

東 海 大 學 資 訊 工 程 研 究 所

碩士論文

指導教授：呂芳懌 博士

一個採用循序邏輯機制、三維運算和動態置換盒的

加密方式

A Secure Data Encryption Method Employing a

Sequential-Logic Style Mechanism,

Three-Dimensional Operation and Dynamic

Transition Box

研究生：戴成儒

中華民國 一百零二年 七 月

致 謝

 這本論文的完成，代表著研究所的生涯已步入了尾聲。在這兩年的學習過程

中，首先要感謝的是指導教授-呂芳懌教授，讓我從一個一臉茫然地踏入研究所的

菜鳥， 變成一個能夠抬頭挺胸踏出社會的戰士。在這兩年來的日子裡，教授循循

善誘的為我指引與督導，並且在我撰寫論文時，仔細的檢閱我的文章內容，並給

予寶貴的建議與改正，使這篇論文得以更加完整。在研究所的這段日子中，我忘

不了教授陪著我一起待在實驗室研究到半夜的日子，更忘不了和教授一同出席研

討會與外國朋友相處的日子，其他還有更多過去不曾有過的嘗試和體驗，都要感

謝教授讓我在這兩年間變得更加充實。

 同時我也要感謝黃宜豊老師，在我對求學生涯陷入迷網，大學畢業正準備放

棄升學之時給予開導，讓我毅然決定繼續升學就讀研究所。在我研究陷入困難時，

老師也不時的與我討論，並給予我研究啟發，讓我的研究得以順利進行。

 接著，要感謝實驗室的所有成員，因為有大家的熱情與幫助，為待實驗室的

日子增加不少活力，今後即使離開了，我也不會忘記和大家一同奮鬥的日子，在

此也祝福各位之後都能如期的完成學業。

 最後，要感謝我的家人們，感謝你們的肯定與鼓勵，讓我在遇到挫折時，能

夠毫不徬徨的繼續前進，讓我對未來的路途更加堅定，感謝你們。

 成儒

 i

中文摘要

近幾年來，Advanced Encryption Standard (AES)和 Data Encryption

Standard (DES)已被廣泛應用於電子信息的保護。然而，由於平行計算

和硬體速度的快速發展，這兩種演算法一直遭受到暴力攻擊的威脅，而

要能有效抵禦這類型的威脅，基於此，我們的研究中提出了一個新的資

料加密方法，稱為“安全的回授加密機制（簡稱 SeFEM），它採用三個安

全方案，包括一個循序邏輯式的加密/解密機制、三維運算和動態置換盒，

其能提高密鑰的破解難度，並能有效的抵禦暴力攻擊和密碼分析攻擊，

使得密文的安全等級有效的被提升。循序邏輯式的加/解密機制是一種反

饋過程，其中每一回合的操作，皆會在內部生成三把動態回授金鑰提供

給下一回合使用，而三維運算包括異或（⊕）、二進制加法（+2）和異同

（⊙）的操作，不同運算子的使用能夠進一步提高計算的複雜度。動態

置換盒會非線性的重新排列金鑰中每一個 bit 的位置，使 SeFEM 的破難

度難度提升。分析結果顯示，SeFEM 比 DES 和 AES 具有更高的安全等級、

加密效率與更好的靈活性。

關鍵詞：SeFEM，循序邏輯式的機制，三維運算，動態置換盒，動態回授金

鑰

 ii

Abstract

In recent years, the Advanced Encryption Standard (AES) and Data Encryption

Standard (DES) have been commonly and widely used to protect important information

carried in electronic documents. However, due to the quick development of parallel

computing techniques and hardware speed, the two algorithms have so far faced the

threats of Brute-Force attacks. To defend against this type of threats, in this study, we

proposed a new data encryption approach, called the Secure Feedback Encryption

Method (SeFEM for short), which employs three security schemes, including a

sequential-logic style encryption/decryption mechanism, three-dimensional operation

and dynamic transition box, to effectively enhance the security level of the delivered

