etc., can be referred to the dynamic survey by Gallian [15].

1.3 Applications

Some typical applications of labelings of magic types have been studied,
mainly in network-related areas. Suppose it is required to assign addresses
to the possible links in a communications network. It is required that the
addresses are all different, and that the address of a link can be deduced
from the identities of the two nodes linked, without the need of using a
lookup table. This has been modeled using edge-magic labelings. Another
application is in the construction of ruler models, which have been applied
to the study of radar pulse codes. More details regarding these applications
see [45].



Chapter 2

Antimagic Labeling of Odd

Regular Graphs

Most of the contents in this chapter has been presented in the 23th Interna-
tional Workshop On Combinatorial Algorithms (IWOCA 2012, Krishnankoil,
India. It was published as On Antimagic Labeling of Odd Regular
Graphs, Lecture Notes in Computer Science (LNCS), 7643, pp. 162-168,
2012. Also another extended version has been published in On Antimagic
Labeling of Regular Graphs with Particular Factors, Journal of Dis-
crete Algorithms, 2013 (EI).

2.1 Introduction and Background

While Hartsfield-Ringel conjecture claims except K, all coneected simple
graphs are antimagic, there is a weaker version conjectured that every regular
graph except K is antimagic. Among others, D. Cranston [12] proved that all
regular bipartite graphs are antimagic in 2009. (Regular bipartite graphs are
antimagic, Journal of Graph Theory, Vol. 60, Issue 3, pp. 173-182.) While
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some particular types of regular graphs have been shown to be antimagic,
the conjecture for the antimagic-ness of regular graphs still remains unsettled
till today. More recently we showed the antimagicness of certain classes of
regular graphs with 1-factors and 2-factors, which contain examples such as
all generalized Petersen graphs P(n, k), certain Cayley graphs on Z,, and
all powers of cycles. Also all Hamiltonian even regular graphs were shown
antimagic. Very recently, Y. Liang and X. Zhu also showed that all cubic
graphs are antimagic and Cartesian product related to regular graphs are
antimagic[24, 25]. In this chapter, we show the existence of antimagic labeling
for all even regular graphs with a 2-factor consisting of odd cycles only. For
more conjectures and open problems on antimagic graphs and related type
of graph labeling problems, readers are recommended to see the dynamic
survey article of J. Gallian [14]. In this article, certain classes of regular
graphs with particular type of 1-factors and 2-factors are shown antimagic.
As a byproduct many well known examples are shown to be antimagic, such
as all generalized Petersen graphs, all powers of cycles, and all even-regular
circulant graphs (Cayley graphs of finite cyclic groups). Major results of this

chapter can be summarized as follows among others:

e For odd regular graphs containing particular 3-factors:

Theorem. All pseudo-prisms H are antimagic, where a pseudo-prism
is a 3-regular graph which consists of the edge-disjoint union of a 1-
factor and two 2k-regular subgraphs of the same size. Moreover let K
be any 2k-factor. Then the odd (2k + 3)-regular graph G = H @ K is

antimagic.

e For even regular graphs containing particular 2-factors:

Theorem. Let G be a 2k-regular, k > 2, Hamiltonian graph. Then G

is antimagic.

Theorem. Let G be a 2k-regular graph (k > 2) which contains a
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2-factor F' consisting of a vertex disjoint union of (a, 1)-antimagic sub-
factors Hy, Hs, - - - , H; of odd order, where t < k. Then G is antimagic.

Theorem. Let G be a 2k-regular graph, k > 2. Assume that G con-
tains a 2-factor F' = m(;,, consisting of cycles of the same size. Then

G is antimagic.

e For odd regular graphs containing particular odd claw factors, we show
the following more general result regarding an odd graph (with odd

degree vertices only):

Theorem. Let G be an odd graph formed by a mixed claw factor C
and and an arbitrary 2-regular subfactor H over the pendant vertices
of the odd claws in C, where C'is consisting of vertex disjoint K ;s for
odd 7 > 3. Then G is antimagic, and also G' remains antimagic after
adding arbitrary 2k-factors for k > 1. In particular if G is a (2m + 1)-
regular graph formed by an odd Kj,,+1-factor and an arbitrary 2-
regular subfactor over the pendant vertices of the odd claws, then G is

antimagic.

2.2 Technical Preliminaries

In order to show the main results, we need the following facts. The first
one is for assuring (a, 1)-antimagic-ness while adding extra even factor to an
(a, 1)-antimagic graph, which was proved in [21] in 2006. We give the proof
here for completeness:

Lemma 2.2.1. (J. Ivanco, A. Semanicovd, 2006) Assume H is a graph

which arose from a graph G of p vertices and q edges by adding an arbi-

trary 2k-factor. If G is (a,1)-antimagic, then H is (a,1)-antimagic, thus
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antimagic.

Proof.

Without loss of generality let the (a,1)-antimagic vertex sums for G be
a<a+1<---<a+p—1associated with the vertices vy, vq,--- , v, respec-
tively while we labeling the edges 1,2, --- ,¢. By mathematical induction we
need only to validate the situation while adding a 2-factor F' to an (a, 1)-
antimagic graph GG. We proceed by assigning an orientation to the 2-factor F
so that over each connected component (connected 2-cycle) the flow is either
clockwise or counter-clockwise. Then we label over F' by setting f*“*(w) and
f™(w) respectively to be the outgoing edge label from the vertex w € V(G)
and the incoming edge label to the vertex w, according to the given orienta-

tion. Precisely we give the labeling as follows:
fv)=a+p+q—(a+i—1)

for each 1 <4 < p. From the way f°“(w) is defined, we see that the resulting

vertex sum at the vertex v; is
(@+i—1)+ fvs) + f"(vs) =a+p+q+ f"(v:)

for each 1 < i < p. Therefore the vertex sums are consecutive integers since
the set of all outgoing edge labels is in one-to-one correspondence with the
set of all incoming edge labels. Hence it is shown to be (a, 1)-antimagic and

we are done.
O

However we may extend the above fact and obtain the following more

general results:

Lemma 2.2.2. Assume H is a graph of p vertices which arose from a graph
G of p vertices by adding an arbitrary 2k-factor. If the vertex sums of G
by labeling edges 1,2, --- | |E(G)| forms two non-overlapping consecutive se-

quences, say a; < ag < -+ < Ay < by < by < --- < b,. Then H is antimagic.
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Proof.
Let two non-overlapping consecutive sequences formed by the vertex sums
via labeling edges 1,2,--- ,|E(G)| of G be a1 = a,as = a+1,--+ ,a,, =

a+m—1and by =b,bp =0+1,---,b, = b+n — 1 respectively, and assume
ay, < by. Note that m +n = |V(G)| = p. We denote by d = by — a,, > 1,
and D =b, —a; +1 and note that D =0, —a;+1=b;+(n—1)—a; +1 =
am+d+n—-1)—a+1l=m—-1)+n-1)+d+1=p+d—1>p.

In order to apply the result in Lemma 5.2.4, we modify the a,as, - ,an,
by a; = a;+ D for each i = 1,--- ,m. Therefore a; = a;+D = (a1 +i—1) +
p+d—1=b,+i for each i, thus by, bo, - -+, b,, @y, as, - - ,a,y, are a sequence of

consecutive integers. So G is temporarily (a, 1)-antimagic under the modified
(fake) vertex sums. Then by Lemma 5.2.4, after adding an arbitrary 2k-factor
to G the resulting graph H still admits an (a, 1)-antimagic labeling and the
vertex sums are pairwise distinct. By abusing the language we again denote
the (fake) vertex sums by, by, -+ , by, a1, G2, , G- Then it is clear that the
original vertex sums ai,as,--- ,a, and by, by, -+ b, are pairwise distinct
since a; = a; + D for each i and note that D > p. Hence H is antimagic.

O

Even general we may have the following with similar discussion and math-

ematical induction:

Lemma 2.2.3. Assume H is a graph of p vertices which arose from a graph
G of p vertices by adding an arbitrary 2k-factor. If the vertex sums of G by
labeling edges 1,2,--- | |E(G)| forms three non-overlapping consecutive se-
quences, say ay < Qg < -+ < Ay < by <by < - <b, <c1 <1 <+ < ¢y,
and moreover either the gap by — a,, > p or the gap ¢, — b, > p. Then H is

antimagic.

Lemma 2.2.4. Assume H is a graph of p vertices which arose from a graph
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G of p vertices by adding an arbitrary 2k-factor. If the vertex sums of G by
labeling edges 1,2, - -+ | |E(G)| formst non-overlapping consecutive sequences,
say a1g < Qg < v < Ay < Q21 < Agg < cvr < Agmy < 0 < Ay < Qpg <
<o+ < Qgm,. Note that ij = p and each gap aj 11 — ajm; > p for every

1<j<t—1. Then H is antimagic.

2.3 0Odd Regular Graphs With Particular 3-

Factors

Note that there is a special class of 3-regular graphs which is called general-

ized Petersen graphs, for which we define as follows:

Definition 2.3.1. Let n, k be integers such that n > 3 and 1 < k <
|25+ |. The generalized Petersen graph G P(n, k) is defined by V(GP(n, k)) =
{ui,v;] 1 <i <n},and E(GP(n,k)) = {ujuit1, uvi, v;vix| 1 < i < n} where
the subscripts are taken modulo n. (See Figure 2.3.1) We call uy, ug, - -+, u,

an outer cycle, and vy, vy, -+ , v, an inner cycle.

In 2000, M. Miller and M. Baca studied antimagic labelings of arith-
metic type for generalized Petersen graphs [28], which are referred as (a, d)-
antimagic labelings. Note that (a,d)-antimagic labelings are requiring all
vertex sums form an arithmetic progression, hence also antimagic. M. Miller
and M. Baca showed (a,d)-antimagic-ness of GP(n,2) for certain n, and
also listed conjectures for other generalized Petersen graphs. In this section
we show all generalized Petersen graphs are antimagic by proving a more
general theorem regarding 3-regular graphs with a particular type of perfect

matchings, which contain generalized Petersen graphs as special cases.
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GP(5,1)

Figure 2.3.1: Examples of generalized Petersen graphs

Note that a r-factor of a graph is a r-regular spanning subgraph, and a 1-
factor is a perfect matching. A factorization of a graph is a decomposition of
the graph into union of factors so that the edge set is partitioned. Note that
furthermore we call a r-regular subgraph of a factor to be a r-subfactor.
In 2012 we have the following general result for antimagic-ness of 3-regular
graphs and odd regular graphs [46], which was presented in the IWOCA 2012

conference held in India:

Theorem 2.3.2. Let G be 3-reqular with 2n vertices {uy, us, - -+ , Uy, V1, Vg, -+ ,Vp }
and M = {uv;| 1 <i < n} be a perfect matching of G. Assume additionally
that {uy,ug, -+ ,un} and {vy,ve, -+ ,v,} induce two 2-subfactors of the same

order respectively. Then G is antimagic.

