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Abstract

Let G = (V (G), E(G)) be a finite simple graph with p = |V (G)| vertices

and q = |E(G)| edges. An antimagic labeling of G is a bijection from

the set of edges to the set of integers {1, 2, · · · , q} such that the vertex sums

are pairwise distinct, where the vertex sum at a vertex is the sum of labels

of all edges incident to such vertex. A vertex magic total labeling is a

bijection from V (G) ∪ E(G) to the set of integers 1, 2, · · · , p + q, with the

property that, for every vertex u in V (G), one has f(u)+
∑

uv∈E(G) f(uv) = k

for some constant k. On the other hand, for an undirected graph G, a

zero-sum flow is an assignment of possibly repeated non-zero integers to

the edges such that the sum of the values of all edges incident with each

vertex is zero. In this thesis we study the above graph labeling problems

of magic and antimagic types. In particular, we identify classes of graphs

admitting antimagic labeling and vertex magic total labeling respectively,

which generalize and extend previous results. We also consider zero-sum flow

problems for the hexagonal graphs, for which infinite families of hexagonal

grid graphs with small zero-sum flow numbers are presented.
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Chapter 1

Introduction

A labeling of a graph is assigning labels to the vertices, edges or both

vertices and edges. In most applications labels are positive (or nonnegative)

integers, though in general real numbers could be used. In this thesis, we

focus on edge labelings and total labelings(labelings on both vertices and

edges). If the sums of labels of all edges incident with the vertex are all

constant in certain sense, we call them magic labeling. And if the sums of

labels of all edges incident with the vertices are pairwise distinct in certain

sense, we call them antimagic labeling.

1.1 Magic Labeling

Let G = (V (G), E(G)) be a finite simple graph with p = |V (G)| vertices
and q = |E(G)| edges, without isolated vertices or isolated edges. A vertex

magic labeling is a bijection from E(G) to the consecutive integers 1, 2, · · · , q,
with the property that, for every vertex u in V (G), one has

∑
uv∈E(G)

f(uv) = k

for some constant k.

Theorem 1.1.1. [30] Kn,n is magic for all n ̸= 2.

1
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Theorem 1.1.2. [30] If a bipartite graph G is decomposable into Hamilton

cycles, then G is magic.

Theorem 1.1.3. [30] If a graph G is decomposable into two magic spanning

subgraphs G1 and G2 is regular, then G is magic..
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Figure 1.1.1: vertex-magic labeling

For more labelings of magic types, see Gallian’s dynamic survey paper

[15]. Note that in this thesis we deal with two types of magic labelings,

namely vertex magic total labeling and zero-sum flows, which will discussed

in later chapters.

1.2 Antimagic Labeling

An antimagic labeling of a finite simple undirected graph with q edges is

a bijection from the set of edges to the set of integers {1, 2, · · · , q} such that

the vertex sums are pairwise distinct, where the vertex sum at a vertex is the

sum of labels of all edges incident to such vertex. A graph is called antimagic

if it admits an antimagic labeling. It was conjectured by N. Hartsfield and G.

Ringel in 1990 that all connected graphs besides K2 are antimagic. Another

weaker version of the conjecture is every regular graph is antimagic except
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K2. Both conjectures remain unsettled so far. Note that Cranston proved

that all regular bipartite graphs are antimagic in 2009 (Regular bipartite

graphs are antimagic, JGT, Vol. 60, Issue 3, pp. 173-182.).

Definition 1.2.1. For a graph G = (V,E) with q edges and without any iso-

lated vertex, an antimagic edge labeling is a bijection f : E → {1, 2, · · · , q},

such that the induced vertex sum f+ : V → Z+ given by f+(u) =
∑

{f(uv) :

uv ∈ E} is injective. A graph is called antimagic if it admits an antimagic

labeling. If moreover for G the vertex sums form an arithmetic progression

with initial term a and common difference d, we say G admits an (a, d)-

antimagic labeling and G is (a, d)-antimagic.
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Figure 1.2.1: C4 has VAE , C5 has (a,1)-VAE

N. Hartsfield and G. Ringel showed that paths, cycles, complete graphs

Kn (n ≥ 3) are antimagic. They conjectured that all connected graphs

besides K2 are antimagic, which remains open. In 2004 N. Alon et al [4]

showed that the last conjecture is true for dense graphs using probabilistic

method. They showed that all graphs with n(≥ 4) vertices and minimum

degree Ω(log n) are antimagic. They also proved that if G is a graph with

n(≥ 4) vertices and the maximum degree ∆(G) ≥ n−2, then G is antimagic
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and all complete partite graphs except K2 are antimagic. In 2005 D. Hefetz

[19] proved that, among others, for k ∈ Z+ a graph G with 3k vertices is an-

timagic if it admits a K3-factor. In 2005, T.-M. Wang [38] studied antimagic

labeling of sparse graphs, and showed that 2-regular graphs and moreover the

toroidal grid graphs are antimagic. In 2008, T.-M. Wang and C.-C. Hsiao [39]

showed various types of graph Cartesian product and lexicographic product

(composition) are antimagic. Many various types of graphs have been shown

to be antimagic [28, 6, 8, 10, 11, 19, 20, 46, 48] over the years. More variations

of labelings of antimagic types, say (a, d)-antimagic labeling, edge-antimagic

vertex labeling etc., can be referred to the dynamic survey by Gallian [15].

1.3 Applications

Some typical applications of labelings of magic types have been studied,

mainly in network-related areas. Suppose it is required to assign addresses

to the possible links in a communications network. It is required that the

addresses are all different, and that the address of a link can be deduced

from the identities of the two nodes linked, without the need of using a

lookup table. This has been modeled using edge-magic labelings. Another

application is in the construction of ruler models, which have been applied

to the study of radar pulse codes. More details regarding these applications

see [45].



Chapter 2

Antimagic Labeling of Odd

Regular Graphs

Most of the contents in this chapter has been presented in the 23th Interna-

tional Workshop On Combinatorial Algorithms (IWOCA 2012, Krishnankoil,

India. It was published as On Antimagic Labeling of Odd Regular

Graphs, Lecture Notes in Computer Science (LNCS), 7643, pp. 162-168,

2012. Also another extended version has been published in On Antimagic

Labeling of Regular Graphs with Particular Factors, Journal of Dis-

crete Algorithms, 2013 (EI).

2.1 Introduction and Background

While Hartsfield-Ringel conjecture claims except K2 all coneected simple

graphs are antimagic, there is a weaker version conjectured that every regular

graph exceptK2 is antimagic. Among others, D. Cranston [12] proved that all

regular bipartite graphs are antimagic in 2009. (Regular bipartite graphs are

antimagic, Journal of Graph Theory, Vol. 60, Issue 3, pp. 173-182.) While

5
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some particular types of regular graphs have been shown to be antimagic,

the conjecture for the antimagic-ness of regular graphs still remains unsettled

till today. More recently we showed the antimagicness of certain classes of

regular graphs with 1-factors and 2-factors, which contain examples such as

all generalized Petersen graphs P (n, k), certain Cayley graphs on Zn, and

all powers of cycles. Also all Hamiltonian even regular graphs were shown

antimagic. Very recently, Y. Liang and X. Zhu also showed that all cubic

graphs are antimagic and Cartesian product related to regular graphs are

antimagic[24, 25]. In this chapter, we show the existence of antimagic labeling

for all even regular graphs with a 2-factor consisting of odd cycles only. For

more conjectures and open problems on antimagic graphs and related type

of graph labeling problems, readers are recommended to see the dynamic

survey article of J. Gallian [14]. In this article, certain classes of regular

graphs with particular type of 1-factors and 2-factors are shown antimagic.

As a byproduct many well known examples are shown to be antimagic, such

as all generalized Petersen graphs, all powers of cycles, and all even-regular

circulant graphs (Cayley graphs of finite cyclic groups). Major results of this

chapter can be summarized as follows among others:

• For odd regular graphs containing particular 3-factors:

Theorem. All pseudo-prisms H are antimagic, where a pseudo-prism

is a 3-regular graph which consists of the edge-disjoint union of a 1-

factor and two 2k-regular subgraphs of the same size. Moreover let K

be any 2k-factor. Then the odd (2k + 3)-regular graph G = H ⊕K is

antimagic.

• For even regular graphs containing particular 2-factors:

Theorem. Let G be a 2k-regular, k ≥ 2, Hamiltonian graph. Then G

is antimagic.

Theorem. Let G be a 2k-regular graph (k ≥ 2) which contains a
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2-factor F consisting of a vertex disjoint union of (a, 1)-antimagic sub-

factors H1, H2, · · · , Ht of odd order, where t ≤ k. Then G is antimagic.

Theorem. Let G be a 2k-regular graph, k ≥ 2. Assume that G con-

tains a 2-factor F = mCn consisting of cycles of the same size. Then

G is antimagic.

• For odd regular graphs containing particular odd claw factors, we show

the following more general result regarding an odd graph (with odd

degree vertices only):

Theorem. Let G be an odd graph formed by a mixed claw factor C

and and an arbitrary 2-regular subfactor H over the pendant vertices

of the odd claws in C, where C is consisting of vertex disjoint K1,j’s for

odd j ≥ 3. Then G is antimagic, and also G remains antimagic after

adding arbitrary 2k-factors for k ≥ 1. In particular if G is a (2m+ 1)-

regular graph formed by an odd K1,2m+1-factor and an arbitrary 2-

regular subfactor over the pendant vertices of the odd claws, then G is

antimagic.

2.2 Technical Preliminaries

In order to show the main results, we need the following facts. The first

one is for assuring (a, 1)-antimagic-ness while adding extra even factor to an

(a, 1)-antimagic graph, which was proved in [21] in 2006. We give the proof

here for completeness:

Lemma 2.2.1. (J. Ivančo, A. Semaničová, 2006) Assume H is a graph

which arose from a graph G of p vertices and q edges by adding an arbi-

trary 2k-factor. If G is (a, 1)-antimagic, then H is (a, 1)-antimagic, thus
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antimagic.

Proof.

Without loss of generality let the (a, 1)-antimagic vertex sums for G be

a < a+1 < · · · < a+ p− 1 associated with the vertices v1, v2, · · · , vp respec-
tively while we labeling the edges 1, 2, · · · , q. By mathematical induction we

need only to validate the situation while adding a 2-factor F to an (a, 1)-

antimagic graph G. We proceed by assigning an orientation to the 2-factor F

so that over each connected component (connected 2-cycle) the flow is either

clockwise or counter-clockwise. Then we label over F by setting f out(w) and

f in(w) respectively to be the outgoing edge label from the vertex w ∈ V (G)

and the incoming edge label to the vertex w, according to the given orienta-

tion. Precisely we give the labeling as follows:

f out(vi) = a+ p+ q − (a+ i− 1)

for each 1 ≤ i ≤ p. From the way f out(w) is defined, we see that the resulting

vertex sum at the vertex vi is

(a+ i− 1) + f out(vi) + f in(vi) = a+ p+ q + f in(vi)

for each 1 ≤ i ≤ p. Therefore the vertex sums are consecutive integers since

the set of all outgoing edge labels is in one-to-one correspondence with the

set of all incoming edge labels. Hence it is shown to be (a, 1)-antimagic and

we are done.

2

However we may extend the above fact and obtain the following more

general results:

Lemma 2.2.2. Assume H is a graph of p vertices which arose from a graph

G of p vertices by adding an arbitrary 2k-factor. If the vertex sums of G

by labeling edges 1, 2, · · · , |E(G)| forms two non-overlapping consecutive se-

quences, say a1 < a2 < · · · < am < b1 < b2 < · · · < bn. Then H is antimagic.
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Proof.

