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摘 要

OpenFlow 是一種新興的網路通訊協定，藉由分離控制層與網路層，使網路的效率能

夠更好，也能更加的實現真正的 QoS 功能，將網路的需求留給真正需要使用，或是系

統中所定義優先權較高的人所使用，而 OpenFlow 的實現，除了依靠通訊協定本身之

外，還需要實體或虛擬的交換器，以及擔當流量控制角色的控制器來輔助，才有辦法形

成一個完整的系統。當開始使用 OpenFlow 時，交換器或路由器提供了什麼功能已經

不是重點，或者是說，OpenFlow 所著重的，就是把原本廠商結合好的專屬作業系統以

及功能切分開，將系統對使用者開放，讓使用者自行撰寫所需要的功能，舉凡是 RIP、

OSPF、EGP 等路由協定，或是防火牆、QoS、防毒、NAT 等等功能，只要你有概念，

都可以用軟體的方式實現在有支援 OpenFlow 的交換器或路由器上面。本論文主要著重

點在於，建立一個 OpenFlow 交換器監控系統，能夠發現網路上所有的封包及流量。藉

由我們所建立的網頁版流量控制系統，將 QoS 政策能夠輕易的設定到支援 OpenFlow

的交換器上，控制每個 IP 的流量優先權，使網路管理人員可以輕鬆的管理整個網路。
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Abstract

OpenFlow mechanism is a next generation networking protocol. It speeds up network

performance by separating the control layer and the data layer. It can implement the

real QoS function. Users who really need network speed can get their resources, or

decided by the priority which system defined. To implement OpenFlow mechanism, we

need two elements, the switch which supports OpenFlow, whatever it is physical switch

or virtual switch, and a controller to send flow setting packet, to control the switch

flow table. When you start using OpenFlow, the switch or router provide function, like

RIP, OSPF, EGP routing protocol, or firewall, QoS, Anti Virus, NAT, is not important.

Because OpenFlow focus on provide a standard Application Programming Interface,

let users can design function which they want, and do not use the manufacturers good

proprietary operating system and functions. OpenFlow allows users to freely choose

vendors, not limited by specific vendors and specific functions. The main goal of this

thesis is to create a OpenFlow switch monitor system. It can find out all host and

traffic pass through switched under controller, and provide a simple web page which the

network administrator can modify each flow priority. Allow network administrator to

manage the whole network more easily.
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Chapter 1

Introduction

1.1 Motivation

At Internet just begins, users who dial up to a site, chat and transform file with other

user, user need to pay phone bill. Next, users use Modem and dial a special number to

the ISP whose speed rate is 14.4kbps to 52.2bps. From now, Internet becomes more and

more user using. But user using ISP connect to Internet, user need to pay double bills,

phone bill and Internet connection cost, virtually negates the willingness of the part of

the population connected to the Internet. At this time, the Internet has been begun to

flourish, many people create their own HomePage profile, sharing small file and image

like MIDI file, GIF file, JPEG file, etc. The BBS also developed at this time, because in

low connection speed, if people want to send some information to other, the fattest way

is through text. After Modem is xDSL technology, the network speed began to progress

to Mb level. In Taiwan,the most using methods are ADSL and VDSL, the highest speed

can reach 100Mbps, when user has a convenient and unlimited amount of Internet plan,

Naturally, user and company began to develop the architecture on which the service,

and the cloud is showed.

With the continuous development of cloud technology, people’s daily life is close to

the cloud service. These large number of cloud service provide people convenient en-

vironment, Since ancient times, messaging and information exchange path changed.

Many cloud vendors started budding, like Google, Amazon, Microsoft, Yahoo, Apple,

etc. All these vendors provide different cloud service, like message passing(MSN), video

1



Chapter 1 Introduction 2

call(skype, Google+ Hangout), file sharing(Dropbox, Google drive) and many other ser-

vice still developing. Overturn the computer always need in stand-alone operating. Now,

you just open your browser at any computer with it, you can get all file and data that

you store in cloud, even not need to install software, you still can do all your work like

edit documents, spreadsheets, presentations, and more. In past time, you always using

these file at some place already install software, then you can edit it. But now, just put

these file to cloud, you got no trouble and everything is fine.

1.2 Contributions

In this generation, we use cloud service in everyday life, whether send message, transmit

photo, or chat with VoIP software. All of these service use cloud service and network.

But sometime we will encounter situations like click some file to download, but the server

has no response or show blank page, or program pop-up a message box, show ”Cannot

connect to server now, please try again later.” . Most of these situations are caused by

the network. The cloud service vendor did not predict such a large network traffic, its

also because the original network design is lack of flexibility and QoS mechanisms. This

thesis focused on the cloud service vendor network and use OpenFlow as access layer

switch for QoS mechanisms. Goal is to reduce the load of the core layer switches and

QoS devices, dispose of network traffic from the access layer.