Theorem 2.3.3. Let k > 1 and let G be a (2k + 1)-reqular graph with
2n wvertices {uy, ug, -+ ,Up, V1, Vo, -+ U} and M = {uv;| 1 < @ < n} be
a perfect matching of G. Assume additionally that {uy,ug, - ,u,} and
{v1,v9, -+ ,v,} induce two 2k-reqular subgraphs respectively. Then G is an-

timagic.

Note that all generalized Petersen graphs GP(n, k) with V(GP(n,k)) =
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{uj,v;|] 1 < i < n} and E(GP(n,k)) = {wjuir1, wvi, vivi,| 1 < 0 < n},
are 3-regular with 2n vertices, 3n edges, and admitting perfect matchings
{uv;| 1 < i < n}. Obviously {uy,ug, -+ ,u,} and {vy,ve, -+ ,v,} induce
two 2-regular subgraphs respectively. Therefore, as a byproduct of the above
Theorem 2.3.2:

Corollary 2.3.4. Every generalized Petersen graph GP(n, k) is antimagic.

Note that most recently Y.-C. Liang and X. Zhu showed that all cubic
graphs are antimagic[24] (newly online in 2013). In the following we extend
previous Theorem 2.3.2 and Theorem 2.3.3 to a more general situation for
regular graphs of odd degree with particular 3-factor. First we state a well-

known result we need here and also in later sections:

Theorem 2.3.5. (J. Petersen, 1891) Let G be a 2r-regular graph. Then

there exists a 2-factor in G.

Now we are in a position to prove the main result of this section:

Theorem 2.3.6. Let G be an odd reqular graph on 2n vertices {uy, -+ , Uy, vy,

with factorization G = G' @ H, where G’ is an even-factor and H is a 3-
factor consisting of the edge disjoint union of a 1-factor M = {u;v;| 1 <1i <
n} and two 2-reqular subgraphs Hy and Hy which are induced by {uq,- -+ ,u,}

and {vy,--- ,v,} respectively. Then G is antimagic.

Proof. Let H = M @(H, U H,), where H; and H, are two 2-regular sub-
graphs, each induced by n vertices, {uq, us, -+ ,u,} and {vy,ve, -+ ,v,} re-
spectively. On the other hand by Petersen’s Theorem 4.1.2, G’ can be fac-
tored as sum of 2-factors F1 @ F5 @ --- D F,.

Now we give an antimagic labeling f by the following steps. Note that
G has (2k + 3)n edges. First we split all edge labels 1,2, --- | (2k + 3)n into
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2k + 1 groups as follows: {1,2,--- ,n},{n+1,n+2--- 2n},{2n+1,2n +
2,---.3n}, - {2k +2)n+ 1,2k +2)n+2,---,(2k + 3)n}. Then we will
put these groups of labels in order over the edges of Hy, M, Hy, Fy,---, F}
respectively in below.

First we label the edges of M via f(u;v;) = n+i for each 1 <i <n. Then
labeling over edges of H; and H, as follows. Since H; and Hs are 2-regular
graphs, we assign an orientation so that over each connected component
(connected 2-cycle) the flow is either clockwise or counter-clockwise. We
label over H; and Hy by setting fo“(w) and f™(w) respectively to be the
outgoing edge label from the vertex w and the incoming edge label to the
vertex w, according to the given orientation. Precisely we give the labeling

as follows:
%) =2n+1—(n+14), f%v) =4n+1— (n +1)

for each 1 < ¢ < n. From the way f°“(w) is defined, we see that over the
3-factor the partial vertex sums at {ui,ug, -« ,u,} and {vy,v9, -+ ,v,} are
uniquely determined by f™(w), and form consecutive integers respectively
as A;=2n+1+4+¢and B; =6n+ 1+ for 1 <i <n. Now we modify these
two sequences of consecutive integers into one single sequence of consecutive
integers, by letting E = B, —3n = 3n+ 1+ 1. Then we see the fake
vertex sums Aq, Ag, -+, Ay, E\l , E\g, e ,B; are combined into one sequence
of consecutive integers since A, + 1 = 1/3\1 , that is, for the time being it is
(a, 1)-antimagic. We now may apply Lemma 5.2.4 to add the labeling of the
rest of 2-factors Fi,--- , Fy and keep the resulting (fake) vertex sums to be
consecutive integers. By abusing language we still denote the vertex sums
by A;, B; and 73\1 Note that the order of these (fake) vertex sums might
be different. After recovering the original vertex sums via B; = E + 3n
for i = 1 to n, we claim the (true) vertex sums are pairwise distinct. To
show the claim is true, we may first see A; = 0y < A; < 1/3; = o, and
Al =0, < E < B; = o, for each ¢. Then oy +3n < E+3n =DB; <o,+3n
for each i. Let [a,b] be the set of integers {t | a <t < b}. We conclude that
for each 4, the vertex sums A; belong to (01, 0,], B; belong to [o1+3n, 0,+3n],
and note that [0y, 0,] N [o1 + 3n, 0, + 3n| = ¢ since 3n > 2n = B, — A —1.
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Therefore the vertex sums are pairwise distinct and we are done.

To obtain more examples, we consider the circulant graphs as follows:

Definition 2.3.7. A circulant graph CIR,(S) with n vertices, with re-
spect to S C {1,2,---, 5]}, is a graph with the vertex set V(CIR,(S)) =

{0,1,2,--- ,n — 1}, and the edge set is formed by the following rule:
E(CIR,(S))={ij: i—j==xs (modn), s€ S}

Note that the circulant graph CIR,(S) is also called a Cayley graph of

the finite cyclic group Z, generated by S.

For example, CIR,({a}) = C,, the connected n-cycle, if ged(n,a) = 1.

Moreover CIR,({1,2,---,|%]}) = K, the complete graphs, and CI Ry, ({1,n}) =

2
the n-Mébius ladder graphs. Note that CIR,(S) is odd-regular if n is

even and § € S, is even-regular otherwise. Let S = {ai,as,.....,an} C
{1,2,--- [ %]}, it is not hard to see that CIR,(S) = @.*; CIR,({a;}) is a

factorization of circulant graphs with respect to one point sets {a;}.

Example 2.3.8. Note that for oddn > 5, the circulant graphs C1Ra,({a,b,n}),
where 0 < a # b < n and ged(2n,a) = ged(2n,b) = 2, are examples of 5-
reqular graphs with perfect matchings, which satisfy the assumption in The-
orem 2.3.3. Therefore CIRs,({a,b,n}) are antimagic. See Figure 2.3.2 for

the example CIRy4({4,6,7}).

In a similar fashion, we may construct an infinite class of circulant graphs
which represent the class of odd (2r + 1)-regular graphs, for each r > 2, with

perfect matchings, as stated in Theorem 2.3.3:
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Figure 2.3.2: The Cayley graph CI1R14({4,6,7}) of Z14

Example 2.3.9. Let G = CIR,({a1, a2, -+ ,am, 5}) be a circulant graph of
even order n. By Theorem 2.5.5, it can be seen G is antimagic if 5 is odd
and ged(n,a;) =2 for each 1 < i < m.

More general by Theorem 2.3.6 we have the following Corollary regarding

the antimagic-ness of certain class of circulant graphs:

Corollary 2.3.10. Let G = CIR,({a1,az, -+ ,am, 5}) be a circulant graph
of even order n. Then G is antimagic if 5 is odd and ged(n, a;) = 2 for some

I<j<m.
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2.4 0Odd Regular Graphs With Odd Claw Fac-

tors

Definition 2.4.1. The complete bipartite graphs Kj .11 is called an odd
claw, where the integer m > 1. We call a spanning subgraph an odd claw
factor if the edge set is partitioned into vertex disjoint union of isomorphic

copies of odd claws K o,,11 for fixed integer m > 1.

There is a well known cubic graph without any perfect matching as shown
in the following Figure 2.4.1, given by J. Petersen as a related example for

the fact that if a cubic graph is bridgeless then it admits a perfect matching.

Figure 2.4.1: A Cubic Graph without any Perfect Matching but with a 3-
Claw Factor

It is noticed the example can be treated as a factorization of one claw
factor and one degenerate 2-factor and can be shown to be antimagic. We
extend this fact to a more general situation in the following. We define first
a spanning subgraph consisting of vertex disjoint K 3’s to be a claw factor,
as seen in the Figure 2.4.1.

We start with the following:
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Theorem 2.4.2. Let G be a 3-reqular graph with 4n vertices and 6n edges.
Suppose G can be decomposed into the union of a claw factor C' and a 2-
reqular subgraph induced by all pendant vertices of the claws in C'. Then G
15 antimagic.

Proof.

Note that G has the claw factor consisting of n vertex disjoint claws, which
is named as K (i) for 1 <i < n. Let the center vertex of K (i) of degree 3 be
v; for 1 <7 < n and all other pendant vertices be u; for 1 < j < 3n.

We use 1,2, -- -, 3n to label the edges of 2-regular subgraph induced by all
pendant vertices of the claws in C, and use the rest 3n+1,3n+2,--- ,6n to
label the edges of the claw factor C'. Precisely we label the three edges of the
claw K (i) by 3n+i,4n+i,6n+1—i for 1 <i < n. Therefore the vertex sum at
the vertex v; is 13n+i+1 for 1 <17 < n, namely 13n+2,13n+3,--- , 1dn+1.

