
東海大學

資訊工程研究所

碩士論文

指導教授: 楊朝棟博士

運用 HBase 於醫療雲中資料轉換方法之實作

Implementation of Data Convert Method for HBase in

Healthcare Cloud

研究生: 許文鴻

中華民國一零二年七月

摘 要

由於目前醫療體系各科別內部還是有很多使用 Excel 檔案格式來儲存各種

量表的統計資料，如臨床常用的自我照顧能力量表 (Functional Independence

Measure) 等，將數值存在 Excel 後，透過統計分析軟體 (如:SAS, SPSS, STATA

等) 進行分析。但如此一來各科別之間並無法有效的分享以 Excel 存檔的資料。

建議將資料進行格式轉換，存在資料庫內，方便各科別分享，而眾多的 Excel 檔

案集合而成的資料庫，就如同一個非關聯性的資料庫，因此使用 Hbase 存放整

合後的資料。也因 Hbase 是一非關聯性資料庫，在實作上的可行性也較高。考

量到資料使用人員需要快速、準確、高效的查詢各個不同領域所需資料。我們

必須提供如同 SQL 語法能夠以語句的方式查詢資料，資料使用人員通過學習、

利用和掌握查詢語言，讓 Hbase 裡的資料，能夠得的充分運用，提高統計工作

效率。本論文的目的是以 HBase 為基礎，在其周邊建構完整的導入工具與解決

方案，為了能夠更方便的使用 HBase，本論文建構一個友善的 HBase 資料庫連

線客戶端工具，提供視覺化的管理介面。

Keywords: NoSQL 資料庫, Hadoop, HBase, 鍵值儲存

I

Abstract

Currently, most digital health care systems used in divisions of medical centers still

adopt the Excel file format for a variety of scales statistics, such as the clinical

self-care ability scale for Functional Independence Measure. Although people can

further analyze excel files using statistical analysis software, such as SAS, SPSS,

or STATA, they cannot effectively share the archived data in Excel file format

among different divisions. We propose to do format conversion on these data

and store them in a database. As the collection of Excel files, a non-relational

database, cannot be shared with ease, we plan to use HBase storage to further

integrate data. The purpose of this thesis is to construct complete import tools

and solutions based on HBase with easy access of data in HBase. Also, a visual

interface is used to manage HBase to implement user friendly client connection

tools for the HBase database.

Keywords: NoSQL database, Hadoop, HBase, Key-value stores

II

致謝詞

首先誠摯的感謝指導教授楊朝棟博士，有幸跟隨老師的腳步學習使我由廣到

深的學習，從進入雲端運算領域的虛擬化技術到大量資料的處理技術，跟隨著

電腦應用趨勢的腳步，使我在短短的兩年中獲益匪淺。老師對學問的嚴謹更是

我輩學習的典範。

再來要感謝的是各位協助我論文更加完美的各位口試委員，感謝劉榮春老

師，多次與我討論細節，奠定了我的許多基礎知識，以及論文撰稿知識。也感謝

陳同孝教授以及大學母校的張志宏教授、盧志偉教授能再次指導我，各位教授

不辭辛苦地前來東海當我的口試委員，為我的論文提出了許多的建議，讓我能

夠讓論文更為完整且嚴謹。

本論文的完成另外亦得感謝高效能實驗室的各位學長、同學、及學弟妹的大

力協助，尤其是陳煒勝學長，從我進實驗室開始便在他的帶領下迅速成長、配

合在大學時期就開始學習的 linux 使用技巧以及網路的基礎概念，在各種伺服器

架設等等的領域皆越來越得心應手，歐韋伸同學也常常跟我討論一些技術上的

重點，一起釐清遇到的問題，以及黃冠龍擔任總管協助處理實驗室的大小事務，

幫我們減輕了不少負擔。實驗室的大家，歐韋伸、廖啟瑞、黃冠龍與劉育佐是

一起奮鬥兩年的夥伴，雖然負責的專業項目不一樣，但是透過互相學習，大家

終於都能夠完成各自的論文，這篇論文的完成也要感謝學弟顏尹臻以及學妹呂

欣汶，在他們的協助下能夠順利完成這份論文，另外還有更多更多的人要感謝，

他們不只是在論文上，更是生活上的幫助，使我可以順利的完成論文。

III

兩年的日子裡，實驗室里共同的生活點滴，學術上的討論、言不及義的閒

扯、早上四點多的早餐、趕計畫書、日夜顛倒寫論文做實驗的革命情感，感謝

眾位學長姐、同學、學弟妹的共同砥礪，你/妳們的陪伴讓兩年半的研究生活變

得絢麗多彩。最後，謹以此文獻給一直支持我，我所摯愛的親人。

IV

Table of Contents

摘要 I

Abstract II

Acknowledgements III

Table of Contents V

List of Figures VII

List of Tables VIII

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 2
1.3 Thesis Organization . 3

2 Background Review and Related Work 4
2.1 Bigdata . 4
2.2 NoSQL . 6
2.3 HDFS . 7

2.3.1 HDFS architecture . 7
2.4 HBase . 8

2.4.1 HBase Region . 11
2.4.2 Catalog tables . 12
2.4.3 DataModel . 14

2.4.3.1 RowKey . 14
2.4.3.2 Column Families 15
2.4.3.3 Timestamps . 16
2.4.3.4 Family Attributes 16

2.4.4 Real Life Example . 17
2.5 Zookeeper . 17
2.6 Cloudera CDH . 18
2.7 Related Work . 19

3 System Design and Implementation 22

V

TABLE OF CONTENTS VI

3.1 System Architecture . 22
3.2 System Setup . 27

3.2.1 HBase Testbed . 27
3.2.2 CDH installation . 27

4 Experimental Results 32
4.1 Experimental Environment . 32
4.2 Experimental Results and Discussion 35

4.2.1 Optimization of HBase properties 37
4.2.2 Optimization of memory usage 43
4.2.3 Discussion . 46

5 Conclusions and Future work 48

Bibliography 49

Appendix 53

A CentOS System Settings 53

B Cloudera Manager installation 55

C Pseudo Code 56

List of Figures

2.1 A.T. Kearney IT analysis the evolution of big data 5
2.2 The HDFS architecture . 8
2.3 The roles in an HBase cluster . 10
2.4 The heirarchy of objects in HBase 12
2.5 Lexicographical order . 15

3.1 Structure of the system . 23
3.2 HBase clusters . 24
3.3 Hadoop software relation . 25
3.4 Flowchart of data write to HBase 26
3.5 Sequence diagrams of data write to HBase 27
3.6 /etc/hosts file mapping hostname to IP address 28
3.7 Install Cloudera Manager . 28
3.8 Cloudera Manager install CDH cluster 29
3.9 Cloudera Manager host monitor pag 29
3.10 Service status in CDH cluster . 30
3.11 HBase master status . 30
3.12 RegionServer attributes and status 31

4.1 The data structure of experimental data in HBase 35
4.2 Results of scan the PatientsInfo table 36
4.3 The region detail on RegionServer 36
4.4 Write requests on configuration A 39
4.5 Write requests per sec on configuration A 39
4.6 Memory usage on configuration A 40
4.7 Flush average size and operations rate on configuration A 40
4.8 Write requests on configuration E 41
4.9 Write requests per sec on configuration E 41
4.10 Memory usage on configuration E 42
4.11 Flush average Size and operations rate on configuration E 42
4.12 Total: Puts without WAL on configuration E 43
4.13 Memory heap and Memstore size E 43
4.14 Memory usage with increased maximum size 45
4.15 Memory heap and Memstore size with increased upperLimit 45
4.16 Put time optimization . 46

VII

List of Tables

2.1 The Metrics of catalog tables -ROOT- and .META. 13

4.1 Hardware Specification . 32
4.2 Software specification and setting arguments 33
4.3 Schema of HBase which stores patients records 34
4.4 Configuring different properties of HBase 37
4.5 Set HBase RegionServer Handler Count value to 20 38
4.6 KeyValue of data storage in HBase. 46

VIII

Chapter 1

Introduction

1.1 Motivation

In today’s national health care system, whether it is up to the competent authority

or next to each health care system is potentially a serious problem. it Is dispersed

and independent of the medical information system, medical care information sys-

tem development is highly fragmented, cannot be integrated and interconnected,

due to different needs of different ethnic groups, medical care information system

is highly fragmented, cannot be easily integrated and interconnected. Moreover,

since systems are built at different times, there may be no suitable connection

among systems. The causes of this situation include: 1. information used by the

personnel, 2. preference of data entry personnel, 3. services on different objects, 4.

system build time, 5. change of health regulations, 6. different supporting plans

or sources, and 7. varying definition of database field names in different database

systems.

