

&

d 3 p m %5-‘1,%%",3‘. RN PRI GRS R Excel thxH kT A
B A FTR o defRgs ¥ 0 ARAES 4 £ £ (Functional Independence
Measure) % > #-3gci® 5 f Excel {8 > ¥ 5zt 2 474048 (4o:SAS, SPSS, STATA

E)@FAIT Rdopt— K 2 7}1‘9 B3 25 scens 10 Excel G50 AL o
EHRETHREARNER) FATREP » 3 ERA 3 08 K 5 Excel #
2E L0 AT HRE ;I&grfp— BRI OTHE » Fpt @ * Hbase 3% s
EteenPll o 2 F] Hbase # - M BPEFTHE » 2§ F1 07 (TH KF - 3
ERFRRPARFREE BRI FRDB AL BARAEAE TR o A
SR EWR SQLEFRAME S M ART R TR A FLETY
Fl* fr¥ E £ 383F 5 0 % Hbase T > su g B ene £ @% > % g b1 iF

P o Agm e P E Y HBase 2 A# > 8 ¥ FE R FOE I 5 R
GAes L 2 hig * HBase » Aim v 24— B % L HBase K A
ME A HIE) REARE B IRS Go

B

Keywords: NoSQL ##L &, Hadoop, HBase, 4& & % 5

Abstract

Currently, most digital health care systems used in divisions of medical centers still
adopt the Excel file format for a variety of scales statistics, such as the clinical
self-care ability scale for Functional Independence Measure. Although people can
further analyze excel files using statistical analysis software, such as SAS, SPSS,
or STATA, they cannot effectively share the archived data in Excel file format
among different divisions. We propose to do format conversion on these data
and store them in a database. As the collection of Excel files, a non-relational
database, cannot be shared with ease, we plan to use HBase storage to: further
integrate data. The purpose of this thesis is to construct complete import tools
and solutions based on HBase with easy access of data in HBase. Also, a visual
interface is used to manage HBase to implement user friendly client connection

tools for the HBase database.

Keywords: NoSQL database, Hadoop, HBase, Key-value stores

II

3R B

F AR R S R ﬁi’ﬁ*&iﬁﬁmwﬁﬁ?%ﬂé%ﬂ
Y o e N R RE R AT S BT R < TR T N B F
TRt ARF Y R A B mEas EY R F B o X R N A

NERY h e o

£ ARBREMOE LB G (R F U FL o BHFIREFE
R 3 B A s o L R0 A ant § A # AT 1LR R YRR o 0 B
Bl 23RN 2 A2 ORI IR pETRBEN L S EA - L e
b

Az Erm kA g RAar FEA R T ADHRI KRN IF L anE R EA AN
/\

A2 ez Ay ko @ﬁ%ﬁﬁ?%jﬁéﬁﬁa\kﬁ~£§%%ﬁ%
A paes s AH I MESEE > KARFHRTEIT v hFAETAFELL
£ B :‘%‘f’ﬁ?ﬁﬂiﬁﬁ" 4o B4 e linux i@ H FEITILE Rl #HIEL > AL B PIRE
ZREZ OB PRRLBACRL > 3 PRES ¥V PRANGR - BHGF
i%’—t%%ﬁﬂﬁW%*ui FRRETRE PRI RIET R T DN
FaARdE T 2 S TR TN Fo B R R F T A
—ACE MRS E P B FUHEP A - REBEINEY 0 R
ﬁ%ﬁﬁ%ﬁﬁééﬁ%é’éﬁ MR Ay RRHE ST RUE FARE

=

T G PR T TRl SR o TR L5 {5t BB

i ﬂau;)5 g!\ttgz,;,@# { ’«k—_/‘r' m%f]’pé s i3 AE u,mgj«fljﬁq;{ '?{fwﬁi’ °

I1I

FEDOP IR FHTLE RS ERE o B hiddh s T A R R
kb gh ik & AP EL P RFERG Y AR ROL SR R
LN AR - QN g 4R . ; "

- 7 e LR R LSRR

IV

Table of Contents

EE
Abstract
Acknowledgements
Table of Contents
List of Figures
List of Tables

1 Introduction

1.1 R MotiaFition T, . —e— U g
1.2 Woltlibyfitns W il . =
.3 THesid®ONglinizatioT—— . % R .

2 Background Review and Related Work

2.1 BRicdata ™ ¥. . K E AN R W
22 TEEET, . . . TNy, o BT i
2.3 HDFSS b ame o o
2.3.1 FEEaechiVeCUIIE] - . ™t
24 HBase VS -
24.1 HBase Region
2.4.2 Catalog tables
2.4.3 DataModel o000
2431 RowKey

2.4.3.2 Column Families

2.4.3.3 Timestamps

2.4.3.4 Family Attributes

2.4.4 Real Life Example
2.5 Zookeeper
2.6 Cloudera CDH
2.7 Related Work

3 System Design and Implementation

v

11

II1

TABLE OF CONTENTS VI
3.1 System Architecture L 22
3.2 System Setup 27

3.2.1 HBase Testbed 27
3.2.2 CDH installation. 27

4 Experimental Results 32
4.1 Experimental Environment0 0000 32
4.2 = Experimental Results and Discussion 35

4.2.1 Optimization of HBase properties 37
4.2.2° Optimization of memory usage« 43
4 F 3 DigtrsaGn ol . o R R R - B - 46

5 Conclusions and Future work 48

Bibliography 49

Appendix 53

A CentOS System Settings 53

B Cloudera Manager installation 55

C Pseudo Code 56

List of Figures

2.1 A.T. Kearney IT analysis the evolution of big data
¥.2 'THE SRS aTalTit cchuil— . o S NN & . .
2.3 [The roles‘in anidHBase cluster . . . 70 o UL L
2.4 = The heirarchy of objects in HBase
2.5 Lexicographical order

3 StructufSe! tEesssietdited | Bl 1 Cod S, TR . . .
A2 HBagse Bl t R i, . B
3.3 Hadoop software relation
3.4 Flowchart of data write to HBase
3.5 Sequence diagrams of data write to HBase
3.6 /etc/hosts file mapping hostname to IP address
3. M ISl C]0Er NISTEIOEPem s . M . .
3.8 © Cloudera Manager install CDH cluster
3.9 Cloudera Manager host monitor pag
8.10 Service statusgin CDH cluster a0 T . 4. . .
BL] HBaSgMgdledsta#us g sa- a3 % LW % JF - - .
3.12 RegionServer attributes and status

4.1 The data structure of experimental data in HBase
4.2 Results of scan the PatientsInfo table
4.3 The region detail on RegionServer
4.4 Write requests on configuration A
4.5 Write requests per sec on configuration A
4.6 Memory usage on configuration A
4.7 Flush average size and operations rate on configuration A
4.8 Write requests on configuration &o
4.9 Write requests per sec on configuration E.
4.10 Memory usage on configuration £
4.11 Flush average Size and operations rate on configuration E
4.12 Total: Puts without WAL on configuration £
4.13 Memory heap and Memstore size E
4.14 Memory usage with increased maximum size
4.15 Memory heap and Memstore size with increased upperLimit
4.16 Put time optimization

VII

VIII

Chapter 1

Introduction

1.1 Motivation

In today’s national health care system, whether it is up to the competent authority
or next to each health care system is potentially a serious problem. it Is dispersed
and independent of the medical information system, medical care information sys-
tem development is highly fragmented, cannot be integrated and interconnected,
due to different needs of different ethnic groups, medical care information system
is highly fragmented, cannot be easily integrated and interconnected. Moreover,
since systems are built at different times, there may be no suitable connection
among systems. The causes of this situation include: 1. information used by the
personnel, 2. preference of data entry personnel, 3. services on different objects, 4.
system build time, 5. change of health regulations, 6. different supporting plans
or sources, and 7. varying definition of database field names in different database

systems.

Database of medical care does not allow slightest error and makes a mistake.
Integration and shutdown of the medical system, under the premise of ensuring the
quality of medical care, do not have any change to maintain normal maintenance
and operation of the health care system, , is now each medical institution overall

conservative approach. Due to database don’t have integration lead to patients

1

Chapter 1 Introduction 2

re-doing the same checks because of different illness or physical condition. This
is not only caused the patient weighed down missed a golden time for treatment,

but also caused serious waste of medical resources.

1.2 Contributions

The current health care system within the medical divisions still uses Excel file
formats to store a range of scales statistics ,such as commonly used in clinical
self-care Ability Scale (Functional Independence Measure). Values stored in Excel
can be analyzed via statistical analysis software, such as SAS, SPSS, STATA, but
cannot be efficiently shared between divisions. To integrate data, we proposed
to converse the format of the Excel data and store them in a database based on

HBase.

HBase is a non-relational database with structure similar to Excel, but with
higher implementation feasibility. Considering of the data usage characteristic that
needs fast, accurate, and efficient query of the required information for people in
various areas, we provide a visual graphical interface, instead of query languages,
to speed up data query in the HBase database. As a result, people are able
to make full use of data in HBase and improve efficiency of statistical work. As
opposed to the traditional commercial relational database, HBase is scalable, high-
performance, low-cost, and with other advantages, but it does not have a complete
and friendly user environment. Therefore, in addition to data conversion in HBase
storage, it is important to provide appropriate technical support, friendly HBase

user interface, and approachable operation syntax, etc.