On the other hand, in order to label the edges over E(G)— E(C') properly,
we put orientations over each connected cycle component either clockwise or
counterclockwise. Then define the outgoing edge label at the vertex u; by
fo(u;) = 6n 4+ 1 — w(u;) for 1 < j < 3n, where w(u;) is the partial
vertex sum while labeling the edges of claws in C, thus w(u;) ranges from
3n+1,3n+2,--- to 6n. Therefore the vertex sums over u; are 6n+1+ j for
1 <7 < 3n, namely 6n + 2,6n + 3,--- ,9n + 1. Combined with the vertex
sums over v; for 1 < i <mn, that is 13n+2,13n+3,--- ,14n + 1, we may see

immediately that G is antimagic since the vertex sums are all distinct. O

By applying the above Theorem 2.4.2 we see the graphs like in Figure 2.4.1

are antimagic, and we also have the following examples:

Example 2.4.3. The graph mKs,, the disjoint union of m copies of Ks,’s,

1s antimagic, as shown in Figure 2.4.2.

We may extend the above to the following more general situation since

in previous proof we see the vertex sums 6n + 2,6n 4+ 3,---,9n + 1 and
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Figure 2.4.2: The disjoint union of 5 copies of K4 is antimagic

13n+2,13n+3,--- ,14n + 1 are two groups of non-overlapping consecutive
integers, by Lemma 2.2.2 after adding any arbitrary 2k-factors the antimagic-
ness is remained, therefore we have:
Theorem 2.4.4. Let G be a 3-reqular graph with 4n vertices and 6n edges.
Suppose G can be decomposed into the union of a claw factor C' and a 2-
reqular subgraph induced by all pendant vertices of the claws in C'. Moreover
let F' be an arbitrary 2k-factor. Then G @ F is still antimagic.

Moreover we may have the following result for odd regular graphs con-
taining odd claw factors:
Theorem 2.4.5. Let m > 1 and G be a (2m + 1)-reqular graph formed by
an odd K op+1-factor and an arbitrary 2-regular subfactor over the pendant
vertices of the odd claws. Then G is antimagic.

In fact we are able to show the following more general situation for an
odd graph (possibly non-regular) consisting of a mixed odd claw factor (that
is a factor formed by possibly K3's, Ki5's, K17’s, etc.) and a 2-subfactor
over the pendant vertices of the claws, and therefore the above results are

simply corollaries of this Theorem:

Theorem 2.4.6. Let G be an odd graph formed by a mixed claw factor C

and and an arbitrary 2-regular subfactor H over the pendant vertices of the
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odd claws in C, where C' is consisting of vertex disjoint K, ;’s for odd j > 3.

Then G is antimagic, and also G remains antimagic after adding arbitrary

2k-factors for k > 1.

Proof.

Let G be the odd graph with p vertices. Assume that in C' there are ¢;
odd K j-factor for odd j > 3 and let ijg t; = s, where j is odd and ¢; are
non-negative integers. Therefore with similar notions, both G and C' have
D= ijg (j +1) - t; vertices and assume further that C' has L = ijaj -t
edges, thus L = p — s. Note that H has L = p — s vertices and L = p — s
edges, and we split all edges in G into two categories Fy = {1,2,--- | p — s}
and By ={p—s+1,p—s+2,--- ,p—s+ L}. Now we are in a position to
label the edges to verify the antimagic-ness of G with the following steps.

(Step 1): First we put the claws in order of non-increasing sizes as K; 3,
K5 etc., then we may start labeling edges as follows: Labeling one edge
(pick any) in each of these s odd claws (called the dominating edge of the

claw) in order of non-increasing sizes, using the most centered edge labels

within E, named the dominating edge labeling set E; = {p— s+ L;S +1,p—
s+izt 2. ps+istis)

(Step 2): Than within each claw there are an even number of edges
left yet to be labeled, for which we use the rest of the labels in Fy — E; by

considering these labels in pairs with constant sum 2(p — s) + L + 1. Let v;

be the center vertex for each of these claws and u}’s be the corresponding
pendant vertices. Therefore the vertex sums at v; for these claws is ]%1 .
[2(p — 5) + L + 1] + e(v;ul), where e(v;ul) is the dominating edge picked in
Step 1 for each claw. One see that the vertex sums for claws of the same size
are sequences of consecutive integers, and any two such sequences have a gap
larger than p. The reason is the gap must be a multiple of 2(p — s) + L + 1
which is larger than 2(p — s) + 2s + 1 = 2p + 1, thus larger than p.

(Step 3): The next stage is to calculate the vertex sums over the ver-
tices of H, i.e. those pendant vertices of claws. Note that H is formed over
the above vertices as a 2-subfactor in arbitrary way. Now We proceed by

assigning an orientation to the 2-regular subgraph H so that over each con-
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nected component (connected 2-cycle) the flow is either clockwise or counter-
clockwise. Let e™(u) and e (u) be the incoming edge label and outgoing
edge label respectively, and e(uv) be the edge label assigned in Step 1 and
Step 2. Than use the integers in E; = {1,2,--- ,p — s} to label the edges of

H by the following rule of constant sums:
e™(u) +e(uv) =1+ (p—s) + L.

Therefore the vertex sums at the pendant vertices of claws are e (u)+e(uv)+
e (u) = 1+ (p— )+ L+ e°“*(u), thus they range over the set of consecutive
integers {1+ (p—s)+L+1,1+(p—s)+L+2,--- ,1+(p—s)+L+p—s}.

(Step 4): Therefore G is antimagic by comparing the vertex sums at
the center vertices of the claws and the vertex sums at the pendant vertices
as follows. Note that in Step 2 we have the vertex sum at the center vertex
v; of the claw is 52 - [2(p — s) + L + 1] + e(vjuy), which is larger than
2(p—s)+L+14+p—s+ LQ_S +1. Wesee 1+ (p—s)+ L+p—sis the largest
possible vertex sum at the pendant vertices, and using L = p — s one has
2(p—s)+L+1+p—s+i2+1]—[1+(p—s)+L+p—s|=3-p—2s+1,
which is > p since p > 4s.

(Step 5): With labeling edges in previous steps, we see the vertex sums
are arranged into groups of consecutive integer sequence with gaps larger
than p. By applying Lemma 2.2.4 we see G remains antimagic after adding
arbitrary 2k-factors for k > 1. O

Note that the regular graphs of higher degree without any perfect match-
ing as in Figure 2.4.3 are shown antimagic, in view of Theorem 2.4.6. Note
that the example has no any perfect matching due to the well known Tutte’s

condition.

2.5 Concluding Remarks

In this chapter, we obtain antimagic labelings of regular graphs with particu-

lar types of 3-factors (odd regular graphs containing pseudo-prisms). Also the
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Figure 2.4.3: 5-Regular Graph without Perfect Matching but with a 5-Claw

Factor

antimagic-ness is verified for the class of graphs with mixed odd claw factors,
which contains certain odd regular graphs without any 1-factors. Hopefully
these results may be helpful to resolve more general situations regrading the
conjecture that every regular graph except K, is antimagic, or helpful to
resolve the Hartsfields-Ringel conjecture that every connected graph except
K, is antimagic. We add that in the stage of submission of this chapter, all
3-regular graphs are shown antimagic in [24].

Another remark is that most of the results in this chapter, the exam-
ple graphs involved can be graphs with parallel edges. Therefore this leads
to consider more general version of antimagic-ness for multi-graphs, which
obviously should exclude the multiple K5 defined by parallel edges on two
vertices. Problems inspired from the antimagic-ness of simple graphs are

obvious interesting to be explored over the cases of multi-graphs.



Chapter 3

Antimagic Labeling of Even

Regular Graphs

3.1 Even Regular Hamiltonian Graphs

Note that a graph is called Hamiltonian if it contains a Hamiltonian cycle.
We show in this section that Hamiltonian regular graphs of even degree are
antimagic. First we note that in [21] the following result was obtained, which

implies the antimagic-ness of even regular Hamiltonian graphs of odd order:

Theorem 3.1.1. Let G be a 2k-reqular, k > 2, Hamiltonian graph of odd

order n. Then G is (a,1)-antimagic.

As for Hamiltonian even regular graphs of even order, we have the fol-

lowing;:

Theorem 3.1.2. Let G be a 2k-reqular, k > 2, Hamiltonian graph of even
order n. Then G is antimagic.

22
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Proof. We proceed with similar notations as in the previous Theorem where
we showed that 2k-regular Hamiltonian graphs of odd order are antimagic.
We let G be a 2k-regular Hamiltonian graph of even order n, and G =
PR D Fi, where F; is a 2-factor for each 1 < i < k. Moreover
without loss of generality we assume F} is a Hamiltonian cycle of G.

We start labeling as before, on the Hamiltonian cycle F} we give f(v;v;41) =
2 for i odd, and f(vivi41) = £+% for i even. Note that by labeling this way,
we have the unique conflict of the pair of vertex sums f,"(v1) = f" (vs 1) =
n—+1. However we may resolve the conflict here for the time being, by adding
extra 2 to fi"(v1) to make it an arithmetic sequence of common difference 1,
and we denote the fake vertex sum to be F

Then as before we may label G recursively, and get an arithmetic progres-

sion of common difference 1 for the vertex sums -0 1)" +r+4ifori=1,-
In particular note that F(vl) = m;l +k+ 1 = ft(v) + 5. We clalm
that one may keep the antimagic-ness of the graph, while removing the extra
5 we added previously from F(vl), by switching certain edge labels to get
f1(v1) back. We split the situation into the following cases:

Case 1: @-ln _1 “+k+1< f+( 1) < @k —1)n _1 +k+1+7%. Then ft(v) <
—(% mll + k —|— 1, and together with other vertex sums, it is seen that f is

antlmaglc.

Case 2 (%2_1)” +k+1+5 < F(vl) RrTgn _1)” + k + 1+ n. Then in this
case GF_bn +k;+1 < ff(n) < (WT*I)"—i—k;—i—l—i—g, there is some conflict
happened as ft(v1) = fT(v.) for some r. Note that f(viv) = 1, and we
switch the edge labels of v;v5 and some edge v,v;, of the second 2-factor F,
where the edge v,v, is incident with v,.. There are two possibilities:
Sub-case 2.1: v, # vy. Therefore in this case v1vy and v,v, are disjoint.
Then we switch the edge labels of them as follows, the resulting labeling is
antimagic. First note that f(v,vp) > n + 1, and thus f*(vy) and f*(vg)
increase simultaneously by at least n. Then both f*(v;) and f*(vy) are
distinct, and > (%2%)" + k4 n. On the other hand, both f*(v,) and f*(vy)

decrease simultaneously by at least n. Also both are distinct, and < WT_D"—F
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k 4+ 1. Therefore the antimagic-ness is assured together with other vertex
sums.