ciphertext, and increase the difficulty of cracking the encryption keys so as to well

protect encrypted data from Brute-force and cryptanalysis attacks. The sequential-logic

style encryption/decryption mechanism is a feedback process in which each of its

calculation iteration/step generates three internally used dynamic feedback keys for the

next iteration/step. The three-dimensional operation, including exclusive-or (⊕), binary

addition (+2) and exclusive-and (⊙) operators, is utilized to further increase the

computational complexity of the encryption process. The dynamic transition box

nonlinearly rearranges the bits of a key for each operation, so as to increase the

difficulty of cracking the SeFEM. The analytical results show that the SeFEM has a

higher security level, encryption efficiency and usage flexibility than the DES and AES

have.

Keywords: SeFEM, a sequential-logic style mechanism, three-dimensional operation,

 dynamic transition box, dynamic feedback keys

 iii

List of Contents

中文摘要..i

Abstract..ii

List of Contents...iii

List of Figures…...v

List of Tables...vi

1. Introduction ...1

2. Background and Related Work..5

2.1 Data Encryption Standard (DES) ..5

2.2 Advanced Encryption Standard (AES) ...6

3. Feedback Encryption, Three Dimensional Operations and A Dynamic

Transition Box..10

3.1 Dynamic Transition Box..10

3.2 Encryption..13

3.3 Decryption..16

3.4 Binary Adder...18

4. Security Analysis and Comparison..20

4.1 Encryption Complexity of the Dynamic Transition Box.....................20

4.2 Complexity of the Three Dimensional Operations...............................21

4.3 Cryptanalysis of Attacks...24

4.3.1. Cryptanalysis on known plaintext and the corresponding

 ciphertext attacks...24

4.3.2. Differential and linear attacks...25

4.4 Flexibility...26

 iv

4.5 Comparison………………….………………………………..……27

5. Performance Analysis..29

5.1 Binary Adder Simulation...29

5.2 System Simulation Results...30

6. Conclusions and Future Work...32

References……………………………………….………………………………34

Appendix: System Implementation..37

 v

List of Figures

Figure 1. An embodiment of a 16-bit mother transition box and the generated

child transition box ... 12

Figure 2. An embodiment of the encryption/decryption of a block by using the

16-bit child transition box .. 12

Figure 3. The encryption flow chart of the SeFEM where pi is the plaintext block

i, i =1,2,… …n; a0=K9, b0=K10; d0=K11; KS:key size 13

Figure 4. The encryption algorithm of the SeFEM .. 18

Figure 5. The decryption algorithm of the SeFEM .. 19

Figure 6. Program initialization .. 37

Figure 7. Document category and file selection ... 38

Figure 8. Select the file to be en/decrypted .. 38

Figure 9. The completion of the encryption process………………..………………….39

Figure 10. The completion of the decryption process………………..…………..…….40

 vi

List of Tables

Table 1. The possible pairs of (X, Y) where Z = 1001 = X +2 Y 22

Table 2. The summary of the features of the DES, AES and SeFEM 28

Table 3. Specifications of the experimental platform ... 29

Table 4. Costs of performing XOR, XAND, the binary adder and the

Inverse-binary adder when the operand length = 128 bits 29

Table 5. All computations in terms of different numbers of operations of the

encryption/decryption processes of the DES, AES and SeFEM in

detail...30

 1

1. Introduction

Recently, many governments and institutes have adopted electronic documents to

substitute for traditional paper documents, aiming to achieve a paperless homeland. But

when a high-security-level document is transmitted through networks or the Internet, an

encryption mechanism [1-3] is often required. Also, when a military office delivers a

command to one of its subordinates, for example, to attack an enemy group some time

later, the command must be encrypted before being sent out, particularly when the

delivery goes through a wireless communication system.