Database of medical care does not allow slightest error and makes a mistake.

Integration and shutdown of the medical system, under the premise of ensuring the

quality of medical care, do not have any change to maintain normal maintenance

and operation of the health care system, , is now each medical institution overall

conservative approach. Due to database don’t have integration lead to patients

1

Chapter 1 Introduction 2

re-doing the same checks because of different illness or physical condition. This

is not only caused the patient weighed down missed a golden time for treatment,

but also caused serious waste of medical resources.

1.2 Contributions

The current health care system within the medical divisions still uses Excel file

formats to store a range of scales statistics ,such as commonly used in clinical

self-care Ability Scale (Functional Independence Measure). Values stored in Excel

can be analyzed via statistical analysis software, such as SAS, SPSS, STATA, but

cannot be efficiently shared between divisions. To integrate data, we proposed

to converse the format of the Excel data and store them in a database based on

HBase.

HBase is a non-relational database with structure similar to Excel, but with

higher implementation feasibility. Considering of the data usage characteristic that

needs fast, accurate, and efficient query of the required information for people in

various areas, we provide a visual graphical interface, instead of query languages,

to speed up data query in the HBase database. As a result, people are able

to make full use of data in HBase and improve efficiency of statistical work. As

opposed to the traditional commercial relational database, HBase is scalable, high-

performance, low-cost, and with other advantages, but it does not have a complete

and friendly user environment. Therefore, in addition to data conversion in HBase

storage, it is important to provide appropriate technical support, friendly HBase

user interface, and approachable operation syntax, etc.

The purpose of this thesis is based on HBase to construct complete import

tools and solutions in its surrounding. First, we analyzed the characteristics of

the source data for conversion into to HBase. Then we recognized patterns of data

usage, and constructed HBase Data Model based on user behaviors. To make it

easier to access HBase, we also implemented a visual interface to manage HBase

as a user friendly database.

Chapter 1 Introduction 3

1.3 Thesis Organization

The rest of the thesis is organized as follows: In Chapter 2, we describe the

used techniques and some background knowledge. Chapter 3 describes the system

architecture used in the thesis. Chapter 4 shows experimental results for the

proposed system. Chapter 5 provides conclusions and future work of this work.

Chapter 2

Background Review and Related

Work

2.1 Bigdata

The Big Data has already become one hot issue; it is mostly encountered in re-

search fields with challenges of analyzing and forecasting huge amount of informa-

tion, such as in weather forecasting, genetic analysis, biological research, financial

or commercial information. To model and predict complex phenomena, we often

use high-speed computers combined with distributed or parallel computing tech-

niques to deal with huge amount of data[33]. Moreover, in recent years, more and

more enterprises face with challenges of data explosion with unexpectedly rapid

growth rates of the amount of data in storage systems [14]. And many companies

worry that they soon will encounter the same situation. It is difficult to process

big data in most relational database management systems, because it needs to run

massive parallel software concurrently on hundreds or thousands of servers.

Big data promises to be transformative. As computing resources have evolved

and advanced to be able to handle data of bigger sizes and complexity, companies

start to reap many benefits from big data analysis, as shown in Figure 2.1. Little

wonder that big data is a hot topic in corporate boardrooms and IT departments,

4

Chapter 2 Background Review and Related Work 5

with many leading firms doing more than talking. According to a recent A.T. Kear-

ney IT innovation study, more than 45 percent of companies have implemented a

business-intelligence or big data initiative in the past two years [1].

Figure 2.1: A.T. Kearney IT analysis the evolution of big data

Common massive amount of data include interactive data information such as

images, audios, videos, Internet search indexes, astronomical data, genetic infor-

mation, medical records, and the website Log records transmitted through sensor

networks, social networking, and wireless networks. These raw data present the

proliferation of big data [23]. They are mostly non-structured or semi-structured

data, not easy to be processed by using the traditional practice in relational

database. Through fixed data field architecture, the data can be stored to a

relational database for further processing. In addition to the challenges of huge

amount of data, the information coming from various structures tends to compli-

cate the situation.

The big data is a large and complex issue. We face with numerous challenges

to find useful information from analyzing big data, and use it to reduce enterprise

Chapter 2 Background Review and Related Work 6

risks, promote revenues, and improve competitiveness. These challenges include

how to obtain, store, search, share, analyze, and visually present the big data.

2.2 NoSQL

Big data also stands for a new and hot issue in cloud computing. Traditionally,

structural data are normalized in advanced, stored in databases, and then can

be manipulated as the principal resource and headstone to support the enterprise

IT systems. On the other hand, the rest of data, which are un-structural/semi-

structural and generally in a massive quantity comparing with the structural ones,

are hard to be processed and are casted aside or trashed on the corner. However,

as new technologies in cloud computing like Hadoop and NoSQL emerging, these

“trashes”, in a big quantity so are called as the“big data”, are now considered

as the most valuable resources while the enterprise taking strides into the new

market. Thus, issues like gathering, storing, modeling, analyzing, and manipulat-

ing big data become hot for cloud computing researches and applications. For big

data, what come to mind first are no longer the past system of hegemony of the

database market Oracle, or the software giant Microsoft, but instead, the Apache

Foundation’s open source Hadoop parallel computing and storage architecture,

and the HBase NoSQL distributed database[19].

The Hadoop, a parallel computing platform developed by the Apache Software

Foundation, is an open source compiler tool and distributed file system. NoSQL

database, also called Not Only SQL, is an approach for data management and

database design that is useful for very large sets of distributed data. NoSQL,

which encompasses a wide range of technologies and architectures, seeks to address

the scalability and big data performance issues that relational databases were not

designed to solve. NoSQL is especially useful when an enterprise needs to access

and analyze massive amounts of unstructured data or data stored remotely on

multiple virtual servers in the cloud computing [29]. NoSQL is a general term

meaning that the database is not an RDBMS which supports SQL as its primary

Chapter 2 Background Review and Related Work 7

access language. There are many types of NoSQL databases: BerkeleyDB is an

example of a local NoSQL database, whereas HBase is very much a distributed

database.HBase, written in Java, is an open source, non-relational, and distributed

database modeled after Google’s BigTable [27]. It is developed as part of Apache

Software Foundation’s Apache Hadoop project and runs on top of the Hadoop

Distributed File system (HDFS), providing BigTable-like capabilities for Hadoop.

That is, it provides a fault-tolerant way of storing large quantities of sparse data.

2.3 HDFS

HDFS is an Apache Software Foundation project and a subproject of the Apache

Hadoop project. The Hadoop Distributed File System, is a distributed file system

designed to hold very large amounts of data (terabytes or even petabytes), and

provide high-throughput access to this information. Files are stored in a redundant

fashion across multiple machines to ensure their durability to failure and high

availability to very parallel applications [31]. HDFS has many similarities with

other distributed file systems, but is different in several respects. One noticeable

difference is HDFS’s write-once-read-many model that relaxes concurrency control

requirements, simplifies data coherency, and enables high-throughput access [30].