Sub-case 2.2: v, = vy. Then we switch the edge labels of v;v, and
U, Up, NOte that in this case vy is either v, or vy, say vo = v,. It can be seen
that f*(vq) is unchanged. Note that similarly f*(v;) > (%QT_WL +k+n and
) < (%2%)" + k + 1, thus the resulting new labeling is antimagic. O

In the following we provide with more examples about antimagic labelings
of regular graphs. The first class of examples come from the power of cycles

C* which are even regular graphs.

Example 3.1.3. (Powers of Cycles C*) In 2011, M. Lee, C. Lin, and W.
Tsai [23] proved that in particular that the square of cycles C2 with odd order
are antimagic, and further conjectured that all powers of cycles of any order
are also antimagic. It is not hard to see that their results and moreover the
congecture follow from the results in this section, since all powers of cycles
C* are clearly Hamiltonian and even regular.
Also we have the following examples from circulant graphs.

Example 3.1.4. CIR,(S) is antimagic if there exists an element s with

gcd(n, s) = 1 such that s € S, since it contains a Hamiltonian cycle CIR,, ({s}).

3.2 Even Regular Graphs With Particular 2-

Factors

In this section we generalize the results for the antimagic-ness of Hamiltonian

even regular graphs of odd order as in Theorem 3.1.1. We start with the
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following Lemma:

Lemma 3.2.1. Let G be a 2-reqular graph of order p. Assume that G has a
bijective edge labeling from E(G) to the consecutive integers a,a+1,--- ,a+

(p — 1) such that the vertex sums are consecutive integers. Then
1. p is odd;

2. The consecutive vertex sums are A; = 2a + b= Lyi—1for1<i<np.

Main result is as follows:

Theorem 3.2.2. Let G be a 2k-reqular graph with p vertices, k > 2. As-
sume that G contains a 2-factor consisting of (a,1)-antimagic 2-subfactors
Hy, Hy,--- ,H; of odd order, where t is a fized positive integer at most k.

Then G is antimagic.

Proof.

Since G is a 2k-regular graph with p vertices, one label edges using consec-
utive integers 1,2,--- , pk. By Petersen’s Theorem 4.1.2, G' can be factored
as sum of 2-factors G = F; & F» & - - - @ Fj,. Without loss of generality, may
assume Fy = H; U HyU- - -U Hy, a disjoint union of 2-regular (a, 1)-antimagic
subgraphs Hy, Hs, -+, H;. Assume H; has m; vertices (hence has m; edges),
for each 1 < 4 < t. Thus m; + mg + --- + my = p. Also note that by
Lemma 4.1.3, the integers m; is odd for each 1 <7 <.

We first label F{ = Hy; U Hy U --- U H;. Since Hy,--- , H; are (a,1)-
antimagic, by applying Lemma 4.1.3 we may have consecutive partial vertex
sums via labeling them respectively using {1, 2, ..., m } for Hy, {p+m1—i—1, p+
my+2, -+, p+my+my} for Hy, {2p+my+mo+1,2p+my+mo+2, -+, 2p+
my + mg + ms} for Hg, A= Dp S 1 (t l)p—i-zz Lmi +
2, (t=1)p+ S22  mi+my} for Hy. Let A’ be the j-th partial vertex sum
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(1<j<m)over H,1<i<t. Alsolet D; = AZle—Afni—l, where 1 < i <
t—1. Note that by Lemma 4.1.3, D; = A7 — Al —1 = $(m;+m1)+2p > p
for : = 1 to t — 1. To make the partial vertex sums to be a sequence of
consecutive integers for the time being, one may modify the partial vertex

sums A; to be the fake partial vertex sums Az'- by the following translations:

Aj“:A;+1—Di—Di_1—---—D1,forizltot—l. Notethat;l?:A]l-,

that is Aj is fixed for each j. There/fgre the fake partial vertex sums A} form
a sequence of consecutive integers Al =01 <oy <---<o,=01+ (p—1).

We now may apply Lemma 5.2.4 to add the labeling of the rest of 2-factors
Fy, -+ | F), and keep the resulting vertex sums to be consecutive integers. By
abusing language we still denote the vertex sums by 1/4\3 . After recovering the
original ver/tgx sums via A;H = Z;-?l +D;,+D; 1+---+Djfori=1tot—1
and A} = Aj, again we still abuse language and call them A;“. We claim
the original vertex sums A} are pairwise distinct. )

To show the claim is tﬁl\le, we may first see o1 < Ajl- = Ajl- < o, for each
j. Secondly o, —|/—\D1 < A2+ D, = A? < 0, + D, for each j. Similarly
o1+ D+ Dy < Ag? + D+ Dy = Ag? < 0, + D; + D,. Then we proceed until
o1+ D1+ Dyt +D 1 <A+ Di+ Dyt + Dy = A <0, +D; +
Dy + -+ Dy for each j. Let [a,b] be the set of integers {t | a <t < b}.
We conclude that for each j, the vertex sums A} belong to [o1, 0,), A? belong
to [o1 + Dy, 0, + D4], A;’ belong to [0y + Dy + Ds, 0, + Dy + D), - -, until
A} belong to [0y + Dy + Dy + -+ D;_y,0, + Dy + Dy + - - - + D;_4]. Note
that [o1,0p,] N |01+ D1,0p,+ D] N [o1 + D1+ Dy, 0, + Dy + Do) N -+ - N oy +
Di+Dy+---+Dyy,0,+ D1+ Dy+ -+ Dy_1] = ¢ since D; > p for each
i=1,---,t—1. (See Figure 3.2.1) Therefore A;'- are pairwise distinct for all

1,7 and we are done.
O

Corollary 3.2.3. Let G be a 2k-regular graph (k > 2) which contains a

2-factor consisting of at most k odd cycles only. Then G is antimagic.

Followed from the above general Theorem 3.2.2 we may have a lot more
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A, A, A;
3 F— f I
(o o, 0:+D, 0,+D, 0.+D,+D. C;+D.+D.

Figure 3.2.1: Translation of Ranges

examples of circulant graphs (Cayley graphs of finite cyclic groups), not just
limited to the case in the above Corollary 3.2.3. To see this we first need
a lemma saying that the disjoint union of an odd number of odd cycles is
(a,1)-antimagic. In 2003 V. Swaminathan and P. Jeyanthi already showed
the following result in [37], however the labeling way they gave in the article
contains errors and can not be properly checked. Therefore here we rewrite

a proof for completeness:

Lemma 3.2.4. (V. Swaminathan and P. Jeyanthi, 2003) Let G be
mC,,, which is the vertex disjoint union of m copies of connected n-cycles

Cy. Then G is (a, 1)-antimagic if and only if m and n are both odd.

Proof.
We prove the necessary part first. Since mC,, is (a, 1)-antimagic, may
suppose the vertex sums form an arithmetic progression with initial term a

and common difference 1. Hence
204+24--4+mn)=a+(a+1)+---+(a+mn—1)

Therefore a = % + %mn, thus mn must be odd, and m and n must be both
odd.

Conversely, for m, n odd, we show that mC,, is (a,1)-antimagic. Sort
and name the vertices of these n-cycles clockwise as vé, which indicate the
J-th vertex in the i-th cycle, where 1 < ¢ < m and 1 < 5 < n. Denote
the corresponding edge vivi,, = ¢! for 1 <i <mand 1< j <n—1, and
vv; =€) for 1 <i<mandj=n.

Then we define the edge labeling f as follows:
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(1, I1<i<m,j=1
m(%)—l—i—l-%, 1§@‘§m——13<j<n for odd j.
J(eh) = m(%f1)+i+%, ml <i<m,3 < j<n, for odd ;.
] m(n+g+1 241, 1§'§m7—12 j <n—3, for even j.
m(nﬂ‘ 1<m,2<j<n-—3, for even j.

m(

S

1) + 1, 1<i:<m,5=n—1.

\

Then it may be checked that the above labeling induces the desired (a, 1)-
antimagic labeling.
O

Corollary 3.2.5. All circulant graphs G of odd order (hence even reqular)

are antimagic.

Proof.

Any 2-factor of G is consisting of an odd number of odd cycles, which is
(a,1)-antimagic by Lemma 4.3.1. From the above Theorem 3.2.2 it follows
G is antimagic.

O

Corollary 3.2.6. Let G = CIR,(S) be a circulant graph of even order n.

18 odd.

Suppose there exists an element a € S C {1,2,---,5} and gcd

Moreover 5 is not in S. Then G is antimagic.

Proof.

Note that since § is not in S and n is even, G = CIR,(S) is even regular,
say 2k-regular and k > 2. Also CIR,({a}) is a 2-factor consisting of gcd(n, a)
cycles with the same odd order m, which means an even number of odd
cycles. We see that one may treat the 2-factor CI R, ({a}) as H; U Hy where

H, and H, are both 2-regular subgraphs consisting of an odd number of odd
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cycles. Hence Hy and H, are (a, 1)-antimagic by Lemma 4.3.1. Therefore by
the above Theorem 3.2.2, it follows G is antimagic.
O

In the following we have another criterion for testing the antimagic-ness

for an even regular graph with a 2-factor consisting of cycles of the same size:

Theorem 3.2.7. Let G be a 2k-regular graph. Assume that G contains a

2-factor F' = mC,, consisting of cycles of the same size. Then G is antimagic.

Proof.

In case m, n both odd, by Lemma 4.3.1 and Lemma 5.2.4, one see immedi-
ately that such graph G is (a, 1)-antimagic, hence antimagic. In case m even
and n odd, one may treat the case as two groups of cycles, one is m—1 (odd)
C,’s and the other one is a single odd cycle C,,. By applying Lemma 4.3.1
one see the first group of cycles is (a, 1)-antimagic, and then using the lager
edge labels over the single C,, one obtain another (a’, 1)-antimagic labeling,
which does not overlap with the former group of (a, 1)-antimagic vertex sums.
Therefore we may apply Lemma 2.2.2 to get G is antimagic. One may get the
remaining cases in similar fashions, and the details are left to the interested

readers.
O

Corollary 3.2.8. All even reqular circulant graphs are antimagic.