Let two non-overlapping consecutive sequences formed by the vertex sums

via labeling edges 1, 2, · · · , |E(G)| of G be a1 = a, a2 = a + 1, · · · , am =

a+m− 1 and b1 = b, b2 = b+1, · · · , bn = b+ n− 1 respectively, and assume

am < b1. Note that m + n = |V (G)| = p. We denote by d = b1 − am ≥ 1,

and D = bn − a1 +1 and note that D = bn − a1 +1 = b1 +(n− 1)− a1 +1 =

am + d+ (n− 1)− a1 + 1 = (m− 1) + (n− 1) + d+ 1 = p+ d− 1 ≥ p.

In order to apply the result in Lemma 5.2.4, we modify the a1, a2, · · · , am
by âi = ai +D for each i = 1, · · · ,m. Therefore âi = ai +D = (a1 + i− 1)+

p+d−1 = bn+i for each i, thus b1, b2, · · · , bn, â1, â2, · · · , âm are a sequence of

consecutive integers. So G is temporarily (a, 1)-antimagic under the modified

(fake) vertex sums. Then by Lemma 5.2.4, after adding an arbitrary 2k-factor

to G the resulting graph H still admits an (a, 1)-antimagic labeling and the

vertex sums are pairwise distinct. By abusing the language we again denote

the (fake) vertex sums b1, b2, · · · , bn, â1, â2, · · · , âm. Then it is clear that the

original vertex sums a1, a2, · · · , am and b1, b2, · · · , bn are pairwise distinct

since âi = ai +D for each i and note that D ≥ p. Hence H is antimagic.

2

Even general we may have the following with similar discussion and math-

ematical induction:

Lemma 2.2.3. Assume H is a graph of p vertices which arose from a graph

G of p vertices by adding an arbitrary 2k-factor. If the vertex sums of G by

labeling edges 1, 2, · · · , |E(G)| forms three non-overlapping consecutive se-

quences, say a1 < a2 < · · · < am < b1 < b2 < · · · < bn < c1 < c1 < · · · < ck,

and moreover either the gap b1 − am ≥ p or the gap c1 − bn ≥ p. Then H is

antimagic.

Lemma 2.2.4. Assume H is a graph of p vertices which arose from a graph
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G of p vertices by adding an arbitrary 2k-factor. If the vertex sums of G by

labeling edges 1, 2, · · · , |E(G)| forms t non-overlapping consecutive sequences,

say a1,1 < a1,2 < · · · < a1,m1 < a2,1 < a2,2 < · · · < a2,m2 < · · · < at,1 < at,2 <

· · · < at,mt. Note that
∑

mj
= p and each gap aj+1,1 − aj,mj

> p for every

1 ≤ j ≤ t− 1. Then H is antimagic.

2.3 Odd Regular Graphs With Particular 3-

Factors

Note that there is a special class of 3-regular graphs which is called general-

ized Petersen graphs, for which we define as follows:

Definition 2.3.1. Let n, k be integers such that n ≥ 3 and 1 ≤ k ≤

⌊n−1
2
⌋. The generalized Petersen graphGP (n, k) is defined by V (GP (n, k)) =

{ui, vi| 1 ≤ i ≤ n}, and E(GP (n, k)) = {uiui+1, uivi, vivi+k| 1 ≤ i ≤ n} where

the subscripts are taken modulo n. (See Figure 2.3.1) We call u1, u2, · · · , un

an outer cycle, and v1, v2, · · · , vn an inner cycle.

In 2000, M. Miller and M. Bača studied antimagic labelings of arith-

metic type for generalized Petersen graphs [28], which are referred as (a, d)-

antimagic labelings. Note that (a, d)-antimagic labelings are requiring all

vertex sums form an arithmetic progression, hence also antimagic. M. Miller

and M. Bača showed (a, d)-antimagic-ness of GP (n, 2) for certain n, and

also listed conjectures for other generalized Petersen graphs. In this section

we show all generalized Petersen graphs are antimagic by proving a more

general theorem regarding 3-regular graphs with a particular type of perfect

matchings, which contain generalized Petersen graphs as special cases.
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Figure 2.3.1: Examples of generalized Petersen graphs

Note that a r-factor of a graph is a r-regular spanning subgraph, and a 1-

factor is a perfect matching. A factorization of a graph is a decomposition of

the graph into union of factors so that the edge set is partitioned. Note that

furthermore we call a r-regular subgraph of a factor to be a r-subfactor.

In 2012 we have the following general result for antimagic-ness of 3-regular

graphs and odd regular graphs [46], which was presented in the IWOCA 2012

conference held in India:

Theorem 2.3.2. Let G be 3-regular with 2n vertices {u1, u2, · · · , un, v1, v2, · · · , vn}

and M = {uivi| 1 ≤ i ≤ n} be a perfect matching of G. Assume additionally

that {u1, u2, · · · , un} and {v1, v2, · · · , vn} induce two 2-subfactors of the same

order respectively. Then G is antimagic.

Theorem 2.3.3. Let k ≥ 1 and let G be a (2k + 1)-regular graph with

2n vertices {u1, u2, · · · , un, v1, v2, · · · , vn} and M = {uivi| 1 ≤ i ≤ n} be

a perfect matching of G. Assume additionally that {u1, u2, · · · , un} and

{v1, v2, · · · , vn} induce two 2k-regular subgraphs respectively. Then G is an-

timagic.

Note that all generalized Petersen graphs GP (n, k) with V (GP (n, k)) =
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{ui, vi| 1 ≤ i ≤ n} and E(GP (n, k)) = {uiui+1, uivi, vivi+k| 1 ≤ i ≤ n},
are 3-regular with 2n vertices, 3n edges, and admitting perfect matchings

{uivi| 1 ≤ i ≤ n}. Obviously {u1, u2, · · · , un} and {v1, v2, · · · , vn} induce

two 2-regular subgraphs respectively. Therefore, as a byproduct of the above

Theorem 2.3.2:

Corollary 2.3.4. Every generalized Petersen graph GP (n, k) is antimagic.

Note that most recently Y.-C. Liang and X. Zhu showed that all cubic

graphs are antimagic[24] (newly online in 2013). In the following we extend

previous Theorem 2.3.2 and Theorem 2.3.3 to a more general situation for

regular graphs of odd degree with particular 3-factor. First we state a well-

known result we need here and also in later sections:

Theorem 2.3.5. (J. Petersen, 1891) Let G be a 2r-regular graph. Then

there exists a 2-factor in G.

Now we are in a position to prove the main result of this section:

Theorem 2.3.6. Let G be an odd regular graph on 2n vertices {u1, · · · , un, v1, · · · , vn}

with factorization G = G′ ⊕H, where G′ is an even-factor and H is a 3-

factor consisting of the edge disjoint union of a 1-factor M = {uivi| 1 ≤ i ≤

n} and two 2-regular subgraphs H1 and H2 which are induced by {u1, · · · , un}

and {v1, · · · , vn} respectively. Then G is antimagic.

Proof. Let H = M
⊕

(H1 ∪H2), where H1 and H2 are two 2-regular sub-

graphs, each induced by n vertices, {u1, u2, · · · , un} and {v1, v2, · · · , vn} re-

spectively. On the other hand by Petersen’s Theorem 4.1.2, G′ can be fac-

tored as sum of 2-factors F1 ⊕ F2 ⊕ · · · ⊕ Fk.

Now we give an antimagic labeling f by the following steps. Note that

G has (2k + 3)n edges. First we split all edge labels 1, 2, · · · , (2k + 3)n into
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2k + 1 groups as follows: {1, 2, · · · , n}, {n+ 1, n+ 2, · · · , 2n}, {2n+ 1, 2n+

2, · · · , 3n}, · · · , {(2k + 2)n + 1, (2k + 2)n + 2, · · · , (2k + 3)n}. Then we will

put these groups of labels in order over the edges of H1, M , H2, F1, · · · , Fk

respectively in below.

First we label the edges of M via f(uivi) = n+i for each 1 ≤ i ≤ n. Then

labeling over edges of H1 and H2 as follows. Since H1 and H2 are 2-regular

graphs, we assign an orientation so that over each connected component

(connected 2-cycle) the flow is either clockwise or counter-clockwise. We

label over H1 and H2 by setting f out(w) and f in(w) respectively to be the

outgoing edge label from the vertex w and the incoming edge label to the

vertex w, according to the given orientation. Precisely we give the labeling

as follows:

f out(ui) = 2n+ 1− (n+ i), f out(vi) = 4n+ 1− (n+ i)

for each 1 ≤ i ≤ n. From the way f out(w) is defined, we see that over the

3-factor the partial vertex sums at {u1, u2, · · · , un} and {v1, v2, · · · , vn} are

uniquely determined by f in(w), and form consecutive integers respectively

as Ai = 2n+ 1 + i and Bi = 6n+ 1 + i for 1 ≤ i ≤ n. Now we modify these

two sequences of consecutive integers into one single sequence of consecutive

integers, by letting B̂i = Bi − 3n = 3n + 1 + i. Then we see the fake

vertex sums A1, A2, · · · , An, B̂1, B̂2, · · · , B̂n are combined into one sequence

of consecutive integers since An + 1 = B̂1, that is, for the time being it is

(a, 1)-antimagic. We now may apply Lemma 5.2.4 to add the labeling of the

rest of 2-factors F1, · · · , Fk and keep the resulting (fake) vertex sums to be

consecutive integers. By abusing language we still denote the vertex sums

by Ai, Bi and B̂i. Note that the order of these (fake) vertex sums might

be different. After recovering the original vertex sums via Bi = B̂i + 3n

for i = 1 to n, we claim the (true) vertex sums are pairwise distinct. To

show the claim is true, we may first see A1 = σ1 ≤ Ai ≤ B̂n = σp and

A1 = σ1 ≤ B̂i ≤ B̂n = σp for each i. Then σ1+3n ≤ B̂i+3n = Bi ≤ σp+3n

for each i. Let [a, b] be the set of integers {t | a ≤ t ≤ b}. We conclude that

for each i, the vertex sums Ai belong to [σ1, σp], Bi belong to [σ1+3n, σp+3n],

and note that [σ1, σp] ∩ [σ1 + 3n, σp + 3n] = ϕ since 3n > 2n = B̂n −A1 − 1.
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Therefore the vertex sums are pairwise distinct and we are done.

2

To obtain more examples, we consider the circulant graphs as follows:

Definition 2.3.7. A circulant graph CIRn(S) with n vertices, with re-

spect to S ⊂ {1, 2, · · · , ⌊n
2
⌋}, is a graph with the vertex set V (CIRn(S)) =

{0, 1, 2, · · · , n− 1}, and the edge set is formed by the following rule:

E(CIRn(S)) = {ij : i− j ≡ ±s (mod n), s ∈ S}.

Note that the circulant graph CIRn(S) is also called a Cayley graph of

the finite cyclic group Zn generated by S.

For example, CIRn({a}) ∼= Cn, the connected n-cycle, if gcd(n, a) = 1.

Moreover CIRn({1, 2, · · · , ⌊n
2
⌋}) ∼= Kn, the complete graphs, and CIR2n({1, n}) ∼=

the n-Möbius ladder graphs. Note that CIRn(S) is odd-regular if n is

even and n
2

∈ S, is even-regular otherwise. Let S = {a1, a2, ....., am} ⊆
{1, 2, · · · , ⌊n

2
⌋}, it is not hard to see that CIRn(S) =

⊕m
i=1CIRn({ai}) is a

factorization of circulant graphs with respect to one point sets {ai}.

Example 2.3.8. Note that for odd n ≥ 5, the circulant graphs CIR2n({a, b, n}),

where 0 < a ̸= b < n and gcd(2n, a) = gcd(2n, b) = 2, are examples of 5-

regular graphs with perfect matchings, which satisfy the assumption in The-

orem 2.3.3. Therefore CIR2n({a, b, n}) are antimagic. See Figure 2.3.2 for

the example CIR14({4, 6, 7}).