1.3 Thesis Organization

In chapter 2, we describe the techniques used and some background knowledge. Chapter

3 describes the system architecture and key algorithms which this thesis is used. Chapter

4 makes some experiments for our proposed system. Chapter 5 are conclusions and future

work of this thesis.



Chapter 2

Background and Related Work

2.1 Virtual LAN

The full name of Virtual LAN is Virtual Local Area Network, some time we say VLAN

or 802.1Q. IEEE announce 802.1Q in 1999. It provide data separation and security

between network traffic of Ethernet. Using VLAN Tagging to share a physical interface

for multiple VLAN, and keep message secure.

VLAN has three types:

• Port-Based VLAN: Also called Static VLAN. Each physical interface access only

one VLAN, user specify at configuration file.

• MAC-Based VLAN: When user connect to switch interface, switch send the mac

of connected user, to a VLAN Management Policy Server (VMPS), network ad-

ministrator can assign VLAN to user.

• Protocol-Based VLAN: If we have a network, that running multiple protocol, like

Novell IPX, AppleTalk, TCP/IP, we can use protocol-based VLAN separate each

kind protocol to each VLAN.

3



Chapter 2 Background and Related Work 4

Figure 2.1: Virtual LAN

The figure 2.1 shows we using port-based VLAN, we can separate each network flow

of department, prevent different department get other department’s data. VLAN also

keeps network more clean. Because separate VLAN also separate broadcast domain.

Minimal the collision event.

2.2 OpenFlow

OpenFlow is a layer 2 protocol that separate data plan and control plan for better

performance. OpenFlow gives a remote controller permission to modify the action of

network device, just like normal router and switch usually do. But normal router or

switch processing huge throughput then CPU loading will increase, it because switch

need to decide the packet path for each packet, when CPU loading increase, process

packets will be little slow, increase more, slow more, until cpu loading full, machine

crash. OpenFlow allow the path of packets can be determined by software running on

PC or router, allow more complex traffic management then before. Network admin can

management network better than using access control lists (ACLs) or routing proto-

col. OpenFlow controller using a secure channel communicate with OpenFlow switch,

sending the define message. OpenFlow protocol was released on February 28, 2011.
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Figure 2.2: OpenFlow Architecture

2.3 OpenvSwitch

OpenvSwitch is a production quality, multilayer virtual switch licensed under the open

source Apache 2.0 license. It is designed to enable massive network automation through

programmatic extension, while still supporting standard management interfaces and

protocols (e.g. NetFlow, sFlow, SPAN, RSPAN, CLI, LACP, 802.1ag). In addition, it

is designed to support distribution across multiple physical servers similar to VMware’s

vNetwork distributed vswitch or Cisco’s Nexus 1000V

As figure 2.3 shown, we can see OpenvSwitch split to parts. At top is ovs-vswitchd,
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Figure 2.3: OpenvSwitch Architecture

2.4 Software Defined Network

In recent year, network technology has been little grow and change, but since Software

Defined Network published at 2011, many things change. The core technology of Soft-

ware Defined Network is OpenFlow, it is a software can running at normal operating

system, let user change network architecture and control network flow. Because it sepa-

rate smart system(control layer) and real data transmission(data layer), after this point,

how to stream network data, where the packet should go, are no longer a router or a

switch directly specified, but a manager of datacenter or network system administrator

control. In simple term, Software Defined Netowrk give more permission of network

control, from device vendor to user. Let user directly to management with the system

characteristic and system function, this act not only saves money, but also, provide more

flexibility to satisfy business needs.

Software-defined network is proposed in March 2011 by the Open Network Founda-

tion,the research originally led by Stanford University and the University of California

at Berkeley. After the establishment of the Foundation, the idea transformed into a

commercial product, order to achieve a software-defined network. At begin, OpenFlow
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is a function when the investigator wants to free experiment, and manufacturers do not

need to publish their own source or show the inside of device. Add OpenFlow to ether-

net switch, router or wireless access point, provide a standard Application programming

interface(API) for program, then the experiment can be continue.

Software-defined network has following advantages:

• Any developer can program the device, provide the flexibility of network using,

operating, and sales model.

• Users faster access to the desired function, without equipment suppliers such fea-

tures into their own product lines.

• Software-defined network implement the virtualization of network, combine net-

work, calculate and storage, control whole IT environment.

With Software-defined network, the network operating system can running at any

personal computer or any kinds of server, and not modify kernel or system nodule.