Chapter 4

Edge-Super Magic Labeling

A vertex magic total labeling is a bijection from V(G) U E(G) to the
consecutive integers 1,2, .-, p + ¢, with the property that, for every vertex
uin V(G), one has f(u) + >, epq) f(ww) = k for some constant k. Such a
labeling is called E-super vertex magic if f(EF(G)) = {1,2,---,q}. A graph
G is called Edge-Super(E-super for short)x x vertex magic if it admits a
E-super vertex magic labeling. Most recently [29] G. Marimuthua and M.
Balakrishnan (” E-super vertex magic labelings of graphs”, Discrete Applied
Math. 160, 2012, pp. 1766-1774) studied some basic properties of such
labelings and established E-super vertex magic labeling of some families of
graphs. In this chapter we extend their results and more examples are also
provided. Note that the results were written as a paper A Note on E-
super Vertex Magic Graphs, which was submitted to a journal in 2012

and under review.

4.1 Introduction and Background

Over the past few decades many kinds of graph labelings have been studied

intensively, and an excellent survey of graph labeling can be found in Gal-
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lian’s chapter [15]. In 1963, Sedlacek [32] introduced the concept of magic
labeling. Suppose that G is a graph with ¢ edges and one shall say that G is
magic if the edges of GG can be labeled by the numbers 1,2, --- | ¢ so that the
sum of labels of all the edges incident with any vertex is constant. In 2002
MacDougall et al. [26] introduced the concept of vertex magic total labeling
as follows. If GG is a finite simple undirected graph with p vertices and ¢
edges, then a vertex magic total labeling is a bijection f from V(G) U E(G)
to the integers 1,2,--- ,p + ¢ with the property that for every u € V(G),
the sum f(u) + >, cpm@) f(uv) is constant. They studied the basic prop-
erties of vertex magic graphs and showed some families of graphs having a
vertex magic total labeling. MacDougall et al. [27] further introduced the
concept of super vertex magic total labeling. They call a vertex magic to-
tal labeling is super if f(V(G)) = {1,2,---,p}. Swaminathan and Jeyanthi
[37] introduced a concept with the name super vertex magic labeling, but
with different definition. They call a vertex magic total labeling is super
it f(E(G)) ={1,2,---,q}. More recently Marimuthua and Balakrishnan
[29] studied some basic properties of such labelings and established E-super

vertex magic labeling of some families of graphs. Here we define it formally:
Definition 4.1.1. Let G be a finite simple graph with p = |V(G)| vertices
and ¢ = |E(G)| edges. A vertex magic total labeling is a bijection from
V(G) U E(G) to the consecutive integers 1,2,--- p + ¢, with the property
that, for every vertex u in V(G), one has f(u)+>_,,cp(q) f(uv) = k for some
constant k. Such a labeling is called E-super vertex magic if f(E(G)) =
{1,2,--- ,q}. A graph G is called E-super vertex magic if it admits a

E-super vertex magic labeling.

In this chapter, we generalize some of previous results in [29]. More
examples regarding the E-super vertex magicness of regular graphs, such as

circulant graphs, are also provided. We first state a well-known result we
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need later:

Theorem 4.1.2. (J. Petersen, 1891 [31]) Let G be a 2r-regular graph.

Then there exists a 2-factor in G.

Notice that after removing edges of the 2-factor by the Petersen Theorem,
we will get an even regular graph again and again. Thus an even regular

graph has a 2-factorization. Also we need another fact as pointed out in [37]:

Theorem 4.1.3. Let G be a graph and g be a bijection from E(G) onto
{1,2,--- | |E(G)|}. Then g can be extended to an E-super vertex magic la-

beling of G if and only if {w(u) = >, glw) | u € V(G)} consists of

uweE(G)

|[V(G)| consecutive integers.

This allows us to use the edge labeling instead to be the tool studying
the E-super vertex magic total labeling throughout this chapter.

4.2 Even Regular Hamiltonian Graphs of Odd

Order

Note that a graph is called Hamiltonian if it contains a Hamiltonian cycle.
We show in this section that Hamiltonian even regular graphs of odd order
are F-super vertex magic. In Theorem 3.5. of [29] the following result is
proved: Let G be a (p,q) graph of odd order. If G can be decomposed into
two Hamilton cycles, then G is E-super vertex magic. Here we generalize to

the following form:

Theorem 4.2.1. Let G be a 2r-reqular, v > 2, Hamiltonian graph of odd

order n. Then G is E-super vertex magic.
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Proof.

By Petersen’s Theorem 4.1.2, G = FiP Fo P --- P F,, where F; is a
2-factor for each 1 < ¢ < r. Without loss of generality, we assume F} is
the Hamiltonian cycle which G has, and let V(F;) = {vy, v, -+ ,v,} and
E(F)) = {vivg, 003, -+ ,Up_1Up }.

Now we give an edge labeling f by the following steps. Note that G has
rn edges. First we split all edge labels 1,2, rn into r groups as follows:
{1,2,--- ,n},{n+1,n+2,--- 2n},------ {r—Dn+1,(r—1)n+2,--- ,rn}.
Then we will put these groups of labels in order over the edges of Fy, F5, - - -,
F., respectively. Similarly we may define G recursively as before, namely
Grn=F PR P F;forl <k<r. Welabel G recursively in below.

Since Fj are 2-factors for each 1 < j < r, we assign an orientation so that
over each connected component (connected 2-cycle) the flow direction is ei-
ther clockwise or counter-clockwise. We set f¢“!(w) and f;"(w) respectively,
for each 1 < k < r, to be the outgoing edge label over the 2-factor F}, from
the vertex w and the incoming edge label to the vertex w according to the
given orientation. On the other hand, we denote f*(w) to be the induced
vertex sum at the vertex w, and we use f;" (w) to stand for the partial vertex
sum at w for Gy for each 1 < k < r. Then we may start labeling recursively
over G, Gy, ---, G, = G. Precisely we give the labeling in the following
steps:

Step 1: For G; = F}, first by f(vvi11) = % for i odd, and f(vvip1) =
1+ 2 for i even. Thus the partial vertex sum fi (v;) =i+ 22+, 1 <i <n,

which form an arithmetic progression of common difference 1.

Step 2: For Gy, G, ..., G, we proceed recursively as follows: For 2 < k < r,
over Fy we set fo"(v;) = (2k272k+21)"+2k71 i 1(7)@) for each 1<i<n.

Therefore f; (11) = fi"(vg) ity (vi) + f (v7) = A2y pin
Also note that fo“(v;) = fi*(v;) for a unique j, where 1 <j#i<mn,
Therefore f,"(v;) = (2k2_1++2k+1 + (i — 1) for 1 < i < n, which form an
arithmetic progression of common difference 1.

Therefore one obtain an edge labeling where the induced vertex sums
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are consecutive integers, and hence an FE-super vertex magic labeling by
Theorem 4.1.3.
O

In fact with similar proof technique as above, it is not hard to see that

one may furthermore generalize the above to the following:

Theorem 4.2.2. Let G be decomposed into the sum of two spanning sub-
graphs G1 & Go, where Gy is E-super verter magic and Gs is reqular of even

degree. Then G is E-super vertex magic.

Note that the above Theorem 4.2.2 generalizes Theorem 3.7. in [29]:
If a graph G can be decomposed into two E-super vertex magic spanning
subgraphs G; and G5 where (5 is regular, then G is E-super vertex magic.
Also we remark that just recently similar techniques were employed in [46]

to deal with another graph labelling problem.

4.3 Even Regular Graphs of Odd Order

In 2003 V. Swaminathan and P. Jeyanthi showed the following result in [37]
as pointed out by G. Marimuthu and M. Balakrishnan in [29]:

Theorem 4.3.1. Let G be mC,,, which is the disjoint union of m copies of

Cy. Then G is E-super vertex magic if and only if m and n are both odd.

Then we have the following result which can be used to create many
examples of E-super vertex magic regular graphs and also can be treated as

a natural generalization of Theorem 4.2.1:

Theorem 4.3.2. Let G be a even-reqular graph of odd order which contains

a 2-factor consisting of an odd number of odd cycles. Then G is E-super
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vertex magic.

Proof.

Let GG be a regular graph of even degree with odd number of vertices. Then
by Petersen’s Theorem 4.1.2, G may be decomposed into sums of 2-factors,
say G=F P FP--- P F,., where F; is a 2-factor for each 1 < i < r. Since
G is of odd order, any F; consists of an odd number of odd connected cycles.
Therefore by Theorem 4.3.1 and Theorem 4.2.2 we may see G is E-super

vertex magic. O

To obtain more examples, we consider the circulant graphs as follows:

Definition 4.3.3. A circulant graph CIR,(S) with n vertices, with re-
spect to S C {1,2,---, 5]}, is a graph with the vertex set V(CIR,(S5)) =

{0,1,2,--- ;n — 1}, and the edge set is formed by the following rule:

E(CIR,(S))={ij: i—j==xs (modn), s€ S}.

Note that the circulant graph CIR,(S) is also called a Cayley graph of the
finite cyclic group Z, generated by S.

For example, CIR,({a}) = C,, the connected n-cycle, if gcd(n,a) = 1.

Moreover CIR,({1,2,---,|2|}) = K,, the complete graphs, and C'I Ry, ({1,n}) =

2
the n-Mdobius ladder graphs. Note that CIR,,(S) is odd-regular if n is even

and 5 € 9, is even-regular otherwise.
Therefore directly from Theorem 4.3.2, we have the following class of

circulant graphs which is E-super vertex magic:

Theorem 4.3.4. Let G be a circulant graph with odd order. Then G is

E-super vertex magic.
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4.4 Conclusion Remark

More properties of E-super vertex magic labelling can be explored based
upon results in this chapter and previous work. In particular among others
one can study the E-super vertex magic labelling for odd regular graphs and

general regular graphs, contrast to results here for even regular graphs.