In a similar fashion, we may construct an infinite class of circulant graphs

which represent the class of odd (2r+1)-regular graphs, for each r ≥ 2, with

perfect matchings, as stated in Theorem 2.3.3:
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Figure 2.3.2: The Cayley graph CIR14({4, 6, 7}) of Z14

Example 2.3.9. Let G = CIRn({a1, a2, · · · , am, n2}) be a circulant graph of

even order n. By Theorem 2.3.3, it can be seen G is antimagic if n
2
is odd

and gcd(n, ai) = 2 for each 1 ≤ i ≤ m.

More general by Theorem 2.3.6 we have the following Corollary regarding

the antimagic-ness of certain class of circulant graphs:

Corollary 2.3.10. Let G = CIRn({a1, a2, · · · , am, n2}) be a circulant graph

of even order n. Then G is antimagic if n
2
is odd and gcd(n, aj) = 2 for some

1 ≤ j ≤ m.
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2.4 Odd Regular GraphsWith Odd Claw Fac-

tors

Definition 2.4.1. The complete bipartite graphs K1,2m+1 is called an odd

claw, where the integer m ≥ 1. We call a spanning subgraph an odd claw

factor if the edge set is partitioned into vertex disjoint union of isomorphic

copies of odd claws K1,2m+1 for fixed integer m ≥ 1.

There is a well known cubic graph without any perfect matching as shown

in the following Figure 2.4.1, given by J. Petersen as a related example for

the fact that if a cubic graph is bridgeless then it admits a perfect matching.

Figure 2.4.1: A Cubic Graph without any Perfect Matching but with a 3-

Claw Factor

It is noticed the example can be treated as a factorization of one claw

factor and one degenerate 2-factor and can be shown to be antimagic. We

extend this fact to a more general situation in the following. We define first

a spanning subgraph consisting of vertex disjoint K1,3’s to be a claw factor,

as seen in the Figure 2.4.1.

We start with the following:
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Theorem 2.4.2. Let G be a 3-regular graph with 4n vertices and 6n edges.

Suppose G can be decomposed into the union of a claw factor C and a 2-

regular subgraph induced by all pendant vertices of the claws in C. Then G

is antimagic.

Proof.

Note thatG has the claw factor consisting of n vertex disjoint claws, which

is named as K(i) for 1 ≤ i ≤ n. Let the center vertex of K(i) of degree 3 be

vi for 1 ≤ i ≤ n and all other pendant vertices be uj for 1 ≤ j ≤ 3n.

We use 1, 2, · · · , 3n to label the edges of 2-regular subgraph induced by all

pendant vertices of the claws in C, and use the rest 3n+1, 3n+2, · · · , 6n to

label the edges of the claw factor C. Precisely we label the three edges of the

clawK(i) by 3n+i, 4n+i, 6n+1−i for 1 ≤ i ≤ n. Therefore the vertex sum at

the vertex vi is 13n+i+1 for 1 ≤ i ≤ n, namely 13n+2, 13n+3, · · · , 14n+1.

On the other hand, in order to label the edges over E(G)−E(C) properly,

we put orientations over each connected cycle component either clockwise or

counterclockwise. Then define the outgoing edge label at the vertex uj by

f out(uj) = 6n + 1 − w(uj) for 1 ≤ j ≤ 3n, where w(uj) is the partial

vertex sum while labeling the edges of claws in C, thus w(uj) ranges from

3n+1, 3n+2, · · · to 6n. Therefore the vertex sums over uj are 6n+1+ j for

1 ≤ j ≤ 3n, namely 6n + 2, 6n + 3, · · · , 9n + 1. Combined with the vertex

sums over vi for 1 ≤ i ≤ n, that is 13n+2, 13n+3, · · · , 14n+1, we may see

immediately that G is antimagic since the vertex sums are all distinct. 2

By applying the above Theorem 2.4.2 we see the graphs like in Figure 2.4.1

are antimagic, and we also have the following examples:

Example 2.4.3. The graph mK2n, the disjoint union of m copies of K2n’s,

is antimagic, as shown in Figure 2.4.2.

We may extend the above to the following more general situation since

in previous proof we see the vertex sums 6n + 2, 6n + 3, · · · , 9n + 1 and
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Figure 2.4.2: The disjoint union of 5 copies of K4 is antimagic

13n+ 2, 13n+ 3, · · · , 14n+ 1 are two groups of non-overlapping consecutive

integers, by Lemma 2.2.2 after adding any arbitrary 2k-factors the antimagic-

ness is remained, therefore we have:

Theorem 2.4.4. Let G be a 3-regular graph with 4n vertices and 6n edges.

Suppose G can be decomposed into the union of a claw factor C and a 2-

regular subgraph induced by all pendant vertices of the claws in C. Moreover

let F be an arbitrary 2k-factor. Then G⊕ F is still antimagic.

Moreover we may have the following result for odd regular graphs con-

taining odd claw factors:

Theorem 2.4.5. Let m ≥ 1 and G be a (2m + 1)-regular graph formed by

an odd K1,2m+1-factor and an arbitrary 2-regular subfactor over the pendant

vertices of the odd claws. Then G is antimagic.

In fact we are able to show the following more general situation for an

odd graph (possibly non-regular) consisting of a mixed odd claw factor (that

is a factor formed by possibly K1,3’s, K1,5’s, K1,7’s, etc.) and a 2-subfactor

over the pendant vertices of the claws, and therefore the above results are

simply corollaries of this Theorem:

Theorem 2.4.6. Let G be an odd graph formed by a mixed claw factor C

and and an arbitrary 2-regular subfactor H over the pendant vertices of the
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odd claws in C, where C is consisting of vertex disjoint K1,j’s for odd j ≥ 3.

Then G is antimagic, and also G remains antimagic after adding arbitrary

2k-factors for k ≥ 1.

Proof.

Let G be the odd graph with p vertices. Assume that in C there are tj

odd K1,j-factor for odd j ≥ 3 and let
∑

j≥3 tj = s, where j is odd and tj are

non-negative integers. Therefore with similar notions, both G and C have

p =
∑

j≥3 (j + 1) · tj vertices and assume further that C has L =
∑

j≥3 j · tj
edges, thus L = p − s. Note that H has L = p − s vertices and L = p − s

edges, and we split all edges in G into two categories E1 = {1, 2, · · · , p− s}
and E2 = {p− s+ 1, p− s+ 2, · · · , p− s+ L}. Now we are in a position to

label the edges to verify the antimagic-ness of G with the following steps.

(Step 1): First we put the claws in order of non-increasing sizes as K1,3,

K1,5 etc., then we may start labeling edges as follows: Labeling one edge

(pick any) in each of these s odd claws (called the dominating edge of the

claw) in order of non-increasing sizes, using the most centered edge labels

within E2 named the dominating edge labeling set Ed = {p−s+ L−s
2

+1, p−
s+ L−s

2
+ 2, · · · , p− s+ L−s

2
+ s}.

(Step 2): Than within each claw there are an even number of edges

left yet to be labeled, for which we use the rest of the labels in E2 − Ed by

considering these labels in pairs with constant sum 2(p− s) + L+ 1. Let vi

be the center vertex for each of these claws and ui
k’s be the corresponding

pendant vertices. Therefore the vertex sums at vi for these claws is j−1
2

·
[2(p− s) + L + 1] + e(viu

i
k), where e(viu

i
k) is the dominating edge picked in

Step 1 for each claw. One see that the vertex sums for claws of the same size

are sequences of consecutive integers, and any two such sequences have a gap

larger than p. The reason is the gap must be a multiple of 2(p− s) + L+ 1

which is larger than 2(p− s) + 2s+ 1 = 2p+ 1, thus larger than p.

(Step 3): The next stage is to calculate the vertex sums over the ver-

tices of H, i.e. those pendant vertices of claws. Note that H is formed over

the above vertices as a 2-subfactor in arbitrary way. Now We proceed by

assigning an orientation to the 2-regular subgraph H so that over each con-
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nected component (connected 2-cycle) the flow is either clockwise or counter-

clockwise. Let ein(u) and eout(u) be the incoming edge label and outgoing

edge label respectively, and e(uv) be the edge label assigned in Step 1 and

Step 2. Than use the integers in E1 = {1, 2, · · · , p− s} to label the edges of

H by the following rule of constant sums:

ein(u) + e(uv) = 1 + (p− s) + L.

Therefore the vertex sums at the pendant vertices of claws are ein(u)+e(uv)+

eout(u) = 1+(p−s)+L+eout(u), thus they range over the set of consecutive

integers {1+ (p− s)+L+1, 1+ (p− s)+L+2, · · · , 1+ (p− s)+L+ p− s}.
(Step 4): Therefore G is antimagic by comparing the vertex sums at

the center vertices of the claws and the vertex sums at the pendant vertices

as follows. Note that in Step 2 we have the vertex sum at the center vertex

vi of the claw is j−1
2

· [2(p − s) + L + 1] + e(viu
i
k), which is larger than

2(p− s)+L+1+p− s+ L−s
2

+1. We see 1+(p− s)+L+p− s is the largest

possible vertex sum at the pendant vertices, and using L = p − s one has

[2(p− s)+L+1+ p− s+ L−s
2

+1]− [1+ (p− s)+L+ p− s] = 3
2
· p− 2s+1,

which is > p since p ≥ 4s.

(Step 5): With labeling edges in previous steps, we see the vertex sums

are arranged into groups of consecutive integer sequence with gaps larger

than p. By applying Lemma 2.2.4 we see G remains antimagic after adding

arbitrary 2k-factors for k ≥ 1. 2

Note that the regular graphs of higher degree without any perfect match-

ing as in Figure 2.4.3 are shown antimagic, in view of Theorem 2.4.6. Note

that the example has no any perfect matching due to the well known Tutte’s

condition.

2.5 Concluding Remarks

In this chapter, we obtain antimagic labelings of regular graphs with particu-

lar types of 3-factors (odd regular graphs containing pseudo-prisms). Also the
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Figure 2.4.3: 5-Regular Graph without Perfect Matching but with a 5-Claw

Factor

antimagic-ness is verified for the class of graphs with mixed odd claw factors,

which contains certain odd regular graphs without any 1-factors. Hopefully

these results may be helpful to resolve more general situations regrading the

conjecture that every regular graph except K2 is antimagic, or helpful to

resolve the Hartsfields-Ringel conjecture that every connected graph except

K2 is antimagic. We add that in the stage of submission of this chapter, all

3-regular graphs are shown antimagic in [24].

Another remark is that most of the results in this chapter, the exam-

ple graphs involved can be graphs with parallel edges. Therefore this leads

to consider more general version of antimagic-ness for multi-graphs, which

obviously should exclude the multiple K2 defined by parallel edges on two

vertices. Problems inspired from the antimagic-ness of simple graphs are

obvious interesting to be explored over the cases of multi-graphs.



Chapter 3

Antimagic Labeling of Even

Regular Graphs

3.1 Even Regular Hamiltonian Graphs

Note that a graph is called Hamiltonian if it contains a Hamiltonian cycle.

We show in this section that Hamiltonian regular graphs of even degree are

antimagic. First we note that in [21] the following result was obtained, which

implies the antimagic-ness of even regular Hamiltonian graphs of odd order:

Theorem 3.1.1. Let G be a 2k-regular, k ≥ 2, Hamiltonian graph of odd

order n. Then G is (a, 1)-antimagic.

As for Hamiltonian even regular graphs of even order, we have the fol-

lowing:

Theorem 3.1.2. Let G be a 2k-regular, k ≥ 2, Hamiltonian graph of even

order n. Then G is antimagic.

22
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Proof. We proceed with similar notations as in the previous Theorem where

we showed that 2k-regular Hamiltonian graphs of odd order are antimagic.