The purpose of this thesis is based on HBase to construct complete import
tools and solutions in its surrounding. First, we analyzed the characteristics of
the source data for conversion into to HBase. Then we recognized patterns of data
usage, and constructed HBase Data Model based on user behaviors. To make it
easier to access HBase, we also implemented a visual interface to manage HBase

as a user friendly database.

Chapter 1 Introduction 3

1.3 Thesis Organization

Chapter 2

Background Review and Related
Work

2.1 Bigdata

The Big Data has already become one hot issue; it is mostly encountered in re-
search fields with challenges of analyzing and forecasting huge amount of informa-
tion, such as in weather forecasting, genetic analysis, biological research, financial
or commercial information. To model and predict complex phenomena, we often
use high-speed computers combined with distributed or parallel computing tech-
niques to deal with huge amount of data[33]. Moreover, in recent years, more and
more enterprises face with challenges of data explosion with unexpectedly rapid
growth rates of the amount of data in storage systems [14]. And many companies
worry that they soon will encounter the same situation. It is difficult to process
big data in most relational database management systems, because it needs to run

massive parallel software concurrently on hundreds or thousands of servers.

Big data promises to be transformative. As computing resources have evolved
and advanced to be able to handle data of bigger sizes and complexity, companies
start to reap many benefits from big data analysis, as shown in Figure 2.1. Little

wonder that big data is a hot topic in corporate boardrooms and IT departments,

4

Chapter 2 Background Review and Related Work 5

with many leading firms doing more than talking. According to a recent A.T. Kear-
ney IT innovation study, more than 45 percent of companies have implemented a

business-intelligence or big data initiative in the past two years [1].

Focus Data generation Data Data driven
A areas). and storage utilization
e Structured data
Very complex, Unstructured data
E- unstructured Multimedia
3
n ____________________
£
] € Relational databases
T Complex Data-intensive
@ | relational applications
k|
oy -- - - - - V- _-_-___
3
g o Mainframes
Primitive Basic data storage Exponential growth
and structured in data volume

Pre-relational Relational Relational+
(1970s and before) (1980s and 1990s) (2000s and beyond)

v

Computing timeline

Source: AT. Kearney analysis

FiGure 2.1: A.T. Kearney IT analysis the evolution of big data

Common massive amount of data include interactive data information such as
images, audios, videos, Internet search indexes, astronomical data, genetic infor-
mation, medical records, and the website Log records transmitted through sensor
networks, social networking, and wireless networks. These raw data present the
proliferation of big data [23]. They are mostly non-structured or semi-structured
data, not easy to be processed by using the traditional practice in relational
database. Through fixed data field architecture, the data can be stored to a
relational database for further processing. In addition to the challenges of huge
amount of data, the information coming from various structures tends to compli-

cate the situation.

The big data is a large and complex issue. We face with numerous challenges

to find useful information from analyzing big data, and use it to reduce enterprise

Chapter 2 Background Review and Related Work 6

risks, promote revenues, and improve competitiveness. These challenges include

how to obtain, store, search, share, analyze, and visually present the big data.

2.2 NoSQL

Big data also stands for a new and hot issue in cloud computing. Traditionally,
structural data are normalized in advanced, stored in databases, and then can
be manipulated as the principal resource and headstone to support the enterprise
IT systems. On the other hand, the rest of data, which are un-structural/semi-
structural and generally in a massive quantity comparing with the structural ones,
are hard to be processed and are casted aside or trashed on the corner. However,
as new technologies in cloud computing like Hadoop and NoSQL emerging, these
“trashes” | in a big quantity so are called as the “big data” , are now considered
as the most valuable resources while the enterprise taking strides into the new
market. Thus, issues like gathering, storing, modeling, analyzing, and manipulat-
ing big data become hot for cloud computing researches and applications. For big
data, what come to mind first are no longer the past system of hegemony of the
database market Oracle, or the software giant Microsoft, but instead, the Apache

Foundation’s open source Hadoop parallel computing and storage architecture,

and the HBase NoSQL distributed database[19].

The Hadoop, a parallel computing platform developed by the Apache Software
Foundation, is an open source compiler tool and distributed file system. NoSQL
database, also called Not Only SQL, is an approach for data management and
database design that is useful for very large sets of distributed data. NoSQL,
which encompasses a wide range of technologies and architectures, seeks to address
the scalability and big data performance issues that relational databases were not
designed to solve. NoSQL is especially useful when an enterprise needs to access
and analyze massive amounts of unstructured data or data stored remotely on
multiple virtual servers in the cloud computing [29]. NoSQL is a general term

meaning that the database is not an RDBMS which supports SQL as its primary

Chapter 2 Background Review and Related Work 7

access language. There are many types of NoSQL databases: BerkeleyDB is an
example of a local NoSQL database, whereas HBase is very much a distributed
database.HBase, written in Java, is an open source, non-relational, and distributed
database modeled after Google’s BigTable [27]. Tt is developed as part of Apache
Software Foundation’s Apache Hadoop project and runs on top of the Hadoop
Distributed File system (HDFS), providing BigTable-like capabilities for Hadoop.

That is, it provides a fault-tolerant way of storing large quantities of sparse data.

2.3 HDFS

HDES is an Apache Software Foundation project and a subproject of the Apache
Hadoop project. The Hadoop Distributed File System, is a distributed file system
designed to hold very large amounts of data (terabytes or even petabytes), and
provide high-throughput access to this information. Files are stored in a redundant
fashion across multiple machines to ensure their durability to failure and high
availability to very parallel applications [31]. HDFS has many similarities with
other distributed file systems, but is different in several respects. One noticeable
difference is HDFS’s write-once-read-many model that relaxes concurrency control
requirements, simplifies data coherency, and enables high-throughput access [30].
Another unique attribute of HDFS is the viewpoint that it is usually better to
locate processing logic near the data rather than moving the data to the application
space. HDFS rigorously restricts data writing to one writer at a time. Bytes are
always appended to the end of a stream, and byte streams are guaranteed to be

stored in the order written.

2.3.1 HDFS architecture

HDFS is comprised of interconnected clusters of nodes where files and directories
reside. An HDFS cluster consists of a single node, known as a NameNode, which

manages the file system namespace and regulates client access to files. In addition,

Chapter 2 Background Review and Related Work 8

data nodes (DataNodes) store data as blocks within files. Within HDFS, a given
name node manages file system namespace operations like opening, closing, and
renaming files and directories. A name node also maps data blocks to data nodes,
which handle read and write requests from HDFS clients. Data nodes also create,
delete, and replicate data blocks according to instructions from the governing name

node. The Figure 2.2 shows the architecture of HDF'S.

HDFS Cluster 1 HDFS Cluster 2

Server 1 Server 4

DataNode q DataNode

FI1GURE 2.2: The HDFS architecture

2.4 HBase

HBase is a column-oriented database management system that runs on top of
HDFS. It is well suited for sparse data sets, which are common in many big data.

Unlike relational database systems, HBase does not support a structured query

Chapter 2 Background Review and Related Work 9

language like SQL; in fact, HBase is not a relational data store at all. HBase
applications are written in Java much like a typical MapReduce application, and

HBase also supports writing applications in Avro, REST, and Thrift [3, 9].

An HBase system comprises a set of tables. Each table contains rows and
columns, much like a traditional database. Each table must have an element de-
fined as a Primary Key, and all access attempts to HBase tables must use this
Primary Key. An HBase column represents an attribute of an object; for example,
if the table is used to store diagnostic logs from servers, where each row might be
a log record, a typical column in such a table would be the timestamp of when the
log record was written, or perhaps the server name where the record originated.
In fact, HBase allows for many attributes to be grouped together into so called
column families, such that the elements of a column family are all stored together.
This is different from a row-oriented relational database, where all the columns of
a given row are stored together. With HBase you must predefine the table schema
and specify the column families. However, it is very flexible in that new columns
can be added to families at any time, making the schema flexible and therefore able
to adapt to changing application requirements. Just as HDFS has a NameNode
and slave nodes, and MapReduce has JobTracker and TaskTracker slaves, HBase
is built on similar concepts. In HBase a master node HMaster manages the clus-
ter, and region servers store portions of the tables and perform the work on the
data. HMaster is the implementation-of the Master Server. The Master server
is responsible for monitoring all RegionServer instances in the cluster, and is the
interface for all metadata changes. In a distributed cluster, the Master typically
executes on the NameNode, and HRegionServer is the RegionServer implementa-
tion. It is responsible for serving and managing regions. In a distributed cluster,
a RegionServer runs on a DataNode. Through the Zookeeper other machines are
selected within the cluster as HMaster in HBase, unlike the HDFS architecture

NameNode with single point of availability problems.

Chapter 2 Background Review and Related Work 10

Zookeeper]

¢

HMaster

HRegionServer3

FIGURE 2.3: The roles in an HBase cluster

Figure 2.3 shows the roles in an HBase cluster. HBase is built on top of
Apache Hadoop and Apache ZooKeeper. Like the rest of the Hadoop ecosys-
tem components, it is written in Java. HBase can run in three different modes:
standalone, pseudo-distributed, and full-distributed. However, HBase has many
features which support both linear and modular scaling. HBase clusters can be
expanded by adding RegionServers hosted on commodity class servers. For ex-
ample, when a cluster expands from 10 to 20 RegionServers, it doubles both in
terms of storage as well as processing capacity. RDBMS can scale well, but only
up to a point - specifically, the size of a single database server - and for the best
performance requires specialized hardware and storage devices. HBase features of

note are:

« Strongly consistent reads/writes: HBase is not an “eventually consistent”

DataStore. This makes it very suitable for tasks such as high-speed counter

Chapter 2 Background Review and Related Work 11

aggregation.

o Automatic sharding: HBase tables are distributed on the cluster via regions,

and regions are automatically split and re-distributed as your data grows.
o Automatic RegionServer failover.

