I FRP GRS L

- BEILIENIHEREPFET L2 F0F
Implementation of a Power Saving Method for Virtual

Machine Management Platform in Cloud

£ &

ZERPNTUE T R e p B B RS P ES AR ART NG ST

B h g R EFTREH PP R RARRAR TG S RFRD - 2
x
p

(i
o
ey
o
3
Bl
>_L
3
.
=+
"
Jul
é’}
i
=
5\
‘g i<
)
py
i
/\-
="
)
™
o3

LR F B F R RS AR T IR Tg SRR RS N

WL L md SNMP @RI 24 PREBM 2 Rt BiF (T35 5 Wi * %k
% iF Live migration Hifrs fe RS B > TP AN ZHPIRE > F 1 &
F

L3

*59—7?@”‘\/);:71“ ’f!"%ﬁiﬁ/}’ﬁ % o F R H a2tk e

Bats: &% 0 REPFE > B LS 0 R RBETER

Abstract

With the popularity of cloud computing, the demand of cloud infrastructure also
increases; as a result, considerably large amount of electricity is consumed on the
cloud computing environment. In order to provide a lot of users with access to
cloud services, companies often need to use many cloud servers; but since most
services are not accessed in great amount all the time, in the low service usage
period, it will cause unnecessary waste of electricity and computing resources if
lots of cloud servers maintain at full power. This work uses the open source codes
and PHP web programs to implement a virtualization resource management sys-
tem for power-saving. In this thesis, we propose to adopt system integrated open
source software like KVM and libvirt to construct a virtual cloud management
platform, which detects the status of resources via SNMP, calculates the opera-
tion efficiency of the overall system, allocates virtual machines through the live
migration technology and turns off extra machines on the cloud to save energy.
According to the power-saving method developed by our research, we have con-
structed a power efficient virtualization management platform in the cloud. Our
objective is to provide enterprises or end users with power-saving private cloud
solutions. In this work we also have built a webpage to allow users to easily ac-
cess the cloud virtualization resources, i.e., users can manage virtual machines
and monitor the status of resources via the web interface. From analysis of the
experimental results of live migration of virtual machines, this work demonstrates
that efficient use of hardware resources is realized by the power-saving method,

and the aim of power-saving is achieved.

Keywords: Power Saving, VM Management, Live migration, Virtualization, SLA

II

R

B o AR BBk BRI R B M E &
11

ﬁg,ﬁ“'?’?’f A i
H SriEd E AT A o B Eenl (tY Y B AE 23

ir
e A H I F
ﬁﬁ@ﬁ’ﬁﬂﬁﬁ%@ﬂ%$mﬁmv*% o ML ERNEA

SWETRA L PREBWATOER AL B G nNE L > X REFLY o

@%?%zﬁké’?i‘?ﬁ Booy L B BB E R &

2 g R 0 mEH A s BN - A Power point B & 4+ LOL » 23

EERE T ES FE-SE X RS i e ﬁﬁﬁ’*%*

ﬂa@bﬁﬂﬁmii—ﬁﬁfiﬁﬁ4°’@ﬂ~"ﬁ4ﬁ*'%?”ﬁ°ﬁ%““ﬁéﬁ

B ARG T A% A AT Latex o F X SRR qGER L F B 0 g
£

2 TERE Sk

"

]J IFB 9 J—\.._ L‘iﬂ‘ /2‘ Jll;]‘f

BEHADFA > AR LRI PR B g AT LHLFN PR A
Boipd A gL FYhHmT A REPR DA B HA
@\aﬁﬁﬁgwgaw%%’ﬁﬂﬁ%ﬁﬁﬁﬁﬁzﬁi%’ﬁW%ﬂ&%
DR B W RAR E TR T e E DR R ek
B P SRl

B fo B S & Miao $Hijie- £ F RehRp > X XRS5
goﬁﬁﬁﬁ$@~&@ﬁiﬁ’ﬁﬂﬁ—e%%ﬂg%o

I1I

Table of Contents

F & I
Abstract 11
R 11
Table of Contents v
List of Figures VI
List of Tables VIII
1 Introduction 1
1.1 {MotiFatien s, . s ———— e W . R . AR 1

1.2 Thesis Goal and Contributions 2

L3 ThiesisUlganization el . g Wa ot 3

2 Background Review and Related Work 4
2.1 §8loud Comiputing . . .- 8 % . .2 . . & . . S8 . . 4
2.2 WiEmalization g . Y. L e 6
2.2.1 Full Virtualization 7

2.2.2 Parasvistualization) .e=='. ™oy 8

2.2.3 Hardware-assisted Virtualization 9

2.3 Hypervisor. 10
23.1 KVM ... 10

232 Xen ... 11

2.4 Virtual Machine Management 12
2.4.1 Live Migration 13

2.5 SNMP . . . 15
2.6 PDU 16
2.7 Power-saving Related Work 17

3 System Design and Implementation 20
3.1 System Architecture L 20
3.2 DesignFlow 21
3.3 An Example for Power-saving Method 23

IV

TABLE OF CONTENTS \%
3.3.1 Merging Computing Nodes 23

3.3.2 Expanding Computing Nodes 24

3.4 System Implementation 26
3.4.1 Status Monitoring 26

3.4.2 Power Consumption Recording 27

3.4.3 Power-saving method 30

3.5 UserlInterface 30
3.6 BelPesign of Buatigng™ 8. -. . . & S T oW . . RS 34
3.6.1 g¥ligrafiion Costghug ES% Er & W . . .9 . . . 34

3.6.2 Merging and Expanding Costs of Computing Nodes 35

3.6 3NN s e L S o e R N By N . L R 35
Experimental Results 37
4.1 Experimental Environment 37
4981 EXperiniental ElGw, (e S0 THNE . T . . . N . . 3¢ 38

42 Resultsfaiid DifGiEslonss. 4 <o s - L . . % 40
4.2.1 Prior Experiments o 40

4.2.2 Performance of Power-Saving Experiments with 10 VMs 43

4.2.3 Performance of Power-Saving Experiments with 8 VMs . . . 49
Conclusions and Future Work 54
5.1 Concluding Remarks 54
5.2 WFutpiTe - WorkWii: . .= . " B . F . . 55
Bibliography 56
Appendix 63
A Inatallation and Setup 63
B Programming Codes 64
C User Guide 68

List of Figures

gl
22
2.3
24
2.5
2.6
2.7
2.8

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14

4.1
4.2
4.3
4.4
4.5
4.6
4.7

4.8
4.9

Full ¥irghalization W d" KW %'% 8
Pafafaut palization JANGTUNNEN o SRS N 0 9
Hardware-assisted Virtualization 10
Kernel-based Virtual Machine 11
Xen . . e e e . W% % . W 12
Virtual Machine Management 13
Live MiGEStiofiast, Wats . J05 S0 SOmay S . . . §. . . % 14
IZOIUNN ———————— Y TN 17
Systemifchfectnress———] SSpaEEsmmth e B 20
Metho dSlEw cliaikmmr— | — ¢ 4. . . . §. . W 22
Capture resource’s status by SNMP 26
Display VM list on servers by libvirt 27
PDUFs web Menface =mmr—————r. . L8 N . . 7 0 . . BN 28
PDU’s web interface in details 28
Capturing PDU’s data by SNMP 29
Servitig arghitecture . . & #-5- = § % § W% . . S . 31
Web intésface” §F. . . . O SR8 R . N B 31
Power consumption viewed inaday 32
Power consumption viewed in one hour 32
Display VM lists on servers 33
Manual migration function o000 33
Monitoring server s status L. 33
Software Architecture 38
Experimental Architecture 39
Relationship between Migration Time and vCPU Loading 41
Change in Power Consumption During Migration 42
Relationship between Migration Time and Host’s CPU Loading . . 43
10 VMs Result without Power-saving Method 44
2 Computing Node’s Cumulative Power Consumption without Power-
Saving Method with 10 VMs 45
10 VMs Result with Power-saving Method 46
2 Computing Node’s Cumulative Power Consumption with Power-
Saving Method with 10 VMs 46

VI

LIST OF FIGURES VII

4.10

4.11
4.12

4.13
4.14

4.15

Cumulative Power Consumption difference between with and with-

out Power-saving Method with 10 VMs 48
8 VMs Result without Power-saving Method 50
2 Computing Node’s Cumulative Power Consumption without Power-
Saving Method with 8 VMs 51
8 VMs Result with Power-saving Method 52
2 Computing Node’s Cumulative Power Consumption with Power-
Saving Method with 8 VMs 52

Cumulative Power Consumption difference between with and with-
out Power-saving Method with 8 VMs 53

List of Tables

3.1
3.2
3.3
3.4

4.1
4.2

Example 1 without power-saving method 23
Example 1 with power-saving method 24
Example 2 without power-saving method 25
Example 2 with power-saving method 25
Haid waretSpecifllCationmms - s e & ok - k- - - .. - L. . 1k 38
SoftwarelSpeCliEabionmen ¥ sl ! Somel pmemas. . LIL - . . 4. . . ¢ 38

VIII

Chapter 1

Introduction

Cloud computing, one of today’s hottest topics, has been developing very fast.
Many large cloud companies, such as Google, Amazon, Yahoo, offer multiple cloud
services and have a large number of users. In order to provide these services, the
cloud infrastructure grew nearly 27 percent in 2012, and is expected to grow nearly
47.3 percent in 2013. A large cloud infrastructure usually includes cloud servers
and cloud storage. The global cloud infrastructure is estimated to consume about
30 million kilowatts of electricity in one hour, but 90 percent of it is wasted due
to inefficient use of cloud resources; hence, how to reduce electricity consumption

waste on the cloud infrastructure is a topic worth exploring.

1.1 Motivation

Cloud computing is a concept, in which computers over networks are able to
cooperate with each other to provide far-reaching network services [1,12,13,26,34,
38]. The basic approach to computing through the Internet terminal operations of
cloud computing moves hardware, software, and shared information from users to
the server side; in this way, the original waste of redundant resources on personal
computer is evaded to improve computing and resource efficiency [3,28,35,37,41,

43,49, 52].

Chapter 1 Introduction 2

For increasingly high demand of the cloud today, a typical application of cloud
computing is the large-scale data processing center, which operates with tremen-
dous amount of power consumption [2,6,11,20,21,27,32,42,50]. The power con-
sumption of large data processing centers today share about 0.5% of the global car-
bon emissions; with the deepening of cloud computing in the future, it is predicted
to account for 2%, which represents carbon emissions of large data processing cen-
ters of some large enterprises, and may even beyond 2% for some countries. Such
huge amount of power consumption, especially with today’s emphases on power
conservation and carbon reduction, is a major problem that cannot be ignored.
How to maintain the growth of cloud computing technology, but also take into
account of the efficiency of power use, comprises the main research direction of

this work.

The power demand of the cloud environment issues cannot be ignored [5,8, 10,
15-17,19, 23, 33, 36, 40, 44, 46-48]. Through live migration of the virtual machine
technology, the need to interrupt and reopen servers for operations is eliminated
and the purpose of power-saving is achieved. However, if one only partially focuses
on the virtual machine side, the quality of services in the cloud environment is
rendered to reduce, contrary to the intent of the cloud computing. In the com-
mercial cloud computing environment, emphasis is on service level agreements.
An effective management tools can help the service provider and the client with
services and service level expectations of each other; in other words, it can help
enterprises to construct channels of communication with communication plans to
establish consistency and reduce conflicts, and methods to measure service perfor-

mance [9,14, 22,24, 25,29, 30,39, 51].

1.2 Thesis Goal and Contributions

This article will take into considerations the service level agreements, primarily
through measurement of the CPU and memory usage. With quality of service as a

precondition, this work designed and implemented an energy efficient cloud virtual

Chapter 1 Introduction 3

machine management system using power-saving method, and live migration of

virtual machines.

Finally, the experimental results show the relationship between VM’s vCPU
and migration time, the relationship between Server’s CPU and migration, and live
migration due to the extra cost of electricity. The experimental results show that
the proposed power-saving method under normal usage scenarios can successfully
detect cloud environment resource usage, turn off unnecessary servers to reduce
power waste in the case of low resource use, and maintain a certain degree of cloud
service quality for rapid deployment of resources use; indeed, it achieves a certain

degree of energy saving effect.