Chapter 5

Vertex Magic Total Labeling

Let G = (V(G),E(G)) be a finite simple graph with p = |V(G)|
vertices and ¢ = |E(G)| edges, without isolated vertices or isolated edges. A
vertex magic total labeling is a bijection from V (G)UE(G) to the consecutive
integers 1,2, - - - |, p+q, with the property that, for every vertex v in V(G), one
has f(u) + >, epq) f(w) = k for some constant k. In 2004 MacDougall et
al. [26] first introduced the concept of vertex magic total labeling and studied
their properties. In 2006 Slamin et al. [35] studied such vertex magic total
labeling of disconnected graphs. In this paper we study the properties of
such vertex magic total labeling for various graph classes. Among others
we settle a conjecture mentioned in [35], which claimed the existence of the
vertex magic total labeling of disjoint union of multiple copies of distinct
sun graphs, where the sun graph is the corona product of a cycle with a
point. We furthermore provide with an infinite class of graphs admitting
such labelings based upon adding arbitrary 4k-regular factors to the above
disjoint union of sun graphs. Note that the results we obtain in this paper
could be extended to those pseudo-graphs with multiple edges or loops. Note
that the results in this chapter has been accepted as a regular journal paper
On Vertex Magic Total Labeling of Disjoint Union of Sun Graphs,
Utilitas Math., 2013.

37
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5.1 Introduction and Background

Unless otherwise stated all graphs in this chapter are finite simple, undi-
rected, possibly disconnected, but without any isolated vertex or any isolated
edge. Over the past few decades many kinds of graph labelings have been
studied intensively, and an excellent survey of graph labeling can be found in
Gallian’s paper [15]. In 1963, Sedldcek [32] introduced the concept of magic
labeling. Suppose that G is a graph with ¢ edges and one shall say that G
is magic if the edges of G' can be labeled by the numbers 1,2, --- ¢ so that
the sum of labels of all the edges incident with any vertex is constant. In
2004 MacDougall et al. [26] introduced the concept of vertex magic total
labeling, studied the basic properties of vertex magic graphs, and showed

some families of graphs having a vertex magic total labeling.

Definition 5.1.1. Let G be a finite simple graph with p = |V(G)| vertices
and ¢ = |E(G)| edges. A vertex magic total labeling is a bijection from
V(G) U E(G) to the consecutive integers 1,2,--- ,p + ¢, with the property
that, for every vertex u in V/(G), one has f(u)+>_,,c p(q) f(uv) = k for some
constant k. The constant k is called the magic constant. Moreover G is

called vertex-magic if it admits a vertex magic total labeling.

Since the introduction of this notion, there have been several results on
vertex magic total labeling of particular classes of graphs. For example,
MacDougall et al. [26] proved that cycle C, for n > 3, path P, for n > 2,
complete graph K, for odd n, complete bipartite graph K, ,, for n > 1, have
vertex magic total labelings. Baca, Miller and Slamin [7] proved that for
n>31<m< ["T_lj, every generalized Petersen graph P(n,m) has a
vertex-magic total labeling with the magic constant k = 9In+2, k = 10n+ 2,
and k = 11n+2. In 2007 [17] Gray studied such labelling for regular graphs.
The complete survey of the known results on vertex magic total labeling of

graphs can be found in [15], and also in other references [17, 29, 35, 45].
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Most of the known results are concerning on vertex magic total labeling of
connected graphs. For the case of disconnected graph, Wallis [45] proved the

following theorem.

Theorem. Suppose G is regular graph of degree r which has a vertex magic
total labeling. (i) If r is even, then tG is vertex magic whenever ¢ is an odd
positive integer. (ii) If = is odd, then tG is vertex magic for every positive
integer t.

In 2006 Slamin et al. [35] studied such vertex magic total labeling of
disconnected graphs and made a conjecture that there is a vertex-magic total
labeling of the disjoint union of non-isomorphic suns, where the graph sun
is the corona product of a cycle with a point. That is it was conjectured that
the vertex-magic total labeling exists for the corona product of an arbitrary
2-regular graph with a point. The corona product of G; and G5, defined
by Frucht and Harary [13] is the graph which is the disjoint union of one
copy of G; and V(G1) copies of Go in which each vertex of the copy of G is
connected to all vertices of a separate copy of G5. Please see in the following
Figure 5.1.1 for an example of corona product of a 2-regular graph with one

point, i.e. a disjoint union of sun graphs.

Figure 5.1.1: Example of Disjoint Union of Sun Graphs

In this chapter we verify the conjecture completely and provide with more

examples by way of showing the following:

Theorem. There exists a vertex-magic total labeling for the disjoint union

of ¢t not necessarily isomorphic suns S,,, U Sy,, U---U.S,,,, for any positive
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integer t. Moreover let G = (.S,,, USy, U - -US,,, )@ H be the graph consisting
of the disjoint union of ¢ suns and an arbitrary 4k-factor H. Then G also
admits a vertex-magic total labeling.

We notice that the method employed here is also valid for those graphs
with multiple edges and loops. Therefore we verify moreover that the vertex-
magic total labelings exist for the corona product of an arbitrary 2-regular
pseudo-graphs with one point. More examples and open problems will be

provided in the concluding remark.

5.2 Main Results

The main result of this note is the following theorem, which verifies the

conjecture made by Slamin et al. in 2006 [35]:

Theorem 5.2.1. There exists a vertez-magic total labeling for the disjoint
union of t (not necessarily isomorphic) sun graphs Sy, U Sy, U---US,,,, for
any positive integer t.

Proof. Let G be the graph S,,, US,,, U---US,,,, and let 22:1 m; = n.
Hence the number of vertices is 2n and the number of edges is also 2n.
Assume that the pendant vertices are uy, us, - - - , u,, and the vertices over the
cycle are vy, vg, -+ ,v,, so that wv; € E(G) for each 1 < i < n. Then we
start doing the total labeling f to the vertices wuy, us, - - - ,u, using integers
2n+2,2n+4, - - -, 4n and to the edges u;v; by 6n+1— f(u;) foreach 1 <1i < n.
Therefore the weights over the vertices uy, us, - - - , u, are 6n+ 1, which is the
magic constant.

Now we do the labeling over the vertices and edges of the cycle as follows.
First we assign an orientation on the cycles so that over each connected
component the flow is either clockwise or counter-clockwise. Let e and
ei™ respectively to be the outgoing edge from the vertex v; and the incoming

edge to the vertex v;, according to the given orientation. Precisely we give
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the labeling of €™ as follows:
fle") = 4n — flusv,)
for each 1 < i < n. Note that the range for the the edge labels of e is
{1,3,5,--+,2n — 1}.
On the other hand, notice that there is a one-to-one correspondence be-

tween the edge labels of e?“! and the edge labels of €. We may define the

labeling of v; as follows:
flo) = 6n+1—(f(e™) + f(ei") + f(ww:))

for each 1 < ¢ < n. Therefore f(v;) uses the rest of the labels 2,4,6, - ,2n
since f(el) + f(u;v;) = 4n for each 4, and f(v;) = 2n + 1 — f(e?™). Tt is
seen that f(v;) is uniquely determined by the label of e?“!, hence uniquely
determined by the label of ei”. The weights over these vertices vy, va, -+ , v,

are also 6n 4+ 1. Thus we have the desired vertex-magic total labeling.

Figure 5.2.1: The Vertex-Magic Labeling of Disjoint Union of Three Suns

In order to obtain some technical lemmas for more examples of vertex-

magic graphs, we define another type of related edge labeling:

Definition 5.2.2. For a graph G = (V, E) with ¢ edges and without any iso-

lated vertex, an antimagic edge labeling is a bijection f : E — {1,2,--- ¢},
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such that the induced vertex sum f*:V — Z* given by f*(u) = > {f(w) :
uv € E} is injective. A graph is called antimagic if it admits an antimagic
labeling. If moreover for GG the vertex sums form an arithmetic progression
with initial term @ and common difference d, we say G admits an (a,d)-

antimagic labeling and G is (a, d)-antimagic.

Definition 5.2.3. We say for convenience that, a graph G' admits (a, d)-
antimagic vertex sums, if under certain edge labeling for G' the associated
vertex sums form an arithmetic progression of initial term a and common

difference d.

Note that we have the following fact for assuring (a,1)-antimagic-ness
while adding extra even factor to an (a, 1)-antimagic graph, which was proved

in [21] in 2006:

Lemma 5.2.4. (J. Ivanco, A. Semanicovd, 2006) Assume H is a graph
which arose from a graph G of p vertices and q edges by adding an arbitrary

2k-factor. If G is (a, 1)-antimagic, then H is (a,1)-antimagic.

We extend the above result as follows for assuring (a, d)-antimagic-ness

while adding extra even factor to an (a,d)-antimagic graph:

Lemma 5.2.5. Assume the graph G admits (a,d)-antimagic vertex sums
via certain edge labeling. After adding an arbitrary 2-factor H by labeling
the edges of H with another arithmetic progression with common difference
d, the new graph G ® H still admits (a,d)-antimagic vertex sums, i.e. an

arithmetic progression vertex sums with common difference d.
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Proof. Let the (a,d)-antimagic vertex sums of G be a,a+d, - - - ,a+(|V(G)|—
1)d. Also let the edge labels for H be b,b+d,--- ,b+ (|V(G)| — 1)d. Then

we we assign an orientation on the cycles of H so that over each connected

out
7

component the flow is either clockwise or counter-clockwise. Let e* and e

respectively to be the edge from the vertex v; and the incoming edge to the
vertex v;, according to the given orientation. Assume the original vertex sum
at v; is w(v;) for each i. We see the resulting vertex sum for G @ H at the
vertex v; is W (v;) = w(v;) + €. We define

e =a+b+ ([V(G)| — 1)d — w(v;)

for each 1 < i < |V(G)|. Since at the vertex v; there is a one-to-one corre-

out
7

spondence between the outgoing edge labels of e/** and the incoming edge

labels of e

7 )

progression vertex sums with common difference d.

we see the resulting vertex sums W(v;) form an arithmetic

O

Lemma 5.2.6. Let the graph G admit (a,d)-antimagic vertex sums under
certain edge labeling. After adding an arbitrary 2k-factor H where k is a
multiple of d, the new graph G @ H still admits (a, d)-antimagic vertex sums.
In particular, adding an arbitrary 2k-factor to an (a,d)-antimagic graph still
keeps the (a,d)-antimagic-ness.