« Hadoop/HDFS Integration: HBase supports HDES out of the box as its
distributed file system.

o MapReduce: HBase supports massively parallelized processing via MapRe-

duce for using HBase as both source and sink [28].

o Java Client API: HBase supports an easy to use Java API for programmatic

aCCess.

o Thrift/REST API: HBase also supports Thrift and REST for non-Java front-

ends.

» Block Cache and Bloom Filters: HBase supports a Block Cache and Bloom

Filters for high volume query optimization.

o Operational Management: HBase provides build-in web-pages for opera-

tional insight as well as JMX metrics.

2.4.1 HBase Region

Regions are the basic element of availability and distribution for tables, and are
comprised of a Store per Column Family.Follow Figure shows the heirarchy of

objects in HBase.

Chapter 2 Background Review and Related Work 12

Table (HBase table)

Region (Regions for the table)

Store (Store per ColumnFamily for each
Region for the table)

MemStore (MemStore for each Store for each
Region for the table)

StoreFile (StoreFiles for each Store for each
Region for the table)

Block (Blocks within a StoreFile within a Store
for each Region for the table)

FIGURE 2.4: The heirarchy of objects in HBase

2.4.2 Catalog tables

In HBase, The catalog tables -ROOT- and -META. exist as HBase tables. They
are filtered out of the HBase shell’s list command, but they are in fact tables just
like any other. The following Table shows the Metrics of catalog tables -ROOT-
and .META.

Chapter 2 Background Review and Related Work 13

TABLE 2.1: The Metrics of catalog tables -ROOT- and .META.

Region Name Metrics

-ROOT-,,0.70236052 numberOfStores=1, numberOfStorefiles=1, store-
fileUncompressedSizeMB=0, storefileSizeMB=0,
memstoreSizeMB=0, storefileIndexSizeMB=0, read-
RequestsCount=538, writeRequestsCount=1, rootln-
dexSizeKB=0, totalStaticlndexSizeKB=0, totalStat-
icBloomSizeKB=0, totalCompactingKVs=6, cur-
rentCompactedKVs=6, compactionProgressPct=1.0,

coprocessors=|]

.META.,1.1028785192 numberOfStores=1, numberOfStorefiles=0, store-
fileUncompressedSizeMB=0, storefileSizeMB=0,
memstoreSizeMB=0, storefilelndexSizeMB=0, read-
RequestsCount=8711, writeRequestsCount=70, rootIn-
dexSizeKB=0, totalStaticIndexSizeKB=0, totalStat-
icBloomSizeKB=0, totalCompactingKVs=0, = current-
CompactedKVs=0, compactionProgressPct=NaN,

coprocessors=|]

Region names consist. of the containing table’s name, a comma, the start key,
a comma, and a randomly generated region id. The -ROOT- and .META. tables
are internal system tables (or 'catalog’ tables). The -ROOT- keeps a list of all
regions in the .META. table. The .META. table keeps a list of all regions in the
system. The empty key is used to denote the table start and table end. A region
with an empty start key is the first region in a table. If region has both an empty
start and end keys, it is the only region in the table.

Chapter 2 Background Review and Related Work 14

2.4.3 DataModel

The Bigtable data model and therefor the HBase data model too since it’s a clone,
is particularly well adapted to data-intensive systems. Getting high scalability
from your relational database isn’t done by simply adding more machines because
its data model is based on a single-machine architecture [5]. For example, a JOIN
between two tables is done in memory and does not take into account the possibil-
ity that the data has to go over the wire. Companies who did propose relational
distributed databases had a lot of redesign to do and this why they have high
licensing costs. The other option is to use replication and when the slaves are
overloaded with writes, the last option is to begin sharding the tables in sub-
databases. At that point, data normalization is a thing you only remember seeing
in class which is why going with the data model presented in this thesis shouldn’t

bother you at all.

To put it simply, HBase can be reduced to a Map<byte|[}, Map<byte[], Map<byte|[],
Map<Long, byte[]»». The first Map maps row keys to their column families. The
second maps column families to their column keys.: The third one maps column
keys to their timestamps. Finally, the last one maps the timestamps to a single
value. The keys are typically strings, the timestamp is a long and the value is
an uninterpreted array of bytes. The column key is always preceded by its family
and is represented like this: family:key. Since a family maps to another map, this
means that a single column family can contain a theoretical infinity of column

keys. So, to retrieve a single value, the user has to do a get using three keys:

(Table, Rowkey, Column key, Timestamp)-> Value

2.4.3.1 RowKey

The row key is treated by HBase as an array of bytes but it must have a string
representation. A special property of the row key Map is that it keeps them in a
lexicographical order. For example, numbers going from 1 to 100 will be ordered

like the following Figure 2.5:

Chapter 2 Background Review and Related Work 15

Lexicographical
order

@
Do)
)009)
00

(é) (1 \\2
20)
D)
2)2)

FIGURE 2.5: Lexicographical order

To keep the integers natural ordering, the row keys have to be left-padded
with zeros. To take advantage of this, the functionalities of the row key Map
are augmented by offering a scanner which takes a start row key (if not specified,
the first one in the table) and an stop row key (if not specified, the last one in
the table). For example, if the row keys are dates in the format YYYYMMDD,
getting the month of July 2008 is a matter of opening a scanner from 20080700
to 20080800. It does not matter if the specified row keys are existing or not, the
only thing to keep in mind is that the stop row key will not be returned which is

why the first of August is given to the scanner [?, 4].

2.4.3.2 Column Families

A column family regroups data of a same nature in HBase and has no con-
straint on the type [25]. The families are part of the table schema and stay the
same for each row; what differs from rows to rows is that the column keys can
be very sparse. For example, row ”20080702” may have in its "Name:” family the

following column keys:

Chapter 2 Background Review and Related Work 16

Name : Chinese

Name : Eng
Name : Other

While row 720080703 only has:

Name : Other

Developers have to be very careful when using column keys since a key with
a length of zero is permitted which means that in the previous example data can

be inserted in column key "Name :”.

We strongly suggest using empty column
keys only when no other keys will be specified. Also, since the data in a family
has the same nature, many attributes can be specified regarding performance and

timestamps.

2.4.3.3 Timestamps

The values in HBase may have multiple versions kept according to the family
configuration. By default, HBase sets the timestamp to each new value to current
time in milliseconds and returns the latest version when a cell is retrieved. The
developer can also provide its own timestamps when inserting data as he can

specify a certain timestamp when fetching it.

2.4.3.4 Family Attributes

The following attributes can be specified or each families:

» Compression

— Record: means that each exact values found at a rowkey-+columnkey

~+timestamp will be compressed independently.

Chapter 2 Background Review and Related Work 17

— Block: means that blocks in HDFS are compressed. A block may con-
tain multiple records if they are shorter than one HDFS block or may

only contain part of a record if the record is longer than a HDF'S block.
o Timestamps

— Max number: the maximum number of different versions a value has.

— Time to live: versions older than specified time will be garbage col-

lected.
+ Block Cache

— Caches blocks fetched from HDFS in a LRU-style queue. Improves
random read performances and is a nice feature while waiting for full

in-memory storage.

2.4.4 Real Life Example

A good example on how to demonstrate the HBase data model is a blog because

of its simple features and domain. Suppose the following mini-SRS:

» The blog entries, which consist of a title, an under title, a date, an author, a
type (or tag), a text, and.comments, can be created and updated by logged

in users.

o The users, which consist of a username, a password, and a name, can log in

and log out.

e The comments, which consist of a title, an author, and text, can be written

anonymously by visitors as long as their identity is verified by a captcha.

2.5 Zookeeper

Apache ZooKeeper is a software project of the Apache Software Foundation,

ZooKeeper was a sub project of Hadoop but is now a top-level project in its

Chapter 2 Background Review and Related Work 18

own right. ZooKeeper’s architecture supports high-availability through redundant
services. The clients can thus ask another ZooKeeper master if the first fails to
answer. ZooKeeper nodes store their data in a hierarchical name space, much like
a file system or a trie datastructure. Clients can read and write from/to the nodes
and in this way have a shared configuration service. Updates are totally ordered.
ZooKeeper is a distributed, open-source coordination service for distributed ap-
plications. It exposes a simple set of primitives that distributed applications can
build upon to implement higher level services for synchronization, configuration
maintenance, and groups and naming. It is designed to be easy to program to,
and uses a data model styled after the familiar directory tree structure of file
systems. It runs in Java and has bindings for both Java and C.Coordination ser-
vices are notoriously hard to get right. They are especially prone to errors such
as race conditions and deadlock. The motivation behind ZooKeeper is to relieve
distributed applications the responsibility of implementing coordination services
from scratech. Through the zookeeper selected other machines within the cluster
as HMaster in HBase, does not like the HDFES architecture NameNode have single

point of availability problems.