On the other hand, owing to the popularity of wireless communication, wireless

systems have been developed rapidly, and mobile devices are commonly used in our

everyday life. However, due to their wireless transmission nature, hackers can easily

eavesdrop on those messages sent through wireless channels. That is why security

problems have been more serious and attracted many more researchers’ attention than

before. Presently Data Encryption Standard (DES) [4,5] and Advanced Encryption

Standard (AES) [5,6] are two of the most widely used cryptographic techniques adopted

to protect transmitted messages. However, both of them utilize only one key which is

relatively short [4-6]. On the other hand, current computer processing speeds have been

significantly improved. The DES encryption algorithm was successfully cracked in

1999 [4-7], implying that it is no longer a high security encryption mechanism.

Although the AES has not been cracked, no one dares to say that it is always secure in

protecting transmitted data. In the following, we will use documents and messages

interchangeably since documents are carried in messages.

Both the AES and DES block ciphering [8] requires complicated calculation on their

own parent keys so as to generate a certain number of sub-keys to encrypt plaintext. But

 2

the combinatorial-logic style calculation is quite a problem since its outputs only rely on

current inputs, without employing the outputs of its previous stage as a part of the inputs

of its current stage to increase the security level of its ciphertext. Hence, their ciphertext

may more easily be cracked by hackers by using cryptanalysis attacks [9], such as

chosen plaintext attack [9], and attacks by statistical methods and Brute-force attacking

methods [9]. Therefore, security levels of this style of encryption techniques fall short

of our expectation. So how to improve their security levels has been one of the focuses

of security researchers.

The principles of modern encryption mechanisms [4] are that even though the

encryption process of a technique has been disclosed, as long as the hackers do not

know all the encryption keys, the delivered documents are still safe since without

acquiring all decryption keys, it is very hard for hackers to crack the ciphertext. On the

other hand, if a ciphertext is generated by using a combinatorial-logic block encryption

technique [9], the sub-keys produced by the parent key given when the system starts up

are the same, no matter how complicated the encryption process is. In fact, the same

plaintext block will generate the same ciphertext block. In this case, hackers may crack

the system by analyzing the relationship between plaintext blocks and the corresponding

ciphertext blocks [8,10,11] or by using Brute-force attacking methods. Hence, due to the

high speed of current computer systems, a combinatorial-logic block encryption

technique may no longer be secure.

According to our study, both the DES and AES have the following disadvantages,

including

1. Employing a combinational-logic encryption principle wherein the content of a

ciphertext block, i.e., the output, is totally determined by the content of the current

plaintext block, thus unrelated to the content of the previous plaintext blocks.

 3

2. Encrypting fixed-size data blocks. This will reduce the flexibility of an encryption

system. If the block size of an encryption algorithm can be changed flexibly, the

encryption system is then able to encrypt data of variable lengths when necessary. This

can thereby resist different kinds of attacks efficiently.

3. Performing its own core computation repeatedly. For example, the DES calculates its

core computation 16 times, whereas the AES computes its own 10 times. Although

each repeated computation uses a new sub-key, repetitious computation by using the

same equation not only weakens its security level, but also lowers its performance.

4. Adopting a fixed substitution box (S-Box) to encrypt messages. This will also reduce

its security level. If messages can be encrypted by using dynamic transition boxes, the

security level of the underlying system will be higher since even if the same plaintext

messages appear at different places, they will be encrypted with different transition

boxes, consequently generating different ciphertext messages.

Therefore, to solve these drawbacks, in this study, we propose a new encryption

approach, called the Secure Feedback Encryption Method (SeFEM for short), in which

plaintext blocks are encrypted by using three security mechanisms, including a

sequential-logic style encryption method, a three-dimensional operation and a dynamic

transition box. With this sequential-logic style encryption method, the computational

result of an encryption round R as a part of (R+1)’s inputs is fed back to the encryption

mechanism, thus increasing the complexity and unpredictability of the generated

ciphertext. The three-dimensional operation, referring to three different operators,

including a binary addition (+2) [12,13], exclusive-or (⊕), and exclusive-and (⊙), is

used to encrypt a plaintext block. A dynamic transition box nonlinearly rearranges the

bits of an encrypted message. The purpose is to increase the encryption complexity so

 4

as to reduce the probability of the encryption process being cracked by hackers.