We let G be a 2k-regular Hamiltonian graph of even order n, and G =

F1

⊕
F2

⊕
· · ·

⊕
Fk, where Fi is a 2-factor for each 1 ≤ i ≤ k. Moreover

without loss of generality we assume F1 is a Hamiltonian cycle of G.

We start labeling as before, on the Hamiltonian cycle F1 we give f(vivi+1) =
i+1
2

for i odd, and f(vivi+1) =
i
2
+ n

2
for i even. Note that by labeling this way,

we have the unique conflict of the pair of vertex sums f+
1 (v1) = f+

1 (vn
2
+1) =

n+1. However we may resolve the conflict here for the time being, by adding

extra n
2
to f+

1 (v1) to make it an arithmetic sequence of common difference 1,

and we denote the fake vertex sum to be f̂+.

Then as before we may label G recursively, and get an arithmetic progres-

sion of common difference 1 for the vertex sums (2k2−1)n
2

+r+i for i = 1, · · · , n.
In particular note that f̂+(v1) = (2k2−1)n

2
+ k + 1 = f+(v1) +

n
2
. We claim

that one may keep the antimagic-ness of the graph, while removing the extra
n
2
we added previously from f̂+(v1), by switching certain edge labels to get

f+(v1) back. We split the situation into the following cases:

Case 1: (2k2−1)n
2

+ k + 1 ≤ f̂+(v1) <
(2k2−1)n

2
+ k + 1 + n

2
. Then f+(v1) <

(2k2−1)n
2

+ k + 1, and together with other vertex sums, it is seen that f is

antimagic.

Case 2: (2k2−1)n
2

+ k + 1 + n
2
≤ f̂+(v1) ≤ (2k2−1)n

2
+ k + 1 + n. Then in this

case (2k2−1)n
2

+ k + 1 ≤ f+(v1) ≤ (2k2−1)n
2

+ k + 1 + n
2
, there is some conflict

happened as f+(v1) = f+(vr) for some r. Note that f(v1v2) = 1, and we

switch the edge labels of v1v2 and some edge vavb of the second 2-factor F2,

where the edge vavb is incident with vr. There are two possibilities:

Sub-case 2.1: vr ̸= v2. Therefore in this case v1v2 and vavb are disjoint.

Then we switch the edge labels of them as follows, the resulting labeling is

antimagic. First note that f(vavb) ≥ n + 1, and thus f+(v1) and f+(v2)

increase simultaneously by at least n. Then both f+(v1) and f+(v2) are

distinct, and > (2k2−1)n
2

+ k+n. On the other hand, both f+(va) and f+(vb)

decrease simultaneously by at least n. Also both are distinct, and< (2k2−1)n
2

+
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k + 1. Therefore the antimagic-ness is assured together with other vertex

sums.

Sub-case 2.2: vr = v2. Then we switch the edge labels of v1v2 and

vavb, note that in this case v2 is either va or vb, say v2 = va. It can be seen

that f+(v2) is unchanged. Note that similarly f+(v1) >
(2k2−1)n

2
+ k+ n and

f+(vb) <
(2k2−1)n

2
+ k + 1, thus the resulting new labeling is antimagic. 2

In the following we provide with more examples about antimagic labelings

of regular graphs. The first class of examples come from the power of cycles

Ck
n, which are even regular graphs.

Example 3.1.3. (Powers of Cycles Ck
n) In 2011, M. Lee, C. Lin, and W.

Tsai [23] proved that in particular that the square of cycles C2
n with odd order

are antimagic, and further conjectured that all powers of cycles of any order

are also antimagic. It is not hard to see that their results and moreover the

conjecture follow from the results in this section, since all powers of cycles

Ck
n are clearly Hamiltonian and even regular.

Also we have the following examples from circulant graphs.

Example 3.1.4. CIRn(S) is antimagic if there exists an element s with

gcd(n, s) = 1 such that s ∈ S, since it contains a Hamiltonian cycle CIRn({s}).

3.2 Even Regular Graphs With Particular 2-

Factors

In this section we generalize the results for the antimagic-ness of Hamiltonian

even regular graphs of odd order as in Theorem 3.1.1. We start with the
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following Lemma:

Lemma 3.2.1. Let G be a 2-regular graph of order p. Assume that G has a

bijective edge labeling from E(G) to the consecutive integers a, a+1, · · · , a+

(p− 1) such that the vertex sums are consecutive integers. Then

1. p is odd;

2. The consecutive vertex sums are Ai = 2a+ p−1
2

+ i− 1 for 1 ≤ i ≤ p.

Main result is as follows:

Theorem 3.2.2. Let G be a 2k-regular graph with p vertices, k ≥ 2. As-

sume that G contains a 2-factor consisting of (a, 1)-antimagic 2-subfactors

H1, H2, · · · , Ht of odd order, where t is a fixed positive integer at most k.

Then G is antimagic.

Proof.

Since G is a 2k-regular graph with p vertices, one label edges using consec-

utive integers 1, 2, · · · , pk. By Petersen’s Theorem 4.1.2, G can be factored

as sum of 2-factors G = F1 ⊕ F2 ⊕ · · · ⊕ Fk. Without loss of generality, may

assume F1 = H1⊔H2⊔· · ·⊔Ht, a disjoint union of 2-regular (a, 1)-antimagic

subgraphs H1, H2, · · · , Ht. Assume Hi has mi vertices (hence has mi edges),

for each 1 ≤ i ≤ t. Thus m1 + m2 + · · · + mt = p. Also note that by

Lemma 4.1.3, the integers mi is odd for each 1 ≤ i ≤ t.

We first label F1 = H1 ⊔ H2 ⊔ · · · ⊔ Ht. Since H1, · · · , Ht are (a, 1)-

antimagic, by applying Lemma 4.1.3 we may have consecutive partial vertex

sums via labeling them respectively using {1, 2, ...,m1} forH1, {p+m1+1, p+

m1+2, · · · , p+m1+m2} for H2, {2p+m1+m2+1, 2p+m1+m2+2, · · · , 2p+
m1 +m2 +m3} for H3, · · · , {(t − 1)p +

∑t−1
i=1 mi + 1, (t − 1)p +

∑t−1
i=1 mi +

2, · · · , (t−1)p+
∑t−1

i=1 mi+mt} for Ht. Let A
i
j be the j-th partial vertex sum
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(1 ≤ j ≤ mi) over Hi, 1 ≤ i ≤ t. Also let Di = Ai+1
1 −Ai

mi
−1, where 1 ≤ i ≤

t−1. Note that by Lemma 4.1.3, Di = Ai+1
1 −Ai

mi
−1 = 1

2
(mi+mi+1)+2p > p

for i = 1 to t − 1. To make the partial vertex sums to be a sequence of

consecutive integers for the time being, one may modify the partial vertex

sums Ai
j to be the fake partial vertex sums Âi

j by the following translations:

Âi+1
j = Ai+1

j −Di −Di−1 − · · · −D1, for i = 1 to t− 1. Note that Â1
j = A1

j ,

that is A1
j is fixed for each j. Therefore the fake partial vertex sums Âi

j form

a sequence of consecutive integers Â1
1 = σ1 < σ2 < · · · < σp = σ1 + (p− 1).

We now may apply Lemma 5.2.4 to add the labeling of the rest of 2-factors

F2, · · · , Fk and keep the resulting vertex sums to be consecutive integers. By

abusing language we still denote the vertex sums by Âi
j. After recovering the

original vertex sums via Ai+1
j = Âi+1

j +Di+Di−1+ · · ·+D1 for i = 1 to t−1

and A1
j = Â1

j , again we still abuse language and call them Ai+1
j . We claim

the original vertex sums Ai
j are pairwise distinct.

To show the claim is true, we may first see σ1 ≤ Â1
j = A1

j ≤ σp for each

j. Secondly σ1 + D1 ≤ Â2
j + D1 = A2

j ≤ σp + D1 for each j. Similarly

σ1 +D1 +D2 ≤ Â3
j +D1 +D2 = A3

j ≤ σp +D1 +D2. Then we proceed until

σ1 +D1 +D2 + · · ·+Dt−1 ≤ Ât
j +D1 +D2 + · · ·+Dt−1 = At

j ≤ σp +D1 +

D2 + · · · +Dt−1 for each j. Let [a, b] be the set of integers {t | a ≤ t ≤ b}.
We conclude that for each j, the vertex sums A1

j belong to [σ1, σp], A
2
j belong

to [σ1 +D1, σp +D1], A
3
j belong to [σ1 +D1 +D2, σp +D1 +D2], · · · , until

At
j belong to [σ1 +D1 +D2 + · · · +Dt−1, σp +D1 +D2 + · · · +Dt−1]. Note

that [σ1, σp]∩ [σ1 +D1, σp +D1]∩ [σ1 +D1 +D2, σp +D1 +D2]∩ · · · ∩ [σ1 +

D1 +D2 + · · ·+Dt−1, σp +D1 +D2 + · · ·+Dt−1] = ϕ since Di > p for each

i = 1, · · · , t− 1. (See Figure 3.2.1) Therefore Ai
j are pairwise distinct for all

i, j and we are done.

2

Corollary 3.2.3. Let G be a 2k-regular graph (k ≥ 2) which contains a

2-factor consisting of at most k odd cycles only. Then G is antimagic.

Followed from the above general Theorem 3.2.2 we may have a lot more
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pσ1σ pσ1σ pσ+ D1 + D1 1σ+ D1+ D2 + D1+ D2

...

A
1

j A
2

j A
3

j

Figure 3.2.1: Translation of Ranges

examples of circulant graphs (Cayley graphs of finite cyclic groups), not just

limited to the case in the above Corollary 3.2.3. To see this we first need

a lemma saying that the disjoint union of an odd number of odd cycles is

(a, 1)-antimagic. In 2003 V. Swaminathan and P. Jeyanthi already showed

the following result in [37], however the labeling way they gave in the article

contains errors and can not be properly checked. Therefore here we rewrite

a proof for completeness:

Lemma 3.2.4. (V. Swaminathan and P. Jeyanthi, 2003) Let G be

mCn, which is the vertex disjoint union of m copies of connected n-cycles

Cn. Then G is (a, 1)-antimagic if and only if m and n are both odd.

Proof.

We prove the necessary part first. Since mCn is (a, 1)-antimagic, may

suppose the vertex sums form an arithmetic progression with initial term a

and common difference 1. Hence

2(1 + 2 + · · ·+mn) = a+ (a+ 1) + · · ·+ (a+mn− 1)

Therefore a = 3
2
+ 1

2
mn, thus mn must be odd, and m and n must be both

odd.

Conversely, for m, n odd, we show that mCn is (a, 1)-antimagic. Sort

and name the vertices of these n-cycles clockwise as vij, which indicate the

j-th vertex in the i-th cycle, where 1 ≤ i ≤ m and 1 ≤ j ≤ n. Denote

the corresponding edge vijv
i
j+1 = eij for 1 ≤ i ≤ m and 1 ≤ j ≤ n − 1, and

vinv
i
1 = eij for 1 ≤ i ≤ m and j = n.

Then we define the edge labeling f as follows:
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f(eij) =



i, 1 ≤ i ≤ m, j = 1
m( j

2
) + i+ 1

2
, 1 ≤ i ≤ m−1

2
, 3 ≤ j ≤ n, for odd j.

m( j
2
− 1) + i+ 1

2
, m+1

2
≤ i ≤ m, 3 ≤ j ≤ n, for odd j.

m(n+j+1
2

)− 2i+ 1, 1 ≤ i ≤ m−1
2

, 2 ≤ j ≤ n− 3, for even j.
m(n+j+3

2
)− 2i+ 1, m+1

2
≤ i ≤ m, 2 ≤ j ≤ n− 3, for even j.

m(n− 1) + i, 1 ≤ i ≤ m, j = n− 1.