2.6 Cloudera CDH

CDH (Cloudera’s Distribution, including Apache Hadoop) is Cloudera’s 100%
open-source Hadoop distribution, and the world’s leading Apache Hadoop solu-
tion. More enterprises have downloaded CDH than all other distributions com-
bined. Furthermore, CDH is backed by Cloudera’s global support organization
and its unparalleled team of developers and committers who contribute more to
the Apache Hadoop ecosystem than any other company. This combination means
that by using Cloudera, the developer can be sure of successfully deploying Hadoop
project, and deployed it faster [2]. CDH delivers the core elements of Hadoop —
scalable storage and distributed computing — as well as all of the necessary enter-
prise capabilities such as security, high availability and integration with a broad

range of hardware and software solutions. All the integration work is done for the

Chapter 2 Background Review and Related Work 19

developer, and the entire solution is thoroughly tested and fully documented. By
taking the guesswork out of building out the Hadoop deployment, CDH gives the

developer a streamlined path to success in solving real business problems.

2.7 Related Work

Big Data is more talked about than felt in our everyday lives; there will have
big changes in industrial and business processes when we have pervasive real-time

analytics of sensor data.

The ubiquity of location enabled devices has resulted in a wide proliferation
of location based applications and services. To handle the growing scale, database
management systems driving such location based services (LBS) must cope with
high insert rates for location updates of millions of devices, while supporting effi-
cient real-time analysis on latest location. Shoji Nishimura present the design and
implementation of MD -HBase [18], a scalable data management infrastructure
for LBSs that bridges this gap between scale and functionality. Their approach
leverages a multi-dimensional index structure layered over a key-value store. The
underlying key-value store allows the system to sustain high insert throughput and
large data volumes, while ensuring fault-tolerance, and high availability. Shoji
Nishimura present the design of MD -HBase that demonstrates how two standard
index structures—the K-d tree and the Quad tree—can be layered over a range par-
titioned key-value store to provide scalable multi-dimensional data infrastructure.
their prototype implementation using HBase, a standard open-source key-value
store, can handle hundreds of thousands of inserts per second using a modest
16 node cluster, while efficiently processing multi-dimensional range queries and
nearest neighbor queries in real-time with response times as low as few hundreds

of milliseconds.

As the development of telecommunication technology and mobile device tech-
nology, geo-location data happened everywhere and every time from humans’ real

life. Because all of the smart device’ s applications are include spatial components

Chapter 2 Background Review and Related Work 20

now. When the traditional relational database cannot support the continuously
flooded data, researchers developed key-value based NoSQL database system to
meet this problem. But spatial data processes are rarely considered until now.
In this case client user must have their own spatial data processing component to
process the spatial data from NoSQL database. In this thesis, Yan Li and his team
proposed a spatial index based on document based NoSQL which can distribute
the spatial data by using the geo-hash method and can satisfy the high insert rate
by using the b-tree based index method. At last their developed our method on
OrientDB which is document based NoSQL[16].

To find a scalable solution to process the large-scale data is a critical issue in
either the relational database system or the emerging NoSQL database. With the
inherent scalability and fault tolerance, MapReduce is attractive to process the
massive data-in parallel. Most of previous works focus on the Hadoop distributed
file system to support the SQL or SQL-like queries. Wu-Chun Chung with his
team propose the JackHare framework with SQL query compiler, JDBC and a
systematical method using MapReduce for processing the unstructured data in
NoSQL database. While importing the JDBC driver to a SQL client GUI, Wu-
Chun Chung et al. provide the corresponding queries to manipulate the data
residing in the NoSQL database. To organize the data with less complexity, Wu-
Chun Chung with his team further introduce a remapping strategy to translate the
data model from relational database to NoSQL database. Experimental results
show that their approaches can perform Wu-Chun Chung with his teamll with

efficiency and scalability.

Paolo Atzeni et al. propose a common programming interface to NoSQL sys-
tems called SOS (Save Our Systems)[7]. Its goal is to support application devel-
opment by hiding the specific details of the various systems to solve the problem
heterogeneity of the languages and of the interfaces they offer to developers and
users. They provided a common data model that allows the creation and querying
of NoSQL databases defined in MongoDB, HBase and Redis using a common set
of simple atomic operation. It is based on a metamodelling approach, in the sense

that the specific interfaces of the individual systems are mapped to a common one.

Chapter 2 Background Review and Related Work 21

The tool provides interoperability as well, since a single application can interact

with several systems at the same time.

Combined the features of data flow management systems and the advantages
of Hadoop cloud computing platforms, Zhi QIU et al. design and implement
a Hadoop-based platform for distributed data flow management systems, using
MapReduce to process the user request, using Hadoop distributed file system
(HDFS) to manage the data flow files, and using Hadoop database (HBase) to
manage the data flow information[21]. The data flow management system based
on Hadoop is improved in efficiency, compared with the traditional system. It also
carries on the advantages of Hadoop cloud computing platform, such as reliability
and high expandability. Especially when the overall workload is big, this system
could expand conveniently, and the administrator could improve the dealing ability

of the system through adding more nodes.

Chapter 3

System Design and

Implementation

3.1 System Architecture

The main goal is to build an HBase cluster system to store the data which have
converted from Excel document file. The sub-system focuses on HBase database
services to offer a put/get database service. The second is to offer sample GUI
interface to access HBase for general use. In this chapter, we will overview the

whole system.

22

Chapter 3 System Design and Implementation 23

Excel file
Parser

FIGURE 3.1: Structure of the system

The main system shown in Figure 3.1 depicts the structure of the system.
The system has ZooKeeper cluster, which provides a coordination service for the
entire HBase cluster, and handling master selection, node registration. The Excel
file parser can pares text in Excel; it can read data from Excel document file
worksheets and convent to string, and put strings into HBase through the Hbase
client. The Hbase client provides APIs to access the HBase cluster, and the client
communicates with the HBase master to lookup which region server should access
to. The Region lookups can find which region server holds a specific row key range
by two system tables: ROOT- table and .META. table supported. The -ROOT-
table is used to refer to regions in the .META.table, while the .META.table holds

references to all user regions.

Chapter 3 System Design and Implementation 24

There are several components in the system:

o FExcel file Parser: To Read data from Excel document file and convent them

to string.

« HBase Master: Its job includes load balancing, region allocation, failover,

and log splitting.

» HBase Client: To communicate with the Zookeeper to lookup which region

server should access and put/get/scan to HBase.

« Region server: To hold the actual regions and handle I/0 requests, flush the

in-memory data store to HDEF'S, and split or compact regions.
« HDFS: To place data files fromHBase stores and write ahead logs (WAL).
The system of this thesis uses cloudera CDH to build HBase cluster system.

HBase cluster plays the role of the database to store medical care information,

Figure 3.2 shows two CDH clusters.

>

Cluster 1

N
L
e

]

|

server2 serverd

Serverl Server3

FiGURE 3.2: HBase clusters

Chapter 3 System Design and Implementation 25

CDH cluster combined Hadoop distributions. Hadoop software library is a
framework that allows for the distributed processing of large data sets across clus-
ters of computers using simple programming models. It is designed to scale up
from single servers to thousands of machines, each offering local computation and
storage. Rather than rely on hardware to deliver high-availability, the library itself
is designed to detect and handle failures at the application layer, so delivering a
highly-available service on top of a ecluster of computers, each of which may be

prone to failures.

Hadoop included hadoop distributed file system (HDFS) and MapReduce. The
MapReduce is a programming model for processing large data sets with a parallel.
We also implement Zookeeper for maintaining configuration information, naming,
providing distributed synchronization, and providing group services on hadoop, as

the figure shows the relation of hadoop software.

Zookeeper

Hadoop Platform

F1GURE 3.3: Hadoop software relation

The main components include:

o Hadoop. Java software framework to support data-intensive distributed ap-
plications.

o ZooKeeper. A highly reliable distributed coordination system.

o MapReduce. A flexible parallel data processing framework for large data

sets.

Chapter 3 System Design and Implementation 26

« HDFS. Hadoop Distributed File System.

o HBase. Key-value database.

The flowchart in Figure 3.4 describes operations of the data written into hbase.

Start .
A 4
Get excel
. content I
Design table
schema Flush
Write to Memstore to
. buffer disk
Open excel l i
Document
Put datato Compression
Regionserver
Connect)
zookeeper i HFile created
l i for each CF
In Memstore V\:_nte@:iad
Create table ! og|)

FIGURE 3.4: Flowchart of data write to HBase

The sequence diagrams in Figure 3.5 describes how the main components of

the system interact to fulfill the goal of writing data to HBase.

Chapter 3 System Design and Implementation 27

Client Region Server Memstroe Disk

[I I I

I I I I

I I I I

| Put/Delete | I |
i | I

ertelto WAL I

[
«———————— b

Time

Flush to disk
p

FIGURE 3.5: Sequence diagrams of data write to HBase

3.2 System Setup

3.2.1 HBase Testbed

This section shows our real HBase Testbed. We have three computers and one
Gigabit switch. All computers have installed CentOS 6.3 x86 64 version, and
already changed firewall to stop status and SELinux to disabled status. It is de-
veloped to support Cloudera’s distribution including Apache Hadoop. Computer

master and 1, 2 act as hosts of the HBase cluster.