Switch is still responsible for the actual packet-switched. But OpenFlow protocol will

run between switch and controller. When switch get a packet without action record, it

will send packet to controller, decide what action should do with this packet, and send

action message to switch. So switch do action by itself after get the message.
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Figure 2.4: SDN Architecture

2.5 Cloud Computing

Cloud computing is a computing approach based on the Internet. In this way, resources

can be shared by the required hardware and software available to computers and other

devices. Users no longer need to understand the ”cloud”in the details of the infras-

tructure, do not possess the necessary professional knowledge, without direct control.

Cloud computing describes a new Internet-based services to increase IT use and delivery

models, usually involving the Internet is easy to provide dynamic and often is a virtual
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extension of the resource. The cloud is network, Internet a metaphor. Cloud comput-

ing can be considered include the following levels of service: infrastructure as a service

(IaaS), Platform as a Service (PaaS) and Software as a Service (SaaS).

• Infrastructure as a Service (IaaS): Users can follow the required level of computer

and network equipment and other resources, to the service provider subscription

service, and may require changes to settings, and service provider by users of the

CPU, memory, Disk space, network load to calculate the costs.

• Platform as a Service (PaaS): development of services vendors who rented to a

computer, this computer has all the necessary hardware and software developers

environment; or to provide application developers to market, in accordance with

the amount of traffic with the use of resources Developer fees.

• Software as a Service (SaaS): the software stored in the data center to provide

users network access services, according to period or pay-per-order the type of

charge.

2.6 Virtualization

Virtualization technology is due to present a single host more and more powerful hard-

ware performance, if only a single server implementation of the tasks seem too much

idle time, so multiple hosts by the hardware virtualization technology, the original value

Line by more than one virtual host, after the service, placed on a single powerful server

is running, but also makes virtualization virtual machine after the machine easier to con-

trol than real checks and controls, more flexible configuration and can be anywhere in

the world And can achieve real-time transfer of virtual machines to ensure uninterrupted

service. The virtualization diagram shown on Figure 2.5.
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Figure 2.5: Virtualization diagram

The virtualization technology is an internal access control by CPU, in a real operating

system, applications and users between the placements of a administrator to control the

entire virtual machine CPU process, to enable Guest OS CPU think that they have full

rights Implement their own programs.
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Figure 2.6: The general operation system

The case of the general operation of the operating system shown on Figure 2.6, the

user’s program is the implementation of the Ring 3 in the CPU part, and the implemen-

tation of the operating system and then operate in Ring 0 in the control of CPU and the

hardware, the hardware is a direct implementation By the operating system and user

application are to the instructions.
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Figure 2.7: The virtualization operation system

Figure 2.7 shows the virtualization operation system. User application is still part

of the implementation of the Ring 3, and the virtual operating system out (Guest OS)

into the implementation of the Ring 1, was originally part of the operating system

should become a Virtual Machine Manager (VMM) of the holding, Guest OS is not

to be executed directly to the CPU instruction execution, but to use Virtual Machine

Manager made after translation to CPU and hardware for the implementation of the

action.
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Figure 2.8: Para-virtualization

Para-virtualization with the full virtualization of the difference is that full virtualiza-

tion of the Guest OS does not need to make any changes to the line-up will have all

the hardware that they own rights, but so are the underlying needs of the operation

command VMM to assist the conversion, resulting in the implementation of efficiency

will be somewhat less, and some low performance virtualization to solve the problem,

because the Guest OS does not need to go through the operation of translation at

this time, but later issued directly through the bottom of the virtual layer Hardware,

eliminating the need for a conversion step, is the performance has improved, but the

disadvantage of this method is that the core of the operating system must be modified

so that the underlying hardware, operating systems and virtual step instructions, you
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need the operation of the operating system software with the virtual The results can be

achieved this way, the difficulty of this method lies. Xen is the University of Cambridge

Computer Institute in the GNU (General Public License) of the GPL (General Public

License) authorized the release of the free software, which aims to achieve high perfor-

mance mainframe virtualization technologies to enable a single host can be modeled as

multi-Taiwan (heterogeneous operating system) hosts. For the public in source code, a

variety of programs and related technology, ongoing development, also is one of open

source virtualization platform, the main program. The development of the Xen VMM

(Virtual Machine Monitor) software for the effective and safe use of high-end mainframe

computer of the resource is shown on Figure 2.9. With the rising performance of the

host CPU, and memory prices and other factors, causing the host idle rate, combined

with low PC into the mainstream, corporate owned dramatic increase in the number of

hosts, resulting in increased operating costs. To save costs,it will be split into a complex

virtual host host the increasing demand.