Then it may be checked that the above labeling induces the desired (a, 1)-

antimagic labeling.

2

Corollary 3.2.5. All circulant graphs G of odd order (hence even regular)

are antimagic.

Proof.

Any 2-factor of G is consisting of an odd number of odd cycles, which is

(a, 1)-antimagic by Lemma 4.3.1. From the above Theorem 3.2.2 it follows

G is antimagic.

2

Corollary 3.2.6. Let G = CIRn(S) be a circulant graph of even order n.

Suppose there exists an element a ∈ S ⊆ {1, 2, · · · , n
2
} and n

gcd(n,a)
is odd.

Moreover n
2
is not in S. Then G is antimagic.

Proof.

Note that since n
2
is not in S and n is even, G = CIRn(S) is even regular,

say 2k-regular and k ≥ 2. Also CIRn({a}) is a 2-factor consisting of gcd(n, a)
cycles with the same odd order n

gcd(n,a)
, which means an even number of odd

cycles. We see that one may treat the 2-factor CIRn({a}) as H1 ⊔H2 where

H1 and H2 are both 2-regular subgraphs consisting of an odd number of odd
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cycles. Hence H1 and H2 are (a, 1)-antimagic by Lemma 4.3.1. Therefore by

the above Theorem 3.2.2, it follows G is antimagic.

2

In the following we have another criterion for testing the antimagic-ness

for an even regular graph with a 2-factor consisting of cycles of the same size:

Theorem 3.2.7. Let G be a 2k-regular graph. Assume that G contains a

2-factor F = mCn consisting of cycles of the same size. Then G is antimagic.

Proof.

In casem,n both odd, by Lemma 4.3.1 and Lemma 5.2.4, one see immedi-

ately that such graph G is (a, 1)-antimagic, hence antimagic. In case m even

and n odd, one may treat the case as two groups of cycles, one is m−1 (odd)

Cn’s and the other one is a single odd cycle Cn. By applying Lemma 4.3.1

one see the first group of cycles is (a, 1)-antimagic, and then using the lager

edge labels over the single Cn one obtain another (a′, 1)-antimagic labeling,

which does not overlap with the former group of (a, 1)-antimagic vertex sums.

Therefore we may apply Lemma 2.2.2 to get G is antimagic. One may get the

remaining cases in similar fashions, and the details are left to the interested

readers.

2

Corollary 3.2.8. All even regular circulant graphs are antimagic.



Chapter 4

Edge-Super Magic Labeling

A vertex magic total labeling is a bijection from V (G) ∪ E(G) to the

consecutive integers 1, 2, · · · , p + q, with the property that, for every vertex

u in V (G), one has f(u) +
∑

uv∈E(G) f(uv) = k for some constant k. Such a

labeling is called E-super vertex magic if f(E(G)) = {1, 2, · · · , q}. A graph

G is called Edge-Super(E-super for short)x x vertex magic if it admits a

E-super vertex magic labeling. Most recently [29] G. Marimuthua and M.

Balakrishnan (”E-super vertex magic labelings of graphs”, Discrete Applied

Math. 160, 2012, pp. 1766-1774) studied some basic properties of such

labelings and established E-super vertex magic labeling of some families of

graphs. In this chapter we extend their results and more examples are also

provided. Note that the results were written as a paper A Note on E-

super Vertex Magic Graphs, which was submitted to a journal in 2012

and under review.

4.1 Introduction and Background

Over the past few decades many kinds of graph labelings have been studied

intensively, and an excellent survey of graph labeling can be found in Gal-

30
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lian’s chapter [15]. In 1963, Sedláček [32] introduced the concept of magic

labeling. Suppose that G is a graph with q edges and one shall say that G is

magic if the edges of G can be labeled by the numbers 1, 2, · · · , q so that the

sum of labels of all the edges incident with any vertex is constant. In 2002

MacDougall et al. [26] introduced the concept of vertex magic total labeling

as follows. If G is a finite simple undirected graph with p vertices and q

edges, then a vertex magic total labeling is a bijection f from V (G) ∪ E(G)

to the integers 1, 2, · · · , p + q with the property that for every u ∈ V (G),

the sum f(u) +
∑

uv∈E(G) f(uv) is constant. They studied the basic prop-

erties of vertex magic graphs and showed some families of graphs having a

vertex magic total labeling. MacDougall et al. [27] further introduced the

concept of super vertex magic total labeling. They call a vertex magic to-

tal labeling is super if f(V (G)) = {1, 2, · · · , p}. Swaminathan and Jeyanthi

[37] introduced a concept with the name super vertex magic labeling, but

with different definition. They call a vertex magic total labeling is super

if f(E(G)) = {1, 2, · · · , q}. More recently Marimuthua and Balakrishnan

[29] studied some basic properties of such labelings and established E-super

vertex magic labeling of some families of graphs. Here we define it formally:

Definition 4.1.1. Let G be a finite simple graph with p = |V (G)| vertices

and q = |E(G)| edges. A vertex magic total labeling is a bijection from

V (G) ∪ E(G) to the consecutive integers 1, 2, · · · , p + q, with the property

that, for every vertex u in V (G), one has f(u)+
∑

uv∈E(G) f(uv) = k for some

constant k. Such a labeling is called E-super vertex magic if f(E(G)) =

{1, 2, · · · , q}. A graph G is called E-super vertex magic if it admits a

E-super vertex magic labeling.

In this chapter, we generalize some of previous results in [29]. More

examples regarding the E-super vertex magicness of regular graphs, such as

circulant graphs, are also provided. We first state a well-known result we
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need later:

Theorem 4.1.2. (J. Petersen, 1891 [31]) Let G be a 2r-regular graph.

Then there exists a 2-factor in G.

Notice that after removing edges of the 2-factor by the Petersen Theorem,

we will get an even regular graph again and again. Thus an even regular

graph has a 2-factorization. Also we need another fact as pointed out in [37]:

Theorem 4.1.3. Let G be a graph and g be a bijection from E(G) onto

{1, 2, · · · , |E(G)|}. Then g can be extended to an E-super vertex magic la-

beling of G if and only if {w(u) =
∑

uv∈E(G)

g(uv) | u ∈ V (G)} consists of

|V (G)| consecutive integers.

This allows us to use the edge labeling instead to be the tool studying

the E-super vertex magic total labeling throughout this chapter.

4.2 Even Regular Hamiltonian Graphs of Odd

Order

Note that a graph is called Hamiltonian if it contains a Hamiltonian cycle.

We show in this section that Hamiltonian even regular graphs of odd order

are E-super vertex magic. In Theorem 3.5. of [29] the following result is

proved: Let G be a (p, q) graph of odd order. If G can be decomposed into

two Hamilton cycles, then G is E-super vertex magic. Here we generalize to

the following form:

Theorem 4.2.1. Let G be a 2r-regular, r ≥ 2, Hamiltonian graph of odd

order n. Then G is E-super vertex magic.
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Proof.

By Petersen’s Theorem 4.1.2, G = F1

⊕
F2

⊕
· · ·

⊕
Fr, where Fi is a

2-factor for each 1 ≤ i ≤ r. Without loss of generality, we assume F1 is

the Hamiltonian cycle which G has, and let V (F1) = {v1, v2, · · · , vn} and

E(F1) = {v1v2, v2v3, · · · , vn−1vn}.
Now we give an edge labeling f by the following steps. Note that G has

rn edges. First we split all edge labels 1, 2, · · · , rn into r groups as follows:

{1, 2, · · · , n}, {n+1, n+2, · · · , 2n}, · · · · · · {(r−1)n+1, (r−1)n+2, · · · , rn}.
Then we will put these groups of labels in order over the edges of F1, F2, · · · ,
Fr, respectively. Similarly we may define G recursively as before, namely

Gk = F1

⊕
F2

⊕
· · ·

⊕
Fk for 1 ≤ k ≤ r. We label G recursively in below.

Since Fj are 2-factors for each 1 ≤ j ≤ r, we assign an orientation so that

over each connected component (connected 2-cycle) the flow direction is ei-

ther clockwise or counter-clockwise. We set f out
k (w) and f in

k (w) respectively,

for each 1 ≤ k ≤ r, to be the outgoing edge label over the 2-factor Fk from

the vertex w and the incoming edge label to the vertex w according to the

given orientation. On the other hand, we denote f+(w) to be the induced

vertex sum at the vertex w, and we use f+
k (w) to stand for the partial vertex

sum at w for Gk for each 1 ≤ k ≤ r. Then we may start labeling recursively

over G1, G2, · · · , Gr = G. Precisely we give the labeling in the following

steps:

Step 1: For G1 = F1, first by f(vivi+1) = i+1
2

for i odd, and f(vivi+1) =
i
2
+ n+1

2
for i even. Thus the partial vertex sum f+

1 (vi) = i+ n+1
2
, 1 ≤ i ≤ n,

which form an arithmetic progression of common difference 1.

Step 2: For G2, G3, ..., Gr we proceed recursively as follows: For 2 ≤ k ≤ r,

over Fk we set f out
k (vi) =

(2k2−2k+1)n+2k−1
2

− f+
k−1(vi) for each 1 ≤ i ≤ n.

Therefore f+
k (vi) = f in

k (vi)+f+
k−1(vi)+f out

k (vi) =
(2k2−2k+1)n+2k−1

2
+f in

k (vi).

Also note that f out
k (vi) = f in

k (vi) for a unique j, where 1 ≤ j ̸= i ≤ n.

Therefore f+
k (vi) = (2k2−1)n+2k+1

2
+ (i − 1) for 1 ≤ i ≤ n, which form an

arithmetic progression of common difference 1.

Therefore one obtain an edge labeling where the induced vertex sums
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are consecutive integers, and hence an E-super vertex magic labeling by

Theorem 4.1.3.

2

In fact with similar proof technique as above, it is not hard to see that

one may furthermore generalize the above to the following:

Theorem 4.2.2. Let G be decomposed into the sum of two spanning sub-

graphs G1 ⊕G2, where G1 is E-super vertex magic and G2 is regular of even

degree. Then G is E-super vertex magic.

Note that the above Theorem 4.2.2 generalizes Theorem 3.7. in [29]:

If a graph G can be decomposed into two E-super vertex magic spanning

subgraphs G1 and G2 where G2 is regular, then G is E-super vertex magic.

Also we remark that just recently similar techniques were employed in [46]

to deal with another graph labelling problem.

4.3 Even Regular Graphs of Odd Order

In 2003 V. Swaminathan and P. Jeyanthi showed the following result in [37]

as pointed out by G. Marimuthu and M. Balakrishnan in [29]:

Theorem 4.3.1. Let G be mCn, which is the disjoint union of m copies of

Cn. Then G is E-super vertex magic if and only if m and n are both odd.

Then we have the following result which can be used to create many

examples of E-super vertex magic regular graphs and also can be treated as

a natural generalization of Theorem 4.2.1:

Theorem 4.3.2. Let G be a even-regular graph of odd order which contains

a 2-factor consisting of an odd number of odd cycles. Then G is E-super
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vertex magic.

Proof.

LetG be a regular graph of even degree with odd number of vertices. Then

by Petersen’s Theorem 4.1.2, G may be decomposed into sums of 2-factors,

say G = F1

⊕
F2

⊕
· · ·

⊕
Fr, where Fi is a 2-factor for each 1 ≤ i ≤ r. Since

G is of odd order, any Fi consists of an odd number of odd connected cycles.