3.2.2 CDH installation

First, we should configure /etc/hosts file to know the mapping of some hostnames
to IP addresses, then we install OpenSSH: a SSH connectivity tools, since the CDH

needs to transfer files between hosts on a network by using the scp command.

Chapter 3 System Design and Implementation 28

172.24.12.69 cdh3 regionserverl

172.24.12.66 cdh2 regionserver?2
172.24.12.65 cdhl HMaster

FIGURE 3.6: /etc/hosts file mapping hostname to IP address

After we setting IP and SSH service to the computers, we can download the
package of CDH to install the Cloudera Manager as shown in Figure 3.7, to control
over every part of CDH.

Cloudera Manager README .
The Cloudera Manager Installer enables you to install Cloudera Manager and
bootstrap an entire CDH cluster, requiring only that you have 35H access to
your cluster’s machines, and that those machines have Internet access.

The Cloudera Manager Installer will automatically:

= Detect the operating system on the Cloudera Manager host

= Install the package repository for Cloudera Manager and the Java Runtime
Environment (JRE)

* Install the JRE if it’s not already installed

* Install and configure an embedded PostgreS{L database

% Install and run the Cloudera Manager Server

Once server installation is complete, you can browse to Cloudera Manager’s
web interface and use the cluster installation wizard to set up your CDH
cluster.

Cloudera Manager supports the following 64-bit operating systems:

¢ cancel >

(62%)

FicUrke 3.7: Install Cloudera Manager

After finishing installing Cloudera Manager Server, we can log into the Cloud-
era Manager web console on default port 7180. The URL will be like this:
http(s)://<Server host>:<port>; then start installing the CDH cluster, shown

in Figure 3.8.

Chapter 3 System Design and Implementation 29

Cluster Installation

I llation completed st fully

3 of 3 host(s) completed successhully

Hostname P Address Progress Status

CARGAnT 172.24.1285 _ o Installation complated suctesshally, Details &
cdhi 172241266 _ ' Installation completed suctesshully, Datails &
cdh2 17224 1288 — o Instaliation completed successhlly. Datails &

Cluster Installation

Installing Selected Parcels

The selecied parcels are being downloaded and Installed on all the hests In the cluster,
COH 4.2.0-1.cdhd4.2.0.p0.10 &

IMPALA 0.7-1,00.308 £

F1cURE 3.8: Cloudera Manager install CDH cluster

The Cloudera Manager web page also provides user to view and modify config-
uration of Hadoop services. Go to the monitor tab and click status option. Figure
7?7 shows hosts physical attributes status like memory, disk, CPU, and all service

status in the cluster, as shown as Figure 3.10.

#Sttus @ Configuration W Templates 2 Parcels

2Host(s) Under Management. / 1Goos € 183

[Actions for Selected ~ || Add New Hosts to Cluster | HostInspector | Re-run Host Upgrade Wizard || View Columns ~
‘Showing 110 2 of 2 enfries 1 Display 25 E Entries
[Name . P Rack COH Version Roles Health Last Heartbeat Decommissioned
.m" o - o - e - - E- - E- - 2 _ - E- - 2 .
0 w2 172241286 Jaetaut None Qo 02ns0
[e 172241259 Isetautt D4 » 14Role(s) Good 6815 ag0
Showing 110 2.0f2 entries 1 Display 25 E Entries

FIGURE 3.9: Cloudera Manager host monitor pag

Chapter 3 System Design and Implementation

30

Stderr
Eull stderr log &
Eull stderr log 2

Eull stderr log e

Stdout

Eull stdout log e
Eull stdout log &
Eull stdoutlog &

Eull stderr log e

Eull stderrlog &

Eull stdout log e

Eull stdoutlog &

Eull stderr log e

Eull stdoutlog e

Eull stderrlog &
Eull stderr log e

Eull stderr log &

Full stderr log &

Eull stdout log e
Eull stdout log &

Eull stdout log o

Full stdout log &

Full stderr log e

Full stderr log &

Eull stdout log &

Eull stdout log

Full stderr log &

Full stdout log &

Processes

Service Instance Name

Naone Nong deploy-client-config

MNone Mone host-inspector

| hbasel~ i master (cdh1)~ hbase-MASTER

| hbasel~ M regionserver (cdht) - hbase-REGIONSERVER

B hdfs1~ @ datanode (cdhi) ~ hdfs-DATANODE

n hdfs1 = u namengde (cghl)+ hafs-NAMENODE-createdir
B hdfs1~ @ namenode (cdhi) = hdfs-NAMENODE-createtmp
@ hdfs1w B namenode (cdh)w hafs-NAMENODE

@ hdfs1w @ secondannamenode (cdhi)» hdfs-SECONDARYNAMENODE
@ hivel - ivemetastore (cdh1) hive-HVEMETASTORE

W huetw @ beeswax server (cdhi)w hue-BEESWAX_SERVER
& huet @ hue server(cdhi) = hue-HUE_SERVER

1% mapreducel~ EHE jobiracker (cdh1)~ mapreduce-JOBTRACKER
3 mapreducel~ P taskiracker (cdhi)w mapreduce-TASKTRACKER

B ooziet ~

i zookeeperi ~

& oozie server (cont)~
i

oozie-00ZIE_SERVER

semver (cdhl) - zookeeper-server

FIGURE 3.10: Ser

Full stderr log &

Full stdout log &

Links Status PID Uptime Full log file
@ Exited 0.00s
@ Exitec 1.00s
* HBase Web Ul +/ Running 5776 9.3m Fulllogfie &
@ HBase + Running 5727 93m Fulllogfile
RegionServer Web Ul
@ DataNode Web Ul o/ Running 5231 9.9m Fulllogfile &
@ Exitea 5.00s Fulllog file &
@ Exitea 5.00s Fulllogfile
& NameNode Web Running 5185 9.9m Fulllogfile &
ul
e o/ Running 5135 9.9m Fulllogfie &
Secondarviamehode
Web Ul
/ Running 6544 8.2m Full log file &
/ Running 7389 69m Fulllogfie &
& Hue Web Ul + Running 7363 6.9m Full log file
(* JobTracker Web Ul f Running 6166 9.0m Fulllogfile &
& fairscheduler
¢ TaskTracker Web J Running 6127 9.0m Fulllog file &
ul
(& Oozie Web Ul / Running 7311 7.3m Full log file &
J' Running 5044 10.3m Eulllogfile &

Full stderr log &

Eull stderr log e

Eull stdout log &

Eull stdout log

vice status in CDH cluster

Open HBase web UI by using browser to access master server at port 60000,

as shown in Figure 3.11. Figure 3.12 shows RegionServer attributes and status at

master host port 60020 web page.

Master: ¢dh1:60000

Local logs, Thread Dump. Log Level. Debug dump, HBase Configuration

AP
-

A C H

SASE

Attributes

Attribute Name

Value

Description

HBase Version

0.94.6-cdh4.3.0, tUnknown

HBase version and revision

HBase Compiled

Mon May 27 20:22:05 PDT 2013, jenkins

‘When HBase version was d and by whom

Hadoop Version

2.0.0-cdh4.3.0, r48a9315b342cal6de92fec5be952¢36506291552)

Hadoop version and revision

Hadoop Compiled

Mon May 27 19:45:25 PDT 2013, jenkins

When Hadoop version was compiled and by whom

HBase Root Directory|

hdfs://cdh1:8020/hbase

Location of HBase home directory

HBase Cluster ID

25204176-de79-4a94-9eal-50933¢598329

Unique identifier generated for each HBase cluster

Load average 3.00 Average number of regions per regionserver. Naive computation.
Zookeeper Quorum |cdh1:2181 ‘Addresses of all registered ZK servers. For more, see zk dump.

Coprocessors

]

(Coprocessors currently loaded loaded by the master

HMaster Start Time

‘Wed Jul 17 13:27:06 CST 2013

Date stamp of when this HMaster was started

HMaster Active Time

‘Wed Jul 17 13:27:06 CST 2013

Date stamp of when this HMaster became active

FIGURE 3.11:

HBase master status

Chapter 3 System Design and Implementation 31

RegionServer: cdh1,60020,1374038824554 HSASE

Local logs, Thread Dump, Log Level, Debug dump, HBase Configuration

Attributes
Attribute Name Value Description
HBase Version 0.94.6-cdh4.3.0, rUnknown HBase version and revision
HBase Compiled | Mon May 27 20:22:05 PDT 2013, jenkins When HBase version was compiled
and by whom
d=0, numberOfOnli i . numberOfStores=6, numberOfS; les=7, ileInd 1B=0,

rootIndexSizeKB=65, totalStaticIndexSizeKB=34, totalStaticBloomSizeKB=0, izeMB=0, mbInMemory WithoutWAL=0,

numberOfPutsWithoutWAL=0, readRequestsCount=748, writeReq ount=2, pacti i , flushQ i .

usedHeapMB=42, maxF 125, blockCacheSizeMB=0.26, blockCacheFreeMB=31.22, blockCacheCount=4,

blockCacheHitCount=1494, blockCacheMissCount=4, blockCacheEvictedCount=0, blockCacheHitRatio=99%,

blockCacheHitCachingRatio=99%. hdfsBlocksLocalityIndex=100, slowHLogAppendCount=0,
Metrics fsReadLatencyHistogramMean=728582.00, fsReadLatencyHistogramCount=2.00, fsReadLatencyHistogramMedian=728582.00, RegionServer Metrics; file and heap

fsReadLatencyHistogram75th=807932.00, fsReadLatencyHistogram95th=807932.00, fsReadLatencyHistogram99th=807932.00, sizes are in megabytes

|ReadL Hi 7932.00, fsPreadL Hi Tean=1919567.00, fsPreadLatencyHistogramCount=2.00,

fsPreadLatencyHi Median=1919567.00, fsPreadLatencyHistogram75th=2744544.00,

fsPreadLatencyHistogram95th=2744544.00, fsPreadLatencyHistogram99th=2744544.00, fsPreadLatencyHistogram999th=2744544.00,|

fsWriteLatencyHistogramMean=123771.50, fsWriteL Hi: ount=2.00, fsWriteL ‘Hi: ledian=123771.50,

fsWriteLatencyHistogram75th=212984.00, fsWriteLatencyHistogram95th=212984.00, fsWriteLatencyHistogram99th=212984.00,

fsWriteLatencyHi 12984.00

Chapter 4

Experimental Results

4.1 Experimental Environment

This section presents several experiments conducted on one physical machine and
one virtual machine. Each nodes contained 1-GE NICs, but had different CPU
and memory levels, as shown in Table 2. We used Linux command “dd” to test
the disk write performance for each node, and used a network testing tool iperf to

measure the throughput of a network by TCP data streams.