Another unique attribute of HDFS is the viewpoint that it is usually better to

locate processing logic near the data rather than moving the data to the application

space. HDFS rigorously restricts data writing to one writer at a time. Bytes are

always appended to the end of a stream, and byte streams are guaranteed to be

stored in the order written.

2.3.1 HDFS architecture

HDFS is comprised of interconnected clusters of nodes where files and directories

reside. An HDFS cluster consists of a single node, known as a NameNode, which

manages the file system namespace and regulates client access to files. In addition,

Chapter 2 Background Review and Related Work 8

data nodes (DataNodes) store data as blocks within files. Within HDFS, a given

name node manages file system namespace operations like opening, closing, and

renaming files and directories. A name node also maps data blocks to data nodes,

which handle read and write requests from HDFS clients. Data nodes also create,

delete, and replicate data blocks according to instructions from the governing name

node. The Figure 2.2 shows the architecture of HDFS.

Figure 2.2: The HDFS architecture

2.4 HBase

HBase is a column-oriented database management system that runs on top of

HDFS. It is well suited for sparse data sets, which are common in many big data.

Unlike relational database systems, HBase does not support a structured query

Chapter 2 Background Review and Related Work 9

language like SQL; in fact, HBase is not a relational data store at all. HBase

applications are written in Java much like a typical MapReduce application, and

HBase also supports writing applications in Avro, REST, and Thrift [3, 9].

An HBase system comprises a set of tables. Each table contains rows and

columns, much like a traditional database. Each table must have an element de-

fined as a Primary Key, and all access attempts to HBase tables must use this

Primary Key. An HBase column represents an attribute of an object; for example,

if the table is used to store diagnostic logs from servers, where each row might be

a log record, a typical column in such a table would be the timestamp of when the

log record was written, or perhaps the server name where the record originated.

In fact, HBase allows for many attributes to be grouped together into so called

column families, such that the elements of a column family are all stored together.

This is different from a row-oriented relational database, where all the columns of

a given row are stored together. With HBase you must predefine the table schema

and specify the column families. However, it is very flexible in that new columns

can be added to families at any time, making the schema flexible and therefore able

to adapt to changing application requirements. Just as HDFS has a NameNode

and slave nodes, and MapReduce has JobTracker and TaskTracker slaves, HBase

is built on similar concepts. In HBase a master node HMaster manages the clus-

ter, and region servers store portions of the tables and perform the work on the

data. HMaster is the implementation of the Master Server. The Master server

is responsible for monitoring all RegionServer instances in the cluster, and is the

interface for all metadata changes. In a distributed cluster, the Master typically

executes on the NameNode, and HRegionServer is the RegionServer implementa-

tion. It is responsible for serving and managing regions. In a distributed cluster,

a RegionServer runs on a DataNode. Through the Zookeeper other machines are

selected within the cluster as HMaster in HBase, unlike the HDFS architecture

NameNode with single point of availability problems.

Chapter 2 Background Review and Related Work 10

Figure 2.3: The roles in an HBase cluster

Figure 2.3 shows the roles in an HBase cluster. HBase is built on top of

Apache Hadoop and Apache ZooKeeper. Like the rest of the Hadoop ecosys-

tem components, it is written in Java. HBase can run in three different modes:

standalone, pseudo-distributed, and full-distributed. However, HBase has many

features which support both linear and modular scaling. HBase clusters can be

expanded by adding RegionServers hosted on commodity class servers. For ex-

ample, when a cluster expands from 10 to 20 RegionServers, it doubles both in

terms of storage as well as processing capacity. RDBMS can scale well, but only

up to a point - specifically, the size of a single database server - and for the best

performance requires specialized hardware and storage devices. HBase features of

note are:

• Strongly consistent reads/writes: HBase is not an ”eventually consistent”

DataStore. This makes it very suitable for tasks such as high-speed counter

Chapter 2 Background Review and Related Work 11

aggregation.

• Automatic sharding: HBase tables are distributed on the cluster via regions,

and regions are automatically split and re-distributed as your data grows.

• Automatic RegionServer failover.

• Hadoop/HDFS Integration: HBase supports HDFS out of the box as its

distributed file system.

• MapReduce: HBase supports massively parallelized processing via MapRe-

duce for using HBase as both source and sink [28].

• Java Client API: HBase supports an easy to use Java API for programmatic

access.

• Thrift/REST API: HBase also supports Thrift and REST for non-Java front-

ends.

• Block Cache and Bloom Filters: HBase supports a Block Cache and Bloom

Filters for high volume query optimization.

• Operational Management: HBase provides build-in web-pages for opera-

tional insight as well as JMX metrics.

2.4.1 HBase Region

Regions are the basic element of availability and distribution for tables, and are

comprised of a Store per Column Family.Follow Figure shows the heirarchy of

objects in HBase.

Chapter 2 Background Review and Related Work 12

Figure 2.4: The heirarchy of objects in HBase

2.4.2 Catalog tables

In HBase, The catalog tables -ROOT- and .META. exist as HBase tables. They

are filtered out of the HBase shell’s list command, but they are in fact tables just

like any other. The following Table shows the Metrics of catalog tables -ROOT-

and .META.

Chapter 2 Background Review and Related Work 13

Table 2.1: The Metrics of catalog tables -ROOT- and .META.

Region Name Metrics

-ROOT-„0.70236052 numberOfStores=1, numberOfStorefiles=1, store-

fileUncompressedSizeMB=0, storefileSizeMB=0,

memstoreSizeMB=0, storefileIndexSizeMB=0, read-

RequestsCount=538, writeRequestsCount=1, rootIn-

dexSizeKB=0, totalStaticIndexSizeKB=0, totalStat-

icBloomSizeKB=0, totalCompactingKVs=6, cur-

rentCompactedKVs=6, compactionProgressPct=1.0,

coprocessors=[]

.META.„1.1028785192 numberOfStores=1, numberOfStorefiles=0, store-

fileUncompressedSizeMB=0, storefileSizeMB=0,

memstoreSizeMB=0, storefileIndexSizeMB=0, read-

RequestsCount=8711, writeRequestsCount=70, rootIn-

dexSizeKB=0, totalStaticIndexSizeKB=0, totalStat-

icBloomSizeKB=0, totalCompactingKVs=0, current-

CompactedKVs=0, compactionProgressPct=NaN,

coprocessors=[]

Region names consist of the containing table’s name, a comma, the start key,

a comma, and a randomly generated region id. The -ROOT- and .META. tables

are internal system tables (or ’catalog’ tables). The -ROOT- keeps a list of all

regions in the .META. table. The .META. table keeps a list of all regions in the

system. The empty key is used to denote the table start and table end. A region

with an empty start key is the first region in a table. If region has both an empty

start and end keys, it is the only region in the table.

Chapter 2 Background Review and Related Work 14

2.4.3 DataModel

The Bigtable data model and therefor the HBase data model too since it’s a clone,

is particularly well adapted to data-intensive systems. Getting high scalability

from your relational database isn’t done by simply adding more machines because

its data model is based on a single-machine architecture [5]. For example, a JOIN

between two tables is done in memory and does not take into account the possibil-

ity that the data has to go over the wire. Companies who did propose relational

distributed databases had a lot of redesign to do and this why they have high

licensing costs. The other option is to use replication and when the slaves are

overloaded with writes, the last option is to begin sharding the tables in sub-

databases. At that point, data normalization is a thing you only remember seeing

in class which is why going with the data model presented in this thesis shouldn’t

bother you at all.