1.3 Thesis Organization

Section 2 will describe some background information, including cloud computing,
virtualization, live migration, and hardware information measurement method.
Section 3 will introduce our experimental environment and methods, and the
overall architecture. Section 4 presents and analyses experimental results. Fi-
nally, Section 5 summarizes this thesis by pointing out its major contributions

and directions for future work.

Chapter 2

Background Review and Related
Work

2.1 Cloud Computing

Cloud computing is Internet-based computing, in which shared hardware, soft-
ware resources, and data can be provided to users according to their demand of
computers and other devices. The user does not need to know the details of the
cloud infrastructure, or possess appropriate expertise, and is without direct con-
trol. Cloud computing allows companies to deploy applications more quickly and
reduce the complexity of management and maintenance costs, and allows rapid
changes of IT resources reallocation in response to business needs. Cloud comput-
ing describes a new Internet-based services to increase I'T use and delivery models,
usually involving with the Internet, and is easy to provide dynamic and virtual
extension of the resource. The cloud is network, the Internet a metaphor. Cloud
computing can be considered to include the following levels of service: infrastruc-

ture as a service (laaS), Platform as a Service (PaaS), and Software as a Service

(SaaS):

« SaaS: Consumers use the application, but do not control the operating sys-
tem, hardware, or the operation of the network infrastructure, for example:

4

Chapter 2 Background Review and Related Work)

Microsoft CRM and Salesforce.com platform as a service. With the SaaS
model, the user can access the services, software, and data. The service
providers maintain the normal operation of the infrastructure and platform
to maintain service, while users access cloud services through browsers, and

desktop or mobile applications.

o PaaS: Consumers use the host operating applications. Consumers control
the operation of the application environment (host also has some control
over it), but do not control the operating system, hardware, or the opera-
tion of the network infrastructure. The platform is usually the application

infrastructure, for example: Google App Engine.

o JaaS: Consumers can use the basic computing resources such as process-
ing power, storage space, network components or middle-ware. Consumers
can control the operating system, storage, deployed applications and net-
work components (such as firewalls, load balancers, etc.), but do not con-
trol the cloud infrastructure. Examples of [aaS include Amazon AWS, and

Rackspace.

Cloud computing relies on the sharing of resources in order to achieve economies
of scale in similar infrastructure. Service providers integrate a large number of re-
sources for use by multiple users. Users can easily request more resources and
adjust usage at any time, without the need to release all resources back to the
whole structure. Users do not need to buy a lot of computing resources; they only
need to enhance the amount of rent for short-term spikes of resource demands,
and release some resources during lower demands. Service providers are able to
lease unused resources to other users, and even adjust rents in accordance with
the demand of the whole. The National Institute of Standards and Technology
Research Institute also defines cloud computing based on the cloud computing

deployment model:

e Public cloud: In short, public cloud provides services through the Internet

and third party service provider, and is opening up to the customer to use.

Chapter 2 Background Review and Related Work 6

The term public does not necessarily mean free, but may also represent very
cheap. In the public cloud, the user data is available for anyone to view.
Public cloud providers usually suggest interested users to implement some
access control mechanisms. The public cloud is a flexible and cost-effective

solution.

o Private cloud: Private cloud have many advantages, such as with more flex-
ibility than a public cloud environment and being suitable for the provision
of services. The difference between the two is that for private cloud ser-
vices, data and programs are managed within the organization, while for
public cloud services, they are constrained by the network bandwidth, secu-
rity concerns, and regulatory restrictions. In addition, private cloud services
suppliers and users have more control over the cloud infrastructure to im-
prove safety and flexibility, because the user and the Internet are subject to

special restrictions.

o Community Cloud: Community cloud is controlled and used by members
of organizations with common interests, specific security requirements, and
common purpose. Community members can access cloud data and applica-

tions.

o Hybrid cloud: The hybrid cloud is a mix of the public cloud and private
cloud. In this mode, the user usually has non-business-critical information
dealt with in a public cloud, but at the same time, control of business-critical

services and information.

2.2 Virtualization

With virtualization, the computer’s physical resources, such as servers, network,
memory, and storage, are abstractly presented after conversion, so that users can
apply those resources in a better way than the original configuration. Virtualiza-

tion is commonly referred to virtualized resources including computing power and

Chapter 2 Background Review and Related Work 7

data storage; in this paper virtualization is specifically referred to server virtual-
ization. Server virtualization software technology refers to the use of one or more
of the host hardware settings. It has the flexibility to configure the virtual hard-
ware platform and operating system, like real hardware. In this way, a variety of
different operating environments (for example, Windows, Linux, etc.) can operate
simultaneously on the same physical host, and be independent as being operating
in different physical hosts. Virtualization solutions can be broadly divided into
three categories: full virtualization, para-virtualization, and hardware-assisted vir-

tualization.

2.2.1 Full Virtualization

In Full virtualization, Hypervisor replaces the traditional core of the operating
system in the Ring O privilege level, known as Binary Translation technology used
in full virtualization. The guest operating system requires direct access to the
hardware Ring 0 level instruction by the hypervisor conversion to submit requests

further to hardware.

Hypervisor virtualizes all hardware components. The guest operating system
works as the individual real host, with a high degree of independence. But Binary
Translation technology will make the performance of the virtual machine (Virtual
Machine VM) decreased significantly. One example of software using virtualization

technology is the VMware Workstation.

The full virtualization is totally dependent on the virtual hardware layer con-
structed Guest OS, which can use hardware resources, only limited by the virtual
hardware resources, and less able to misallocate of the entity’s computer hard-
ware. In addition to the central processor, memory, graphics card, etc. can be

virtualized if the proprietary driver is installed first.

The benefits of full virtualization are, regardless of how the hardware environ-

ment, the Guest OS are able to maintain a more consistent compatibility, and can

Chapter 2 Background Review and Related Work 8

use different operating systems with the physical machine. The disadvantage of

full virtualization is that it is a greater burden of the physical machine.

Guest Guest Guest Guest
OS OS oS oS

Hypervisor

Host OS

Hardware

FI1GURE 2.1: Full Virtualization

2.2.2 Para-virtualization

Para-virtualization, also known as parallel virtualization, is not all hardware device
virtualization, such as Xen. Compared to the full virtualization virtual machine
instruction Binary Translation, para-virtualized virtual machine invokes hardware
devices through Dom0, and manages each virtual machine access to physical re-
sources. The virtual machine performance is significantly improved, but the hard-
ware driver binding in dom0, and the core of the operating system in the virtual
machine must go through a special modification; thus the independence of the

virtual machine is relatively low.

The para-virtualization does not configure the virtual layer on top of the hard-
ware, but use more than one memory location program calls at different times.
Para-virtualization allows the Guest OS share hardware resources. The advantage

is that the hardware will not need to waste performance on the hardware layer;

Chapter 2 Background Review and Related Work 9

however, the drawback is that the operating system in the virtual machine must

be consistent with the physical environment.

Modified Modified Modified Modified
Host OS Guest OS Guest OS Guest OS

Dom0 Dom1 Dom2 Dom3

Drive + Hypervisor

Hardware

FI1GURE 2.2: Para-virtualization

2.2.3 Hardware-assisted Virtualization

Hardware-assisted virtualization, as shown in Figure 2.3, is used to overcome the
dilemma that the virtual machine operating system kernel cannot be placed in
the processor Ring 0 privilege level. Since both the hypervisor and virtual op-
erating system kernel can be issued in Ring 0, the hypervisor will be automati-
cally intercepted by the need to deal with the instruction of the virtual operating
system directly by the hardware processing; therefore the full virtualization bi-
nary translation or para-virtualization Hypercall operations are no longer in need.
Hardware assisted virtualization basically eliminates the difference between full
virtualization and para-virtualization. On the basis of hardware-assisted full vir-
tualization or para-virtualization program virtual machines are high performance
and independent. The representative program of the hardware-assisted virtual-
ization VMware is ESXi with open source Kernel-based Virtual Machine (KVM).

KVM needs a host operating system, whose core provides virtualization services;

Chapter 2 Background Review and Related Work 10

whereas VMware ESXi is the equivalent of a specialized virtualization thin client

operating system, installed directly on a physical machine.

Guest Guest Guest Guest
oS oS oS oS

Host OS

Hardware

FIGURE 2.3: Hardware-assisted Virtualization

2.3 Hypervisor

The one that builds and manages virtualized environment software is collectively
referred to as the hypervisor (or Virtual Machine Monitor, VMM). Depending on

the virtualization solution, there are different choices for hypervisor:

2.3.1 KVM

Kernel-based Virtual Machine (KVM), as illustrated in Figure 2.4, is a full virtu-
alization solution for Linux on x86 hardware containing virtualization extensions
(Intel VT or AMD-V). It consists of a loadable kernel module, kvm.ko, which
provides the core virtualization infrastructure and a processor specific module,
kvm-intel.ko or kvm-amd.ko. KVM also requires a modified QEMU, although

work is underway to get the required changes upstream. Using KVM, one can run

Chapter 2 Background Review and Related Work 11

multiple virtual machines running unmodified Linux or Windows images. Each
virtual machine has private virtualized hardware: a network card, disk, graphics

adapter, etc.

Normal Normal Guest Guest
User User mode mode
Process| |Process
Qemu I/O Qemu I/O

|
t
L

KVM

Linux Kernel)
Driver

FI1GURE 2.4: Kernel-based Virtual Machine

2.3.2 Xen

Xen is a native or bare-metal hypervisor. It runs in a more privileged CPU state
than any other software on the machine. Responsibilities of the hypervisor include
memory management and CPU scheduling of all virtual machines (”"domains”),
and for launching the most privileged domain ("dom0”) - the only virtual machine
which by default has direct access to hardware. From the dom0 the hypervisor

can be managed and unprivileged domains ("domU”) can be launched.

The dom0 domain is typically a modified version of Linux, NetBSD or Solaris.
User domains may either be unmodified open-source or proprietary operating sys-
tems, such as Microsoft Windows (if the host processor supports x86 virtualization,
e.g., Intel VT-x and AMD-V),[2] or modified, para-virtualized operating system
with special drivers that support enhanced Xen features. On x86 Xen with a Linux
dom0 runs on Pentium Pro or newer processors. Xen boots from a boot loader
such as GNU GRUB, and then usually loads a para-virtualized host operating

system into the host domain (dom0).

Chapter 2 Background Review and Related Work

12

Console

Control Domain
(domO)

Toolstack

VMO

VM1

VMn

DomO Kernel

Guest 05
and Apps

Guest 05
and Apps

Guest 05
and Apps

Xen Hypervisor

Host Hardware

FiGURE 2.5: Xen

2.4 Virtual Machine Management

To set up a standard cloud service, we often need more than one virtual machine.

When a large number of virtual machines created through the virtualization tech-

nology, it is a difficult task to manage by native instructions, and a virtual machine

management platform is needed. In Figure 2.6, the virtual management platform

usually includes a virtual machine to create, edit, switch, pause, reply, delete, and

do live migration. Next, we will introduce several sets of popular open source

virtualization management platforms. We also provide a friendly virtual machine

building process through a network interface, more suitable for monitoring a large

number of virtual machine states, and easier to manage account permissions and

other advantageous features.

Chapter 2 Background Review and Related Work

13

Guest
OS

Guest
OS

Guest
OS

Guest
OS

Virtual Machine Management

Hypervisor

Hypervisor

Hypervisor

Host OS

Host OS

Host OS

Hardware

Hardware

Hardware

FIGURE 2.6: Virtual Machine Management

2.4.1 Live Migration

Live migration, as shown in Figure 2.7, refers to the process of moving a running

virtual machine or application between different physical machines without dis-

connecting the client or application. Memory, storage, and network connectivity

of the virtual machine are transferred from the original host machine to the desti-

nation. Two techniques for moving the virtual machine’s memory state from the

source to the destination are pre-copy memory migration and post-copy memory

migration.

o Warm-up phase: In pre-copy memory migration, the hypervisor typically

copies all the memory pages from source to destination while the VM is still

running on the source. If some memory pages change (become 'dirty’) during

this process, they will be re-copied until the rate of re-copied pages is not

less than page dirtying rate.