TABLE 4.1: Hardware Specification

Node | CPU RAM | Disk | Network | OS version | Java ver-
speed | speed sion
Node | Intel(R) 4GB | 352 96.5 CentOS jre 1.6.0-
1 Core(TM)2 MB/ | Mbits/sec | x86-64 31 -b04
Quad CPU S
Q9550

Node | Virtualized 2| 1GB | 412 94 Mbits/ | CentOS jre 1.6.0-
2 cores from Intel MB/ | sec x86-64 31 -b04
i7-2600 S

32

Chapter 4 Experimental Results 33

In the experiment, we used HBase-0.94.2 API and .hadoop-client-1.0.3 APIL.
We also used JAVA programming language to build up a client. Table 4.2 shows

the software specification and setting arguments.

TABLE 4.2: Software specification and setting arguments

Version Argument/Option
HBase 0.94.2 Master at Nodel:60010
Hadoop 2.0.0
MapReduce 2 2.0.0 map.tasks. maximum=4 re-

duce.tasks. maximum=2

HDEFS 2.0.0 Block size=64MB Replic=3

Zookeeper 3.4.5 Quorum at port 218

The experimental platform is built on two nodes. Node 1 acts as HMaster. It
has 1 Intel Core(TM), 2 Quad Q9550 CPU (12M Cache, 2.83 GHz), 4 GB memory,
and 1TB disk. And Node 2 acts as RegionServer. It has 2 Core CPU Virtualized
from Intel i7-2600 and 1 GB memory. Since the disk I/O throughput is important
for database system and the disk speed of Node 2 is faster than that of Node 1,

we used Node 2 to act as RegionServer.

Chapter 4 Experimental Results 34

Our experimental data consist of basic information of patients over the age of
65, with 260398 records in total. Four datasets were built, the first three datasets
contained 65535 records, and the last dataset contained 63793 records. First,
we needed to create HBase schemas by designing Rowkey, ColumnFamily, and
qualifier of column. The Rowkey length was kept as short as reasonable such that
it can still be useful to access required data. In fact, we should expect tradeoffs
when designing Rowkeys: a short key design that is useless for data access is not
more valuable than a longer key with better get/scan properties. Table 4.3 shows

the schema of HBase used to store patients records.

TABLE 4.3: Schema of HBase which stores patients records

Rowkey Name Birth Address | Sex

Chinese | Type / Day Home Sex

Patients ID

To convert experimental data from Excel document file to HBase column-
oriented table, we design a table schema as shown in previous Table 4.3, but in

HBase, the format of data store actually looks like JSON format shown below.

Chapter 4 Experimental Results 35
PatientsInfo < Table
{
[/ ...
'm" i {_ _ _ ____________
I"Name": { '
I'| "Chinese": { :
: "10" :“name1", I
: "5" : “name2" I
| U I
Rz !
}7
"Birth" : {
"Type": "EE“ < Value
}
"Birth" : {
"Day": "0210813"
}
"Address" : {
"Home": "&H i EEEEAELER17275%"
}
"Sex" : {
"Sex": "E"
¥
})
"ro" - {
"Name": {
"Chinese": { ... },
"Eng" :{ ...}, Row
P = = = = Column Family
"Address" : { —— Column (Qualifier)
" {..} Timestamp, Value
¥
b /]
}

FIGURE 4.1: The data structure of experimental data in HBase

4.2 Experimental Results and Discussion

In the experiments, hbase.hregion.max.filesize is set as 1073741824 (1GB) As
shown in Figure 4.2, in which 260398 records were stored in the 4 datasets. Ac-

tually all records were put into the table “PatientsInfo” in HBase by generating

Chapter 4 Experimental Results 36

monotonically increasing Rowkeys.

i A2 FBHBase P&

EOLETHOBAERBCEENM MRS
OETHEEEREESREEN

LEgeaRs r4444-

Featisy e 3

rddd4 e 2 o

44440 WU - -

rdddd1 o 2 s

44442 P % ==

44443 TR% - -

r4d444 AREE n |

44445 ARIE - e

44446 wINE =4 3] P——
r44447 ARER x] EomiEs
44448 ES T = 2] ErhETE .

FIGURE 4.2: Results of scan the PatientsInfo table

After we put all data into the table "PatientsInfo” of hbase cluster from excel
files, we can access RegionServer Web interface to check the table information.

Figure 4.3 shows the region details on the RegionServer web GUI interface.

Region Name

PatientsInfo,, 1367551721407 .af39%abac06b7b76deaef702941£52024.

Metrics

numberOfStores=4, numberOfStorefiles=3, storefileUncompressedSizeMB=53, storefileSizeMB=53,
compressionRatio=1.0000, memstoreSizeMB=53, storefileIndexSizeMB=0, readRequestsCount=30199,
writeRequestsCount=1279362, rootIndexSizeKB=63, totalStaticIndexSize KB=34, totalStaticBloomSizeKB=0,
total CompactingK'Vs=756326, currentCompactedKVs=756326, compactionProgressPct=1.0, coprocessors—[]

FIGURE 4.3: The region detail on RegionServer

o NumberOfStores: This is the number of Stores targeted for compaction in

the RegionServer.

o NumberOfStorefiles: Number of StoreFiles opened on the RegionServer. A

store may have more than one StoreFile (HFile).

Chapter 4 Experimental Results 37

4.2.1 Optimization of HBase properties

We evaluate the cost of putting data into HBase in different configurations
on HBase. Table 4.4 shows that the time cost of putting 260398 records into
HBase when setting three properties with different value of HBase. Following

items describe these three properties.

o setAutoFlush()

Normally, the puts will be sent one at a time to the RegionServer. If
autoFlush set to false, these messages are not sent until the write-buffer is

full.

 setWrite ToOWAL()

Turning writeToWAL off means that the RegionServer will not write the
Put to the Write Ahead Log(WAL), only into the memstore; however the

consequence is that if there is a RegionServer failure, there will be data loss.

« setWriteBufferSize(10MB)

Write buffer size in bytes. A larger buffer requires more memory on both
the client and the server because the server instantiates the past write buffer

to process it but reduces the number of remote procedure calls (RPC).

TABLE 4.4: Configuring different properties of HBase

HBase Properties/Configuration A B C D E
setAutoFlush() on on on off off
setWriteBufferSize(10MB) off on on on on
setWriteToWAL() on on off on off
TIME 950sec | 924sec | 652sec | 63sec | 48sec

Chapter 4 Experimental Results 38

In the experiments, we convert experimental data from Excel document file
to HBase with no limit on the number of times, and no high fault tolerance con-
siderations; the purpose is to find the fastest way. Since errors in the conversion
process are few, we choose E configuration that can significantly reduce the time
consumed. Finally, we choose E configuration as the optimal setting. If we need
to consider a higher stability, or with fault tolerance mechanisms, then need to
choose set AWrite ToOWAL state is ON setting in the different contexts, such as
configuration A, B, D, but it has relative increase in time cost. When we con-
figure another property hbase.regionserver.handler.count to 20 on RegionServer,
the property setup number of RPC server instances spun up on RegionServer. At

configuration A, the time cost reduced 35 seconds, as shown in Table 4.5.

TABLE 4.5: Set HBase RegionServer Handler Count value to 20

HBase Properties/Configuration A B C D E
setAutoFlush() on on on off off
set WriteBufferSize(10MB) off on on on on
setWriteToWAL() on on off on off
TIME 91bsec | 897sec | 620sec | 63sec | 43sec

The following Figure 4.4 to 4.7 collection shows the information when using
configuration A to put data into HBASE, including the write requests, memory
usage, flush size information. In configuration A, as turning on the set AutoFlush,
we can see the figure 4.7 shows memstore in Regionserver be flushed five times

during the put status.