To put it simply, HBase can be reduced to a Map<byte[], Map<byte[], Map<byte[],

Map<Long, byte[]»». The first Map maps row keys to their column families. The

second maps column families to their column keys. The third one maps column

keys to their timestamps. Finally, the last one maps the timestamps to a single

value. The keys are typically strings, the timestamp is a long and the value is

an uninterpreted array of bytes. The column key is always preceded by its family

and is represented like this: family:key. Since a family maps to another map, this

means that a single column family can contain a theoretical infinity of column

keys. So, to retrieve a single value, the user has to do a get using three keys:

(Table, Rowkey, Column key, Timestamp)-> Value

2.4.3.1 RowKey

The row key is treated by HBase as an array of bytes but it must have a string

representation. A special property of the row key Map is that it keeps them in a

lexicographical order. For example, numbers going from 1 to 100 will be ordered

like the following Figure 2.5:

Chapter 2 Background Review and Related Work 15

Figure 2.5: Lexicographical order

To keep the integers natural ordering, the row keys have to be left-padded

with zeros. To take advantage of this, the functionalities of the row key Map

are augmented by offering a scanner which takes a start row key (if not specified,

the first one in the table) and an stop row key (if not specified, the last one in

the table). For example, if the row keys are dates in the format YYYYMMDD,

getting the month of July 2008 is a matter of opening a scanner from 20080700

to 20080800. It does not matter if the specified row keys are existing or not, the

only thing to keep in mind is that the stop row key will not be returned which is

why the first of August is given to the scanner [?, 4].

2.4.3.2 Column Families

A column family regroups data of a same nature in HBase and has no con-

straint on the type [25]. The families are part of the table schema and stay the

same for each row; what differs from rows to rows is that the column keys can

be very sparse. For example, row ”20080702” may have in its ”Name:” family the

following column keys:

Chapter 2 Background Review and Related Work 16

Name : Chinese

Name : Eng

Name : Other

While row ”20080703” only has:

Name : Other

Developers have to be very careful when using column keys since a key with

a length of zero is permitted which means that in the previous example data can

be inserted in column key ”Name :”. We strongly suggest using empty column

keys only when no other keys will be specified. Also, since the data in a family

has the same nature, many attributes can be specified regarding performance and

timestamps.

2.4.3.3 Timestamps

The values in HBase may have multiple versions kept according to the family

configuration. By default, HBase sets the timestamp to each new value to current

time in milliseconds and returns the latest version when a cell is retrieved. The

developer can also provide its own timestamps when inserting data as he can

specify a certain timestamp when fetching it.

2.4.3.4 Family Attributes

The following attributes can be specified or each families:

• Compression

– Record: means that each exact values found at a rowkey+columnkey

+timestamp will be compressed independently.

Chapter 2 Background Review and Related Work 17

– Block: means that blocks in HDFS are compressed. A block may con-

tain multiple records if they are shorter than one HDFS block or may

only contain part of a record if the record is longer than a HDFS block.

• Timestamps

– Max number: the maximum number of different versions a value has.

– Time to live: versions older than specified time will be garbage col-

lected.

• Block Cache

– Caches blocks fetched from HDFS in a LRU-style queue. Improves

random read performances and is a nice feature while waiting for full

in-memory storage.

2.4.4 Real Life Example

A good example on how to demonstrate the HBase data model is a blog because

of its simple features and domain. Suppose the following mini-SRS:

• The blog entries, which consist of a title, an under title, a date, an author, a

type (or tag), a text, and comments, can be created and updated by logged

in users.

• The users, which consist of a username, a password, and a name, can log in

and log out.

• The comments, which consist of a title, an author, and text, can be written

anonymously by visitors as long as their identity is verified by a captcha.

2.5 Zookeeper

Apache ZooKeeper is a software project of the Apache Software Foundation,

ZooKeeper was a sub project of Hadoop but is now a top-level project in its

Chapter 2 Background Review and Related Work 18

own right. ZooKeeper’s architecture supports high-availability through redundant

services. The clients can thus ask another ZooKeeper master if the first fails to

answer. ZooKeeper nodes store their data in a hierarchical name space, much like

a file system or a trie datastructure. Clients can read and write from/to the nodes

and in this way have a shared configuration service. Updates are totally ordered.

ZooKeeper is a distributed, open-source coordination service for distributed ap-

plications. It exposes a simple set of primitives that distributed applications can

build upon to implement higher level services for synchronization, configuration

maintenance, and groups and naming. It is designed to be easy to program to,

and uses a data model styled after the familiar directory tree structure of file

systems. It runs in Java and has bindings for both Java and C.Coordination ser-

vices are notoriously hard to get right. They are especially prone to errors such

as race conditions and deadlock. The motivation behind ZooKeeper is to relieve

distributed applications the responsibility of implementing coordination services

from scratch. Through the zookeeper selected other machines within the cluster

as HMaster in HBase, does not like the HDFS architecture NameNode have single

point of availability problems.

2.6 Cloudera CDH

CDH (Cloudera’s Distribution, including Apache Hadoop) is Cloudera’s 100%

open-source Hadoop distribution, and the world’s leading Apache Hadoop solu-

tion. More enterprises have downloaded CDH than all other distributions com-

bined. Furthermore, CDH is backed by Cloudera’s global support organization

and its unparalleled team of developers and committers who contribute more to

the Apache Hadoop ecosystem than any other company. This combination means

that by using Cloudera, the developer can be sure of successfully deploying Hadoop

project, and deployed it faster [2]. CDH delivers the core elements of Hadoop –

scalable storage and distributed computing – as well as all of the necessary enter-

prise capabilities such as security, high availability and integration with a broad

range of hardware and software solutions. All the integration work is done for the

Chapter 2 Background Review and Related Work 19

developer, and the entire solution is thoroughly tested and fully documented. By

taking the guesswork out of building out the Hadoop deployment, CDH gives the

developer a streamlined path to success in solving real business problems.

2.7 Related Work

Big Data is more talked about than felt in our everyday lives; there will have

big changes in industrial and business processes when we have pervasive real-time

analytics of sensor data.

The ubiquity of location enabled devices has resulted in a wide proliferation

of location based applications and services. To handle the growing scale, database

management systems driving such location based services (LBS) must cope with

high insert rates for location updates of millions of devices, while supporting effi-

cient real-time analysis on latest location. Shoji Nishimura present the design and

implementation of MD -HBase [18], a scalable data management infrastructure

for LBSs that bridges this gap between scale and functionality. Their approach

leverages a multi-dimensional index structure layered over a key-value store. The

underlying key-value store allows the system to sustain high insert throughput and

large data volumes, while ensuring fault-tolerance, and high availability. Shoji

Nishimura present the design of MD -HBase that demonstrates how two standard

index structures—the K-d tree and the Quad tree—can be layered over a range par-

titioned key-value store to provide scalable multi-dimensional data infrastructure.

their prototype implementation using HBase, a standard open-source key-value

store, can handle hundreds of thousands of inserts per second using a modest

16 node cluster, while efficiently processing multi-dimensional range queries and

nearest neighbor queries in real-time with response times as low as few hundreds

of milliseconds.

As the development of telecommunication technology and mobile device tech-

nology, geo-location data happened everywhere and every time from humans’real

life. Because all of the smart device’s applications are include spatial components

Chapter 2 Background Review and Related Work 20

now. When the traditional relational database cannot support the continuously

flooded data, researchers developed key-value based NoSQL database system to

meet this problem. But spatial data processes are rarely considered until now.

In this case client user must have their own spatial data processing component to

process the spatial data from NoSQL database. In this thesis, Yan Li and his team

proposed a spatial index based on document based NoSQL which can distribute

the spatial data by using the geo-hash method and can satisfy the high insert rate

by using the b-tree based index method. At last their developed our method on

OrientDB which is document based NoSQL[16].