The rest of this paper is organized as follows. Chapter 2 briefly introduces the DES

and AES. Chapter 3 describes the SeFEM. Security analysis and comparison are

presented and discussed in Chapter 4. Performance is analyzed and evaluated in Chapter

5. Chapter 6 concludes this paper and addresses our future research.

 5

2. Background and Related Work

Block cipher refers to the process in which a fixed-length plaintext block is

cryptographically manipulated by a series of operations to produce the corresponding

secure ciphertext block, the length of which is often the same as that of the plaintext

block.

2.1 Data Encryption Standard (DES)

The DES is a typical block cipher technique with 64 bits as its block size. But in

practice, the keys used by this algorithm to encrypt plaintext blocks are only 56 bits in

length [4,5]. The remaining 8 bits are parity bits or unused, implying that the security

level of the generated ciphertext block falls short of expectation since a short key’s

security level is generally lower than a longer key’s.

The DES encryption structure consists of the initial permutation (IP for short), 16

processing stages (called 16 rounds) and the final permutation (IP
-1

 for short), in which

IP and IP
-1

are mutually inverse arrays. Each of the 16 rounds contains a Feistel function

[4,5], and an ⊕ operation.

Before the first round, a plaintext block (64-bit) follows the content of the given IP

table to permute their bits. After that, the new 64-bit block is divided into two 32-bit

sub-blocks. Let the right sub-block be IP1,1 which is directly input to the first Feistel

function, named round-1 Feistel which receives another input, called subkey1, to

generate a result, denoted by result1,1 (i.e., round1’s 1
st
 result). Let the left sub-block be

IP1,2 which is exclusive-ored with result1,1 to generate result1,2 (i.e., round1’s 2
nd

 result).

Let IP2,1 = result1,2 and let IP2,2 = IP1,1. The rounds continue. The general rule is that

round-i Feistel receives the two inputs, i.e., sub-key i and IPi,1, with which to generate

 6

resulti,1 which is then exclusive-ored with IPi,2 to generate resulti,2. After that,

IP(i+1),2=IPi,1 and IP(i+1),1 = resulti,2, for all i= 1, 2, …, 16. Lastly, IP17,1 is the right half

and IP17,2 is the left half of the 64-bit result of round 16. The right and left halves are

input to IP
-1

 to produce the 64-bit ciphertext.

The Feistel architecture [4] consists of four main functions, including expansion,

key mixing, substitution, and permutation, respectively, denoted by E, ⊕, S (named

S-Box) and P. Expansion transforms and extends a 32-bit pattern into 48 bits by using

the expansion permutation [4,5]. The key mixing exclusive-ors E’s output, i.e., the

48-bit output, and a 48-bit sub-key to generate a 48-bit result, which is divided into 8

6-bit patterns as the inputs of 8 S-Boxes. Each S-Box as a non-linear transformation

mechanism transforms a 6-bit input to a 4-bit output, implying the output of the 8

S-Boxes is 32 bits long. After that, permutation rearranges the 32-bit output based on a

fixed permutation process. The final result is also 32 bits in length.

2.2 Advanced Encryption Standard (AES)

The AES is also a kind of block cipher technique with block size 128 bits long. But its

key length can be 128, 192 or 256 bits when necessary. The longer the length of the

keys, the higher the security level of the system being considered. The AES uses a

parent key to generate sub-keys. The AES encryption process is performed on a 4 × 4

matrix, e.g., M, in which an element is 8 bits in length. The initial M contains a

plaintext block, i.e., 128 bits (=4×4×8) long. The AES encryption has 10 rounds. Each

round, except the last one, comprises four stages.