Chapter 4 Experimental Results 39

Requests

1400000

1279371R79370279370

——Write Requests / second

FI1GURE 4.5: Write requests per sec on configuration A

Chapter 4 Experimental Results 40

Megabytes
140
-
L S — 1259 125.9 1259 1259 1259
,‘121 121 121 121
100 g
71064 808
88.1 ©-+
y 845862
82.1 g1, 82.9°%
/939 79.3 9+ 79.9
80 | === 76 75.4 955 75 766 783
811 811 665 68.6
59.9 588
60 51 49.9
47.9 s
39.4 41 393 0
0 4 —
20
0 T T T T T T T T T T T T 1
Qb’?’o?n‘ﬂb?’ b‘#’@@«o"«?‘?’s‘*%é’ e%@oé‘*o"o"‘ é“o.@“me
Ny Ny 0" Y Qv F F ¢ Q°° Ng
jvm max memory = = jvm heap committed memory jvm heap used memory
FIGURE 4.6: Memory usage on configuration A
Bytes

60

50 = /\
m iy ALY

M N4 NS 4
w | |
Lo el Sl - ||

07:43 07:44 07:45 07:46 07:47 07:48 07:49 07:50 07:51 07:52 07:53 07:54 07:55 07:56 07:57 07:58 07:59 08:00 Time

o
g
~
wu
g
~
wu
9
~
ul
g
~

Total : Flush Average Size

FI1GURE 4.7: Flush average size and operations rate on configuration A

The following Figure 4.8 to 4.13 collection shows the information when using
configuration E to put data into HBASE. In configuration E, as turning off the se-
tAutoFlush, we can see the figure 4.11 shows memstore in Regionserver be flushed
only one time during the put status. And when we turn off the setWriteToWAL,
the RegionServer will not write the Put to the Write Ahead Log; so we can see

Figure 4.12 recorded 29790 operations without WAL.

Chapter 4 Experimental Results

41

Requests

50

45

40

35 +

30

25

—— Write Requests / Second

FIGURE 4.9: Write requests per sec on configuration E

Chapter 4 Experimental Results 42

Megabytes

140

1259 125.9 125.9 125.9 1259

10:31

=——Total : Flush Average Size

FIGURE 4.11: Flush average Size and operations rate on configuration E

Chapter 4 Experimental Results 43

Operations

35000

10:29 10:30 10:31 10:32 10:33 Time

———jvm heap used memory ====(jvm heap used memory)*0.4 —— —memstore size

FIGURE 4.13: Memory heap and Memstore size E

4.2.2 Optimization of memory usage

In the Figure 4.10 and 4.6, we found the java process heap committed memory
always very close to the maximum memory size for the java process heap even fill

all. So we believe that java heap committed size should be required far more

Chapter 4 Experimental Results 44

than 125.9MB. Thus, we increase maximum size for the java Process heap to 1GB
by java -Xmx command, and as the following Figure 4.14 shows the java heap
committed the memory size to 330.2MB and the truly used size reached around

209.9MB.

At the same time, we also modify two properties on hbase.regionserver.global.memstore.upper
and hbase.regionserver.global.memstore.lowerLimit in Regionserver to increase mem-
ory utilization efficiency. Because the default parameters in HBase are not fully
used memory, and without interfering with other used heap size parameters (eg
hfile.block.cache.size) situation,
hbase.regionserver.global.memstore.upperLimit upgrade 0.1, also is to increase the
heap size 10% occupied space, and will not affect the overall environment. Fol-

lowing two items describe these two properties.

 hbase.regionserver.global. memstore.upperLimit

This parameter is the order to limit memstores occupied the total mem-
ory. We set the value from 0.4 to 0.5, which means when 50% of the heap of
the sum of the memory occupied by the all ReigonServer memstore, HBase
forced to block all updates and flush of these memstore to release the memory

occupied by all memstore.

o hbase.regionserver.global. memstore.lowerLimit

We set the value from 0.35 to 0.45. With the UpperLimit of only 45%
global memstore memory, it does not flush all memstore, and it will find
some of the memory footprint of larger memstore; the individual flush, of

course, is updated or blocked.

As the memstore size at configuration E reached 46MB over than
hbase.regionserver.global.memstore.lowerLimit parameter set at 0.4 times the mem-
ory size of heap used memory 37.7MB. The memstore is soon flushed into HFile

shown in Figure 4.13.

Chapter 4 Experimental Results 45

After the above settings, the hbase.regionserver.global.memstore.upperLimit
is set to 0.5; the memstore size is increased from 46MB to 105.45MB shown in

Figure 4.15, and the total ¢ 0 3bsec shown in Figure 4.16.

Megabytes

1200

/ ’
20.05 20.05 13_1;//
_______________ ’ /
0 ‘ —_——f : : : . ‘ .
12059 01000 01001 01:02 01:03 01:04 01:05 01:06 01:07 Time
e jym heap used memoary == == (jvm heap used memory)*0.5 = = memstore size

FIGURE 4.15: Memory heap and Memstore size with increased upperLimit

Chapter 4 Experimental Results 46

FH 26, 13 11:27:25 EF org.apache. zockeeper . ClientCroordendThread primeConnection

Fell: focket conmection establizhed to odhld 172 24 12 65:2181, indtiating zession

#wH 26, 2012 11:27:26 S orz.apache mookesper . ClientCrordBerdThread orinnect ed

FEl: Bession establishment complete on server odhl/172.24.12.65:2181, sessionid = Cel3E7908£6da0cTS, negotiated timecut = 60000
oozt time:35zec

BUILD RKTESRRL (total time: 37 seconds)

FIGURE 4.16: Put time optimization

4.2.3 Discussion

Above the experimental, we realize that the RowKey design has some prob-

lems, and there are two problems that we should take care of:

« Rowkey Length

We tried to minimize the row and column sizes. The KeyValue class is the
heart of data storage in HBase. When we design Row Key, ColumnFamily,
and column in HBase, the names must be as short as possible, because
all of them are embedded within the KeyValue instance. The longer these
identifiers are, the bigger the KeyValue is. As the Table 4.6 shows the
KeyValue of data storage in HBase [20].

TABLE 4.6: KeyValue of data storage in HBase.

Rowkey=r1, cf:attrl= vl

rowlength ——— 2
row —— rl

columnfamilylength — 2

columnfamily cf
columnqualifier attrl
timestamp ——— server time of Put

keytype — Put

Chapter 4 Experimental Results 47

e Rowkey relation

While creating corresponding Rowkeys in HBase, problems appeared

when we saved mor

Chapter 5

Conclusions and Future work

As stated, goal of this thesis is to provide an integrated data parallel processing
service environment, to ensure various demands of data services from different
medical divisions, and to offer services required for the information combination
and computing resources. Therefore, the architecture of the system must be mod-
ular to support data services of customized, reusable, and scalable characteristics.
Based on the needs of different applications, the cluster resources are timely ad-
justed to serve demands for data services of each application. Through the auto-
matic information integration mechanism, not only data consistency and integrity
requirements can be met in different data services applications, but also a unified
data access information system can be built to ensure the individual as well as

overall service needs.

In the future, we plan to use virtualization technology to construct a dynamic
increase or decrease RegionServer in the HBase cluster for detection of load written
by RegionServer, and evaluation of the total load of the physical machine; and then
move data from regions in high access rates during off-peak hours to achieve load
balancing in the RegionServers. On the other hand HBase can effectively store
large number of sensor data like environmental monitoring data. Because the
amount of data collected in a day is greater than 18,000, it is a very large load for
a single stage sensor. We also plan to implement HBase block caches and Bloom
filters for real-time queries to provide a more complete cloud service.

48

Bibliography

1]
2]

A.t. kearney it analysis. http://www.atkearney.com/home.

Cloudera recommendations on hadoop/hbase cluster capacity planning.

http://www.cloudera.com /blog/2010/08 /hadoophbase-capacity-planning/.
Hadoop wiki - hbase. http://wiki.apache.org/hadoop/Hbase.
Nche cloud computing research group. http://trac.nchc.org.tw/cloud.

E. Abstract). Database scalability, elasticity, and autonomy in the cloud. In
J. Yu, M. Kim, and R. Unland, editors, DASFAA 2011, volume I of Part,
page 6587. Springer, pp.

B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny. Work-
load analysis of a large-scale key-value store. In Proceedings of the 12th ACM
SIGMETRICS/PERFORMANCE joint international conference on Measure-
ment and Modeling of Computer Systems, SIGMETRICS 12, pages 5364,
New York, NY, USA, 2012. ACM.

P. Atzeni, F. Bugiotti, and L. Rossi. Uniform access to nosql systems. Infor-

mation Systems, (0):—, 2013.

C.-R. Chang, M.-J. Hsieh, J.-J. Wu, P.-Y. Wu, and P. Liu. Hsql: A highly
scalable cloud database for multi-user query processing. In Cloud Computing

(CLOUD), 2012 IEEE 5th International Conference on, pages 943-944, 2012.

49

References 50

[9]

[10]

[11]

[15]

[16]

L. Ding, G. Wang, J. Xin, X. Wang, S. Huang, and R. Zhang. Commapreduce:
An improvement of mapreduce with lightweight communication mechanisms.

Data & Knowledge Engineering, (0):— 2013.

J. Dittrich and J.-A. Quiané-Ruiz. Efficient big data processing in hadoop
mapreduce. Proc. VLDB Endow., 5(12):2014-2015, Aug. 2012.