To find a scalable solution to process the large-scale data is a critical issue in

either the relational database system or the emerging NoSQL database. With the

inherent scalability and fault tolerance, MapReduce is attractive to process the

massive data in parallel. Most of previous works focus on the Hadoop distributed

file system to support the SQL or SQL-like queries. Wu-Chun Chung with his

team propose the JackHare framework with SQL query compiler, JDBC and a

systematical method using MapReduce for processing the unstructured data in

NoSQL database. While importing the JDBC driver to a SQL client GUI, Wu-

Chun Chung et al. provide the corresponding queries to manipulate the data

residing in the NoSQL database. To organize the data with less complexity, Wu-

Chun Chung with his team further introduce a remapping strategy to translate the

data model from relational database to NoSQL database. Experimental results

show that their approaches can perform Wu-Chun Chung with his teamll with

efficiency and scalability.

Paolo Atzeni et al. propose a common programming interface to NoSQL sys-

tems called SOS (Save Our Systems)[7]. Its goal is to support application devel-

opment by hiding the specific details of the various systems to solve the problem

heterogeneity of the languages and of the interfaces they offer to developers and

users. They provided a common data model that allows the creation and querying

of NoSQL databases defined in MongoDB, HBase and Redis using a common set

of simple atomic operation. It is based on a metamodelling approach, in the sense

that the specific interfaces of the individual systems are mapped to a common one.

Chapter 2 Background Review and Related Work 21

The tool provides interoperability as well, since a single application can interact

with several systems at the same time.

Combined the features of data flow management systems and the advantages

of Hadoop cloud computing platforms, Zhi QIU et al. design and implement

a Hadoop-based platform for distributed data flow management systems, using

MapReduce to process the user request, using Hadoop distributed file system

(HDFS) to manage the data flow files, and using Hadoop database (HBase) to

manage the data flow information[21]. The data flow management system based

on Hadoop is improved in efficiency, compared with the traditional system. It also

carries on the advantages of Hadoop cloud computing platform, such as reliability

and high expandability. Especially when the overall workload is big, this system

could expand conveniently, and the administrator could improve the dealing ability

of the system through adding more nodes.

Chapter 3

System Design and

Implementation

3.1 System Architecture

The main goal is to build an HBase cluster system to store the data which have

converted from Excel document file. The sub-system focuses on HBase database

services to offer a put/get database service. The second is to offer sample GUI

interface to access HBase for general use. In this chapter, we will overview the

whole system.

22

Chapter 3 System Design and Implementation 23

Figure 3.1: Structure of the system

The main system shown in Figure 3.1 depicts the structure of the system.

The system has ZooKeeper cluster, which provides a coordination service for the

entire HBase cluster, and handling master selection, node registration. The Excel

file parser can pares text in Excel; it can read data from Excel document file

worksheets and convent to string, and put strings into HBase through the Hbase

client. The Hbase client provides APIs to access the HBase cluster, and the client

communicates with the HBase master to lookup which region server should access

to. The Region lookups can find which region server holds a specific row key range

by two system tables: ROOT- table and .META. table supported. The -ROOT-

table is used to refer to regions in the .META.table, while the .META.table holds

references to all user regions.

Chapter 3 System Design and Implementation 24

There are several components in the system:

• Excel file Parser: To Read data from Excel document file and convent them

to string.

• HBase Master: Its job includes load balancing, region allocation, failover,

and log splitting.

• HBase Client: To communicate with the Zookeeper to lookup which region

server should access and put/get/scan to HBase.

• Region server: To hold the actual regions and handle I/O requests, flush the

in-memory data store to HDFS, and split or compact regions.

• HDFS: To place data files fromHBase stores and write ahead logs (WAL).

The system of this thesis uses cloudera CDH to build HBase cluster system.

HBase cluster plays the role of the database to store medical care information,

Figure 3.2 shows two CDH clusters.

Figure 3.2: HBase clusters

Chapter 3 System Design and Implementation 25

CDH cluster combined Hadoop distributions. Hadoop software library is a

framework that allows for the distributed processing of large data sets across clus-

ters of computers using simple programming models. It is designed to scale up

from single servers to thousands of machines, each offering local computation and

storage. Rather than rely on hardware to deliver high-availability, the library itself

is designed to detect and handle failures at the application layer, so delivering a

highly-available service on top of a cluster of computers, each of which may be

prone to failures.

Hadoop included hadoop distributed file system (HDFS) and MapReduce. The

MapReduce is a programming model for processing large data sets with a parallel.

We also implement Zookeeper for maintaining configuration information, naming,

providing distributed synchronization, and providing group services on hadoop, as

the figure shows the relation of hadoop software.

Figure 3.3: Hadoop software relation

The main components include:

• Hadoop. Java software framework to support data-intensive distributed ap-

plications.

• ZooKeeper. A highly reliable distributed coordination system.

• MapReduce. A flexible parallel data processing framework for large data

sets.

Chapter 3 System Design and Implementation 26

• HDFS. Hadoop Distributed File System.

• HBase. Key-value database.

The flowchart in Figure 3.4 describes operations of the data written into hbase.

Figure 3.4: Flowchart of data write to HBase

The sequence diagrams in Figure 3.5 describes how the main components of

the system interact to fulfill the goal of writing data to HBase.

Chapter 3 System Design and Implementation 27

Figure 3.5: Sequence diagrams of data write to HBase

3.2 System Setup

3.2.1 HBase Testbed

This section shows our real HBase Testbed. We have three computers and one

Gigabit switch. All computers have installed CentOS 6.3 x86_64 version, and

already changed firewall to stop status and SELinux to disabled status. It is de-

veloped to support Cloudera’s distribution including Apache Hadoop. Computer

master and 1, 2 act as hosts of the HBase cluster.

3.2.2 CDH installation

First, we should configure /etc/hosts file to know the mapping of some hostnames

to IP addresses, then we install OpenSSH: a SSH connectivity tools, since the CDH

needs to transfer files between hosts on a network by using the scp command.

Chapter 3 System Design and Implementation 28

Figure 3.6: /etc/hosts file mapping hostname to IP address

After we setting IP and SSH service to the computers, we can download the

package of CDH to install the Cloudera Manager as shown in Figure 3.7, to control

over every part of CDH.

Figure 3.7: Install Cloudera Manager

After finishing installing Cloudera Manager Server, we can log into the Cloud-

era Manager web console on default port 7180. The URL will be like this:

http(s)://<Server host>:<port>; then start installing the CDH cluster, shown

in Figure 3.8.

Chapter 3 System Design and Implementation 29

Figure 3.8: Cloudera Manager install CDH cluster

The Cloudera Manager web page also provides user to view and modify config-

uration of Hadoop services. Go to the monitor tab and click status option. Figure

?? shows hosts physical attributes status like memory, disk, CPU, and all service

status in the cluster, as shown as Figure 3.10.

Figure 3.9: Cloudera Manager host monitor pag

Chapter 3 System Design and Implementation 30

Figure 3.10: Service status in CDH cluster

Open HBase web UI by using browser to access master server at port 60000,

as shown in Figure 3.11. Figure 3.12 shows RegionServer attributes and status at

master host port 60020 web page.

Figure 3.11: HBase master status

Chapter 3 System Design and Implementation 31

Figure 3.12: RegionServer attributes and status

Chapter 4

Experimental Results

4.1 Experimental Environment

This section presents several experiments conducted on one physical machine and

one virtual machine. Each nodes contained 1-GE NICs, but had different CPU

and memory levels, as shown in Table 2. We used Linux command “dd”to test

the disk write performance for each node, and used a network testing tool iperf to

measure the throughput of a network by TCP data streams.

Table 4.1: Hardware Specification

Node CPU RAM Disk

speed

Network

speed

OS version Java ver-

sion

Node

1

Intel(R)

Core(TM)2

Quad CPU

Q9550

4GB 352

MB/

s

96.5

Mbits/sec

CentOS

x86-64

jre 1.6.0-

31 -b04

Node

2

Virtualized 2

cores from Intel

i7-2600

1GB 412

MB/

s

94 Mbits/

sec

CentOS

x86-64

jre 1.6.0-

31 -b04

32

Chapter 4 Experimental Results 33

In the experiment, we used HBase-0.94.2 API and .hadoop-client-1.0.3 API.