Figure 2.9: Host Virtualization

KVM (Kernel-based Virtual Machine) is a virtualization solution for Linux on x86

hardware containing virtualization extensions Technology (Intel VT or AMD-V). It

consists of a loadable kernel module ”kvm.ko”, which provides the core virtualization

infrastructure and a specific processor module, supports KVM intel.ko module or KVM

amd.ko module. KVM on a machine can run multiple virtual machines. Each virtual

machine has its own virtualized hardware, such as: network card, disk, video card ....

Host of desktop processors generally the average utilization rate of about 15 20% will

be hosting the DC(Data Center) the use of space, power and related maintenance costs

much higher than the virtual host, so the host virtualization Technology helps enter-

prises or research institutions to reduce costs. Although there are some「virtualization

into the host, if the calculation of its associated costs down, may not reduce the overall
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cost」and other remarks, but did not reduce the host system vendors support the trend

of virtualization, but gradually risen to the mainstream.

2.6.1 Xen’s Architecture

Host virtualization software generally divided into two kinds of Host OS and Xen’s

hypervisor as shown in Figure 2.10, Host OS layer deployed in the virtual Windows,

Linux and other operating systems, and then install the virtualization layer on top of

other operating systems, virtualization Layer below the operating system, known as

Host OS, the top of the OS called the Guest OS. The Xen’s hypervisor is installed

directly on the host, the other want to deploy the operating system installed on it, and

to cut the resources required for Host OS, better performance, CPU, Memory, Network,

Storage and other resource management are more Easy. The use of Xen’s hypervisor

and VMM(Virtual Machine Monitor) architecture. Main purpose of efficient and safe

control of the host CPU, Memory and other resources[?].

Figure 2.10: Host and Xen’s hypervisor type

Xen’s hypervisor used is divided into Para-Virtualization and Full-Virtualization.

Para-Virtualization in the Guest OS kernel must do the appropriate amendments, such

as the Linux and other open source OS, its core can be modified for Xen and adjust-

ments made in particular to reduce the burden and improve performance. And Full-

Virtualization in the Guest OS cannot be amended, more suitable for a similar Windows

installation. Processor vendor Intel Virtualization Technology(Intel VT) and the ”AMD

Virtualization(AMD-V) also support virtualization, with which the host CPU can be

virtual environment in the semi-direct install Windows. There are also Windows in

Para-virtualization drivers running on the environment.
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Figure 2.11: Domain0 and DomainU

Xen management in the virtual host, use the Domain to do management unit, Do-

main is divided into two types as shown in Figure 2.11, one of which is managed by

the Domain0, play like the Host OS role, a Xen Control of AP, to manage another

type of DomainU. DomainU installed on the field Guest OS and AP, in the use of

physical resources, must be through Domain0 took the deal, cannot directly call the

hardware drivers. Xen in the industry, the American have been led by Novell SUSE

Linux Server(SLES) and Red Hat Enterprise Linux(RHEL) and other commercial Linux

version used. In addition, Oracle also introduced a virtualization product Oracle VM,

which Sun Microsystems released xVM Server and other products. It can be seen, Xen

virtualization software on the host, has been widely supported by the system vendors.

2.6.2 KVM’s Architecture

Kernel-based Virtual Machine(KVM) is a Linux core, a part of the framework, the cur-

rent structure of native virtualization support KVM hardware-assisted virtualization is

supported by the CPU, Intel virtualization technology called VT(Virtualization Technol-

ogy, as shown on Figure 2.12) or AMD’s AMD-V Technology in Linux through the two

CPU module to support two different KVM (Intel: kvm-intel.ko; AMD: kvm-amd.ko).

In RHEL5 update4 automatically according to /proc/cpuinfo of flag to select the ap-

propriate CPU module, this script file stored in /etc/sysconfig/modules/kvm.modules

[36].
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Figure 2.12: Intel virtualization technology

Support for the Para-virtualization, such as he now supports Linux and Windows,

Para-virtual network device drivers, and the balloon (on the memory technology VMM-

virtual memory manager) has done for Linux Guest’s CPU optimization. KVM is cur-

rently only operating in the i386/x86_64 the CPU on the system, such as PowerPC

and IA64 are still in development stage. Linux’s core team in Linux 2.6.20 (February

2007) version of KVM will be included. FreeBSD Kernel module approach also supports

KVM. However, KVM alone cannot be completed virtualization must also do something

with the QEMU device simulation and the following GNU software:

• KVM kernel module: GPLv2

• KVM user module: LGPLv2

• QEMU virtual CPU core library and QEMU PC system emulator: LGPL

• Linux user mode QEMU emulator: GPL

• BIOS files (bios.bin、vgabios.bin and vgabios-cirrus.bin): LGPLv2 or later
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Figure 2.13: KVM’s architecture

Show in Figure 2.13, KVM’s architecture consists of two parts:

• Kernel Device Driver (managing the virtualization hardware) - Used to manage

and simulation Virtual Machine hardware.