» Stop-and-copy phase: After the warm-up phase, the VM will be stopped on

the original host, the remaining dirty pages will be copied to the destination,

Chapter 2 Background Review and Related Work 14

and the VM will be resumed on the destination host. The time between
stopping the VM on the original host and resuming it on destination is
called "down-time”, and ranges from a few milliseconds to seconds according
to the size of memory and applications running on the VM. There are some
techniques to reduce live migration down-time, such as using probability

density function of memory change.

e Post-copy memory migration: Post-copy VM migration is initiated by sus-
pending the VM at the source. With the VM suspended, a minimal subset
of the execution state of the VM (CPU registers and nonpageable memory)
is transferred to the target. The VM is then resumed at the target, even
though most of the memory states of the VM still reside at the source. At the
target, when the VM tries to access pages that have not yet been transferred,

it generates page faults.

Guest | | Guest Guest Guest
oS 0S oS oS
Hypervisor Hypervisor
Host OS Host OS
Hardware Hardware

FIiGURrE 2.7: Live Migration

These faults are trapped at the target and redirected towards the source over
the network. Such faults are referred to as network faults. The source host re-

sponds to the network-fault by sending the faulted page. Since each page fault of

Chapter 2 Background Review and Related Work 15

the running VM is redirected towards the source, this technique can degrade per-
formance of applications running inside the VM. However, pure demand-paging
accompanied with techniques such as pre-paging can reduce this impact by a great

extent.

2.5 SNMP

Simple Network Management Protocol (SNMP) is an "Internet-standard protocol
for managing devices on IP networks”. Devices that typically support SNMP in-
clude routers, switches, servers, workstations, printers, modem racks, and more.
It is used mostly in network management systems to monitor network-attached
devices for conditions that warrant administrative attention. SNMP is a compo-
nent of the Internet Protocol Suite as defined by the Internet Engineering Task
Force (IETF). It consists of a set of standards for network management, including

an application layer protocol, a database schema, and a set of data objects.

SNMP exposes management data in the form of variables on the managed
systems, which describe the system configuration. These variables can then be
queried (and sometimes set) by managing applications. In typical SNMP uses, one
or more administrative computers, called managers, have the task of monitoring
or managing a group of hosts or devices on a computer network. Each managed
system executes, at all times, a software component called an agent which reports

information via SNMP to the manager.

Essentially, SNMP agents expose management data on the managed systems as
variables. The protocol also permits active management tasks, such as modifying
and applying a new configuration through remote modification of these variables.
The variables accessible via SNMP are organized in hierarchies. These hierarchies,
and other metadata (such as type and description of the variable), are described

by Management Information Bases (MIBs).

Chapter 2 Background Review and Related Work 16

2.6 PDU

A power distribution unit (PDU), as shown in Figure 2.8, is a device with multiple
outlets designed to distribute the electric power, especially to racks of computers

and networking equipment located within the data center.

The term, PDU, may refer to two major classes of hardware power devices.
The first and typically the general unqualified term refers to the category of rel-
atively higher-cost floor-mounted power distribution devices which transform one
or more larger capacity raw power feeds into any number of lower capacity dis-
tributed power feeds. These floor-mounted PDU devices are typically composed
of transformers and circuit breakers and may optionally include monitoring con-
trollers using protocols such as Modbus or SNMP. In a typical data center for
example, there would be relatively few of these floor-mounted PDU devices, lo-
cated along the walls or in central locations for larger spaces. Each floor-mounted

PDU would feed a much larger number of racks and rows of racks.

The second class of device is a much smaller and lower cost device with multiple
appliance outlets designed to distribute the electric power within a rack, especially
to computers and networking equipment located within a data center. The second
type of PDU is sometimes called a Smart-PDU, Rack-based PDU, Intelligent PDU

or simply "Power Strip” by various IT professionals.

Chapter 2 Background Review and Related Work 17

FiGURrE 2.8: PDU

2.7 Power-saving Related Work

In the past years, the research field of green and low power consumption network-
ing infrastructure is of great importance for both service/network providers and
equipment manufacturers. The emerging cloud computing technology can be used
to increase the utilization and efficiency of hardware equipment, thus, potentially
reducing the global CO2 emission. Chang et al. proposed virtual network archi-
tecture for cloud computing [7]. Their virtual network can provide communication
functions for virtual resources in cloud computing. They designed an energy aware
routing algorithm for virtual routers and an efficient method for setting up the
virtual network to fulfill the objective of building a green virtual network in cloud

computing.

Baliga, J. et al. presented an analysis of energy consumption in cloud com-
puting [4]. The analysis considers both public and private clouds, and includes
energy consumption in switching and transmission as well as data processing and
data storage. They show that energy consumption in transport and switching

can be a significant percentage of total energy consumption in cloud computing.

Chapter 2 Background Review and Related Work 18

Cloud computing can enable more energy-efficient use of computing power, espe-
cially when the computing tasks are of low intensity or infrequent. However, under
some circumstances cloud computing can consume more energy than conventional
computing where each user performs all computing on his personal computer.
These two papers also aim for power-saving. They proposed a method with good
performance on network. The formula can be used to calculate the method’s ef-
fect on power-saving. This work also proposed a similar formula to calculate the

power-saving results mathematically.

Kim et al. suggested a model for estimating the energy consumption of each
virtual machine without dedicated measurement hardware [18]. Their model esti-
mated the energy consumption of a virtual machine based on in-processor events
generated by the virtual machine. Based on this estimation model, they also
proposed a virtual machine scheduling algorithm that can provide computing re-
sources according to the energy budget of each virtual machine. The suggested
schemes were implemented in the Xen virtualization system, and an evaluation
showed that the suggested schemes estimated and provided energy consumption
with errors of less than 5% of the total energy consumption. Power-saving method
of this paper is quite similar to that in the thesis. It calculates the resources re-
quired for the virtual machine and then schedules the virtual machine to allocate
operational resources. The paper-saving principle in the experiments has con-
firmed again in this work. The power consumption of servers and server CPU
Loading has linear relationship. The experiment proved that it could have to 5%
power-saving effect. If combined with the proposed power-saving method of this

work, it is expected to have more than 20% power-saving effect.

To better manage the power consumption of web services in cloud computing
with dynamic user locations and behaviors, Zhengkai Wu et al. proposed a power
budgeting design based on the logical level, using a distribution tree [45]. By
setting multiple trees, they can differentiate and analyze the effect of workload
types and Service Level Agreements (SLAs, e.g. the response time) in terms of
power characteristics. Based on these, they introduce classified power capping for

different services as the control reference to maximize power saving when there

Chapter 2 Background Review and Related Work 19

are mixed workloads. This paper also uses the scheduling approach to control the
operation of the VM, and achieves power-saving effect. In particular, this paper
also takes into account the characteristics of the SLA, same with that used in the
thesis. To achieve power-savings by control resource utilization, it is necessary to

consider the quality of service and user experience.

Consolidation of applications in cloud computing environments presents a sig-
nificant opportunity for energy optimization. As a first step toward enabling
energy efficient consolidation, Shekhar Srikantaiah studied the inter-relationships
between energy consumption, resource utilization, and performance of consoli-
dated workloads [31]. The study reveals the energy performance trade-offs for
consolidation and shows that optimal operating points exist. They model the con-
solidation problem as a modified bin packing problem and illustrate it with an
example. They outline the challenges in finding effective solutions to the consoli-

dation problem.

Hai Zhong investigated the possibility to allocate the Virtual Machines (VMs)
in a flexible way to permit the maximum usage of physical resources [53]. They
use an Improved Genetic Algorithm (IGA) for the automated scheduling policy.
The IGA uses the shortest genes and introduces the idea of Dividend Policy in
Economics to select an optimal or suboptimal allocation for the VMs requests.
The simulation experiments indicate that the dynamic scheduling policy performs
much better than that of the Eucalyptus, Open Nebula, Nimbus TaaS cloud, etc.
The tests illustrate that the speed of the IGA almost twice the traditional GA
scheduling method in Grid environment and the utilization rate of resources always

higher than the open-source IaaS cloud systems.

The above two papers capture resource usage in a way that is worthy for refer-
ence. This work uses SNMP to retrieve the desired information, but this method
is not limited to only one realization. There are varieties of open source software
to monitor the resources status on network, like vmstat, Monit, Monitorix. These

software are good tools the can be tested in the experiments.

Chapter 3

System Design and

Implementation

3.1 System Architecture

The management node consisted of the main monitoring function, the applied
method, the judgment function of the shared storage system, the virtual machine
management platform, and the user interface. We used two computing nodes
running virtual machines, and connected them to the PDU to record power con-
sumption. In order to successfully perform live migration, storages of the two
computing nodes are connected to a shared storage via NFS. The system archi-

tecture is shown in Figure 3.1.

Computing | Computing Computing

Node 1 Node 2 1°*°| Node N | Management Node
Network Shared Storage || oW Blrsl'ittnbu“on

FIGURE 3.1: System Architecture

20

Chapter 3 System Design and Implementation 21

3.2 Design Flow

In the experiments we used the KVM virtualization technology to build ten virtual
machines on three servers (one for the management node, the other two for com-
puting nodes), and SNMP to monitor operations of the two computing nodes and
resource usages of CPU and memory of the ten virtual machines. We gradually
increased the CPU usage of virtual machines, and used the cpuburn program to
simulate various degrees of usage of the cloud computing environment. The states

of the machines were automatically acquired by a PHP program and SNMP.

Figure 3.2 shows the flow chart of the power-saving method. When the re-
sources required for the virtual machines were less than those supported by the
currently running servers, through the libvirt dynamic migration instructions, the
virtual machines were centralized in some servers and some non-essential servers
were turned off in order to achieve the goal of energy saving. And if the virtual
machine CPU or memory usages increased, the number of servers in operation
should be always sufficient to maintain the quality of service. And if the current
CPU or memory resources of running servers were not sufficient to maintain qual-
ity of service, some standby servers will be elected to join the computing cluster,
and appropriate transfer were made for the new virtual machines on the servers
through the libvirt dynamic migration instruction. Based on the power-saving
method the system will determine whether the current status of the resource us-
age is well balanced. The following will focus on the description of several key

programs.

Chapter 3 System Design and Implementation 22
start
Calculate
hosts” and
WME resounce
usage
Canbe I
merged? N
b
+
Identify the most
le e appropriate
' source host and
tanget host

Y
+

Identify the most
appropriate Wi
to migrate

l

|

Migrate W= on
source host to

tanget host

Boot the host

l

l

Shutdown
resource host

Wigrate the WM
to host

FIGURE 3.2: Method flow chart

Chapter 3 System Design and Implementation 23

3.3 An Example for Power-saving Method

This section uses two examples to demonstrate the operation of the process of
the power-saving method. Assuming the operating environment has three nodes
with same specifications, nodel, node2 and node3, all operating three virtual ma-
chines. The two cases used for demonstration are expanding and merging com-

puting nodes.

3.3.1 Merging Computing Nodes

The example of the merging operation is shown in Table 3.1, nine VMs are main-
tained in low usage. The power-saving method will automatically perform live
migration on all virtual machines on the server with the lowest total utilization to
other servers, and close that server. In this example, node2 had the lowest total
CPU usage, so VM21, VM22 and VM23 were migrated to nodel and node3, and
node2 was closed as shown in Table 3.2. If the VM’s vCPU utilization did not

increase, node2 will remain off to save electricity.

Server name | VM name | CPU usage | Total CPU usage

VM 11 10%

Node 1 VM 12 20% 50%
VM 13 20%
VM 21 10%

Node 2 VM 22 10% 30%
VM 23 10%
v 31 20%

Node 3 VM 32 30% 60%
VM 33 10%

TABLE 3.1: Example 1 without power-saving method

Chapter 3 System Design and Implementation 24

Server name | VM name | CPU usage | Total CPU usage

VM 11 10%
VM 12 20%

Node 1 VM 13 20% 70%
VM 21 10%
VM 22 10%

Node 2 0%
VM 23 10%
VM 31 20%

Node 3 VM 32 30% 70%
VM 33 10%

TABLE 3.2: Example 1 with power-saving method

3.3.2 Expanding Computing Nodes

The example of expanding computing nodes are shown in Table 3.3. If the VM
usage increases and causes the server’s required CPU usage be over to 100%, the
power-saving method will perform live migration on a VM in the largest vCPU
usage node and move it to the lowest CPU usage node to prevent degradation of
service. For example, following the situation of example 1, if the vCPU usage of
VM23 operating on node3 suddenly rises, resulting required CPU usage node3 over
100%, the power-saving methods will wake up node2 from the shutdown status,
and perform live migration on VM23 to move it to node2, to maintain the quality

of service of the cloud environment.