We also used JAVA programming language to build up a client. Table 4.2 shows

the software specification and setting arguments.

Table 4.2: Software specification and setting arguments

Version Argument/Option

HBase 0.94.2 Master at Node1:60010

Hadoop 2.0.0

MapReduce 2 2.0.0 map.tasks.maximum=4 re-

duce.tasks.maximum=2

HDFS 2.0.0 Block size=64MB Replic=3

Zookeeper 3.4.5 Quorum at port 218

The experimental platform is built on two nodes. Node 1 acts as HMaster. It

has 1 Intel Core(TM), 2 Quad Q9550 CPU (12M Cache, 2.83 GHz), 4 GB memory,

and 1TB disk. And Node 2 acts as RegionServer. It has 2 Core CPU Virtualized

from Intel i7-2600 and 1 GB memory. Since the disk I/O throughput is important

for database system and the disk speed of Node 2 is faster than that of Node 1,

we used Node 2 to act as RegionServer.

Chapter 4 Experimental Results 34

Our experimental data consist of basic information of patients over the age of

65, with 260398 records in total. Four datasets were built, the first three datasets

contained 65535 records, and the last dataset contained 63793 records. First,

we needed to create HBase schemas by designing Rowkey, ColumnFamily, and

qualifier of column. The Rowkey length was kept as short as reasonable such that

it can still be useful to access required data. In fact, we should expect tradeoffs

when designing Rowkeys: a short key design that is useless for data access is not

more valuable than a longer key with better get/scan properties. Table 4.3 shows

the schema of HBase used to store patients records.

Table 4.3: Schema of HBase which stores patients records

Rowkey Name Birth Address Sex

Chinese Type / Day Home Sex

Patients ID

To convert experimental data from Excel document file to HBase column-

oriented table, we design a table schema as shown in previous Table 4.3, but in

HBase, the format of data store actually looks like JSON format shown below.

Chapter 4 Experimental Results 35

Figure 4.1: The data structure of experimental data in HBase

4.2 Experimental Results and Discussion

In the experiments, hbase.hregion.max.filesize is set as 1073741824 (1GB) As

shown in Figure 4.2, in which 260398 records were stored in the 4 datasets. Ac-

tually all records were put into the table“PatientsInfo”in HBase by generating

Chapter 4 Experimental Results 36

monotonically increasing Rowkeys.

Figure 4.2: Results of scan the PatientsInfo table

After we put all data into the table ”PatientsInfo” of hbase cluster from excel

files, we can access RegionServer Web interface to check the table information.

Figure 4.3 shows the region details on the RegionServer web GUI interface.

Figure 4.3: The region detail on RegionServer

• NumberOfStores: This is the number of Stores targeted for compaction in

the RegionServer.

• NumberOfStorefiles: Number of StoreFiles opened on the RegionServer. A

store may have more than one StoreFile (HFile).

Chapter 4 Experimental Results 37

4.2.1 Optimization of HBase properties

We evaluate the cost of putting data into HBase in different configurations

on HBase. Table 4.4 shows that the time cost of putting 260398 records into

HBase when setting three properties with different value of HBase. Following

items describe these three properties.

• setAutoFlush()

Normally, the puts will be sent one at a time to the RegionServer. If

autoFlush set to false, these messages are not sent until the write-buffer is

full.

• setWriteToWAL()

Turning writeToWAL off means that the RegionServer will not write the

Put to the Write Ahead Log(WAL), only into the memstore; however the

consequence is that if there is a RegionServer failure, there will be data loss.

• setWriteBufferSize(10MB)

Write buffer size in bytes. A larger buffer requires more memory on both

the client and the server because the server instantiates the past write buffer

to process it but reduces the number of remote procedure calls (RPC).

Table 4.4: Configuring different properties of HBase

HBase Properties/Configuration A B C D E

setAutoFlush() on on on off off

setWriteBufferSize(10MB) off on on on on

setWriteToWAL() on on off on off

TIME 950sec 924sec 652sec 63sec 48sec

Chapter 4 Experimental Results 38

In the experiments, we convert experimental data from Excel document file

to HBase with no limit on the number of times, and no high fault tolerance con-

siderations; the purpose is to find the fastest way. Since errors in the conversion

process are few, we choose E configuration that can significantly reduce the time

consumed. Finally, we choose E configuration as the optimal setting. If we need

to consider a higher stability, or with fault tolerance mechanisms, then need to

choose setAWriteToWAL state is ON setting in the different contexts, such as

configuration A, B, D, but it has relative increase in time cost. When we con-

figure another property hbase.regionserver.handler.count to 20 on RegionServer,

the property setup number of RPC server instances spun up on RegionServer. At

configuration A, the time cost reduced 35 seconds, as shown in Table 4.5.

Table 4.5: Set HBase RegionServer Handler Count value to 20

HBase Properties/Configuration A B C D E

setAutoFlush() on on on off off

setWriteBufferSize(10MB) off on on on on

setWriteToWAL() on on off on off

TIME 915sec 897sec 620sec 63sec 43sec

The following Figure 4.4 to 4.7 collection shows the information when using

configuration A to put data into HBASE, including the write requests, memory

usage, flush size information. In configuration A, as turning on the setAutoFlush,

we can see the figure 4.7 shows memstore in Regionserver be flushed five times

during the put status.

Chapter 4 Experimental Results 39

Figure 4.4: Write requests on configuration A

Figure 4.5: Write requests per sec on configuration A

Chapter 4 Experimental Results 40

Figure 4.6: Memory usage on configuration A

Figure 4.7: Flush average size and operations rate on configuration A

The following Figure 4.8 to 4.13 collection shows the information when using

configuration E to put data into HBASE. In configuration E, as turning off the se-

tAutoFlush, we can see the figure 4.11 shows memstore in Regionserver be flushed

only one time during the put status. And when we turn off the setWriteToWAL,

the RegionServer will not write the Put to the Write Ahead Log; so we can see

Figure 4.12 recorded 29790 operations without WAL.

Chapter 4 Experimental Results 41

Figure 4.8: Write requests on configuration E

Figure 4.9: Write requests per sec on configuration E

Chapter 4 Experimental Results 42

Figure 4.10: Memory usage on configuration E

Figure 4.11: Flush average Size and operations rate on configuration E

Chapter 4 Experimental Results 43

Figure 4.12: Total: Puts without WAL on configuration E

Figure 4.13: Memory heap and Memstore size E

4.2.2 Optimization of memory usage

In the Figure 4.10 and 4.6, we found the java process heap committed memory

always very close to the maximum memory size for the java process heap even fill

all. So we believe that java heap committed size should be required far more

Chapter 4 Experimental Results 44

than 125.9MB. Thus, we increase maximum size for the java Process heap to 1GB

by java -Xmx command, and as the following Figure 4.14 shows the java heap

committed the memory size to 330.2MB and the truly used size reached around

209.9MB.

At the same time, we also modify two properties on hbase.regionserver.global.memstore.upperLimit

and hbase.regionserver.global.memstore.lowerLimit in Regionserver to increase mem-

ory utilization efficiency. Because the default parameters in HBase are not fully

used memory, and without interfering with other used heap size parameters (eg

hfile.block.cache.size) situation,

hbase.regionserver.global.memstore.upperLimit upgrade 0.1, also is to increase the

heap size 10% occupied space, and will not affect the overall environment. Fol-

lowing two items describe these two properties.