• User space process - qemu is a PC hardware emulator, after the modified KVM

become kqemu.

Virtualization Advantages Kernel integrity Hardware
dependencies

Xen Para-Virtualization
Full-Virtualization
(need CPU suppose)

CPU performance
better

Kernel 2.6.23 was
added

Does not have Intel
VT-x or AMD-V

KVM Full-Virtualization
(need CPU suppose)

I/ O performance
better

Kernel 2.6.20 was
added

Must have the Intel
VT-x or AMD-V

Table 2.1: Comparison of Xen and KVM

Table 2.1 shown, this thesis will compare the advantages:

• Scalability and elasticity

• Availability and reliability

• Manageability and interoperability

• Accessibility and portability
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Finally, select the KVM-based virtualization platform for the article.

2.7 Related Work

In recent years, performance improvement management process technology advances

make it possible to try to use the virtual machine (VM) computing platform. Many

studies have been implemented through the virtual network environment, reduce system

costs. Data transmission between server nodes often appear in parallel and distributed

computing systems, high cost of the network may cause significant loss of performance

throughout the system.

Blanco want to know that how OpenFlow switch improve the network speed. And

how OpenFlow protocol how to enable flow isolation and resource slicing.They using a

linux based PC to simulate OpenFlow switch and measure the packet switch speed at

OpenFlow switch, layer-2 Ethernet switch and layer-3 IP router. [5] Their conclusion

is using a linux based PC to be a OpenFlow switch. Its performance is good. But

the performance of OpenFlow switch at packet size at 64-bytes and 128-bytes are little

worse, packet size larger then 128-bytes the performance as good as hardware layer-2

switch. It also suggest that if we went a flow has more performance, we should use hash

table at OpenFlow.

Pisa at their work show that if combine Xen and OpenFlow, using the characteristic

of OpenFlow, data and control plane separation, the packet lost rate will be decrease.

They using OpenFlow network environment at virtual machine migration, is also reduce

the number of the dirtied page at the process of migration, decrease the downtime at

migration.[40]

Hayoung trying to use OpenFlow to improve performance of NOX and wireless Open-

Flow switch, to prevent Access Point failure, make sure another AP will take off the

traffic.[35] Some people also using OpenFlow to Academic Network, like Rostami de-

sign a prototype OpenFlow-enabled network using gigabit ethernet switch, they use

ATCA switch platform to build it, but finally find out the bottleneck is in OpenFlow

switches.[43] But Ferkouss trying to use OpenFlow at a 100 Gigabit network with TCAM

and OpenFlow 1.1, got good performance.[12] At video streaming area, Egilmez using

OpenFlow to do QoS routing to improve the video stream quality.[8] Rotsos tested
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OpenFlow, find out the performance of OpenFlow switch depends on applied actions

and firmware.[44]



Chapter 3

System Implementation

3.1 System Architecture

Original network are divided to three layers, core layer, distributed layer, and access

layer, like Figure 3.1. Usually network flow will aggregation to core layer, then doing

some action to flow, like firewall, QoS, VoIP, monitor, but these network flow aggregation

to core layer always being a huge amount. More large amount of network flow, the device

which process these flow should be more powerful. Our system implementation is doing

these thing, which usually doing at core layer, shift to access layer or distributed layer.

To solve the longstanding problem at network.

Figure 3.1: Network Layers

21
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The system of this thesis using OpenvSwitch play the role of the access layer switch.

This work also using three Netgear GSM7352S2 play the role of the distributed switch.

Figure 3.2 Using sFlow to monitor network flow, and show network flow to admin console,

let network administrator can doing some action to the OpenFlow switch, like drop

packet, forward packet to the port which administrator specified, and change some

header of the packet.

Figure 3.2: DC OpenFlow

3.1.1 OpenFlow Testbed

This section is showing our real OpenFlow Testbed. We have three Netgear GSM7352

switch and one SMC 8524T Gigabit switch. Netgear switch already change firmware to

Indigo Open Source firmware, it is develop to support high rate for high port counts

for OpenFlow. SMC switch is used to emulate traditional network as a normal layer 2

switch. PC 2, 3, 4 (Figure 3.3) are all have a dual port NIC, each port connect to one

SMC switch and three Netgear switches in Type 2 mode. The testbed network have two
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type for experimental, Type 1 is VM mode ( Figure 3.4 ), three Netgear switches connect

to PC 2,3,4 each NIC, this mode is used to create VM to test OpenvSwitch function and

emulate Data center at different places. Type 2 is traffic mode ( Figure 3.5 ), this mode

is used to measure Netgear switches OpenFlow function, and its transmission efficiency.