Chapter 3 System Design and Implementation

25

Server name | VM name | CPU usage | Total CPU usage

VM 11 10%
VM 12 20%

Node 1 VM 13 20% 70%
VM 21 10%
VM 22 10%

Node 2 0%
VM 23 90%
VM 31 20%

Node 3 VM 32 30% 150%
VM 33 10%

TABLE 3.3: Example 2 without power-saving method

Server name | VM name | CPU usage | Total CPU usage

VM 11 10%
VM 12 20%

Node 1 vm 13 20% 70%
VM 21 10%
VM 22 10%

Node 2 23 90% 90%
VM 31 20%

Node 3 VM 32 30% 60%
VM 33 10%

TABLE 3.4: Example 2 with power-saving method

Chapter 3 System Design and Implementation 26

3.4 System Implementation

In this thesis we uses the PHP language to write a number of automated programs,
include the status monitoring program, power consumption recording program,
and the power-saving method program. The following is a detailed description of

the three programs.

3.4.1 Status Monitoring

To determine whether to shut down or wake up servers for the current environment,
the operating states of VMs and servers are needed. Those data were retrieved
via SNMP, which can access many types of information. As shown in Figure 3.3
data are obtained through SNMP commands. In order to capture information on
each virtual machine, libvirt was run on all virtual machines on the server list as
shown in Figure 3.4. Since libvirt supports PHP API, one can write PHP codes

on it very fast.

92.
92.

Counter32: @
Counter32: @

is0.3.6.1.2.1.88.1.4.2.1.3.6.95.115.118.189.112.100.95.109.116.101.84.114.185.103.103.101.114.70.97.105.108.117.114.101 = Hex-STRING: 8@
i50.3.6.1.2.1.88.1.4.2.1.3.6.95.115.118.189.112.108.95.109.116.101.84.114.185.103.103.181.114.70.97.108.108.185.110.103 = Hex-STRING: 8@
is0.3.6.1.2.1.88.1.4.2.1.3.6.95.115.110.109.112.100.95.109.116.101.84.114.1065.183.103.101.114.7@.105.114.101.100 = Hex-STRING: 8@
i50.3.6.1.2.1.88.1.4.2.1.3.6.85.115.118.109.112.1008.95.109.116.101.84.114.1085.103.103.101.114.82.105.115.1085.110.103 = Hex-STRING: 88
is0.3.6.1.2.1.88.1.4.2.1.4.6.95.115.118.189.112.100.95.108.105.110.107.68.111.119.110 = INTEGER: 1
i50.3.6.1.2.1.88.1.4.2.1.4.6.95.115.118.109.112.100.95.108.185.110.107.85.112 = INTEGER: 1
is0.3.6.1.2.1.88.1.4.2.1.4.6.95.115.118.189.112.100.95.109.116.101.84.114.185.103.103.101.114.70.97.105.108.117.114.101 = INTEGER: 1
i50.3.6.1.2.1.88.1.4.2.1.4.6.95.115.118.189.112.108.95.109.116.101.84.114.185.103.103.181.114.70.97.108.108.185.110.103 = INTEGER: 1
is0.3.6.1.2.1.88.1.4.2.1.4.6.95.115.11€.189.112.100.95.109.116.101.84.114.105.103.103.101.114.70.105.114.101.100 = INTEGER: 1
i50.3.6.1.2.1.88.1.4.2.1.4.6.985.115.118.109.112.1008.95.109.116.101.84.114.165.103.103.101.114.82.105.115.1085.110.103 = INTEGER: 1
is0.3.6.1.2.1.88.1.4.2.1.5.6.95.115.118.189.112.100.95.108.185.110.107.68.111.119.110 = INTEGER: 1
i50.3.6.1.2.1.88.1.4.2.1.5.6.985.115.118.109.112.1008.95.108.185.110.107.85.112 = INTEGER: 1
is0.3.6.1.2.1.88.1.4.2.1.5.6.95.115.11€.189.112.100.95.109.116.101.84.114.185.103.103.101.114.70.97.105.108.117.114.101 = INTEGER: 1
i50.3.6.1.2.1.88.1.4.2.1.5.6.95.115.118.189.112.108.95.109.116.101.84.114.185.103.103.181.114.70.97.108.108.185.110.103 = INTEGER: 1
is0.3.6.1.2.1.88.1.4.2.1.5.6.95.115.11€.189.112.100.95.109.116.101.84.114.185.103.103.101.114.70.105.114.101.100 = INTEGER: 1
i50.3.6.1.2.1.88.1.4.2.1.5.6.985.115.118.109.112.1008.95.109.116.101.84.114.165.103.103.101.114.82.105.115.1085.110.103 = INTEGER: 1
is0.3.6.1.2.1.88.1.4.3.1.1.6.95.115.11€.189.112.1008.95.108.185.110.107.68.111.119.11@ = 0ID: is0.3.6.1.6.3.1.1.5.3
i50.3.6.1.2.1.88.1.4.3.1.1.6.95.115.118.109.112.108.95.108.105.1108.187.85.112 = 0ID: i50.3.6.1.6.3.1.1.5.4
is0.3.6.1.2.1.88.1.4.3.1.1.6.95.115.116.189.112.1008.95.109.116.101.84.114.105.103.103.101.114.70.97.105.108.117.114.101 = 0ID: is0.3.6.1.2.1.88.2.0.4
i50.3.6.1.2.1.88.1.4.3.1.1.6.95.115.118.109.112.1008.95.109.116.101.84.114.185.103.103.101.114.70.97.108.108.165.110.103 = 0ID: i50.3.6.1.2.1.88.2.0.3
is0.3.6.1.2.1.88.1.4.3.1.1.6.95.115.116.189.112.1008.95.109.116.101.84.114.1085.103.103.101.114.70.105.114.1081.1¢@ = 0ID: iso.3.6.1.2.1.88.2.0.1
i50.3.6.1.2.1.88.1.4.3.1.1.6.985.115.118.189.112.108.95.109.116.101.84.114.185.103.103.181.114.82.185.115.185.110.103 = 0ID: i50.3.6.1.2.1.88.2.08.2
is0.3.6.1.2.1.88.1.4.3.1.2.6.95.115.116.189.112.1008.95.108.185.110.1087.68.111.119.118 = STRING: "_snmpd"
i50.3.6.1.2.1.88.1.4.3.1.2.6.95.115.118.109.112.108.95.108.185.1108.187.85.112 = STRING: "_snmpd"
is0.3.6.1.2.1.88.1.4.3.1.2.6.95.115.11€.189.112.108.95.109.116.101.84.114.185.103.103.101.114.70.97.105.108.117.114.181 = STRING: "_snmpd"
i50.3.6.1.2.1.88.1.4.3.1.2.6.95.115.118.189.112.108.95.109.116.101.84.114.185.103.103.181.114.70.97.108.108.185.110.183 = STRING: "_snmpd"
is0.3.6.1.2.1.88.1.4.3.1.2.6.95.115.11€.189.112.1008.95.109.116.101.84.114.185.103.103.101.114.70.105.114.1081.18@ = STRING: "_snmpd"
i50.3.6.1.2.1.88.1.4.3.1.2.6.95.115.118.189.112.108.95.109.116.101.84.114.185.103.103.181.114.82.185.115.185.110.1083 = STRING: “_snmpd"
is0.3.6.1.2.1.88.1.4.3.1.3.6.95.115.110.189.112.1008.95.108.185.110.107.68.111.119.118 = STRING: "_linkUpDown"
i50.3.6.1.2.1.88.1.4.3.1.3.6.985.115.118.189.112.108.95.108.185.1108.107.85.112 = STRING: "_linkUpDown"
is0.3.6.1.2.1.88.1.4.3.1.3.6.95.115.110.189.112.1008.95.109.116.101.84.114.1085.183.103.101.114.70.97.105.108.117.114.181 = STRING: "_triggerFail”
i50.3.6.1.2.1.88.1.4.3.1.3.6.985.115.118.109.112.1008.95.109.116.101.84.114.165.103.103.101.114.70.97.108.108.165.110.183 = STRING: "_triggerFire"
is0.3.6.1.2.1.88.1.4.3.1.3.6.95.115.110.189.112.1008.95.109.116.101.84.114.165.183.103.101.114.7@.105.114.1081.1@0 = STRING: "_triggerFire"
i50.3.6.1.2.1.88.1.4.3.1.3.6.985.115.118.109.112.1008.95.109.116.101.84.114.165.103.103.101.114.82.105.115.1085.110.103 = STRING: "_triggerFire"
is0.3.6.1.2.1.92.1.1.1.8 = Gauge32: 1000
150.3.6.1.2.1.92.1.1.2.8 = Gauge32: 144@

.3.6.1.2.1. 1.2.1.8 =

.3.6.1.2.1. 1.2.2.8 =

FiGure 3.3: Capture resource’s status by SNMP

Chapter 3 System Design and Implementation

27

oneadmin@24core:~$%$ virsh list

Id Name State
1 vmol running
2 vm@2 running
3 vm@3 running
4 vmo4 running
5 vm@5 running
6 vm@6 running
7 vm@7 running
8 vm@s running
9 vmo9 running
10 vmle running

FI1GURE 3.4: Display VM list on servers by libvirt

The status monitoring function was developed by the PHP programming lan-

guage to obtain status data via SNMP, including CPU and memory usages of the

physical and virtual machines. SNMP programs were installed to capture and

send data. After installing SNMP, the snmpd.conf file in the directory /etc/sn-

mp/ is modified to send the node’s SNMP to the management node so that the

application running on the management node can acquire the operating status of

the two computing nodes with virtual machines.

Algorithm 3.4.1: STATUS MONITORING(c)

for i + 1 to computing node numbers x
(connect to computing node x

get libvirt list and calculate VM number
do { for o <+ 1 to VM numbers y

d get VM's CPU usage via SNMP
o

get VM's RAM usage via SNM P

3.4.2 Power Consumption Recording

In this work, we retrieved servers’ power consumption data via PDU. Figure 3.5

is the web interface provided by the PDU used in this work. Figure 3.6 shows the

Chapter 3 System Design and Implementation 28

type of data retrieved, including rms current, power factor, and voltage for the ac
power supply. The PDU data can also be obtained via SNMP information. Figure

3.7 shows the screenshot of retrieving information on the console.

| SERANON. (o s [t e st [i s st s]|

Home > PDU Status

Time & Session:
2013-07-17 1916

User - admin

State - active

Your IP 140128 99 198
Last Login - 2013-06-25 0439

Device Information:

Name: PDU

Model: PX (DPXR8-20)

IP Address” 140128 101 161
Firmware: 01.05.05
Firmware Status: OK

FIPS mode is not set

Connected Users:
admin (140 128 99 198)
active

Power Cim State:
Fower CIM is enabled

Help - User Guide

Name State Control RMS Current Active Power Group Member
32core1 on 084Amps 86 Watts no

24core on

140 Watts no

S2core2 on 82 Watts. no

Outlet4 on 0 Watts ne
Outlets on 000Amps O Watts no
Outlete on 0.00Amps 0 Walts ne
Outlet? on 000Amps 0 Watts no
Outlets on 000Amps 0 Walls no

All Outlets Control

Switch all outlets

Number of managed sensor(s): 0
Number of unmanaged sensor(s): 0

Name Reading State

FI1GURE 3.5: PDU’s web interface

Home Delais User Management | Device Settings | External Sensors

Time & Session:
2013-07-17 20:04

User : admin
State : active

Your IP : 140.128.99.198

Last Login : 2013-07-17 20:03 32coret (1)[7]

Device Information:
Name: PDU
Model: PX (DPXR8-20)

IP Address: 140.128.101.161

Firmware: 01.05.05
Firmware Status: OK
FIPS mode is not set

Connected Users:
admin (140.128.99.198)
active
admin (140.128.99.198)
active

Power Cim State:
Power CIM is enabled

Help - User Guide

Home > Details > Qutlet Details

Outlet 1 Details

Show details of outlet

Outlet Name: 32core
Outlet Status: en
Line Pair: L1
RMS Current 0.84 Amps below lower critical
Power Factor 0.909 Ratio ok
Maximum RMS Current 2.08 Amps ok
Voltage 113 Volts ok
Active Power 86 Watts
Apparent Power 94 VA