• hbase.regionserver.global.memstore.upperLimit

This parameter is the order to limit memstores occupied the total mem-

ory. We set the value from 0.4 to 0.5, which means when 50% of the heap of

the sum of the memory occupied by the all ReigonServer memstore, HBase

forced to block all updates and flush of these memstore to release the memory

occupied by all memstore.

• hbase.regionserver.global.memstore.lowerLimit

We set the value from 0.35 to 0.45. With the UpperLimit of only 45%

global memstore memory, it does not flush all memstore, and it will find

some of the memory footprint of larger memstore; the individual flush, of

course, is updated or blocked.

As the memstore size at configuration E reached 46MB over than

hbase.regionserver.global.memstore.lowerLimit parameter set at 0.4 times the mem-

ory size of heap used memory 37.7MB. The memstore is soon flushed into HFile

shown in Figure 4.13.

Chapter 4 Experimental Results 45

After the above settings, the hbase.regionserver.global.memstore.upperLimit

is set to 0.5; the memstore size is increased from 46MB to 105.45MB shown in

Figure 4.15, and the total data put time reduced to 35sec shown in Figure 4.16.

Figure 4.14: Memory usage with increased maximum size

Figure 4.15: Memory heap and Memstore size with increased upperLimit

Chapter 4 Experimental Results 46

Figure 4.16: Put time optimization

4.2.3 Discussion

Above the experimental, we realize that the RowKey design has some prob-

lems, and there are two problems that we should take care of:

• Rowkey Length

We tried to minimize the row and column sizes. The KeyValue class is the

heart of data storage in HBase. When we design Row Key, ColumnFamily,

and column in HBase, the names must be as short as possible, because

all of them are embedded within the KeyValue instance. The longer these

identifiers are, the bigger the KeyValue is. As the Table 4.6 shows the

KeyValue of data storage in HBase [20].

Table 4.6: KeyValue of data storage in HBase.

Rowkey=r1, cf:attr1= v1

rowlength ———— 2

row —————– r1

columnfamilylength — 2

columnfamily ——– cf

columnqualifier —— attr1

timestamp ———– server time of Put

keytype ————- Put

Chapter 4 Experimental Results 47

• Rowkey relation

While creating corresponding Rowkeys in HBase, problems appeared

when we saved monotonically increasing values in the alphabetical order.

The new writes were not evenly distributed [32], and the last of the original

region become a new high hit rate region in need of a split. Monotoni-

cally increasing keys in a single region can reduce the randomly distributed

consumption, but overall, it is best to avoid using the sequence number or

timestamp as the row-key.

Chapter 5

Conclusions and Future work

As stated, goal of this thesis is to provide an integrated data parallel processing

service environment, to ensure various demands of data services from different

medical divisions, and to offer services required for the information combination

and computing resources. Therefore, the architecture of the system must be mod-

ular to support data services of customized, reusable, and scalable characteristics.

Based on the needs of different applications, the cluster resources are timely ad-

justed to serve demands for data services of each application. Through the auto-

matic information integration mechanism, not only data consistency and integrity

requirements can be met in different data services applications, but also a unified

data access information system can be built to ensure the individual as well as

overall service needs.

In the future, we plan to use virtualization technology to construct a dynamic

increase or decrease RegionServer in the HBase cluster for detection of load written

by RegionServer, and evaluation of the total load of the physical machine; and then

move data from regions in high access rates during off-peak hours to achieve load

balancing in the RegionServers. On the other hand HBase can effectively store

large number of sensor data like environmental monitoring data. Because the

amount of data collected in a day is greater than 18,000, it is a very large load for

a single stage sensor. We also plan to implement HBase block caches and Bloom

filters for real-time queries to provide a more complete cloud service.

48

Bibliography

[1] A.t. kearney it analysis. http://www.atkearney.com/home.

[2] Cloudera recommendations on hadoop/ hbase cluster capacity planning.

http://www.cloudera.com/blog/2010/08/hadoophbase-capacity-planning/.

[3] Hadoop wiki - hbase. http://wiki.apache.org/hadoop/Hbase.

[4] Nchc cloud computing research group. http://trac.nchc.org.tw/cloud.

[5] E. Abstract). Database scalability, elasticity, and autonomy in the cloud. In

J. Yu, M. Kim, and R. Unland, editors, DASFAA 2011, volume I of Part,

page 6587. Springer, pp.

[6] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny. Work-

load analysis of a large-scale key-value store. In Proceedings of the 12th ACM

SIGMETRICS/PERFORMANCE joint international conference on Measure-

ment and Modeling of Computer Systems, SIGMETRICS ’12, pages 53–64,

New York, NY, USA, 2012. ACM.

[7] P. Atzeni, F. Bugiotti, and L. Rossi. Uniform access to nosql systems. Infor-

mation Systems, (0):–, 2013.

[8] C.-R. Chang, M.-J. Hsieh, J.-J. Wu, P.-Y. Wu, and P. Liu. Hsql: A highly

scalable cloud database for multi-user query processing. In Cloud Computing

(CLOUD), 2012 IEEE 5th International Conference on, pages 943–944, 2012.

49

References 50

[9] L. Ding, G. Wang, J. Xin, X. Wang, S. Huang, and R. Zhang. Commapreduce:

An improvement of mapreduce with lightweight communication mechanisms.

Data & Knowledge Engineering, (0):–, 2013.

[10] J. Dittrich and J.-A. Quiané-Ruiz. Efficient big data processing in hadoop

mapreduce. Proc. VLDB Endow., 5(12):2014–2015, Aug. 2012.

[11] B. Dong, Q. Zheng, F. Tian, K.-M. Chao, R. Ma, and R. Anane. An optimized

approach for storing and accessing small files on cloud storage. Journal of

Network and Computer Applications, 35(6):1847 – 1862, 2012.

[12] A. Floratou, J. M. Patel, E. J. Shekita, and S. Tata. Column-oriented storage

techniques for mapreduce. Proc. VLDB Endow., 4(7):419–429, Apr. 2011.

[13] Y. Hu and W. Qu. Efficiently extracting change data from column oriented

nosql databases. In J.-S. Pan, C.-N. Yang, and C.-C. Lin, editors, Advances

in Intelligent Systems and Applications - Volume 2, volume 21 of Smart Inno-

vation, Systems and Technologies, pages 587–598. Springer Berlin Heidelberg,

2013.

[14] W. Jiang, H. Li, H. Jin, L. Zhang, and Y. Peng. VESS: An Unstructured Data-

Oriented Storage System for Multi-Disciplined Virtual Experiment Platform.

Springer-Verlag, Jul 2011.

[15] K. K.-Y. Lee, W.-C. Tang, and K.-S. Choi. Alternatives to relational

database: Comparison of nosql and {XML} approaches for clinical data stor-

age. Computer Methods and Programs in Biomedicine, 110(1):99 – 109, 2013.

[16] Y. Li, G. Kim, L. Wen, and H. Bae. Mhb-tree: A distributed spatial index

method for document based nosql database system. In Y.-H. Han, D.-S.

Park, W. Jia, and S.-S. Yeo, editors, Ubiquitous Information Technologies

and Applications, volume 214 of Lecture Notes in Electrical Engineering, pages

489–497. Springer Netherlands, 2013.

References 51

[17] Y. Luo, S. Luo, J. Guan, and S. Zhou. A {RAMCloud} storage system based

on hdfs: Architecture, implementation and evaluation. Journal of Systems

and Software, 86(3):744 – 750, 2013.

[18] S. Nishimura, S. Das, D. Agrawal, and A. El Abbadi. MD -hbase: design

and implementation of an elastic data infrastructure for cloud-scale location

services. Distributed and Parallel Databases, 31(2):289–319, Jun 2013.

[19] A. Path and B. Mappings. Data integration over nosql stores using. In

A. Hameurlain et al., editors, DEXA 2011, volume I of Part, page 6860.

Springer, pp.