Figure 3.3: OpenFlow Testbed

Figure 3.4: Network Type 1
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Figure 3.5: Network Type 2

3.1.2 Network Configuration

First, we should upload a firmware which suppose OpenFlow to these three switch

GSM3752S2, then we using the serial console to access the switch which suppose Open-

Flow, type these command to set what ip switch should be, and where the controller

is.

Figure 3.6: GSM 7352S2 configures

After we setting these information to the switch, we can use the tool of OpenFlow

protocol to control the switch, like add-flow or del-flow at switch
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3.1.3 OpenvSwitch configuration

Because OpenvSwitch not the offical option of KVM yet, so we need to install it manully.

Type these command at a Ubuntu linux system to install OpenvSwitch.

Figure 3.7: OpenvSwitch installation

After install OpenvSwitch, we need to check it really installed of not, we need to

installed OpenvSwitch, then setup the controller ip to the OpenvSwitch, let it can be

managed and configured.

Figure 3.8: OpenvSwitch check and setup controller ip

At Figure 3.9 we depict OpenvSwitch each component to a figure. We can see there

have two processes running at system user space, ovs-vswitchd is a process that commu-

nicate with OpenFlow controller and ovsdb ,ovs-server is the ovsdb location, its store

all OpenvSwitch setting, and notify datapath at kernel space if need.

We also have these user space tool, help us to setup OpenvSwitch, ovs-vsctl is com-

mand the ovsdb, let user create bridge, spcify bridge port mapping, etc. ovs-dpctl is

a tool manage datapath, most information is showing the status through netlink, but

it can operate the flow in datapath also. ovs-ofctl is the management tool of Open-

vSwitch, change setting in process of ovs-vswitchd. ovs-appctl is a management tool of

ovs-vswitchd, using Process ID(PID) of ovs-vswitchd to control it or dump information.
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Figure 3.9: OpenvSwitch tool relation

3.1.4 Virtual Machine Configuration

We running some VM at physical machine to simulate actions that normal user usually

do, like browser websites, using skype to talk with friend, download lots of small or

a large files, etc. We want to close the user’s real situation and promote the user

experience.

This is out VM configure file using libvirt XML format.

<domain type='qemu'>

<name>QEmu-fedora-i686</name>

<uuid>c7a5fdbd -cdaf -9455-926a-d65c16db1809</uuid>

<memory>219200</memory>

<currentMemory>219200</currentMemory>

<vcpu>2</vcpu>

<os>

<type arch='i686' machine='pc'>hvm</type>

<boot dev='cdrom'/>

</os>

<devices>

<emulator>/usr/bin/qemu-system-x86_64</emulator>

<disk type='file' device='cdrom'>
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<source file='/home/user/boot.iso'/>

<target dev='hdc'/>

<readonly/>

</disk>

<disk type='file' device='disk'>

<source file='/home/user/fedora.img'/>

<target dev='hda'/>

</disk>

<interface type='network'>

<source network='default'/>

</interface>

<graphics type='vnc' port='-1'/>

</devices>

</domain>

VM Setting 3.1: QEMU x86_64 VM XML using libvirt

3.2 System Setup

After entire environment configured, we can use the browser to see several pages, like

Floodlight OpenFlow controller ( Figure 3.10 ) and Indigo Open source OpenFlow

firmware’s web page ( Figure 3.12 ). At floodlight web page, we can see some tab

at the top, Switch tab is showing how much OpenFlow switches are connect to this

controller, and click switch path id, you can see more detail information of this switch

( Figure 3.11 ), like how much ports, link status of each port, transmit and receive

packets and bytes. Host tab is showing all host ever connect to switches, even it just

ARP request, floodlight controller will record it and show it to host tab. Topology tab is

using Scalable Vector Graphics(SVG) to draw whole network topology to graph, it will

connect host and switches, connect with line to showing which switch can reach which

host. Dashboard tab is combine switch tab and host tab, direct showing these two tab

at same page, let user has the system overview.
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Figure 3.10: Dashboard of Floodlight OpenFlow Controller
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Figure 3.11: Check Switched status

Indigo open source OpenFlow firmware web page ( Figure 3.12 ) also provide user

to view and modify some variable, like setting MAC address, IP address, and specify

OpenFlow controller IP and port. Go to the monitor tab and click flow table option,

we can see how much flow are setting to this switch or click detail can see full flow rule.