In the first stage, named the SubBytes stage, an element of M, e.g., ai,j, is

substituted by its corresponding element a’i,j retrieved from a pre-generated table, called

a Rijndael S-Box [8,14,16], the elements of which are produced beforehand by invoking

 7

a non-linear function. In the second stage, called the ShiftRows stage, all elements of

row ri in M are left-rotated i times, 0 i 3, even though the name of this stage is

ShiftRows. The third stage is the MixColumns stage which linearly converts a column

(a0,i , a1,i, a2,i, a3,i)
T
 of M, in which an element is one byte in length, to (a’0,i , a’1,i, a’2,i,

a’3,i)
 T

 by invoking the method of the Rijndael mix columns [14-16]. In fact, this stage

invokes an ―xtime‖ function [5,14], the inputs and outputs of which are all 1 byte in

length. The function left shifts each input one bit with the least significant bit being

filled by a 0. If the input’s most significant bit before shift is 1, the shift result will be

exclusive-ored with {1b}hex . In the last stage, named the AddRoundKey stage, each ai,j

in M is exclusive-ored with ki,j where ki,j is an element of a given round sub-key table

used to convert ai,j to a’i,j , 0 i, j 3. In the AES, the parent key is employed by

Rijndael's key schedule [14-16] to generate round sub-keys for each round.

2.3 Block Cipher Modes of Operation

The Cipher Block Chaining (CBC), the Propagating Cipher Block Chaining (PCBC),

Cipher feedback (CFB), Output feedback (OFB) and Counter (CTR) [8] are block

cipher standards recognized by National Institute of Standards and Technology (NIST).

The five modes may be used in conjunction with any symmetric key block cipher

algorithm approved by a Federal Information Processing Standard (FIPS) to increase the

security level.

 In the encryption process of the CBC [8,17], a plaintext block Pi is exclusive-ored

with Initialization Vector (IV) or previous ciphertext block Ci-1 before it is input to

Block Cipher Encryption unit. The general rule of the PCBC’s block encryption [8,17]

is that plaintext is first exclusive-ored with IV. The exclusive-ored result and the key K

of the system are then input to the Block Cipher Encryption unit to generate ciphertext

 8

C1. After that, the result of exclusive-oring plaintext Pi-1 and ciphertext Ci-1 is

substituted for IV to exclusive-or with the next plaintext Pi, i=2,3,...,n where is the

number of generated plaintext. The newly generated exclusive-ored result and K are

then input to Block Cipher Encryption unit to generate the next ciphertext Ci.

With the CFB [8,17,18], we need an IV together with a Key K to trigger a Block

Cipher Encryption unit. The output Oi of the unit is then exclusive-ored with a plaintext

block Pi to produce the corresponding ciphertext block Ci. After that, CFB feeds back Ci

to substitute for the IV to encrypt the next plaintext block Pi+1. The technical aspects of

the OFB are very similar to those of the CFB. The only difference is that the OFB

[8,17,18] feeds back the output of the Block Cipher Encryption unit Oi, rather than

feeding back the ciphertext Ci, to the Block Cipher Encryption unit to encrypt the next

plaintext block Pi+1. Furthermore, with the CTR [8,18], the feedback operation

employed in the CFB and OFB is replaced by a counter as one of the inputs of the

Block Cipher Encryption unit.

Although these types of block cipher provide the security system with data

integrity and confidentiality protection, they are not safe enough to protect data, i.e.,

they are vulnerable to known plaintext-ciphertext cryptanalysis attacks [17,18].

In [17] and [18], some improved approaches, e.g. OPC, OPC-2, KSPC and ODC,

were proposed. The general rule of the OPC-1 is that a key Key1 and previous

intermediate output, e.g., Gi-1, are input to the Block Cipher Encryption unit to generate

Oi, which is then exclusive-ored with plaintext Pi to produce Gi. Next, the Gi is

binary-added with the previous output of the Block Cipher Encryption unit, e.g., Oi-1, to

generate ciphertext Ci where i=1,2,3,…,n, G0=IV and O0=Key2. The general rule of the

encryption process of the OPC-2 is that plaintext Pi and Key1 are input to the Block

Cipher Encryption unit to generate Oi, which is then exclusive-ored with Oi-1 to generate

 9

Ci, where i=1,2,3,…,n, O0=Key2.