Setup
e P4

FIGURE 3.6: PDU’s web interface in details

Chapter 3 System Design and Implementation 29

i50.3.6.1.2.1.31.1.1.1.1.2 = STRING: "ethe"
is0.3.6.1.2.1.31.1.1.1.2.1 = Counter32: @
is0.3.6.1.2.1.31.1.1.1.2.2 = Counter32: @
is0.3.6.1.2.1.31.1.1.1.3.1 = Counter32: @
is0.3.6.1.2.1.31.1.1.1.3.2 = Counter32: @
is0.3.6.1.2.1.31.1.1.1.4.1 = Counter32: @
is0.3.6.1.2.1.31.1.1.1.4.2 = Counter32: @
is0.3.6.1.2.1.31.1.1.1.5.1 = Counter32: @
is0.3.6.1.2.1.31.1.1.1.5.2 = Counter32: @
is0.3.6.1.2.1.31.1.1.1.6.1 = Counterb4: 882495
i50.3.6.1.2.1.31.1.1.1.6.2 = Counter64: 861052695
is0.3.6.1.2.1.31.1.1.1.7.1 = Counter6d: 8828
is0.3.6.1.2.1.31.1.1.1.7.2 = Counterb4: 9330964
is0.3.6.1.2.1.31.1.1.1.8.1 = Counterb4: @
i50.3.6.1.2.1.31.1.1.1.8.2 = Countert4: 9222747
i50.3.6.1.2.1.31.1.1.1.9.1 = Counterb4: @
is0.3.6.1.2.1.31.1.1.1.9.2 = Counter64: @
i50.3.6.1.2.1.31.1.1.1.18.1 = Counterb4: 882495
i50.3.6.1.2.1.31.1.1.1.18.2 = Countertd: 16794421
is0.3.6.1.2.1.31.1.1.1.11.1 = Counterbd4: 8828
i50.3.6.1.2.1.31.1.1.1.11.2 = Countert4: 114553
is0.3.6.1.2.1.31.1.1.1.12.1 = Counterbd: @
is0.3.6.1.2.1.31.1.1.1.12.2 = Countertd: @
is0.3.6.1.2.1.31.1.1.1.13.1 = Counterbd: @
i50.3.6.1.2.1.31.1.1.1.13.2 = Countert4: @
is0.3.6.1.2.1.31.1.1.1.14.1 = INTEGER: @
is0.3.6.1.2.1.31.1.1.1.14.2 = INTEGER: @
is0.3.6.1.2.1.31.1.1.1.15.1 = Gauge32: @
is0.3.6.1.2.1.31.1.1.1.15.2 = Gauge32: @
is0.3.6.1.2.1.31.1.1.1.16.1 = INTEGER: @
is0.3.6.1.2.1.31.1.1.1.16.2 = INTEGER: @
is0.3.6.1.2.1.31.1.1.1.17.1 = INTEGER: @
is0.3.6.1.2.1.31.1.1.1.17.2 = INTEGER: @
iso.3.6.1.2.1.31.1.1.1.18.1 = ""
is0.3.6.1.2.1.31.1.1.1.18.2 = ""
is0.3.6.1.2.1.31.1.1.1.19.1 = Timeticks: (@) 0:00:008.00
is0.3.6.1.2.1.31.1.1.1.19.2 = Timeticks: (@) @:00:00.00
3.6.1.2.1. 1.5.8

iso. = Timeticks: (@) 0:00:00.00

Ficure 3.7: Capturing PDU’s data by SNMP

The power consumption recording function, developed by the PHP program-
ming language, is an automatic recording program, pdu_ recorder.php, running
on the management node. PDU supports SNMP to transmit electricity consump-
tion data in the experiment. Through SNMP, the automatic recording program
on the management node automatically collects PDU power consumption data of

computing nodes every minute and records them in the pdurecord.txt file.

Algorithm 3.4.2: POWER RECORDING(c)

while in record range
do if second =0

get PDU information via snmp
then

write into pdurecord.txt

Chapter 3 System Design and Implementation 30

3.4.3 Power-saving method

The main function of the power-saving method is to obtain and analyze resource
usage information of servers and VMs through the resource status monitoring pro-
gram. If the required resources of VMs are less than those supported by currently
running servers, through libvirt live migration instructions the VMs are central-
ized and some server is shut down to achieve the goal of energy saving. And as
the resource requirement of the whole system increases, some of standby servers
might be awaken to join the computing cluster, and appropriate live migrations

of VMs are performed among the operating servers.

Algorithm 3.4.3: POWER-SAVING METHOD(c)

sumuvm < all VM's computation sum
sumhost < all host's computation sum
mazxvmn <— vm with maximum computation on host n
maxhost < host with largest V M's computation sum
minhost < host with smallest V M's computation sum
minsumhost <— host with smallest computation sum
if sumvm > sumhost
then start an host in shutdown status
migrate mazvmmaxhost to the host just start
else if sumvm < sumhost — minsumhost
magrate all VM on minhost to other host

then
shutdown minhost

3.5 User Interface

In this work we also used a web interface to allow users easily manage VMs,
perform live migration for VMs, and obtain information of machine states and

electric power consumptions.

Chapter 3 System Design and Implementation 31

— Create VM
Computing
Node 1 | | Delete VM
—— Live Migration
Power | Management g 00
Distribution SNMP Nod PHP Browser m’b
Unit ‘ ode Hardware
Monitor User
c i VM Status
c:‘;z: |2ng] Monitor
| | Power-Saving
Method

FIGURE 3.8: Service architecture

S . VMs Status on Hosts:
1.Statistical power | on 32core1 VMs | --- | on 32core2 VMs |--- | on 24core Vs

T [_~——— onJ32corel

“\,/ e 32vepu
vm01
2 *_ 2. VM list
vm(3
vm04
vm05
vm06
vm07
vm08

Migration Function .
o «— 3. Manually migrate

[Mbgratlon VM from 24core to 32corel Migration VI from 24core to 32core2 J

S~ _ [Migration VM from 32core1 to 24core | | Migration VM from 32core1 to 32core2

[Migration VM from 32core2 to 24core | | Migration VM from 32core2 to 32coret
114728075 Host Status [Status on 32core2 | --- | Status on 24core

32CorelIH=85Watts
4. Host Ststus

FIGURE 3.9: Web interface

Sacorel — Mcow — Sdcwsd

The user interface shown in Figure 3.9 is developed by the PHP programming
language, and run on the management node. Its key features include power con-
sumption monitoring (on the left), management of servers and virtual machines

(on the right), and resource monitoring as described in detail below.

The power consumption of machines can be viewed in one day or one hour
periods. By default, the system displays power consumption data recorded every
five minutes for the last one hour. Alternately, the user can switch the display

mode to see power consumption data recorded every hour for the past 24 hours.

Chapter 3 System Design and Implementation 32

300

280

260

240

220 4

200

180

160

140 4

120

100

80

&0

40 4

20

PDU

W—\/\

21:00 22:00 23:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00 00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00 1200

300

280

240 4

220 4

200

140 4

120 4

100

80

&0

a0 +

204

|— 32corel — 24core — 32core2 ‘

F1GurE 3.10: Power consumption viewed in a day

PDU

11:05

11:10 11:15 11:20 11:25 11:30 11:35 1140 11:45 11:50 11:55 12:.00

|— 32corel — 24core — 32core2 ‘

FI1GURE 3.11: Power consumption viewed in one hour

Figure 3.12 shows the feature to obtain the virtual machine list, which displays

active virtual machines on every server. Figure 3.13 shows the manual migration

feature. After obtaining the name of the virtual machine through the query func-

tion, name of the virtual machine is typed in the input box, and then the desired

Chapter 3 System Design and Implementation 33

destination server is selected. When live migration is complete, the time spent
will be displayed below. Figure 3.14 shows the server monitoring function, which
displays the current CPU and memory usage status. The function can also be used
to display data separately for each server, including the CPU usage, idle CPUs,

the total size of memory, and the available memory size.

VMs Status on Hosts:
on 32corel VMs --- on 32core2 VMs --- on 24core VMs

on 24core

vml10

vm09

vmO1

vm02

vmO03

vm04

vm035

vm06

vmO07

vmO08

Ficure 3.12: Display VM lists on servers

Migration Function

vim
Migration VM from 32corel to 32core?2

Migration VM from 32core2 to 32corel
Migration{t &0

FiGURE 3.13: Manual migration function

Host Status = Status on 32corel --- Status on 32core2
Percentages of system CPU time on 24core 0 %
Percentages of Idle CPU time on 24core 99 %

Total Memory65960240 KB

Available Memory64377264 KB

FIGURE 3.14: Monitoring server s status

Chapter 3 System Design and Implementation 34

3.6 Design of Equations

In this work, we present an method to turn off computing nodes to achieve the
power-saving purpose. However, the transfer of VMs among computing nodes
results in extra time and power consumption. To consider the cost, we formulate
a way to calculate the operating costs of the power-saving method. The net
efficiency of the power-saving method is found by subtracting the expected power-
saving method by the operating costs of the method. This subsection focuses
on relationship between the additional operating costs and the efficiency of the
power-saving method. The following equations and variables are used to define

the operating costs:

3.6.1 Migration Costs

The migration cost is the cost of performing live migration of VMs. Relevant

parameters of the migration costs are defined as follows:
Chigration 15 defined as Costs resulting from migration
Pitanavy is defined as Average power spend by standby computing node
Taowntime 1s defined as VM downtime during live migration
Prigration s defined as Extra power cost by processing migration
Nmigrationom 18 defined as Number of VMs need to be migrated

The power-saving method may perform live migration on a number of VMs. In
the migration process, no service is provided by a VM during the brief downtime
of the VM, which contributes to additional costs of migration, and the extra cost
of electricity can be calculated by multiplying the downtime of the VM with the
average standby power consumption of the server. Also we need to include the
additional power consumption occurs at the migration action of each VM. Thus,

the migration cost can be calculated with the following formula:

Chapter 3 System Design and Implementation 35

Cmigration = [(Pstandby?Tdowntime) + (Pmigration>]?Nmigrationvm (31)

3.6.2 Merging and Expanding Costs of Computing Nodes

The merging or expanding cost of computing nodes is considered here; its relevant

parameters are defined as follows:
Cinaa is defined as Costs resulting from merging and expanding computing nodes
Thootup is defined as Time spend in booting up computing nodes
Tshutdown 18 defined as Time spend in shutting-down computing nodes
S is defined as Level of service preset by user
Pyrobabitity is defined as Probability of processing merging or expanding

In the power-saving method, turning off unnecessary servers to reduce elec-
tricity is most efficient for power-saving, but frequent switching of servers also
results in additional power costs. Since servers do not provide services during the
startup and shutdown time, the costs of booting up and shutting down servers
are considered as additional costs, and are calculated by multiplying both times
with the average power consumption of the standby server. In order not to reduce
service quality due to frequent switching of machines, user can follow the Service-
level agreement (SLA) to control the switching frequency. The higher SLA is, the

lower the switching frequency becomes.

Cmaa = [(Tbootup + Tshutdown)?Psmndby]?Pprobability (32)

3.6.3 Net Power Saving

Finally, the net power saving can be calculated in the following.

Chapter 3 System Design and Implementation 36

Tos¢ is defined as Total time that computing node in power off state
Pi,ue is defined as Total power saving by method

Turning off unnecessary servers to reduce power consumption is most efficient;
thus, the expected power saving is calculated by multiplying the total shutdown
time with the average standby power consumption of servers. And the net power

saving of the proposed method can be calculated by the following formula:

Psave == (Pstcmdby?Toff> e Cmigration e Cmaa (33)

Chapter 4

Experimental Results

4.1 Experimental Environment

The experimental environment is shown in Table 4.1. The main monitoring func-
tion, the method, the judgment function of the shared storage system, the virtual
machine management platform, and the user interface were built on the manage-
ment node, which consists of 24 core CPU, 78GB memory and 1TB disk. The
virtual machines were distributed in two servers: computing node 1 and comput-
ing node 2, with identical specifications, both of them connected to the PDU to
collect electricity consumption data. The management function was evaluated by
calculating the functional dependence of such a configuration, management capa-
bilities, and operation efficiency of virtual machines. The experiment focused on
the required resources for operation of the virtual machines, such as CPU, memory,
and power consumption. In order to enhance the reliability of the experimental
data, ten VMs with the same specifications were built on the computing nodes,
with preloaded SNMP and cpuburn programs. The detailed specifications of the
three servers and ten virtual machines are listed in Table 4.1, and the detailed
specifications of software used include KVM, libvirt, PHP and SNMP are listed
in Table 4.2.