Figure 3.13
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Figure 3.12: Web page of Indigo OpenFlow firmware for Netgear GSM7352S2

[]
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Figure 3.13: Indigo OpenFlow firmware to view flow table at switch



Chapter 4

Experimental Results

4.1 Experimental Environment

This work is using OpenvSwitch as access layer switch and three Netgear GSM7352 as

disturbed layer switch, we using sFlow to collect all packet at our network.

Model DELL OptiPlex 745
CPU Intel Core 2 6400 2.13Ghz
Memory DDR2 667MHz 512MB x 2
Disk 160GB
Hypervisor KVM 1:84+dfsg-0ubuntu16+1.0+noroms+0ubuntu14.3
Virtual Switch OpenvSwitch 1.4.0-1Ubuntu1.3
Linux Ubuntu 12.04 amd64 server edition
Kernel 3.2.0-23-generic
Hardware Switch Netgear GSM7352S2 x 3

Table 4.1: Hardware specification

Table 4.1 is our experimental environment, we have four Dell OptiPlex 745, one for

controller, three for VM host and OpenvSwitch, each Dell OptiPlex 745 has Intel Core

2 6400, 1GB of RAM, 160GB of hard disk,and all of Dell OptiPlex 745 install Ubuntu

12.04 amd64 server version as Operating System, hypervisor is KVM, virtual switch is

OpenvSwitch. OpenvSwitch built in sFlow, so we just setting up the environment to get

flow data. In this work, we use pmacct to collect data from sFlow agent, and we write

a shell script to show how many host in network now, let network administrator can set

OpenFlow to OpenFlow switch (OpenvSwitch and GSM7352S2).

32
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Figure 4.1: Experimental Environment

We depict our experimental environment at figure 4.1, it shown three LAN and one

backbone with a OpenFlow controller. Each LAN has a VM host that install Open-

vSwitch to support OpenFlow, to simulate a cloud computing environment using VM,

and a personal computer just install normal Operating System like Windows XP, Linux,

Mac OS, etc., simulate a network without OpenFlow built in.

We using the flag at OpenFlow packet to control the function we need to use then

reach out target. Before set flag, we need to using match function to match which flow

we want to set flag. Match field showing at table 4.2.

We design a WEB control interface (figure 4.2) to control our switch, by set the flag of

priority in OpenFlow packet, reach the QoS target. The page also user friendly, it can

hide MAC without IP like figure 4.3. This function can reduce complexity to user, let

user can operate out system more easy. When user want to set priority to network, just

click which IP or MAC, the text box will appear at left, 32768 (lowest priority) is default

value when network flow set to switch, then click the text box and enter a number (small

number has higher priority)( figure 4.4), then user click send to set priority to switch

(figure 4.5), there will a animation from flow to switch id at left. The result will showing

at next section.
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Ingress port
Metadata
Ethernet Source
Ethernet Destination
Ethernet Type
VLAN id
Priority
MPLS Label
MPLS Traffic class
IPv4 Source
IPv4 Destination
IPv4 protocol or ARP opcode
IPv4 ToS bits
TCP / UDP / SCTP Source Port or ICMP Type
TCP / UDP / SCTP Destination Port or ICMP Code

Table 4.2: OpenFlow Match Field

Figure 4.2: Web control interface
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Figure 4.3: Web control, hide MAC without IP

Figure 4.4: Web control, set priority
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Figure 4.5: Web control, set flow to switch

4.2 Experimental Results and Discussion

First, we using iperf, its a tool to create TCP and UDP data stream and measure

throughput of network, it has a parameter named stdin, let user can specify the packet

content. In this work, we use parameter stdin to fix the packet size, and measure the

performance between different packet size, the result is shown at table 4.3 and Figure 4.6

Packets sizes (bytes) 64 96 128 256 512 1024 1500
normal bridge 389 618 645 815 901 930 952
OpenFlow 412 630 648 820 904 933 959
switch 268 420 589 813 902 935 955

Table 4.3: Using iperf with different probe method
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Figure 4.6: Experimental Result

We can see the green line of switch, is lower then other at 64-bytes to 128-bytes.

But after 256-bytes, the three method just have little amount of difference. Guess its

because the three method process their header, and the amount of packet. More packets

the protocol need to process mode header, it need to apart the packet to view where the

packet from and where it should go, the protocol design pros and cons is shown at here.