Therefore by Theorem 4.3.1 and Theorem 4.2.2 we may see G is E-super

vertex magic. 2

To obtain more examples, we consider the circulant graphs as follows:

Definition 4.3.3. A circulant graph CIRn(S) with n vertices, with re-

spect to S ⊂ {1, 2, · · · , ⌊n
2
⌋}, is a graph with the vertex set V (CIRn(S)) =

{0, 1, 2, · · · , n− 1}, and the edge set is formed by the following rule:

E(CIRn(S)) = {ij : i− j ≡ ±s (mod n), s ∈ S}.

Note that the circulant graph CIRn(S) is also called a Cayley graph of the

finite cyclic group Zn generated by S.

For example, CIRn({a}) ∼= Cn, the connected n-cycle, if gcd(n, a) = 1.

Moreover CIRn({1, 2, · · · , ⌊n
2
⌋}) ∼= Kn, the complete graphs, and CIR2n({1, n}) ∼=

the n-Möbius ladder graphs. Note that CIRn(S) is odd-regular if n is even

and n
2
∈ S, is even-regular otherwise.

Therefore directly from Theorem 4.3.2, we have the following class of

circulant graphs which is E-super vertex magic:

Theorem 4.3.4. Let G be a circulant graph with odd order. Then G is

E-super vertex magic.
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4.4 Conclusion Remark

More properties of E-super vertex magic labelling can be explored based

upon results in this chapter and previous work. In particular among others

one can study the E-super vertex magic labelling for odd regular graphs and

general regular graphs, contrast to results here for even regular graphs.



Chapter 5

Vertex Magic Total Labeling

Let G = (V (G), E(G)) be a finite simple graph with p = |V (G)|
vertices and q = |E(G)| edges, without isolated vertices or isolated edges. A

vertex magic total labeling is a bijection from V (G)∪E(G) to the consecutive

integers 1, 2, · · · , p+q, with the property that, for every vertex u in V (G), one

has f(u) +
∑

uv∈E(G) f(uv) = k for some constant k. In 2004 MacDougall et

al. [26] first introduced the concept of vertex magic total labeling and studied

their properties. In 2006 Slamin et al. [35] studied such vertex magic total

labeling of disconnected graphs. In this paper we study the properties of

such vertex magic total labeling for various graph classes. Among others

we settle a conjecture mentioned in [35], which claimed the existence of the

vertex magic total labeling of disjoint union of multiple copies of distinct

sun graphs, where the sun graph is the corona product of a cycle with a

point. We furthermore provide with an infinite class of graphs admitting

such labelings based upon adding arbitrary 4k-regular factors to the above

disjoint union of sun graphs. Note that the results we obtain in this paper

could be extended to those pseudo-graphs with multiple edges or loops. Note

that the results in this chapter has been accepted as a regular journal paper

On Vertex Magic Total Labeling of Disjoint Union of Sun Graphs,

Utilitas Math., 2013.

37



CHAPTER 5. VERTEX MAGIC TOTAL LABELING 38

5.1 Introduction and Background

Unless otherwise stated all graphs in this chapter are finite simple, undi-

rected, possibly disconnected, but without any isolated vertex or any isolated

edge. Over the past few decades many kinds of graph labelings have been

studied intensively, and an excellent survey of graph labeling can be found in

Gallian’s paper [15]. In 1963, Sedláček [32] introduced the concept of magic

labeling. Suppose that G is a graph with q edges and one shall say that G

is magic if the edges of G can be labeled by the numbers 1, 2, · · · , q so that

the sum of labels of all the edges incident with any vertex is constant. In

2004 MacDougall et al. [26] introduced the concept of vertex magic total

labeling, studied the basic properties of vertex magic graphs, and showed

some families of graphs having a vertex magic total labeling.

Definition 5.1.1. Let G be a finite simple graph with p = |V (G)| vertices

and q = |E(G)| edges. A vertex magic total labeling is a bijection from

V (G) ∪ E(G) to the consecutive integers 1, 2, · · · , p + q, with the property

that, for every vertex u in V (G), one has f(u)+
∑

uv∈E(G) f(uv) = k for some

constant k. The constant k is called the magic constant. Moreover G is

called vertex-magic if it admits a vertex magic total labeling.

Since the introduction of this notion, there have been several results on

vertex magic total labeling of particular classes of graphs. For example,

MacDougall et al. [26] proved that cycle Cn for n ≥ 3, path Pn for n ≥ 2,

complete graph Kn for odd n, complete bipartite graph Kn,n for n > 1, have

vertex magic total labelings. Bača, Miller and Slamin [7] proved that for

n ≥ 3, 1 ≤ m ≤ ⌊n−1
2
⌋, every generalized Petersen graph P (n,m) has a

vertex-magic total labeling with the magic constant k = 9n+2, k = 10n+2,

and k = 11n+2. In 2007 [17] Gray studied such labelling for regular graphs.

The complete survey of the known results on vertex magic total labeling of

graphs can be found in [15], and also in other references [17, 29, 35, 45].
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Most of the known results are concerning on vertex magic total labeling of

connected graphs. For the case of disconnected graph, Wallis [45] proved the

following theorem.

Theorem. Suppose G is regular graph of degree r which has a vertex magic

total labeling. (i) If r is even, then tG is vertex magic whenever t is an odd

positive integer. (ii) If r is odd, then tG is vertex magic for every positive

integer t.

In 2006 Slamin et al. [35] studied such vertex magic total labeling of

disconnected graphs and made a conjecture that there is a vertex-magic total

labeling of the disjoint union of non-isomorphic suns, where the graph sun

is the corona product of a cycle with a point. That is it was conjectured that

the vertex-magic total labeling exists for the corona product of an arbitrary

2-regular graph with a point. The corona product of G1 and G2, defined

by Frucht and Harary [13] is the graph which is the disjoint union of one

copy of G1 and V (G1) copies of G2 in which each vertex of the copy of G1 is

connected to all vertices of a separate copy of G2. Please see in the following

Figure 5.1.1 for an example of corona product of a 2-regular graph with one

point, i.e. a disjoint union of sun graphs.

Figure 5.1.1: Example of Disjoint Union of Sun Graphs

In this chapter we verify the conjecture completely and provide with more

examples by way of showing the following:

Theorem. There exists a vertex-magic total labeling for the disjoint union

of t not necessarily isomorphic suns Sm1 ∪ Sm2 ∪ · · · ∪ Smt , for any positive
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integer t. Moreover let G = (Sm1∪Sm2∪· · ·∪Smt)⊕H be the graph consisting

of the disjoint union of t suns and an arbitrary 4k-factor H. Then G also

admits a vertex-magic total labeling.

We notice that the method employed here is also valid for those graphs

with multiple edges and loops. Therefore we verify moreover that the vertex-

magic total labelings exist for the corona product of an arbitrary 2-regular

pseudo-graphs with one point. More examples and open problems will be

provided in the concluding remark.

5.2 Main Results

The main result of this note is the following theorem, which verifies the

conjecture made by Slamin et al. in 2006 [35]:

Theorem 5.2.1. There exists a vertex-magic total labeling for the disjoint

union of t (not necessarily isomorphic) sun graphs Sm1 ∪Sm2 ∪ · · · ∪Smt, for

any positive integer t.

Proof. Let G be the graph Sm1 ∪ Sm2 ∪ · · · ∪ Smt , and let
∑t

i=1mi = n.

Hence the number of vertices is 2n and the number of edges is also 2n.

Assume that the pendant vertices are u1, u2, · · · , un and the vertices over the

cycle are v1, v2, · · · , vn, so that uivi ∈ E(G) for each 1 ≤ i ≤ n. Then we

start doing the total labeling f to the vertices u1, u2, · · · , un using integers

2n+2, 2n+4, · · · , 4n and to the edges uivi by 6n+1−f(ui) for each 1 ≤ i ≤ n.

Therefore the weights over the vertices u1, u2, · · · , un are 6n+1, which is the

magic constant.

Now we do the labeling over the vertices and edges of the cycle as follows.

First we assign an orientation on the cycles so that over each connected

component the flow is either clockwise or counter-clockwise. Let eouti and

eini respectively to be the outgoing edge from the vertex vi and the incoming

edge to the vertex vi, according to the given orientation. Precisely we give
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the labeling of eini as follows:

f(eini ) = 4n− f(uivi)

for each 1 ≤ i ≤ n. Note that the range for the the edge labels of eini is

{1, 3, 5, · · · , 2n− 1}.
On the other hand, notice that there is a one-to-one correspondence be-

tween the edge labels of eouti and the edge labels of eini . We may define the

labeling of vi as follows:

f(vi) = 6n+ 1− (f(eouti ) + f(eini ) + f(uivi))

for each 1 ≤ i ≤ n. Therefore f(vi) uses the rest of the labels 2, 4, 6, · · · , 2n
since f(eini ) + f(uivi) = 4n for each i, and f(vi) = 2n + 1 − f(eouti ). It is

seen that f(vi) is uniquely determined by the label of eouti , hence uniquely

determined by the label of eini . The weights over these vertices v1, v2, · · · , vn
are also 6n+ 1. Thus we have the desired vertex-magic total labeling.
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Figure 5.2.1: The Vertex-Magic Labeling of Disjoint Union of Three Suns

In order to obtain some technical lemmas for more examples of vertex-

magic graphs, we define another type of related edge labeling:

Definition 5.2.2. For a graph G = (V,E) with q edges and without any iso-

lated vertex, an antimagic edge labeling is a bijection f : E → {1, 2, · · · , q},
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such that the induced vertex sum f+ : V → Z+ given by f+(u) =
∑

{f(uv) :

uv ∈ E} is injective. A graph is called antimagic if it admits an antimagic

labeling. If moreover for G the vertex sums form an arithmetic progression

with initial term a and common difference d, we say G admits an (a, d)-

antimagic labeling and G is (a, d)-antimagic.

Definition 5.2.3. We say for convenience that, a graph G admits (a, d)-

antimagic vertex sums, if under certain edge labeling for G the associated

vertex sums form an arithmetic progression of initial term a and common

difference d.

Note that we have the following fact for assuring (a, 1)-antimagic-ness

while adding extra even factor to an (a, 1)-antimagic graph, which was proved

in [21] in 2006:

Lemma 5.2.4. (J. Ivančo, A. Semaničová, 2006) Assume H is a graph

which arose from a graph G of p vertices and q edges by adding an arbitrary

2k-factor. If G is (a, 1)-antimagic, then H is (a, 1)-antimagic.

We extend the above result as follows for assuring (a, d)-antimagic-ness

while adding extra even factor to an (a, d)-antimagic graph:

Lemma 5.2.5. Assume the graph G admits (a, d)-antimagic vertex sums

via certain edge labeling. After adding an arbitrary 2-factor H by labeling

the edges of H with another arithmetic progression with common difference

d, the new graph G ⊕ H still admits (a, d)-antimagic vertex sums, i.e. an

arithmetic progression vertex sums with common difference d.
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Proof. Let the (a, d)-antimagic vertex sums ofG be a, a+d, · · · , a+(|V (G)|−
1)d. Also let the edge labels for H be b, b + d, · · · , b + (|V (G)| − 1)d. Then

we we assign an orientation on the cycles of H so that over each connected

component the flow is either clockwise or counter-clockwise. Let eouti and eini

respectively to be the edge from the vertex vi and the incoming edge to the

vertex vi, according to the given orientation. Assume the original vertex sum

at vi is w(vi) for each i. We see the resulting vertex sum for G ⊕ H at the

vertex vi is W (vi) = w(vi) + eini . We define

eini = a+ b+ (|V (G)| − 1)d− w(vi)

for each 1 ≤ i ≤ |V (G)|. Since at the vertex vi there is a one-to-one corre-

spondence between the outgoing edge labels of eouti and the incoming edge

labels of eini , we see the resulting vertex sums W (vi) form an arithmetic

progression vertex sums with common difference d.