Proof. Let the graph G have p vertices and g edges. Then we see over the
2k-factor H one can label the edges with ¢+ 1,¢+2,--- ,q + kp. Since d|k,

let k = td. Now we split the above edge labels into ¢ categories as follows:



CHAPTER 5. VERTEX MAGIC TOTAL LABELING 44

g+ (t—Ddp+1,----- ,q + tdp.

Again we split each of the t categories into d sub-categories, such that
the (7, j)-th sub-category is the j-th sub-category of the i-th category. Note
that the (7, j)-th sub-category is an arithmetic progression with initial term
q+ (i — 1)dp + 7 and common difference d for 1 < i < tand 1 < j < d.
Therefore from Lemma 5.2.5 one may check the graph G & H still admits
(a, d)-antimagic vertex sums.

O

Therefore in case d = 1 the above more general result goes back to the
previous one in [21]. With the above lemmas we may push one step for-
ward and provide with an infinite class of examples of the vertex magic total

labeling by adding arbitrary 4k-factors:

Theorem 5.2.7. Let G = (S, US,, U --USy,,)® H be the graph consisting
of the disjoint union of t (not necessarily isomorphic) suns and an arbitrary
4k-factor H. Then G admits a vertex-magic total labeling.

Proof. As previously in Theorem 5.2.1 let Zle m; = n. Then the number
of vertices for the graph S,,, U Sy, U---US,,, is 2n and the number of edges
is also 2n. In the proof of Theorem 5.2.1 we see for S,,, U Sy, U -+ U Sy,
one has the vertex-magic total labeling with magic constant 6n + 1 and the
labelings used over vertices are consecutive even numbers 2,4, ---  2n,2n +
2,-++,4n. We remove these consecutive even numbers, and we see that with
the remaining edge labels the graph admits (a,2)-antimagic vertex sums.
Then by Lemma 5.2.6 after adding any arbitrary 4k-factor H one still keep
the (a, 2)-antimagic-ness for vertex sums of edge labels. Finally according to
the (a, 2)-antimagic-ness for vertex sums over these vertices, we put back the
consecutive even numbers 2,4, --- . 2n,2n+ 2,--- ,4n over all the vertices in

reverse ascending order to make the constant sum, then the desired vertex-
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magic total labeling for the resulting graph (S,,, U Sy, U---U Sy,,) @ H is
obtained.

O

5.3 Conclusion Remark

More properties of vertex magic total labellings for disconnected graphs can
be explored based upon results in this paper and previous work. In particular
one may further study such labelling for the corona products and other types
of products of graphs, as we have the result for corona product of a 2-regular
graph with a null graph (which is the disjoint union of suns) in this note.

Another remark is that the results in this note also valid for pseudo-
graphs, that is, graphs with possibly multiple edges and loops. Please see
the following Figure 5.3.1 for example. Note that the edge labels over the
loops have to be counted twice while calculating the weight of the given
vertex. Therefore via adding arbitrary 4k-factors, the resulting vertex-magic
graphs could be graphs with multiple edges and loops.

21

1 17

3 5

0 A&
@/15 13\@

Figure 5.3.1: A Vertex-Magic Labeling of Pseudo-Suns with Magic Constant

37.
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We also conjecture that the Theorem 5.2.7 is also valid for adding an

arbitrary 2k-factor instead of a 4k-factor:

Conjecture. Let G = (S, U Sp, U---US,,) @ H be the graph consisting
of the disjoint union of ¢ (not necessarily isomorphic) suns and an arbitrary

2k-factor H. Then G admits a vertex-magic total labeling.



Chapter 6

Zero-Sum Flows

As an analogous concept of nowhere-zero flows for directed and bi-directed
graphs, we consider zero-sum flows for undirected graphs in this article. For
an undirected graph G, a zero-sum k-flow is an assignment of non-zero
integers whose absolute values less than k to the edges, such that the sum
of the values of all edges incident with each vertex is zero. Furthermore we
generalize the notion via considering a combinatorial optimization problem,
which is to calculate the zero-sum minimum flow number of a graph G,
namely, the least integer £ for which G may admit a zero-sum k-flow. The
Zero-Sum 6-Flow Conjecture was raised by Akbari et al. in 2009: If a
graph with a zero-sum flow, it admits a zero-sum 6-flow. It turns out that
this conjecture was proved to be equivalent to the classical Bouchet 6-flow
conjecture for bi-directed flows. We study zero-sum minimum flow numbers
of graphs induced from plane tiling by regular hexagons in an arbitrary way,
namely, the hexagonal grid graphs. In particular we are able to verify the
Zero-Sum 6-Flow Conjecture for the class of hexagonal grid graphs by de-
termining the zero-sum flow number of any non-trivial hexagonal grid graph
is 3 or 4. We further use the concept of dual graphs to specify classes of
infinite families of hexagonal grid graphs with minimum flow numbers 3 and

4 respectively. Further open problems are included. Note that the results in
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this chapter has been presented in the international conference FAW-AAIM
2013, Dalian, China, June 26-28, and already is published as Zero-Sum
Flow Numbers of Hexagonal Grids, Lecture Notes in Computer Science
(LNCS) 7924, pp. 339-349, 2013. (EI)

6.1 Background and Motivation

Let G be a directed graph. A nowhere-zero flow on G is an assignment
of non-zero integers to each edge such that for every vertex the Kirchhoff
current law holds, that is, the sum of the values of incoming edges is equal
to the sum of the values of outgoing edges. A nowhere-zero k-flow is a
nowhere-zero flow using edge labels with maximum absolute value £ — 1 .
Note that for a directed graph, admitting nowhere-zero flows is independent
of the choice of the orientation, therefore one may consider such concept over
the underlying undirected graph. A celebrated conjecture of Tutte in 1954
says that every bridgeless graph has a nowhere-zero 5-flow. F. Jaeger showed
in 1979 that every bridgeless graph has a nowhere-zero 8-flow[22], and P.
Seymour proved that every bridgeless graph has a nowhere-zero-6-flow|[33] in
1981. However the original Tutte’s conjecture remains open. There is a more
general concept of a nowhere-zero flow that uses bidirected edges instead of
directed ones, first systematically developed by Bouchet[9] in 1983. Bouchet
raised the conjecture that every bidirected graph with a nowhere-zero integer
flow has a nowhere-zero 6-flow, which is still unsettled.

Recently another analogous nowhere-zero flow concept has been studied,
as a special case of bi-directed one, over the undirected graphs by S. Akbari
et al.[1, 2] in 2009 and 2010, which is defined as follows:

Definition 6.1.1. For an undirected graph G, a zero-sum flow is an as-
signment of non-zero integers to the edges such that the sum of the values of

all edges incident with each vertex is zero. A zero-sum k-flow is a zero-sum



CHAPTER 6. ZERO-SUM FLOWS 49

flow whose values are integers with absolute value less than k.

S. Akbari et al. raised a conjecture (called Zero-Sum 6-Flow Conjec-
ture) for zero-sum flows similar to the Tutte’s 5-flow Conjecture for nowhere-
zero flows as follows: If G is a graph with a zero-sum flow, then G admits
a zero-sum 6-flow. It was proved in 2010 by Akbari et al. [1] that the
above Zero-Sum 6-Flow Conjecture is equivalent to the Bouchet’s 6-Flow
Conjecture for bidirected graphs, and the existence of zero-sum 7-flows for
regular graphs were also obtained. Based upon the results, they raised an-
other weaker conjecture for regular graphs: If G is a r-regular graph with
r > 3, then G admits a zero-sum 5-flow.

In literature a more general concept minimum flow number, which is
defined as the least integer k£ for which a graph may admit a k-flow, has
been studied for both directed graphs and bidirected graphs. We extend the
concept in 2011 to the undirected graphs and call it the zero-sum minimum

flow number [43]:

Definition 6.1.2. Let G be a undirected graph. The zero-sum minimum
flow number F(G) is defined as the least number of £ for which G may
admit a zero-sum k-flow. F'(G) = oo if no such k exists.

In particular we obtain a characterization of graphs with flow number 2,
and also a characterization of 3-regular graphs with flow number 3 among
other results[42]. Note that the related result were presented in the FAW 2012
conference by the first author in Beijing. We introduce the basic properties
and previous results of the zero-sum minimum flow numbers in later section.
On the other hand, it is well known that grids are extremely useful in all areas
of computer science. One of the main usage, for example, is as the discrete
approximation to a continuous domain or surface. Numerous algorithms
in computer graphics, numerical analysis, computational geometry, robotics
and other fields are based on grid computations.

It is known that there are only three possible types of regular tessellations,

which are tilings made up of squares, equilateral triangles, and hexagons. We
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consider and study the minimum flow numbers of graphs induced from plane
tiling by regular polygons in an arbitrary way. Formally, a square grid, or a
square grid graph is induced by an arbitrary finite subset of the infinite
integer lattice grid Z x Z. The vertices of a square grid are the lattice
points, and the edges connect the points which are at unit distance from
each other. The infinite grid Z x Z may be viewed as the set of vertices
of a regular tiling of the plane with unit squares. Another type is with
equilateral triangles, which defines an infinite triangular grid in a similar
way. A triangular grid graph is a graph induced by an arbitrary finite
subset of the infinite triangular grid. One more type of plane tiling is with
regular hexagons which defines an infinite hexagonal grid, and the graph
induced by an arbitrary finite subset of the infinite hexagonal grid is called
a hexagonal grid graph. (See Figure 6.1.1) A hexagonal grid graph is also
named a honeycomb graph in literature. We pay attention to hexagonal

grid graphs in this article.

Figure 6.1.1: Example of a Hexagonal Grid Graph

Note that Akbari. et al. showed that in [2] if Zero-Sum 6-Flow Con-
jecture is true for (2,3)-graphs (in which every vertex is of degree 2 or 3),
then it is true for any graph. Henceforth the study can be reduced to (2, 3)-
graphs. It is clear non-trivial hexagonal grid graphs are a special class of

(2,3)-graphs. Therefore in this paper we focus the study over the zero-sum
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flow numbers for hexagonal grid graphs. In particular we are able to ver-
ify the Zero-Sum 6-Flow Conjecture for the class of hexagonal grid graphs
by determining the zero-sum flow number of any non-trivial hexagonal grid
graph is 3 or 4. We further use the concept of dual graphs to specify classes
of infinite families of hexagonal grid graphs with minimum flow numbers 3

and 4 respectively.