With the KSPC, the key K is exclusive-ored with previous ciphertext, e.g., Ci-1,

where the C0=IV. The exclusive-ored result is then input to the Block Cipher Encryption

unit to encrypt current Pi. The general rule of the encryption process of the ODC is that

Pi and K are input to the Block Cipher Encryption unit to generate the output O1, which

is then binary-added with the exclusive-ored result of K and IV to generate Ci. After

that, Oi is exclusive-ored with the Pi+1, and the exclusive-ored result and K are input to

the Block Cipher Encryption unit to generate Oi+1, which is then binary-added with Oi to

generate Ci+1, i=1,2,3,…,n, and C0=IV.

In fact, the four modes proposed in [17] and [18] improved some of the

shortcomings of the original Block Cipher modes of operation by using sequential

logic-based feedback mechanisms. That is why we employ this mechanism to increase

the security level of a protected system.

 10

3. Feedback Encryption, Three Dimensional Operations and

A Dynamic Transition Box

The parameters and functions employed in this study are defined below.

Plaintext block：pi ,1 i n, where n is the total number of blocks contained in the given

 plaintext

System keys：Ki ,1 i 8

Dynamic keys：ai, bi, di, 1 i n

Dynamic feedback keys：ai-1, bi-1, di-1, 1 i n

Initial dynamic keys：a0 = K9 , b0=K10 , d0=K11

Encryption key：ae

Ciphertext blocks：ci, 1 i n

A document, i.e., plaintext, is divided into n blocks, each of which is m bits in

length, i.e., Plaintext =p1p2p3…pn. If |Pn|＜m, unoccupied bits are filled with zeros such

that |Pn|=m. Thus, each Pi , 1 i n,

is m bits in length, and a key of the system is also m

bits long, where m is a multiple of 8.

3.1 Dynamic Transition Box

The transition boxes that we propose have two types, a mother transition box and a

child transition box. If a data block to be encrypted by a security system is m bits long

where m is a multiple of 8, then:

1). The mother transition box consists of g rows and h columns where m=gh, 2g,h. A

sequence of numbers 1,2,3,…,m－1,m is randomly generated and rearranged so as to

produce a random number sequence, which as the initial contents of this box is then

 11

sequentially input to the mother transition box, implying that there are m! candidates

of the mother transition box.

2). The child transition box is obtained by rotating the mother transition box clockwise

(may also be counterclockwise) t times, where the value of the count variable t is

determined by the feedback keys. We will show this later. Two examples of the

16-bit mother transition box and the child transition boxes generated by exchanging

the elements of the mother transition are illustrated Figure 1.

3). The encryption process of a child transition box as shown in the upper half of Figure

2 moves the j
th

 bit of the plaintext block (or of a dynamic key) to the position

specified by the content of the j
th

 position of the child transition box, e.g., k, i.e., to

the k
th

 position of the ciphertext block, where 1 k  m, e.g., the 1
st
 bit b0 (indexed by

00-00) and the 2
nd

 bit b1 (indexed by 00-01) of the plaintext block are moved to the

position specified by the content of the 1
st
 position (i.e., 1) and 2

nd
 position (i.e., 8) of

the child transition box. The process terminates when all the bits of the plaintext

block (or the dynamic key) are correctly moved to their positions.

4). The decryption process of a child transition box as illustrated in the lower half of

Figure 2 moves the k
th

 bit of a ciphertext block to the j
th

 position of the plaintext

block where k is the content of the j
th

 position of the child transition box, e.g., b’0 and

b’1 are moved to the 8
th

 (indexed by 10-00) and 1
st
 (indexed by 00-00) position of the

plaintext block, respectively. The process terminates upon the completion of the

transition of all the bits in the ciphertext block.

 12

Figure 1. An embodiment of a 16-bit mother transition box and the generated child

transition box

Figure 2. An embodiment of the encryption/decryption of a block by using the

16-bit child transition box

 13

3.2 Encryption

The encryption process of the SeFEM is shown in Figure 3.