37

Chapter 4 Experimental Results

38

TABLE 4.1: Hardware Specification

Host name CPU Memory Disk 0S
Computing nodel AMD Oﬁ;;t;io}?ggl\grfsrocessor ASCE SStI(l)?;Z(i Ugu(r)lflu
CompufiEEiiode2 AMD Oﬁgt;io}ilggl\é[grfsrocessor ASCD SSt};?;egcé Uguélflu

VMO1-VM10 8 cores vCPU 8GB | 10GB Ug.lgfl“

TABLE 4.2: Software Specification

Software | KVM | Libvirt | PHP | SNMP
Version | 3.2.0 | 0.9.8 16.3.10| 5.4.3

4.1.1 Experimental Flow

After the implementing the complete environment, we performed simulations for

possible scenarios on the cloud environment. We gradually increased the CPU

usage of each virtual machine. If the requirement of the CPU usage is less than

that offered by the servers, the system automatically triggers the power-saving

method. For comparison, we recorded power consumptions of the overall cloud

environment with or without enabling the power-saving method.

VMO1 | | VMOZ | [VMO3 | | VMO4 | | VMO5 | | VMOE | | VMO7 | | VMO8 | | VMOD9 | | VM10

Libvirt

Kernel-based virtual machine

Computing node 1 Computing node 2

Shared storage

FIGURE 4.1: Software Architecture

Chapter 4 Experimental Results 39

Public Switch

Internet

Shared Storage

Computing MNode 1 Computing Node 2 Management Node

_

Power Distribution Unit

|

(24

FIGURE 4.2: Experimental Architecture

The average power consumptions of the two computing nodes with virtual
machines were recorded. In the first 10 minutes, the two servers did not run any
other program besides the standby virtual machines. Then, every five minutes,
CPU loading of the virtual machines on the two computing nodes was one by
one turned to be full-loaded; thus at 60 minute of the experiment all 10 vCPUs
(i.e. virtual CPUs) were full-loaded. Then every five minutes turned one of the
virtual machines on the computing nodes back to standby; thus at 110 minutes
all 10 virtual machines were in the standby state. We continued recording power

consumptions of the two nodes for another ten minutes.

Chapter 4 Experimental Results 40

We then performed the above experiment again, but this time applied the
power-saving method on the two computing nodes from the onset of the experi-
ment. We expected at the start the 10 virtual machines would be automatically
moved to one of the two computing nodes, and the other computing node will be
automatically shut down. We also expected that the power-saving method will au-
tomatically wake up the standby computing node when five or more vCPUs were
full-loaded. The power-saving method would perform live migration on chosen
machines until equilibrium was arrived. We expected when the number of virtual
machines decreased to be five or less, the power-saving method would again au-
tomatically move all virtual machines to one of the computing nodes, and shut

down the other computing node.

4.2 Results and Discussion

4.2.1 Prior Experiments

Since the power-saving method experiment involves several factors e.g. relation be-
tween live migration, VM vCPU loading, migration time and power consumption,

we first carried out several experiments to find answers for following questions:

1. Will virtual machine’s vCPU loading affect the time required for live mi-

gration?

2. Will CPU loading of the source host or target host affect the required live

migration time of virtual machines?
3. Will live migration cause additional power consumption?

The following discusses the results of three experiments. In the first experi-
ment, all 10 VMs have various CPU loading 0%, 25%, 50%, 75% and 100%, and
live migration of VMs are performed between two computing nodes. The figure

below shows our first experimental data:

Chapter 4 Experimental Results 41

0% 25% 50% 75%

100%
vCPU Loading(%)

60

50

4

(=]

3

Migration Time(Second)
o

]
o

1

(=]

EVMOl1 mVM02Z mVMO3 mVM04 mVMO5 mVMO6 mVMO7 mVMO08 mVM0S mVMIO

FIGURE 4.3: Relationship between Migration Time and vCPU Loading

From Figure 4.3, no matter how much CPU loading is, performing live migra-
tion of VMs required about 48 seconds; thus there is no direct relationship between
migration time and vCPU loading. It rules out the assumption that different CPU

loading affect migration time in the experiment of the power-saving method.

In the second experiment, we perform live migration of VMs and observe
the change of the power consumption of the source host and target host. The

experimental results are shown below:

Chapter 4 Experimental Results 42

300

250

200

150

Power Change(Watts)

50

0 5 10 15 20 25 30 35 40 45 50 55 60
Elapsed Time(Miuntes)

== Computing Node 1 === Computing Node 2

FIGURE 4.4: Change in Power Consumption During Migration

From the experiment we know that the average time of VM migrations is
approximately 48 seconds. From Figure 4.4, two hosts’ power consumption are
very stable during the live migration process, and there is no significant ups and
downs. In this experiment, VM’s vCPU loading are 100%, and at about 50 seconds
after live migration is finished, the power consumption of the source host and
target host’s status varied significantly. This experiment also proves that after
live migration, the virtual machine’s vCPU loading effects on the source host and

the target host are very fast.

The third experiment studies the effect of the live migration time due to the
CPU loading of the source host and target host. Virtual machines’ vCPU loading

of the hosts in the experiment is changed in the following ways:
1. Change the source host and target host’s CPU loading at the same time.
2. Only change the source host’s CPU loading.

3. Only change the target host’s CPU loading.

Chapter 4 Experimental Results 43

The live migration experimental results are shown in the following figure:

70

65

60

55

Migration Time(Second)

45

40
0% 25% 50% 75% 100%

CPU Loading(%)
=== Both Change Source Host and Target Host e Qnly Change Source Host Only Change Target Host

FIGURE 4.5: Relationship between Migration Time and Host’s CPU Loading

From Figure 4.5 | one observes that migration time is not related to CPU
loading of the target host, but is proportional to the CPU loading of the source
host; in particular, when CPU loading of the source host and the target host are

changed at the same time, it has extra two seconds average time.

The above experiment proves that migration time is affected by the host’s
CPU loading, but the saving benefits of the power-saving method are not affected.

We will discuss about the time cost later.

4.2.2 Performance of Power-Saving Experiments with 10

VMs

The experiments of the power-saving method are done here. As described in

Section 3, the vCPU loading of vm01 to vim10 were sequentially increased up to

Chapter 4 Experimental Results 44

100% one by one in every five minutes, and then sequentially decreased the VM
vCPU loading back to 0%. The following experimental results shown in Figure
9 to Figure 11 were measured when the system was without or with the power

saving method:

350

300

250

200

150

Power change(Watts)

100

— e

50

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105110115120
Elapsed time(Minutes)

o COMPUting Node 1 === Computing Node 2

FIGURE 4.6: 10 VMs Result without Power-saving Method

Chapter 4 Experimental Results 45

6000

5000

4000

3000

2000

- il
o == un 1l Il II ‘I I I |

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100105110115120
Elapsed time(Minutes)

Power consumption(Watts)

B Computing Node 1 B Computing Node 2

FiGURE 4.7: 2 Computing Node’s Cumulative Power Consumption without
Power-Saving Method with 10 VMs

Figure 4.6 shows curves of power consumptions of the two computing nodes
without power-saving method. The power consumptions of the two computing
nodes are observed to have the same trends in response of the increase and decrease
of loading of VM vCPUs. Figure 4.7 shows the cumulative power consumptions of
the two computing nodes. From the plot one can see that the cumulative power

consumptions of them are similar.

Chapter 4 Experimental Results 46

350

300

250

[l
(=]
(=]

Power change(Watts)
=
u
o

100

50

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100105110115120
Elapsed time(Minutes)

e COmputing Node 1 e===== Computing Node 2

FIGURE 4.8: 10 VMs Result with Power-saving Method

7000

6000

4000

3000

- ‘ ‘ ‘ | |‘ “ | | |
o == mn ln II I I |

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100105110115120
Elapsed time(Minutes)

u
o
[=]
o

Power consumption(Watts)

=]
o
o
o

W Computing Node 1 M Computing Node 2

FI1GURE 4.9: 2 Computing Node’s Cumulative Power Consumption with Power-
Saving Method with 10 VMs

Chapter 4 Experimental Results 47

Figure 4.8 shows curves of power consumptions of the two computing nodes
with the power saving method. In the beginning of the first ten minute, the method
determined that the ten standby VMs would not need to use all the computing
power of the two computing nodes, so it transferred all the VMs, i.e., five VMs,
on computing node 2 to computing node 1. Due to the delay of the judgment and
migration time for the five VMs (about five minutes) and the shutdown time of
computing node 2 (about one minute), computing node 2 continued consuming

the electric power until ten minute of the experiment.

A similar situation appeared at 35 minute: as designed, VMO05’s vCPU would
be fully loaded at 30 minute and it should be beyond the maximum CPU support
of computing node 1, but due to delay of the power-saving method, the VM
selection and migration time, and the booting time of computing node 2, so the
power consumption data did not respond to the change of CPU loading until 40
minute of the experiment. This work also observed similar delay of change of the

curve for computing node 2 at 90 minute of the experiment.

Figure 4.9shows the cumulative power consumptions of the two computing
nodes with the power-saving method. From the plot one can see that the cumula-
tive power consumptions of the two computing nodes are different and the power

saving effect on computing node 2 is obvious.

Chapter 4 Experimental Results 48

12000

10000

8000
6000
4000
0 ..||II||II|I‘| ‘

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100105110115120
Elapsed time(Minutes)

Power consumption(Watts)

B without Power-saving Method B with Power-saving Method

FIGURE 4.10: Cumulative Power Consumption difference between with and
without Power-saving Method with 10 VMs

Figure 4.10 shows the difference between cumulative power consumptions of
the nodes with or without the power-saving method. It is obvious that the cumu-
lative power consumption of nodes with the power-saving method is indeed lower
than that of nodes without the power-saving method. In this experiment, the
method is found to save about 7% of the consumption power; unfortunately, the

degree of power-saving is not obvious, following reasons are provided:

1. In the experimental with the method, when the VM’s total vCPU load-
ing is greater than the current available VMs provided by the computing node,
then expanding of computing nodes is proceeded and the VMs to be migrated is
determined in accordance with the VM vCPU loading and other factors. In our
experiments, VMs are randomly selected to reduce the VM’s vCPUs loading, thus,

CPU loading of some computing node cannot be effectively reduced.

2. Because 10 VMs with 8 core vCPU were used in this experiment, in theory
a computing node can only load 4 VMs with full loading vCPU; therefore, if 10

VM’s vCPU are all full, a computing node runs six VMs and cannot be migrated.

Chapter 4 Experimental Results 49

Continuation of the first point, if the first and second VM selected to reduce the
vCPUs loading are both in this node, the experimental data will not be conducive

to the power-saving method.

3. Because the number of VMs is 10, and in the experiment the power is
recorded in a time interval of five minutes, then transfer 5 VMs or 4 VMs plus
the shutdown time does not reflect which one has the more favorable data in the

power consumption data.

4.2.3 Performance of Power-Saving Experiments with 8

VDMs

In order to reduce the effects mentioned above, experiments with similar setting
as previous experiments were done; except, this time the number of VMs were

reduced to 8. The following are the experimental results:

Chapter 4 Experimental Results 50

Power change(Watts)

350

300

250

200

=
L
=]

100

50

0

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Elapsed time(Minutes)

e Computing Node 1 e Computing Node 2

FiGure 4.11: 8 VMs Result without Power-saving Method

Chapter 4 Experimental Results 51

5000
4500

4000

3500

3000

2500

2000

1500

1000
il |
0..||III|II

0 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Elapsed time(Minutes)

Power consumption(Watts)

o

M Computing Node 1 m Computing Node 2

FIGURE 4.12: 2 Computing Node’s Cumulative Power Consumption without
Power-Saving Method with 8 VMs

Figure 4.11 and Figure 4.12 shows the power consumption without the power-
saving method, which is quite similar with the results of experiment with 10 VMs.
Similarly, with the vCPU rises and falls, two servers’ power consumptions are also
up and down, and the two servers’ total power consumption statistics are very
similar. Because the power-saving method is not used, when the vCPU is not in
the fully loaded condition, the system does not detect the servers are in a low

efficient usage state, thus causing unnecessary power waste.