2

Lemma 5.2.6. Let the graph G admit (a, d)-antimagic vertex sums under

certain edge labeling. After adding an arbitrary 2k-factor H where k is a

multiple of d, the new graph G⊕H still admits (a, d)-antimagic vertex sums.

In particular, adding an arbitrary 2k-factor to an (a, d)-antimagic graph still

keeps the (a, d)-antimagic-ness.

Proof. Let the graph G have p vertices and q edges. Then we see over the

2k-factor H one can label the edges with q + 1, q + 2, · · · , q + kp. Since d|k,
let k = td. Now we split the above edge labels into t categories as follows:

q + 1, · · · · · · , q + dp,

q + dp+ 1, · · · · · · , q + 2dp,

q + 2dp+ 1, · · · · · · , q + 3dp,
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· · · · · · · · · · · · · · · · · ·

q + (t− 1)dp+ 1, · · · · · · , q + tdp.

Again we split each of the t categories into d sub-categories, such that

the (i, j)-th sub-category is the j-th sub-category of the i-th category. Note

that the (i, j)-th sub-category is an arithmetic progression with initial term

q + (i − 1)dp + j and common difference d for 1 ≤ i ≤ t and 1 ≤ j ≤ d.

Therefore from Lemma 5.2.5 one may check the graph G ⊕ H still admits

(a, d)-antimagic vertex sums.

2

Therefore in case d = 1 the above more general result goes back to the

previous one in [21]. With the above lemmas we may push one step for-

ward and provide with an infinite class of examples of the vertex magic total

labeling by adding arbitrary 4k-factors:

Theorem 5.2.7. Let G = (Sm1 ∪Sm2 ∪· · ·∪Smt)⊕H be the graph consisting

of the disjoint union of t (not necessarily isomorphic) suns and an arbitrary

4k-factor H. Then G admits a vertex-magic total labeling.

Proof. As previously in Theorem 5.2.1 let
∑t

i=1mi = n. Then the number

of vertices for the graph Sm1 ∪Sm2 ∪ · · · ∪Smt is 2n and the number of edges

is also 2n. In the proof of Theorem 5.2.1 we see for Sm1 ∪ Sm2 ∪ · · · ∪ Smt

one has the vertex-magic total labeling with magic constant 6n+ 1 and the

labelings used over vertices are consecutive even numbers 2, 4, · · · , 2n, 2n +

2, · · · , 4n. We remove these consecutive even numbers, and we see that with

the remaining edge labels the graph admits (a, 2)-antimagic vertex sums.

Then by Lemma 5.2.6 after adding any arbitrary 4k-factor H one still keep

the (a, 2)-antimagic-ness for vertex sums of edge labels. Finally according to

the (a, 2)-antimagic-ness for vertex sums over these vertices, we put back the

consecutive even numbers 2, 4, · · · , 2n, 2n+2, · · · , 4n over all the vertices in

reverse ascending order to make the constant sum, then the desired vertex-
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magic total labeling for the resulting graph (Sm1 ∪ Sm2 ∪ · · · ∪ Smt) ⊕ H is

obtained.

2

5.3 Conclusion Remark

More properties of vertex magic total labellings for disconnected graphs can

be explored based upon results in this paper and previous work. In particular

one may further study such labelling for the corona products and other types

of products of graphs, as we have the result for corona product of a 2-regular

graph with a null graph (which is the disjoint union of suns) in this note.

Another remark is that the results in this note also valid for pseudo-

graphs, that is, graphs with possibly multiple edges and loops. Please see

the following Figure 5.3.1 for example. Note that the edge labels over the

loops have to be counted twice while calculating the weight of the given

vertex. Therefore via adding arbitrary 4k-factors, the resulting vertex-magic

graphs could be graphs with multiple edges and loops.
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We also conjecture that the Theorem 5.2.7 is also valid for adding an

arbitrary 2k-factor instead of a 4k-factor:

Conjecture. Let G = (Sm1 ∪ Sm2 ∪ · · · ∪ Smt)⊕H be the graph consisting

of the disjoint union of t (not necessarily isomorphic) suns and an arbitrary

2k-factor H. Then G admits a vertex-magic total labeling.



Chapter 6

Zero-Sum Flows

As an analogous concept of nowhere-zero flows for directed and bi-directed

graphs, we consider zero-sum flows for undirected graphs in this article. For

an undirected graph G, a zero-sum k-flow is an assignment of non-zero

integers whose absolute values less than k to the edges, such that the sum

of the values of all edges incident with each vertex is zero. Furthermore we

generalize the notion via considering a combinatorial optimization problem,

which is to calculate the zero-sum minimum flow number of a graph G,

namely, the least integer k for which G may admit a zero-sum k-flow. The

Zero-Sum 6-Flow Conjecture was raised by Akbari et al. in 2009: If a

graph with a zero-sum flow, it admits a zero-sum 6-flow. It turns out that

this conjecture was proved to be equivalent to the classical Bouchet 6-flow

conjecture for bi-directed flows. We study zero-sum minimum flow numbers

of graphs induced from plane tiling by regular hexagons in an arbitrary way,

namely, the hexagonal grid graphs. In particular we are able to verify the

Zero-Sum 6-Flow Conjecture for the class of hexagonal grid graphs by de-

termining the zero-sum flow number of any non-trivial hexagonal grid graph

is 3 or 4. We further use the concept of dual graphs to specify classes of

infinite families of hexagonal grid graphs with minimum flow numbers 3 and

4 respectively. Further open problems are included. Note that the results in

47
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this chapter has been presented in the international conference FAW-AAIM

2013, Dalian, China, June 26-28, and already is published as Zero-Sum

Flow Numbers of Hexagonal Grids, Lecture Notes in Computer Science

(LNCS) 7924, pp. 339-349, 2013. (EI)

6.1 Background and Motivation

Let G be a directed graph. A nowhere-zero flow on G is an assignment

of non-zero integers to each edge such that for every vertex the Kirchhoff

current law holds, that is, the sum of the values of incoming edges is equal

to the sum of the values of outgoing edges. A nowhere-zero k-flow is a

nowhere-zero flow using edge labels with maximum absolute value k − 1 .

Note that for a directed graph, admitting nowhere-zero flows is independent

of the choice of the orientation, therefore one may consider such concept over

the underlying undirected graph. A celebrated conjecture of Tutte in 1954

says that every bridgeless graph has a nowhere-zero 5-flow. F. Jaeger showed

in 1979 that every bridgeless graph has a nowhere-zero 8-flow[22], and P.

Seymour proved that every bridgeless graph has a nowhere-zero-6-flow[33] in

1981. However the original Tutte’s conjecture remains open. There is a more

general concept of a nowhere-zero flow that uses bidirected edges instead of

directed ones, first systematically developed by Bouchet[9] in 1983. Bouchet

raised the conjecture that every bidirected graph with a nowhere-zero integer

flow has a nowhere-zero 6-flow, which is still unsettled.

Recently another analogous nowhere-zero flow concept has been studied,

as a special case of bi-directed one, over the undirected graphs by S. Akbari

et al.[1, 2] in 2009 and 2010, which is defined as follows:

Definition 6.1.1. For an undirected graph G, a zero-sum flow is an as-

signment of non-zero integers to the edges such that the sum of the values of

all edges incident with each vertex is zero. A zero-sum k-flow is a zero-sum
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flow whose values are integers with absolute value less than k.

S. Akbari et al. raised a conjecture (called Zero-Sum 6-Flow Conjec-

ture) for zero-sum flows similar to the Tutte’s 5-flow Conjecture for nowhere-

zero flows as follows: If G is a graph with a zero-sum flow, then G admits

a zero-sum 6-flow. It was proved in 2010 by Akbari et al. [1] that the

above Zero-Sum 6-Flow Conjecture is equivalent to the Bouchet’s 6-Flow

Conjecture for bidirected graphs, and the existence of zero-sum 7-flows for

regular graphs were also obtained. Based upon the results, they raised an-

other weaker conjecture for regular graphs: If G is a r-regular graph with

r ≥ 3, then G admits a zero-sum 5-flow.

In literature a more general concept minimum flow number, which is

defined as the least integer k for which a graph may admit a k-flow, has

been studied for both directed graphs and bidirected graphs. We extend the

concept in 2011 to the undirected graphs and call it the zero-sum minimum

flow number [43]:

Definition 6.1.2. Let G be a undirected graph. The zero-sum minimum

flow number F (G) is defined as the least number of k for which G may

admit a zero-sum k-flow. F (G) = ∞ if no such k exists.

In particular we obtain a characterization of graphs with flow number 2,

and also a characterization of 3-regular graphs with flow number 3 among

other results[42]. Note that the related result were presented in the FAW 2012

conference by the first author in Beijing. We introduce the basic properties

and previous results of the zero-sum minimum flow numbers in later section.

On the other hand, it is well known that grids are extremely useful in all areas

of computer science. One of the main usage, for example, is as the discrete

approximation to a continuous domain or surface. Numerous algorithms

in computer graphics, numerical analysis, computational geometry, robotics

and other fields are based on grid computations.

It is known that there are only three possible types of regular tessellations,

which are tilings made up of squares, equilateral triangles, and hexagons. We
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consider and study the minimum flow numbers of graphs induced from plane

tiling by regular polygons in an arbitrary way. Formally, a square grid, or a

square grid graph is induced by an arbitrary finite subset of the infinite

integer lattice grid Z × Z. The vertices of a square grid are the lattice

points, and the edges connect the points which are at unit distance from

each other. The infinite grid Z × Z may be viewed as the set of vertices

of a regular tiling of the plane with unit squares. Another type is with

equilateral triangles, which defines an infinite triangular grid in a similar

way. A triangular grid graph is a graph induced by an arbitrary finite

subset of the infinite triangular grid. One more type of plane tiling is with

regular hexagons which defines an infinite hexagonal grid, and the graph

induced by an arbitrary finite subset of the infinite hexagonal grid is called

a hexagonal grid graph. (See Figure 6.1.1) A hexagonal grid graph is also

named a honeycomb graph in literature. We pay attention to hexagonal

grid graphs in this article.

Figure 6.1.1: Example of a Hexagonal Grid Graph

Note that Akbari. et al. showed that in [2] if Zero-Sum 6-Flow Con-

jecture is true for (2, 3)-graphs (in which every vertex is of degree 2 or 3),

then it is true for any graph. Henceforth the study can be reduced to (2, 3)-

graphs. It is clear non-trivial hexagonal grid graphs are a special class of

(2, 3)-graphs. Therefore in this paper we focus the study over the zero-sum
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flow numbers for hexagonal grid graphs. In particular we are able to ver-

ify the Zero-Sum 6-Flow Conjecture for the class of hexagonal grid graphs

by determining the zero-sum flow number of any non-trivial hexagonal grid

graph is 3 or 4. We further use the concept of dual graphs to specify classes

of infinite families of hexagonal grid graphs with minimum flow numbers 3

and 4 respectively.

6.2 Preliminaries of Zero-Sum Flow Numbers

In 2011 [43] we generalize the notion zero-sum flows by considering a com-

binatorial optimization problem, which is to find the zero-sum minimum

flow number of a graph G, namely the least number of k for which G may

admit a zero-sum k-flow. Obviously the zero-sum minimum flow numbers

provide with more detailed information regarding zero-sum flows. For ex-

ample, we may restate the previously mentioned Zero-Sum Conjecture as

follow: Suppose a undirected graph G has a zero-sum flow, then F (G) ≤ 6.

We showed in [42] some general properties of small minimum flow numbers,

so that the calculation of zero-sum minimum flow numbers becomes easier

and efficient. In particular we obtained the following pretty useful technical

lemma for the characterization of graphs with minimum flow number 2 which

is used frequently in this paper, and we provide with a proof for completeness

here:

Lemma 6.2.1. (T.-M. Wang and S.-W. Hu, [42]) A graph G has zero-

sum minimum flow number F (G) = 2 if and only if G is Eulerian with even

size (even number of edges) in each component.