B. Dong, Q. Zheng, F. Tian, K.-M. Chao, R. Ma, and R. Anane. An optimized
approach for storing and accessing small files on cloud storage. Journal of

Network and Computer Applications, 35(6):1847 — 1862, 2012.

A. Floratou, J. M. Patel, E. J. Shekita, and S. Tata. Column-oriented storage
techniques for mapreduce. Proc. VLDB Endow., 4(7):419-429, Apr. 2011.

Y. Hu and W. Qu. Efficiently extracting change data from column oriented
nosql databases. In J.-S. Pan, C.<N. Yang, and C.-C. Lin, editors, Advances
in Intelligent Systems and Applications - Volume 2, volume 21 of Smart Inno-
vation, Systems and Technologies, pages 587-598. Springer Berlin Heidelberg,
2013.

W. Jiang, H. Li, H. Jin, L. Zhang, and Y. Peng. VESS: An Unstructured Data-
Oriented Storage System for Multi-Disciplined Virtual Ezperiment Platform.
Springer-Verlag, Jul 2011.

K. K.-Y. Lee, W.-C. Tang, and K.-S. Choi. Alternatives to relational
database: Comparison of nosql and {XML} approaches for clinical data stor-

age. Computer Methods and Programs in Biomedicine, 110(1):99 — 109, 2013.

Y. Li, G. Kim, L. Wen, and H. Bae. Mhb-tree: A distributed spatial index
method for document based nosql database system. In Y.-H. Han, D.-S.
Park, W. Jia, and S.-S. Yeo, editors, Ubiquitous Information Technologies

and Applications, volume 214 of Lecture Notes in Electrical Engineering, pages

489-497. Springer Netherlands, 2013.

References 51

[17]

[18]

[19]

[23]

[24]

[25]

Y. Luo, S. Luo, J. Guan, and S. Zhou. A {RAMCloud} storage system based
on hdfs: Architecture, implementation and evaluation. Journal of Systems

and Software, 86(3):744 — 750, 2013.

S. Nishimura, S. Das, D. Agrawal, and A. El Abbadi. MD -hbase: design
and implementation of an elastic data infrastructure for cloud-scale location

services. Distributed and Parallel Databases, 31(2):289-319, Jun 2013.

A. Path and B. Mappings. Data integration over nosql stores using. In

A. Hameurlain et al., editors, DEXA 2011, volume I of Part, page 6860.

Springer, pp.

P. Pirzadeh, J. Tatemura, and O. Po. Performance evaluation of range queries

in key value stores. Journal of Grid Computing, 10(1):109-132, 2012.

Z. QIU, Z. wen LIN, and Y. MA. Research of hadoop-based data flow man-
agement system. The Journal of China Universities of Posts and Telecom-

munications, 18, Supplement 2(0):164 — 168, 2011.

K. Slagter, C.-H. Hsu, Y.-C. Chung, and D. Zhang. An improved partition-
ing mechanism for optimizing massive data analysis using mapreduce. The

Journal of Supercomputing, pages 1-17, 2013.

J. Sun, Q. Jin, D. of Computer, S. Department, of Computer, and Science.
Scalable rdf store based on hbase and mapreduce. In 2010 3rd International
Conference on Advanced Computer Theory and Engineering(ICACTE). IEEE,
2010.

R. Taylor. An overview of the hadoop/mapreduce/hbase framework and its
current applications in bioinformatics. BMC' Bioinformatics, 11(Suppl 12):1—
6, 2010.

Y. University, C. HP, Labs, N. Haven, CT, U. Amsterdam, T. N. P. Alto, CA,
and USA. Column-oriented database systems daniel j. abadi peter a. boncz

stavros harizopoulos. 2009.

References 52

[26]

[27]

28]

[29]

[30]

[31]

[32]

[33]

R. F. van der Lans. Chapter 3 - data virtualization server: The building
blocks. In Data Virtualization for Business Intelligence Systems, pages 59 —

107. Morgan Kaufmann, Boston, 2012.

via an Extended and C. Framework. Enhancing query support in hbase. In
W. Abramowicz et al., editors, Service Wave 2011, volume 6994 of LNCS, page
75-87. Springer; 2011.

H. Wang, X. Qin, Y. Zhang, S. Wang, and 7Z. Wang. Lineardb: A relational
approach to make data warehouse scale like mapreduce. In J. Yu, M. Kim, and

R. Unland, editors, DASFAA 2011, volume II of Part, page 6588. Springer,

bp.

C.-T. Yang, C.-T. Kuo, W.-H. Hsu, and W.-C. Shih. A medical image file
accessing system with virtualization fault tolerance on cloud. In R. Li, J. Cao,
and J. Bourgeois, editors, GPC 2012, volume 7296 of LNCS, page 338-349.
Springer, 2012.

C.-T. Yang, W.-C. Shih, G.-H. Chen, and S.-C. Yu. Implementation of a
Cloud Computing Environment for Hiding Huge Amounts of Data, pages 1—
7. Institute of Electrical and Electronics Engineers, Sep 2010.

C.-T. Yang, W.-C. Shih, and C.-L. Huang. Implementation of a distributed
data storage system with resource monitoring on cloud computing. In R. Li,
J. Cao, and J. Bourgeois, editors, GPC 2012, volume 7296 of LNCS, page 64—
73. Springer, 2012.

C. Zhang, H. De, Sterck, D. R. Cheriton, S. of Computer, S. Department,
of Applied, and Mathematics. Supporting multi-row distributed transactions

with global snapshot isolation using bare-bones hbase. IEEE, 4244.

F. Zhu, J. Liu, L. Xu, and T. C. of Software Engineering. A fast and high
throughput sql query system for big data. In X. Wang et al., editors, WISE
2012, volume 7651 of LNCS, page 783-788. Springer, 2012.

Appendix A

CentOS System Settings

[.. Make sure that SELinux is disabled or permissive
#selinux:setenforce 0
#vi /etc/selinux/config
Replace the SELINUX option enable to disable
#SELINUX=disabled

IT. Disable iptables

#echo never > /sys/kernel/mm/redhat_transparent_hugepage/defrag

III. Disable iptables
#service iptables stop

#chkconfig iptables off

IV. Specify TCP network information
#vi /etc/sysconfig/network-scripts/ifcfg-eth0O BOOTPROTO=none
ONBOOT=yes
IPADDR=192.168.100.1
NETMASK=255.255.255.0

53

GATEWAY=192.168.100.254

V. Lists hosts to be res

o4

Appendix B

Cloudera Manager installation

Iy

II.

I1I.

IV.

Install CDH related packages

#yum -y install wget openssh-clients perl ntp

Time Correction
#ntpdate time.windows.com && hwclock -w
#date -R

#cp /usr/share/zoneinfo/Asia/Taipei /etc/localtime

Download Cloudera CM4

#wget http://archive.cloudera.com/cm4/installer/latest/cloudera-
manager-installer.bin

#chmod u+x cloudera-manager-installer.bin
#./cloudera-manager-installer.bin

Open browser [HostIP]:7180 Default account and password {admin, admin}

Cluster Installation

Specify hosts for CDH cluster installation.

%)

Appendix C

Pseudo Code

/* HBase connection setup
*/

HBaseConfiguration config;

config = new HBaseConfiguration();
config.set ("hbase.zookeeper.quorum", "hostname");
config.set ("hbase.zookeeper.property.clientPort", "port");

HTable table = new HTable(config, "TableName");
String row;
String family[] = {"FamilyColumni", "FamilyColumn2", "FamilyColumn3",
String column[] = {"Columni", "Column2", "Column3", "Column4", "Column5"};
String value;

Put p;

/* Optimization properties
table.setWriteBufferSize (10 * 1024 * 1024);
table.setAutoFlush(false);

p.setWriteToWAL (false);

*/

/*

Open Excel file and get value

Build put object

*/

try {
Workbook book = Workbook.getWorkbook();
int PagsOfTotalSheet

int RowsOfNowSheet

for (int columnsOfNowSheet = O; columnsOfNowSheet <= non-empty columns; columns0fNgqg
for (int count = 0; count <= PagsOfTotalSheet; count++) {

for (int i = 0; i < RowsOfNowSheet; i++) {

56

wSheet++) {

Sheet sheet = book.getSheet(count);
Cell cella = sheet.getCell(columnsOfNowSheet, 1i);

value = cella.getContents();

o7

	摘要
	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Thesis Organization

	2 Background Review and Related Work
	2.1 Bigdata
	2.2 NoSQL
	2.3 HDFS
	2.3.1 HDFS architecture

	2.4 HBase
	2.4.1 HBase Region
	2.4.2 Catalog tables
	2.4.3 DataModel
	2.4.3.1 RowKey
	2.4.3.2 Column Families
	2.4.3.3 Timestamps
	2.4.3.4 Family Attributes

	2.4.4 Real Life Example

	2.5 Zookeeper
	2.6 Cloudera CDH
	2.7 Related Work

	3 System Design and Implementation
	3.1 System Architecture
	3.2 System Setup
	3.2.1 HBase Testbed
	3.2.2 CDH installation

	4 Experimental Results
	4.1 Experimental Environment
	4.2 Experimental Results and Discussion
	4.2.1 Optimization of HBase properties
	4.2.2 Optimization of memory usage
	4.2.3 Discussion

	5 Conclusions and Future work
	Bibliography
	Appendix
	A CentOS System Settings
	B Cloudera Manager installation
	C Pseudo Code