[20] P. Pirzadeh, J. Tatemura, and O. Po. Performance evaluation of range queries

in key value stores. Journal of Grid Computing, 10(1):109–132, 2012.

[21] Z. QIU, Z. wen LIN, and Y. MA. Research of hadoop-based data flow man-

agement system. The Journal of China Universities of Posts and Telecom-

munications, 18, Supplement 2(0):164 – 168, 2011.

[22] K. Slagter, C.-H. Hsu, Y.-C. Chung, and D. Zhang. An improved partition-

ing mechanism for optimizing massive data analysis using mapreduce. The

Journal of Supercomputing, pages 1–17, 2013.

[23] J. Sun, Q. Jin, D. of Computer, S. Department, of Computer, and Science.

Scalable rdf store based on hbase and mapreduce. In 2010 3rd International

Conference on Advanced Computer Theory and Engineering(ICACTE). IEEE,

2010.

[24] R. Taylor. An overview of the hadoop/mapreduce/hbase framework and its

current applications in bioinformatics. BMC Bioinformatics, 11(Suppl 12):1–

6, 2010.

[25] Y. University, C. HP, Labs, N. Haven, CT, U. Amsterdam, T. N. P. Alto, CA,

and USA. Column-oriented database systems daniel j. abadi peter a. boncz

stavros harizopoulos. 2009.

References 52

[26] R. F. van der Lans. Chapter 3 - data virtualization server: The building

blocks. In Data Virtualization for Business Intelligence Systems, pages 59 –

107. Morgan Kaufmann, Boston, 2012.

[27] via an Extended and C. Framework. Enhancing query support in hbase. In

W. Abramowicz et al., editors, ServiceWave 2011, volume 6994 of LNCS, page

75–87. Springer, 2011.

[28] H. Wang, X. Qin, Y. Zhang, S. Wang, and Z. Wang. Lineardb: A relational

approach to make data warehouse scale like mapreduce. In J. Yu, M. Kim, and

R. Unland, editors, DASFAA 2011, volume II of Part, page 6588. Springer,

pp.

[29] C.-T. Yang, C.-T. Kuo, W.-H. Hsu, and W.-C. Shih. A medical image file

accessing system with virtualization fault tolerance on cloud. In R. Li, J. Cao,

and J. Bourgeois, editors, GPC 2012, volume 7296 of LNCS, page 338–349.

Springer, 2012.

[30] C.-T. Yang, W.-C. Shih, G.-H. Chen, and S.-C. Yu. Implementation of a

Cloud Computing Environment for Hiding Huge Amounts of Data, pages 1–

7. Institute of Electrical and Electronics Engineers, Sep 2010.

[31] C.-T. Yang, W.-C. Shih, and C.-L. Huang. Implementation of a distributed

data storage system with resource monitoring on cloud computing. In R. Li,

J. Cao, and J. Bourgeois, editors, GPC 2012, volume 7296 of LNCS, page 64–

73. Springer, 2012.

[32] C. Zhang, H. De, Sterck, D. R. Cheriton, S. of Computer, S. Department,

of Applied, and Mathematics. Supporting multi-row distributed transactions

with global snapshot isolation using bare-bones hbase. IEEE, 4244.

[33] F. Zhu, J. Liu, L. Xu, and T. C. of Software Engineering. A fast and high

throughput sql query system for big data. In X. Wang et al., editors, WISE

2012, volume 7651 of LNCS, page 783–788. Springer, 2012.

Appendix A

CentOS System Settings

I. Make sure that SELinux is disabled or permissive

#selinux:setenforce 0

#vi /etc/selinux/config

Replace the SELINUX option enable to disable

#SELINUX=disabled

II. Disable iptables

#echo never > /sys/kernel/mm/redhat_transparent_hugepage/defrag

III. Disable iptables

#service iptables stop

#chkconfig iptables off

IV. Specify TCP network information

#vi /etc/sysconfig/network-scripts/ifcfg-eth0 BOOTPROTO=none

ONBOOT=yes

IPADDR=192.168.100.1

NETMASK=255.255.255.0

53

GATEWAY=192.168.100.254

V. Lists hosts to be resolved locally

#vi /etc/hosts hbase-mserver0 192.168.100.1

hbase-rserver1 192.168.100.2

hbase-rserver2 192.168.100.3

hbase-rserver3 192.168.100.4

hbase-rserver4 192.168.100.5

VI. List DNS servers for internet domain name resolution

#vi /etc/resolve.conf

#nameserver 8.8.8.8

VII. Restart network

#service network restart

54

Appendix B

Cloudera Manager installation

I. Install CDH related packages

#yum –y install wget openssh-clients perl ntp

II. Time Correction

#ntpdate time.windows.com && hwclock –w

#date –R

#cp /usr/share/zoneinfo/Asia/Taipei /etc/localtime

III. Download Cloudera CM4

#wget http://archive.cloudera.com/cm4/installer/latest/cloudera-

manager-installer.bin

#chmod u+x cloudera-manager-installer.bin

#./cloudera-manager-installer.bin

Open browser [HostIP]:7180 Default account and password {admin, admin}

IV. Cluster Installation

Specify hosts for CDH cluster installation.

55

Appendix C

Pseudo Code

/* HBase connection setup

*/

HBaseConfiguration config;

config = new HBaseConfiguration();

config.set("hbase.zookeeper.quorum", "hostname");

config.set("hbase.zookeeper.property.clientPort", "port");

HTable table = new HTable(config, "TableName");

String row;

String family[] = {"FamilyColumn1", "FamilyColumn2", "FamilyColumn3", "FamilyColumn4", "FamilyColumn5"};

String column[] = {"Column1", "Column2", "Column3", "Column4", "Column5"};

String value;

Put p;

/* Optimization properties

table.setWriteBufferSize(10 * 1024 * 1024);

table.setAutoFlush(false);

p.setWriteToWAL(false);

*/

/*

Open Excel file and get value

Build put object

*/

try {

Workbook book = Workbook.getWorkbook();

int PagsOfTotalSheet

int RowsOfNowSheet

for (int columnsOfNowSheet = 0; columnsOfNowSheet <= non-empty columns; columnsOfNowSheet++) {

for (int count = 0; count <= PagsOfTotalSheet; count++) {

for (int i = 0; i < RowsOfNowSheet; i++) {

56

Sheet sheet = book.getSheet(count);

Cell cella = sheet.getCell(columnsOfNowSheet, i);

value = cella.getContents();

p = new Put(Bytes.toBytes(row));

totalheapsize += p.heapSize();

p.add(Bytes.toBytes(family[columnsOfNowSheet]), Bytes.toBytes(column[columnsOfNowSheet]), Bytes.toBytes(value));

table.put(p);

}

}

}

book.close();

57

	摘要
	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Thesis Organization

	2 Background Review and Related Work
	2.1 Bigdata
	2.2 NoSQL
	2.3 HDFS
	2.3.1 HDFS architecture

	2.4 HBase
	2.4.1 HBase Region
	2.4.2 Catalog tables
	2.4.3 DataModel
	2.4.3.1 RowKey
	2.4.3.2 Column Families
	2.4.3.3 Timestamps
	2.4.3.4 Family Attributes

	2.4.4 Real Life Example

	2.5 Zookeeper
	2.6 Cloudera CDH
	2.7 Related Work

	3 System Design and Implementation
	3.1 System Architecture
	3.2 System Setup
	3.2.1 HBase Testbed
	3.2.2 CDH installation

	4 Experimental Results
	4.1 Experimental Environment
	4.2 Experimental Results and Discussion
	4.2.1 Optimization of HBase properties
	4.2.2 Optimization of memory usage
	4.2.3 Discussion

	5 Conclusions and Future work
	Bibliography
	Appendix
	A CentOS System Settings
	B Cloudera Manager installation
	C Pseudo Code