After experimental with different protocol probe, next experimental focus on create

QoS policies to limit the bandwidth from large amount network flow, from figure 4.7 we

can see, there has 9 host at this experimental, prefix IP with 10.0.x.x are our experi-

mental network with virtual machine.
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Figure 4.7: Web Setting 1

At figure 4.8 we setting host 1 with priority 19999, that will limit bandwidth to

200Mbps.
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Figure 4.8: Web Setting Host 1 Priority to 19999

At figure 4.9 we setting host 1 with priority 5000, that will increase limit bandwidth

to 550Mbps.
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Figure 4.9: Web Setting Host 1 Priority to 5000

Below two figure 4.10 and figure 4.11 also setting priority to 5000 and 19999, but set

to different host.
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Figure 4.10: Web Setting Host 1 Priority to 5000

Figure 4.11: Web Setting Host 2 Priority to 19999
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After setting priority, let’s check the real effect to network traffic. Figure 4.12 and

Figure 4.13 show the effect. Host 1 setting priority 19999 than 5000, so the speed from

1Gbps decrease to 200Mbps cause priority set to 19999, than increase to 550Mbps cause

priority set to 5000. Host 2 inverse this process, network speed from 1Gbps decrease to

200Mbps than increase to 550Mbps.

Figure 4.12: QoS Result 1

Figure 4.13: QoS Result 2

After QoS experimental, we trying to use QoS setting to a scenario we setting. Think

a scenario that a user downloading a large file from HTTP protocol, he hold the most

of network traffic, nearly 900M bps, but if now has another user want to use FTP to

download some file to install machine, it will keep in low speed and long time. With

OpenFlow switch, it can match packet with different port, we can realize it to protocol,

cause different protocol usually use different port, and it usually fixed. When switch

match packet with defined port, it will set the packet in a queue, we set three queue,

default queue is set to full speed ( 1000M bps ),FTP queue set to 550M bps and HTTP

queue set to 100Mbps. Our experimental has two step, first step, We use default queue

to all packet, then start HTTP protocol, let it download with full speed, then start
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ftp download after 5 minutes, and monitor network speed, full experimental time is 20

minutes . Second step, we process experimental like first step for 10 minuses, after 10

minutes we apply the QoS policy, to check the effect with QoS policy.

Figure 4.14: Network traffic without QoS policy
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Figure 4.15: Network with QoS policy after 10 minutes

We can see the traditional network like Figure 4.14, The FTP speed is always lower

than HTTP, about 100M bps, but the HTTP traffic is much higher, is 830M bps. But

when we enable the QoS policy at Figure 4.15, we can see the traffic, after 10 minutes,

the QoS policy be applied to network, HTTP traffic is decrease to 200M bps and the

FTP traffic increase to 550M bps.

As a monitor system, our system provide warning function, network administrator

set a upper bound for each port, when port traffic reach the upper bound, our system

will markup which port and all host under it.(Figure 4.16) System also send a warning

message through email, notice network administrator to check the network. (Figure 4.17)
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Figure 4.16: Warning system and admin email setting
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Figure 4.17: Warning system send email to network administrator
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Conclusions and Future work

In this thesis, a Virtual Switch Monitor System Using OpenFlow on cloud computing

environments, first we measure the speed of normal bridge, OpenFlow and normal switch,

we found that speed is lower before packet size 128-bytes, but after 256-bytes these three

methods speed just little amount of difference. Believe its because header, more packet

more process time to deal to packet flow to which port. After 256-bytes the speed little

amount different because just few packet header need to process, and the OpenFlow is

design to line-rate and depart controller layer to remote, let switch focus on processing

data flow, Performance is not showing at this time because we just use same ip and mac

doing test. If using it at complex environment with much more different IP and MAC,

it should showing its power.

After compare different protocol, we trying use OpenFlow’s feature, set its flag to do

QoS, at traditional network, firewall and QoS always be put at backbone, but backbone

always have large amount network traffic, if we want to process these network traffic

as firewall or QoS, the hardware of firewall or QoS device need to be very powerful,

also mean spent more money. But with OpenFlow-enabled switch, we can reduce and

process network flow at frontend, where network traffic be generated, using OpenFlow to

separate data plane and control plane, we can control a single policy, and act OpenFlow-

enabled switch like firewall or QoS device, spend less money.

We develop a web interface to control the entire environment like OpenFlow controller,

OpenFlow-enabled switch and user interface.By the experimental result, we success con-

trol the network traffic, reduce the network utilization from source.

47
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Compare with traditional network, OpenFlow showing itself will not decrease the

speed, IT maybe can trying move the QoS or firewall service from backbone to the

end switch to decrease the pressure of device or server. At future, we will continued

development this system, let user can add QoS or firewall policy at same page, and

simplify the process of using.
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