Chapter 4 Experimental Results 52

350

300

250

=
=]
=]

Power change(Watts)
[y
L
=

100

50

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Elapsed time(Minutes)

e Computing Node 1 es==Computing Node 2

FIGURE 4.13: 8 VMs Result with Power-saving Method

6000
5000
4000

3000

2000
- | ‘ ‘ | ‘ ‘ |

0 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Power Consumption(Watts)

Elapsed time(Minutes)

B Computing Node 1 B Computing Node 2

FiGURE 4.14: 2 Computing Node’s Cumulative Power Consumption with
Power-Saving Method with 8 VMs

Chapter 4 Experimental Results 53

Figure 4.13 and Figure 4.14 shows the power consumption with the power-
saving method. The curves are similar to the previous experiments. Because
the required migration time is shorter, in the 5 minute time point, the power
consumption was recorded as 0, meaning that the computing node 2 has been
shut down. Similarly, power consumptions recorded in several other time shows

the effectiveness of the proposed power-saving method.
9000
8000

7000

6000

5000

4000

3000

2000

il
g Em ll Il II I I

0 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Elapsed time(minutes)

Power Consumption(Watts)

W without Power-saving Method W with Power-saving Method

F1GURE 4.15: Cumulative Power Consumption difference between with and
without Power-saving Method with 8 VMs

Figure 4.15 shows the experimental results of the total power consumption of
the two computing nodes with 8 VMs; and compared to the previous setting with
10 VMs, the power-saving method is indeed more effective and the power-saving

rate is doubled to 14%.

Chapter 5

Conclusions and Future Work

For the increasingly high demand of the cloud today, the power demand of the
cloud environment issues cannot be ignored. To effectively manage cloud servers,
this work presents a power-saving method that, in the case of low usage of the
cloud, automatically shuts down several facilities on the cloud to achieve the power

efficiency goal.

5.1 Concluding Remarks

After a number of relevant research and experiments, the following conclusions are

obtained from analysis of the experimental results.

o There is no direct relationship between migration time and vCPU loading.

o Live migration of virtual machines will not cause significant additional elec-

tricity costs.

o The time required for live migration is directly proportional to server CPU
loading, but only has a relationship with the source server, and is indepen-

dent of the target server.

o The power-saving method is effective.

54

Chapter 5 Conclusions and Future Work 5%)

o About 7% to 14% saving of power consumption is achieved.

o The percentage of power saving depends on not only the power-saving method

but also the real operation situations of VMs and hosts.

5.2 Future Work

The proposed power-saving method in this work still has many issues and parts
need to be explored and reinforced; in order to strengthen the power-saving effect,

in the future we plan to:

« Continue to experiment with different settings of the experimental environ-

ments and scenarios.

» Reformulate the power-saving method by taking more factors into considera-
tions, such as the disk I/O and network I/O flow that can be easily captured
via SNMP.

o Try more diverse computing environments for the power-saving method, such
as computing environments using three or more computing nodes, or a com-

bination of hardware specifications of different computing nodes.

o Through more accurate power measurement, understand the additional power

cost of operation due to the power-saving method.

e Design a more detailed method such that it can be not only operated in
a more diverse environment, but also used to achieve better power-saving

effect.

Bibliography

1]

4th IEEE International Conference on Cloud Computing Technology and Sci-
ence Proceedings, CloudCom 2012, Taipei, Taiwan, December 3-6, 2012.
IEEE, 2012.

K. Adams and O. Agesen. A comparison of software and hardware tech-
niques for x86 virtualization. In ACM SIGOPS Operating Systems Review,
volume 40, pages 2-13. ACM, 2006.

K. Alhamazani, R. Ranjan, F. A. Rabhi, L. Wang, and K. Mitra. Cloud
monitoring for optimizing the qos of hosted applications. In CloudCom [1],

pages 765-770.

J. Baliga, R. W. Ayre, K. Hinton, and R. S. Tucker. Green cloud computing:
Balancing energy in processing, storage, and transport. Proceedings of the

IEEE, 99(1):149-167, 2011.

P. Banerjee, V. Sukthankar, and V. Srinivasan. Method to fairly distribute
power saving benefits in a cloud among various customers. In Cloud Comput-
ing in Emerging Markets (CCEM), 2012 IEEE International Conference on,
pages 1-4, 2012.

P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer,
I. Pratt, and A. Warfield. Xen and the art of virtualization. In Proceedings of

the nineteenth ACM symposium on Operating systems principles, SOSP ’03,
pages 164-177, New York, NY, USA, 2003. ACM.

56

References 57

[7]

[10]

[12]

[13]

[14]

[15]

R.-S. Chang and C.-M. Wu. Green virtual networks for cloud computing. In
Communications and Networking in China (CHINACOM), 2010 5th Inter-
national ICST Conference on, pages 1-7, 2010.

D. Chen, D. Lu, M. Tian, S. He, S. Wang, J. Tian, C. Cai, and X. Li. Towards
energy-efficient parallel analysis of neural signals. Cluster Computing, 16(1):

39-53, 2013.

C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt, and
A. Warfield. Live migration of virtual machines. In Proceedings of the 2nd

conference on Symposium on Networked Systems Design € Implementation-

Volume 2, pages 273-286. USENIX Association, 2005.

A. Corradi, M. Fanelli, and L. Foschini. Increasing cloud power effi-

ciency through consolidation techniques. In Computers and Communications

(ISCC), 2011 IEEE Symposium on, pages 129-134, 2011.

Y. Dong, S. Li, A. Mallick, J. Nakajima, K. Tian, X. Xu, F. Yang, and W. Yu.
Extending xen with intel virtualization technology. Intel Technology Journal,

10(3):193-203, 2006.

P. T. Endo, G. E. Gongalves, J. Kelner, and D. Sadok. A survey on open-
source cloud computing solutions. In Brazilian Symposium on Computer

Networks and Distributed Systems, 2010.

S. Figuerola, M. Lemay, V. Reijs, M. Savoie, and B. S. Arnaud. Converged
optical network infrastructures in support of future internet and grid services
using iaas to reduce ghg emissions. J. Lightwave Technol., 27(12):1941-1946,
Jun 2009.

J. G. Hansen and E. Jul. Self-migration of operating systems. In Proceedings
of the 11th workshop on ACM SIGOPS FEuropean workshop, page 23. ACM,
2004.

K. Hasebe, T. Niwa, A. Sugiki, and K. Kato. Power-saving in large-scale

storage systems with data migration. In Cloud Computing Technology and

References 58

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Science (CloudCom), 2010 IEEE Second International Conference on, pages
266-273, 2010.

Q. Huang, F. Gao, R. Wang, and Z. Qi. Power consumption of virtual machine
live migration in clouds. In Communications and Mobile Computing (CMC),

2011 Third International Conference on, pages 122125, 2011.

S. U. Khan, L. Wang, L. T. Yang, and F. Xia. Green computing and com-
munications. The Journal of Supercomputing, 63(3):637-638, 2013.

N. Kim, J. Cho, and E. Seo. Energy-based accounting and scheduling of
virtual machines in a cloud system. In Green Computing and Communications
(GreenCom), 2011 IEEE/ACM International Conference on, pages 176-181,
2011.

N. Kim, J. Cho, and E. Seo. Energy-credit scheduler: an energy-aware virtual
machine scheduler for cloud systems. Future Generation Computer Systems,

2012.

A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori. kvm: the linux
virtual machine monitor. In Proceedings of the Linuz Symposium, volume 1,

pages 225-230, 2007.

KVM. Kernel based virtual machine, 2013. http://www.linux-kvm.org/

page/Main_Page.
libvirt.org. libvirt, 2013. http://libvirt.org/.

C.-C. Lin, P. Liu, and J.-J. Wu. Energy-efficient virtual machine provision
algorithms for cloud systems. In Utility and Cloud Computing (UCC), 2011
Fourth IEEE International Conference on, pages 81-88, 2011.

D. S. Milojici¢, F. Douglis, Y. Paindaveine, R. Wheeler, and S. Zhou. Process
migration. ACM Computing Surveys (CSUR), 32(3):241-299, 2000.

R. Moreno-Vozmediano, R. S. Montero, and I. M. Llorente. Elastic man-

agement of cluster-based services in the cloud. In Proceedings of the 1st

http://www.linux-kvm.org/page/Main_Page
http://www.linux-kvm.org/page/Main_Page
http://libvirt.org/

References 59

[26]

[27]

[30]

[31]

[32]

[33]

workshop on Automated control for datacenters and clouds, ACDC ’09, pages
19-24, New York, NY, USA, 2009. ACM.

D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff,
and D. Zagorodnov. The eucalyptus open-source cloud-computing system.
In Cluster Computing and the Grid, 2009. CCGRID’09. 9th IEEE/ACM
International Symposium on, pages 124-131. IEEE, 2009.

H. Raj and K. Schwan. High performance and scalable i/o virtualization via
self-virtualized devices. In Proceedings of the 16th international symposium

on High performance distributed computing, pages 179-188. ACM, 2007.

M. Rosenblum and T. Garfinkel. Virtual machine monitors: Current technol-

ogy and future trends. Computer, 38(5):39-47, 2005.

P. Sempolinski and D. Thain. A comparison and critique of eucalyptus, open-
nebula and nimbus. In Cloud Computing Technology and Science (Cloud-
Com), 2010 IEEE Second International Conference on, pages 417-426. leee,
2010.

B. Sotomayor, R. S. Montero, I. M. Llorente, and I. Foster. Virtual infrastruc-
ture management in private and hybrid clouds. Internet Computing, IEFE,

13(5):14-22, 2009.

S. Srikantaiah, A. Kansal, and F. Zhao. Energy aware consolidation for cloud
computing. In Proceedings of the 2008 conference on Power aware computing

and systems, volume 10. USENIX Association, 2008.

R. Uhlig, G. Neiger, D. Rodgers, A. L. Santoni, F. C. Martins, A. V. Ander-
son, S. M. Bennett, A. Kagi, F. H. Leung, and L. Smith. Intel virtualization
technology. Computer, 38(5):48-56, 2005.

G. Valentini, W. Lassonde, S. U. Khan, N. Min-Allah, S. A. Madani, J. Li,
L. Zhang, L. Wang, N. Ghani, J. Kolodziej, H. Li, A. Y. Zomaya, C.-Z. Xu,
P. Balaji, A. Vishnu, F. Pinel, J. E. Pecero, D. Kliazovich, and P. Bouvry. An

References 60

[34]

[35]

[36]

[42]

[43]

overview of energy efficiency techniques in cluster computing systems. Cluster

Computing, 16(1):3-15, 2013.

L. Wang, D. Chen, Y. Hu, Y. Ma, and J. Wang. Towards enabling cyber-
infrastructure as a service in clouds. Computers & FElectrical Engineering,

39(1):3-14, 2013.

L. Wang, D. Chen, J. Zhao, and J. Tao. Resource management of distributed
virtual machines. IJAHUC, 10(2):96-111, 2012.

L. Wang and S. U. Khan. Review of performance metrics for green data
centers: a taxonomy study. The Journal of Supercomputing, 63(3):639-656,
2013.

A. Whitaker, R. S. Cox, M. Shaw, and S. D. Gribble. Rethinking the design
of virtual machine monitors. Computer, 38(5):57-62, 2005.

wikipedia. Cloud computing, 2013. http://en.wikipedia.org/wiki/

Cloud_computing.

wikipedia. Live migration, 2013. http://en.wikipedia.org/wiki/Live_

migration.

wikipedia. Protocol data unit, 2013. https://en.wikipedia.org/wiki/

Protocol data unit.

wikipedia. Simple network management protocol, 2013. http://en.

wikipedia.org/wiki/Simple_Network Management Protocol.

wikipedia. Virtualization, 2013. http://en.wikipedia.org/wiki/

Virtualization.

P. Willmann, J. Shafer, D. Carr, A. Menon, S. Rixner, A. L. Cox, and
W. Zwaenepoel. Concurrent direct network access for virtual machine moni-
tors. In High Performance Computer Architecture, 2007. HPCA 2007. IEEE
13th International Symposium on, pages 306-317. IEEE, 2007.

http://en.wikipedia.org/wiki/Cloud_computing
http://en.wikipedia.org/wiki/Cloud_computing
http://en.wikipedia.org/wiki/Live_migration
http://en.wikipedia.org/wiki/Live_migration
https://en.wikipedia.org/wiki/Protocol_data_unit
https://en.wikipedia.org/wiki/Protocol_data_unit
http://en.wikipedia.org/wiki/Simple_Network_Management_Protocol
http://en.wikipedia.org/wiki/Simple_Network_Management_Protocol
http://en.wikipedia.org/wiki/Virtualization
http://en.wikipedia.org/wiki/Virtualization

References 61

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

M. Witkowski, A. Oleksiak, T. Piontek, and J. Weglarz. Practical power
consumption estimation for real life {HPC} applications. Future Generation
Computer Systems, 29(1):208 — 217, 2013. <ce:title>Including Special sec-
tion: AIRCC-NetCoM 2009 and Special section: Clouds and Service-Oriented

Architectures</ce:title>.