6.2 Preliminaries of Zero-Sum Flow Numbers

In 2011 [43] we generalize the notion zero-sum flows by considering a com-
binatorial optimization problem, which is to find the zero-sum minimum
flow number of a graph G, namely the least number of k£ for which G may
admit a zero-sum k-flow. Obviously the zero-sum minimum flow numbers
provide with more detailed information regarding zero-sum flows. For ex-
ample, we may restate the previously mentioned Zero-Sum Conjecture as
follow: Suppose a undirected graph G has a zero-sum flow, then F(G) < 6.
We showed in [42] some general properties of small minimum flow numbers,
so that the calculation of zero-sum minimum flow numbers becomes easier
and efficient. In particular we obtained the following pretty useful technical
lemma for the characterization of graphs with minimum flow number 2 which
is used frequently in this paper, and we provide with a proof for completeness

here:
Lemma 6.2.1. (T.-M. Wang and S.-W. Hu, [42]) A graph G has zero-
sum minimum flow number F(G) = 2 if and only if G is Eulerian with even

size (even number of edges) in each component.

Proof.
Without loss of generality, we may assume G is connected. We start
showing the necessary part. Since a graph G has flow index F(G) = 2

meaning it admits a zero-sum 2-flow, thus the edge function f(e) € {1, —1}.
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For each vertex v € V(G), the number of incident edges labeled 1 must
equal to the number of incident edges labeled -1. Note that both num-
bers are equal to ideg(v), therefore deg(v) must be even, and G is Eule-
rian. On the other hand, the number of all 1-edges (or (-1)-edges) in G is
%Zvev(a)(%deg(v)) = 1|E(G)| which is an integer, so |E(G)| are even. Con-
versely, to show the sufficiency we label the edges in an Euler tour of G by
1 and -1 alternatively. Then every vertex is incident with the same number
of 1-edges and (-1)-edges, including the starting(ending) vertex, since the

number of edges is even. Therefore it is a zero-sum 2-flow in G. a

In [42] we also calculate the zero-sum flow numbers of regular graphs,
which is closely related to the zero-sum 5-flow conjecture for regular graphs.
Recently it is known that the zero-sum 5-flow conjecture for regular graphs
was nearly completely resolved by S. Akbari and other authors [3], except
the case for 5-regular graphs. We study the zero-sum flows more recently
and obtain certain results toward to these conjectures. Among other results
we show that in [42] that every bridgeless 5-regular graph G admits a 5-flow,
which strengthens the zero-sum 5-flow conjecture for regular graphs.

In next section we calculate the zero-sum minimum flow numbers for

various types of graphs induced from the plane tiling by hexagons.

6.3 Zero-Sum Flow Numbers of Hexagonal

Grid Graphs

It is well known for the notion of the dual graph D(G) of a plane graph G
for a fixed plane drawing representation of G embedded in a sphere or the
plane. Note that generally the dual graph of a hexagonal grid is (a partial
subgraph of) a triangular grid. See for example Figure 6.3.1.

Now we set up fundamental symbols for the trivial regular hexagon la-
beled £1 and 42 over the edges as in Figure 6.3.2. The symbol Z stands
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Figure 6.3.1: A Hexagonal Grid Graph with its Dual Graph

for the trivial regular hexagon edge-labeled 1 and -1 consecutively with zero-
sums. —Z and +27 stand for the ones with zero-sums using labels of 7
multiplied by -1 and +2 respectively. Note that in figures below, the weight
of the overlapping edge for any two neighboring fundamental symbols are
summed up from both patterns.

-19}1-Q-1 19}-1-Q1 -2¢-2-Q-2 29“2-Q2

AGPARF Al

Figure 6.3.2: Fundamental Hexagons with Zero-Sum 2-Flows and 3-Flows

Note that also the zero-sum minimum flow number of the trivial regular
hexagon is 2. The following gives the optimal upper bound for the minimum

flow number of any finite non-trivial hexagonal grid graph:

Theorem 6.3.1. The infinite hexagonal grid graph H admits a zero-sum 3-

flow and F(H) = 3. Moreover let H be any finite non-trivial hezagonal grid

graph. Then F(H) =3 or 4.

Proof.
Note that one obtains a zero-sum flow of the whole figure while patch-
ing together sub-figures with zero-sums in an arbitrary way of union. See

Figure 6.3.3 and note that the weight of the overlapping edge for any two
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neighboring fundamental symbols are summed up from both patterns. There-
fore one has a zero-sum 3-flow for the infinite hexagonal grid graph H using
the fundamental figures +Z. On the other hand, it is impossible for H to

admit a 2-flow due to the existence of odd degree vertices. Thus F(H) = 3.

I I I I
-1 -I -I -I
I I I I
-I -I -1 -I
I I I I
-1 -I -1 -1
I I I I
-I -I aal. -I

Figure 6.3.3: A 3-Flow of the Infinite Hexagonal Grid H

As for any finite non-trivial hexagonal grid graph, we obtain the bounds
for the flow numbers via the labeling of the infinite hexagonal grid. It is
not hard to check as in Figure 6.3.4 one has a zero-sum 4-flow for the in-
finite hexagonal grid graph H , using the fundamental figures +7 and +27.
Note that again the weight of the overlapping edge for any two neighboring
fundamental symbols are summed up from both patterns.

Note that then any finite non-trivial hexagonal grid graph H may be
treated a piece of finite sub-figure cut from the infinite hexagonal grid H.
Therefore, H admits a zero-sum 4-flow using exactly the same edge labels
induced from those of H (see Figure 6.3.5). Thus by Lemma 6.2.1 the min-
imum flow numbers are 3 or 4 except that the trivial regular hexagon has

flow number 2 as indicated in 7.
O
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I I I I
-1 -I -I -I
-21 -2I -2I -2I
I I I I
-I -1 -1 -I
-21 -21 =z -2I
I I I I
-1 -I =k -I
-21 -21 -2I =21
I I I I
-I -I -1 -I

Figure 6.3.4: A 4-Flow of the Infinite Hexagonal Grid H

We also determine various classes of infinite families of hexagonal grid
graphs with flow numbers 3 and 4 respectively. First we start with classes of

flow numbers 3:

Theorem 6.3.2. Let G be a non-trivial hexagonal grid graph with the dual

graph D(G) to be bipartite. Then F(G) = 3.

Proof.

Note that if the dual graph D(G) is bipartite, it is 2-colorable. Then
using +7 as two colors to put over the vertices of the dual graph. We see G
admits a 3-flow with edge labeling this way and again by Lemma 6.2.1 the
zero-sum flow number is 3.

([

Therefore we may easily have the following examples of flow numbers 3

since their dual graphs are trees, thus bipartite:

Theorem 6.3.3. Let G be a non-trivial hexagonal grid graph with the dual
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Figure 6.3.6: Examples of Hexagonal Grids with Flow Number 3

graph D(G) consisting of multiple Wg copies, for which one Wg shares at
most one edge with another copy of Ws. (see Figure 6.53.7) Then F(G) = 3.

Proof.

Note that if the dual graph D(G) consists of Wg copies for which one
sharing at most one edge with another, one may fix it into a hexagonal grid
graph by dropping the central vertex of each copy of W (see Figure 6.3.7 for
an example to reduce the dual graph). It is clear that the resulting reduced

dual graph is bipartite. Hence by Theorem 6.3.2 we see F'(G) = 3.
O
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Figure 6.3.7: Example of Hexagonal Grid with Dual Graph Multiple Wy

Copies

The following are examples of classes of infinitely many hexagonal grids

with flow number 4:

Theorem 6.3.4. Let G be a hexagonal grid graph with the dual graph D(G)
which contains a triangle with one degree 2 vertex (see Figure 6.5.8). Then

F(G) = 4.

Figure 6.3.8: Dual graph D(G) contains a triangle with one degree 2 vertex

Proof.

Assume G admits a zero-sum 3-flow, which allows only labels +1, +2.
See Figure 6.3.9 without loss of generality may assume a = 1 or 2. In both
cases through detailed calculation one will reach contradictions for ¢ and d,
for either ¢ +d =0 or ¢ + d = £3. Therefore F/(G) = 4.

O
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Figure 6.3.9: Example of G whose dual contains a triangle with one degree

2 vertex

Theorem 6.3.5. Let G be a hexagonal grid graph with the dual graph D(G).
Suppose that D(G) contains a kite with one degree 4 vertexr or an antenna

triangle with one degree 3 vertex (as in the Figure 6.3.10). Then F(G) = 4.

Figure 6.3.10: Dual graph D(G) contains a Kite or an Antenna Triangle

Proof.

Assume G admits a zero-sum 3-flow. The common figure of a hexagonal
grid graph containing a kite or an antenna triangle as its dual graph can be
seen in the Figure 6.3.11. Then without loss of generality we may assume a =
1 or 2. In both cases through detailed calculation one will reach contradiction
for g and h, for either g + h = 0 or g + h = £3. Therefore F(G) = 4.

O

As corollary one may determine the flow numbers of regular hexagonal
cluster grids H,,, which are the graphs in Figure 6.3.12. Note that H,, contains
diagrams in Figure 6.3.11 for each n > 3. Thus by the Theorem 6.3.5 we
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Figure 6.3.11: Hexagonal Grid with Kite or Antenna Triangle as its Dual

Graph

have:

Corollary 6.3.6. The minimum flow number of the reqular hexagonal cluster

grid H, of n layers are as follows:

Figure 6.3.12: Hexagonal Cluster Hy, Hs, Hy, Hs
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6.4 Concluding Remark and Open Problems

In this chapter we are able to determine that the zero-sum flow number of
any non-trivial hexagonal grid graph is 3 or 4. We further find classes of
infinite families of hexagonal grid graphs with minimum flow numbers 3 and
4 respectively. We also calculate as corollaries the zero-sum minimum flow
numbers of infinite families of regular hexagonal grids.

However while one may calculate the zero-sum flow numbers of above
classes of hexagonal grids, it is interesting to characterize completely the
classes of non-trivial hexagonal graphs with zero-sum flow numbers 3 and 4
respectively. The zero-sum flow numbers of square grid graphs are not hard
to calculate, while the complete characterizations of triangular grid graphs
with various flow numbers and their optimal bounds are relatively nice open

problems worth to work on.
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