Proof.

Without loss of generality, we may assume G is connected. We start

showing the necessary part. Since a graph G has flow index F (G) = 2

meaning it admits a zero-sum 2-flow, thus the edge function f(e) ∈ {1,−1}.
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For each vertex v ∈ V (G), the number of incident edges labeled 1 must

equal to the number of incident edges labeled -1. Note that both num-

bers are equal to 1
2
deg(v), therefore deg(v) must be even, and G is Eule-

rian. On the other hand, the number of all 1-edges (or (-1)-edges) in G is
1
2

∑
v∈V (G)(

1
2
deg(v)) = 1

2
|E(G)| which is an integer, so |E(G)| are even. Con-

versely, to show the sufficiency we label the edges in an Euler tour of G by

1 and -1 alternatively. Then every vertex is incident with the same number

of 1-edges and (-1)-edges, including the starting(ending) vertex, since the

number of edges is even. Therefore it is a zero-sum 2-flow in G. 2

In [42] we also calculate the zero-sum flow numbers of regular graphs,

which is closely related to the zero-sum 5-flow conjecture for regular graphs.

Recently it is known that the zero-sum 5-flow conjecture for regular graphs

was nearly completely resolved by S. Akbari and other authors [3], except

the case for 5-regular graphs. We study the zero-sum flows more recently

and obtain certain results toward to these conjectures. Among other results

we show that in [42] that every bridgeless 5-regular graph G admits a 5-flow,

which strengthens the zero-sum 5-flow conjecture for regular graphs.

In next section we calculate the zero-sum minimum flow numbers for

various types of graphs induced from the plane tiling by hexagons.

6.3 Zero-Sum Flow Numbers of Hexagonal

Grid Graphs

It is well known for the notion of the dual graph D(G) of a plane graph G

for a fixed plane drawing representation of G embedded in a sphere or the

plane. Note that generally the dual graph of a hexagonal grid is (a partial

subgraph of) a triangular grid. See for example Figure 6.3.1.

Now we set up fundamental symbols for the trivial regular hexagon la-

beled ±1 and ±2 over the edges as in Figure 6.3.2. The symbol I stands



CHAPTER 6. ZERO-SUM FLOWS 53

Figure 6.3.1: A Hexagonal Grid Graph with its Dual Graph

for the trivial regular hexagon edge-labeled 1 and -1 consecutively with zero-

sums. −I and ±2I stand for the ones with zero-sums using labels of I
multiplied by -1 and ±2 respectively. Note that in figures below, the weight

of the overlapping edge for any two neighboring fundamental symbols are

summed up from both patterns.
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Figure 6.3.2: Fundamental Hexagons with Zero-Sum 2-Flows and 3-Flows

Note that also the zero-sum minimum flow number of the trivial regular

hexagon is 2. The following gives the optimal upper bound for the minimum

flow number of any finite non-trivial hexagonal grid graph:

Theorem 6.3.1. The infinite hexagonal grid graph H̃ admits a zero-sum 3-

flow and F (H̃) = 3. Moreover let H be any finite non-trivial hexagonal grid

graph. Then F (H) = 3 or 4.

Proof.

Note that one obtains a zero-sum flow of the whole figure while patch-

ing together sub-figures with zero-sums in an arbitrary way of union. See

Figure 6.3.3 and note that the weight of the overlapping edge for any two
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neighboring fundamental symbols are summed up from both patterns. There-

fore one has a zero-sum 3-flow for the infinite hexagonal grid graph H̃ using

the fundamental figures ±I. On the other hand, it is impossible for H̃ to

admit a 2-flow due to the existence of odd degree vertices. Thus F (H̃) = 3.

-I

I

I

-I

-I

I

I

-I

-I

I

I

-I

-I

I

I

-I

-I

I

I

-I

-I

I

I

-I

-I

I

I

-I

-I

I

I

-I

Figure 6.3.3: A 3-Flow of the Infinite Hexagonal Grid H̃

As for any finite non-trivial hexagonal grid graph, we obtain the bounds

for the flow numbers via the labeling of the infinite hexagonal grid. It is

not hard to check as in Figure 6.3.4 one has a zero-sum 4-flow for the in-

finite hexagonal grid graph H̃, using the fundamental figures ±I and ±2I.
Note that again the weight of the overlapping edge for any two neighboring

fundamental symbols are summed up from both patterns.

Note that then any finite non-trivial hexagonal grid graph H may be

treated a piece of finite sub-figure cut from the infinite hexagonal grid H̃.

Therefore, H admits a zero-sum 4-flow using exactly the same edge labels

induced from those of H̃ (see Figure 6.3.5). Thus by Lemma 6.2.1 the min-

imum flow numbers are 3 or 4 except that the trivial regular hexagon has

flow number 2 as indicated in I.
2
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Figure 6.3.4: A 4-Flow of the Infinite Hexagonal Grid H̃

We also determine various classes of infinite families of hexagonal grid

graphs with flow numbers 3 and 4 respectively. First we start with classes of

flow numbers 3:

Theorem 6.3.2. Let G be a non-trivial hexagonal grid graph with the dual

graph D(G) to be bipartite. Then F (G) = 3.

Proof.

Note that if the dual graph D(G) is bipartite, it is 2-colorable. Then

using ±I as two colors to put over the vertices of the dual graph. We see G

admits a 3-flow with edge labeling this way and again by Lemma 6.2.1 the

zero-sum flow number is 3.

2

Therefore we may easily have the following examples of flow numbers 3

since their dual graphs are trees, thus bipartite:

Theorem 6.3.3. Let G be a non-trivial hexagonal grid graph with the dual
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Figure 6.3.5: A 4-Flow of Arbitrary Finite Hexagonal Grid Induced from H̃

Figure 6.3.6: Examples of Hexagonal Grids with Flow Number 3

graph D(G) consisting of multiple W6 copies, for which one W6 shares at

most one edge with another copy of W6. (see Figure 6.3.7) Then F (G) = 3.

Proof.

Note that if the dual graph D(G) consists of W6 copies for which one

sharing at most one edge with another, one may fix it into a hexagonal grid

graph by dropping the central vertex of each copy of W6 (see Figure 6.3.7 for

an example to reduce the dual graph). It is clear that the resulting reduced

dual graph is bipartite. Hence by Theorem 6.3.2 we see F (G) = 3.

2
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Figure 6.3.7: Example of Hexagonal Grid with Dual Graph Multiple W6

Copies

The following are examples of classes of infinitely many hexagonal grids

with flow number 4:

Theorem 6.3.4. Let G be a hexagonal grid graph with the dual graph D(G)

which contains a triangle with one degree 2 vertex (see Figure 6.3.8). Then

F (G) = 4.

Figure 6.3.8: Dual graph D(G) contains a triangle with one degree 2 vertex

Proof.

Assume G admits a zero-sum 3-flow, which allows only labels ±1,±2.

See Figure 6.3.9 without loss of generality may assume a = 1 or 2. In both

cases through detailed calculation one will reach contradictions for c and d,

for either c+ d = 0 or c+ d = ±3. Therefore F (G) = 4.

2
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-

-

Figure 6.3.9: Example of G whose dual contains a triangle with one degree

2 vertex

Theorem 6.3.5. Let G be a hexagonal grid graph with the dual graph D(G).

Suppose that D(G) contains a kite with one degree 4 vertex or an antenna

triangle with one degree 3 vertex (as in the Figure 6.3.10). Then F (G) = 4.

Figure 6.3.10: Dual graph D(G) contains a Kite or an Antenna Triangle

Proof.

Assume G admits a zero-sum 3-flow. The common figure of a hexagonal

grid graph containing a kite or an antenna triangle as its dual graph can be

seen in the Figure 6.3.11. Then without loss of generality we may assume a =

1 or 2. In both cases through detailed calculation one will reach contradiction

for g and h, for either g + h = 0 or g + h = ±3. Therefore F (G) = 4.

2

As corollary one may determine the flow numbers of regular hexagonal

cluster gridsHn, which are the graphs in Figure 6.3.12. Note thatHn contains

diagrams in Figure 6.3.11 for each n ≥ 3. Thus by the Theorem 6.3.5 we



CHAPTER 6. ZERO-SUM FLOWS 59

-

Figure 6.3.11: Hexagonal Grid with Kite or Antenna Triangle as its Dual

Graph

have:

Corollary 6.3.6. The minimum flow number of the regular hexagonal cluster

grid Hn of n layers are as follows:

F (Hn) =


2, n = 1.

3, n = 2.

4, n ≥ 3.

Figure 6.3.12: Hexagonal Cluster H2, H3, H4, H5
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6.4 Concluding Remark and Open Problems

In this chapter we are able to determine that the zero-sum flow number of

any non-trivial hexagonal grid graph is 3 or 4. We further find classes of

infinite families of hexagonal grid graphs with minimum flow numbers 3 and

4 respectively. We also calculate as corollaries the zero-sum minimum flow

numbers of infinite families of regular hexagonal grids.

However while one may calculate the zero-sum flow numbers of above

classes of hexagonal grids, it is interesting to characterize completely the

classes of non-trivial hexagonal graphs with zero-sum flow numbers 3 and 4

respectively. The zero-sum flow numbers of square grid graphs are not hard

to calculate, while the complete characterizations of triangular grid graphs

with various flow numbers and their optimal bounds are relatively nice open

problems worth to work on.
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[7] Bača, M., Miller M., and Slamin, Vertex-magic total labelings of gener-

alized Petersen graphs, Int. J. of Computer Mathematics 79, Issue 12,

(2002) pp.1259-1264.

[8] M. D. Barrus, Antimagic labeling and canonical decomposition of

graphs, Information Processing Letters, Volume 110, Issue 7, pp. 261-

263, (2010)

[9] A. Bouchet, Nowhere-zero integral flows on a bidirected graph. J. Com-

bin. Theory Ser. B 34, 279-292 (1983)

[10] Y. Cheng, A new class of antimagic Cartesian product graphs, Discrete

Mathematics, Volume 308, Issue 24, Pages 6441-6448, (2008)

[11] Y. Cheng, Lattice grids and prisms are antimagic, Theoretical Computer

Science, Volume 374, Issues 1–3, 2007, Pages 66-73.

[12] D. Cranston, Regular bipartite graphs are antimagic, Journal of Graph

Theory Volume 60, Issue 3, pp. 173-182, (2009)

[13] Frucht R., and Harary. F., On the coronas of two graphs, Aequationes

Math., 4, pp. 322-324, 1970.

[14] J. A. Gallian, A dynamic survey of graph labeling, The Electronic Jour-

nal of Combinatorics DS6 (2011), 1-256.

[15] Gallian, J.A., A dynamic survey of graph labeling, Electron. J. Combin.

16 (2010) #DS6.

[16] I. D. Gray, Vertex-magic labelings of regular graphs, SIAM J. DIS-

CRETE MATH. Vol. 21, No. 1, pp. 170-177.

[17] Gray, I.D., Vertex-Magic Total Labelings of Regular Graphs, SIAM

Journal on Discrete Mathematics Volume 21, Issue 1, (2007) Pages 170-

177.

[18] I. D. Gray and J. A. MacDougall, Vertex-magic labelings of regular

graphs II, Discrete Mathematics Volume 309, Issue 20 (2009), Pages

5986-5999.



Bibliography 63

[19] D. Hefetz, Anti-magic graphs via the combinatorial nullstellensatz, Jour-

nal of Graph Theory, Volume 50, Issue 4, (2005), pp. 263-272.

[20] P. Y. Huang, T. L. Wong, X. Zhu, Weighted-1-antimagic graphs of prime

power order, Discrete Mathematics, 312 (2012) 2162-2169.
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