Z. Wu, C. Giles, and J. Wang. Classified power capping by network distribu-
tion trees for green computing. Cluster Computing, 16(1):17-26, 2013.

Z. Wu and J. Wang. Power control by distribution tree with classified power
capping in cloud computing. In Green Computing and Communications
(GreenCom), 2010 IEEE/ACM Int’l Conference on Int’l Conference on Cy-
ber, Physical and Social Computing (CPSCom), pages 319-324, 2010.

Z. Wu and J. Wang. Power control by distribution tree with classified power
capping in cloud computing. In Green Computing and Communications
(GreenCom), 2010 IEEE/ACM Int’l Conference on Int’l Conference on Cy-
ber, Physical and Social Computing (CPSCom), pages 319-324, 2010.

M. Yamagiwa and M. Uehara. A study on constructing an energy saving
cloud system powered by photovoltaic generation. 2012 15th International
Conference on Network-Based Information Systems, 0:844-848, 2012.

C.-T. Yang, H.-Y. Cheng, and K.-L. Huang. A dynamic resource allocation
model for virtual machine management on cloud. In T.-h. Kim, H. Adeli,
H.-s. Cho, O. Gervasi, S. Yau, B.-H. Kang, and J. Villalba, editors, Grid
and Distributed Computing, volume 261 of Communications in Computer and

Information Science, pages 581-590. Springer Berlin Heidelberg, 2011.

C.-T. Yang, C.-H. Tseng, K.-Y. Chou, and S.-C. Tsaur. A virtualized hpc
cluster computing environment on xen with web-based user interface. In High

Performance Computing and Applications, pages 503-508. Springer, 2010.

X. Zhang and Y. Dong. Optimizing xen vmm based on intel® virtualiza-
tion technology. In Internet Computing in Science and Engineering, 2008.

ICICSE’08. International Conference on, pages 367-374. IEEE, 2008.

References 62

[52] Y. Zhao and W. Huang. Adaptive distributed load balancing algorithm based
on live migration of virtual machines in cloud. In INC, IMS and IDC, 2009.
NCM’09. Fifth International Joint Conference on, pages 170-175. IEEE, 2009.

[53] H. Zhong, K. Tao, and X. Zhang. An approach to optimized resource schedul-
ing algorithm for open-source cloud systems. In ChinaGrid Conference (Chi-

naGrid), 2010 Fifth Annual, pages 124-129, 2010.

Appendix A

Inatallation and Setup

II.

I1I.

IV.

KVM and Libvirt Install

$ sudo apt-get install

$ sudo apt-get install

kvm gemu-kvm bridge-utils

libvirt-bin virtinst vtun virt-manager

SNMP Install

$ apt-get install snmp

snmpd

PHP Server Install

$ sudo apt-get install

php5 apache2 mysql-server php5-mysql

cpuburn Install

$ sudo apt-get install

cpuburn

63

Appendix B

Programming Codes

I. Status Monitor

<?php
while (date("d")!="18"){
$vm_cpu_sum=0;
$vm_domain_name_arr=array ("vmO1",..... ,"vm10");
$vm_ip_arr=array("172.24.12.221",..... ,"172.24.12.230") ;
$vm_cpu_sum_32corel=0;
$vm_cpu_max_32corel=0;
$conn = libvirt_connect("qemu+ssh://140.128.101.175/system");
$doms = libvirt_list_domains ($conn);
$vm_count_on_32corel = count ($doms);
foreach ($doms as $var) {
$a = snmpwalk($vm_ip_arr [((int) (substr($var,2)))-1], "public",
"UCD-SNMP-MIB: : ssCpuUser") ;
foreach ($a as $val) {
$vm_cpu_sum_32corel = $vm_cpu_sum_32corel+((int)
(substr($val, 9))*8);
if (((int) (substr($val, 9)))>$vm_cpu_max_32corel){
$vm_cpu_max_32corel= (int) (substr($val, 9));

$vm_cpu_max_domain_32corel = $var;

}

$vm_cpu_sum_32core2=0;

$conn = libvirt_connect("gemu+ssh://140.128.101.169/system");
$doms = libvirt_list_domains($conn);

$vm_count_on_32core2 = count ($doms);

foreach ($doms as $var) {

$a = snmpwalk($vm_ip_arr [((int) (substr($var,2)))-1]1, "public",

"UCD-SNMP-MIB::ssCpuUser");

64

References

II.

foreach ($a as $val) {
$vm_cpu_sum_32core2 = $vm_cpu_sum_32core2+((int)
(substr($val, 9))*8);
if (((int) (substr($val, 9)))>$vm_cpu_max_32core2){

$vm_cpu_max_32core2= (int) (substr($val, 9));

$vm_cpu_max_domain_32core2 = $var;
}
}
}
$vm_cpu_sum = $vm_cpu_sum_32corel + $vm_cpu_sum_32core2;
$a = snmpwalk("140.128.101.175", "public", "UCD-SNMP-MIB::ssCpuUser");
foreach ($a as $val) {
$cpu_32corel= (int) (substr($val, 9));
}
$a = snmpwalk("140.128.101.169", "public", "UCD-SNMP-MIB::ssCpuUser");
foreach ($a as $val) {
$cpu_32core2= (int) (substr($val, 9));
¥
7>

Power Consumption Recording

<?php
date_default_timezone_set ('Asia/Taipei');
while(date("d")!="settimebyuser"){
if (date("s")=="00"){
$time = date("Y.m.d/H:i:s");
$pduget32core2 = snmpget ("PDUip", "hpclab", "iso.
3.6.1.4.1.13742.4.1.2.2.1.7.3");
$pduget32corel = snmpget ("PDUip", "hpclab", "iso.
3.6.1.4.1.13742.4.1.2.2.1.7.1");

$pduget24core = snmpget ("PDUip", "hpclab", "iso.
3.6.1.4.1.13742.4.1.2.2.1.7.2");
$fp=fopen("pdurecord.txt","a+");

fputs ($£fp, $pduinput=($time." ".substr($pduget32corel, 9)."

".substr ($pduget24core, 9)."
".substr ($pduget32core2, 9)."\n"));
fclose($fp);
sleep(5);

7>

ITI. Power-saving Method

<?php
$hosts_total_cpu_power=6400-(($cpu_32corel*32)+

References

66

($cpu_32core2*32) -$vm_cpu_sum) ;
echo $hosts_total_cpu_power."
";
$hosts_total_cpu_power_32corel1=3200-(($cpu_32corel1*32)-
$vm_cpu_sum_32corel);
$hosts_total_cpu_power_32core2=3200-(($cpu_32core2*32) -
$vm_cpu_sum_32core2);
$max_host_cpu_power = max($hosts_total_cpu_power_32corel,
$hosts_total_cpu_power_32core2);
if ($vm_cpu_sum<=$max_host_cpu_power){

echo ("need only one host
");

if ($vm_count_on_32core2 > $vm_count_on_32corel){

$migrate_source_host = "140.128.101.175";
$migrate_source_host_ipmi = "140.128.101.164";
$migrate_tarage_host = "140.128.101.169";
$migrate_tarage_host_ipmi = "140.128.101.197";
}
else if($vm_count_on_32core2 < $vm_count_on_32corel){
$migrate_source_host = "140.128.101.169";
$migrate_source_host_ipmi = "140.128.101.197";
$migrate_tarage_host = "140.128.101.175";
$migrate_tarage_host_ipmi = "140.128.101.164";
}
else if ($vm_count_on_32core2 = $vm_count_on_32corel){
if ($vm_cpu_sum_on_32core2 > $vm_cpu_sum_on_32corel){
$migrate_source_host = "140.128.101.175";
$migrate_source_host_ipmi = "140.128.101.164";
$migrate_tarage_host = "140.128.101.169";
$migrate_tarage_host_ipmi = "140.128.101.197";
}
else if ($vm_cpu_sum_on_32core2 <= $vm_cpu_sum_on_32corel)q{
$migrate_source_host = "140.128.101.169";
$migrate_source_host_ipmi = "140.128.101.197";
$migrate_tarage_host = "140.128.101.175";
$migrate_tarage_host_ipmi = "140.128.101.164";
}
echo $hosts_total_cpu_power_32core2.
$hosts_total_cpu_power_32corel;
}
$conn = libvirt_connect ("qemu+ssh://".$migrate_source_host."/system");
$doms = libvirt_list_domains($conn);

foreach ($doms as $var) {

exec("ssh oneadmin@".$migrate_source_host."

virsh migrate
--live ".$var."

gemu+ssh://".$migrate_tarage_host."/system");

$conn = libvirt_connect ("qemu+ssh://".$migrate_source_host."/system");

References

67

}

7>

$doms = libvirt_list_domains($conn);
if (count ($doms)==0){
exec("ipmitool -H ".$migrate_source_host_ipmi." -U ADMIN -P

ADMIN power soft");

else if ($vm_cpu_sum>$max_host_cpu_power &&
$vm_cpu_sum<=$hosts_total_cpu_power){

if ($vm_cpu_sum_32corel>$hosts_total_cpu_power_32corel) {

if ((exec("ipmitool -H 140.128.101.197 -U ADMIN -P

ADMIN power status"))=="Chassis Power is off"){
exec("ipmitool -H 140.128.101.197 -U ADMIN -P
ADMIN power on");

}

exec("ssh oneadmin@140.128.101.175 virsh migrate --live "

.$vm_cpu_max_domain_32corel." gemu+ssh://140.128.101.169/systemn");

}
else if ($vm_cpu_sum_32core2>$hosts_total_cpu_power_32core2) {
exec("ipmitool -H 140.128.101.197 -U ADMIN -P ADMIN power on");
while ((exec("ipmitool -H 140.128.101.197 -U ADMIN -P ADMIN power
status"))=="Chassis Power is on"){
exec("ssh oneadmin@140.128.101.169 virsh migrate --live "
.$vm_cpu_max_domain_32core2." gemu+ssh://140.128.101.175/
system");
}
¥

Appendix C

User Guide

II.

I1I.

IV.

VL

. VM List with virsh

$ sudo virsh list --all

Start VM with virsh

$ sudo virsh start GuestName

Shutdoen VM with virsh

$ sudo virsh destroy GuestName

Live Migration with virsh

$ virsh migrate --live GuestName DestinationURL

Retrieve Information with SNMP

$ snmpwalk -v 2c -c public localhost system

Putting 100% of CPU Usage with cpuburn

$ burnP6

68

	摘要
	Abstract
	致謝詞
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Thesis Goal and Contributions
	1.3 Thesis Organization

	2 Background Review and Related Work
	2.1 Cloud Computing
	2.2 Virtualization
	2.2.1 Full Virtualization
	2.2.2 Para-virtualization
	2.2.3 Hardware-assisted Virtualization

	2.3 Hypervisor
	2.3.1 KVM
	2.3.2 Xen

	2.4 Virtual Machine Management
	2.4.1 Live Migration

	2.5 SNMP
	2.6 PDU
	2.7 Power-saving Related Work

	3 System Design and Implementation
	3.1 System Architecture
	3.2 Design Flow
	3.3 An Example for Power-saving Method
	3.3.1 Merging Computing Nodes
	3.3.2 Expanding Computing Nodes

	3.4 System Implementation
	3.4.1 Status Monitoring
	3.4.2 Power Consumption Recording
	3.4.3 Power-saving method

	3.5 User Interface
	3.6 Design of Equations
	3.6.1 Migration Costs
	3.6.2 Merging and Expanding Costs of Computing Nodes
	3.6.3 Net Power Saving

	4 Experimental Results
	4.1 Experimental Environment
	4.1.1 Experimental Flow

	4.2 Results and Discussion
	4.2.1 Prior Experiments
	4.2.2 Performance of Power-Saving Experiments with 10 VMs
	4.2.3 Performance of Power-Saving Experiments with 8 VMs

	5 Conclusions and Future Work
	5.1 Concluding Remarks
	5.2 Future Work

	Bibliography
	Appendix
	A Inatallation and Setup
	B Programming Codes
	C User Guide