Figure 3. The encryption flow chart of the SeFEM where pi is the plaintext block i,

i =1,2,… …n; a0=K9, b0=K10; d0=K11; KS:key size

Step 1: Deriving an encrypted pi-key from the plaintext block pi, 1 i n.

1). Input the plaintext block pi, 1 i n;

2). Calculate parameter t1 = (bi-1+di-1) mod KS, 1 i n, (1)

where KS stands for key size;

 14

3). Rotate the mother transition box clockwise by t1 times to obtain the first child

transition box;

4). Perform the encryption process by applying the first child transition box to pi

to generate the encrypted pi-key, also denoted by pi, for later use.

Step 2: Generating the dynamic keys ai, bi and di, 1in

To simplify the following description, several notations are created, including:

A=pi♁ai-1, B=K1♁bi-1, C=K2♁di-1, D=K3♁di-1, E=K4♁ai-1, F=K5♁bi-1

 1). Calculate: ai=[(A+2B)⊙D]+2[(B+2C)⊙E], (2)

bi=[(B+2C)⊙E]+2[(B+2C)⊙F], (3)

di=[(B+2C)⊙F]+2[(A+2B)⊙D] (4)

2). Calculate parameters t2= (ai-1＋bi-1) mod KS, (5)

and t3= (ai-1＋di-1) mod KS; (6)

3). Rotate the mother transition box clockwise t2 times to generate the second child

transition box, and then perform the encryption process by applying this child

transition box to the dynamic key ai, obtained by invoking Eq.(2), to generate the

encryption key ae;

4). Rotate the mother transition box clockwise t3 times to generate the third child

transition box, and then perform the encryption process by applying this child

transition box to the parameter bi, obtained by invoking Eq.(3), to generate the

dynamic key, also denoted by bi;

5). Rotate the original mother transition box anticlockwise t3 times to generate the

fourth child transition box, and then perform the encryption process by applying this

child transition box to the parameter di, obtained by invoking Eq.(4), to generate the

dynamic key, still denoted by di ;

Step 3: Outputting the ciphertext block ci, 1 i n

 15

1). Calculate ci = [(ae⊕K6) +2(bi-1⊕K7)]⊕(di-1+2K8), 1 i n, (7)

2). Output the ciphertext block ci, 1 i n

In the encryption process of the SeFEM, the parameters bi-1, di-1 and ae, rather than

bi, di and ai, are invoked to generate ci, implying that bi, di and ai are internally used in

the encryption/decryption processes. Hence, hackers are unable to infer the dynamic

feedback keys ai-1, bi-1 and di-1from the dynamic keys ai, bi and di. Therefore, ai-1, bi-1

and di-1 are very secure, and they are also changed continuously and dynamically to

raise the security level of ci. That is why we dare to say that the SeFEM’s encryption

process is more secure than those of the conventional feedback control mechanisms

[8,9,11].

3.3 Decryption

In fact, the SeFEM can be installed in a single machine to encrypt a stored file F, and

decrypt the file when users wish to retrieve F. It can also be employed to encrypt a file

H which needs to be delivered to and be decrypted at the receiving site. In both cases,

the encryption process and decryption process have to both keep K1~K11.

The decryption process of the SeFEM is as follows.

Step 1: Restoring the dynamic key ai, 1 i n.

1). Input the ciphertext block ci, 1 i n;

2). Restore the encryption key ae where














)()(,]1)()]([[

)()(,)]()]([[

71821671821

71821671821

KbKdcifKKbKdc

KbKdcifKKbKdc
a

iiiiii

iiiiii

e
 (8)

3). Calculate parameter t2 where t2 = (ai-1+bi-1) mod KS;

4). Rotate the mother transition box clockwise t2 times to generate the second child

transition box, and then perform the decryption process by applying the child

 16

transition box to the encryption key ae to restore the dynamic key ai.

Step 2: Restoring the dynamic key bi and di, 1 i n.

To simplify the following description, several notations are created, including:

DGaLDGaHECBG ii ⊙)1(,⊙)(,⊙)(2  , then

1). Restore the encrypted pi-key































BLGifaBDGa

BLGaifaBDGa

BHGaifaBDGa

BHGaifaBDGa

p

ii

iii

iii

iii

i

 and a ,)]1(]⊙)1[[(

 and ,]]⊙)1[[(

 and ,)]1(]⊙)[[(

 and ,]]⊙)[[(

i1

1

1

1

; (9)

2). Calculate parameters:

bi = [(B+2C)⊙E] +2 [(B+2C)⊙F] (10)

di = [(B+2C)⊙F] +2 [(A+2B)⊙D] (11)

3). Calculate parameter t3 = (ai-1+di-1) mod KS; (12)

4). Rotate the mother transition box clockwise t3 times to generate the third child

 transition box, and then perform the decryption process by applying this child

 transition box to parameter bi, obtained by applying Eq.(10), to generate the

 dynamic key bi for the next round.

5). Rotate the mother transition box anticlockwise t3 times to generate the fourth

child transition box, and then perform the decryption process by applying this

child transition box to parameter di, obtained by invoking Eq.(11), to generate

the dynamic key di for the next round.

Step 3: Restoring the plaintext block pi, (1 i n)

1). Calculate parameter t1= (bi-1+di-1) mod KS

2). Rotate the mother transition box clockwise t1 times to generate the first child

transition box, and then perform the decryption process by applying this child

 17

transition box to the encrypted pi-key to restore plaintext block pi, (1 i n).

3.4 Binary Adder

In the SeFEM’s encryption process, we employ a binary adder, which as a binary

operator with two parameters, e.g., A and B, i.e., A+2B, is different from XOR in that a

binary adder does not numerically restore B to its original value when A is added twice,

e.g., A+2B+2A≠B, but A⊕B⊕A=B, i.e., A disappears from the exclusive-ored result.

Given a plaintext block p, a ciphertext block c and a dynamic key K, the binary

adder +2 is defined as follows.

Encryption: c = p+2K, where p and K undergo binary addition, and ignore the carry

generated by the addition of the most significant bits;

Decryption:









KcifKc

KcifKc
Kcp

 ,1

 ,
2

, (13)

where －2 as a binary subtraction is the inverse operation of +2, and K is the

one’s complement of key K.

The drawback of the binary adder is that its operational speed is a little lower than

that of the XOR. The encryption algorithm of the binary adder with the two streams, A

and B, i.e., C = A +2 B, of n (=128) bits long is shown in Figure 4. The decryption

algorithm of C = A－2 B is illustrated in Figure 5.

 18

Algorithm 1: Encryption process of the binary adder

Input: Streams A and B

Output: C (=A＋2B)

{Let A=A[128]A[127] … A[2]A[1], B=B[128]B[127] … B[2]B[1], C=C[128]C[127] …

 C[2]C[1] and

carry= carry[128]carry[127] … carry[1]carry[0] where each of A[i], B[i], C[i] and

carry[i] is a binary digit, 1≤ i ≤128; carry[0]=0;

For i = 1 to 128 {

If carry[i-1] = 0 then

 If A[i] = B[i] then

 If A[i] = 0 then {C[i] = 0; carry[i] = 0;} /*A[i]+B[i]+carry[i-1] = 0+20+20 = 002*/

 else {C[i] = 0; carry[i] = 1;} /*A[i]+B[i]+carry[i-1] = 1+21+20 = 102*/

 else /*A[i]≠B[i] */ {C[i] = 1; carry[i] = 0;}

/*A[i]+B[i]+carry[i-1] = (1+20+20) or (0+21+20) = 012*/

else /*carry[i-1]=1*/

 If A[i] = B[i] then

 If A[i] = 0 then {C[i] = 1; carry[i] = 0;}

/*A[i]+B[i]+carry[i-1] = 0+20+21 = 012*/

 Else /*A[i]=B[i]=1*/ {C[i] = 1; carry[i] = 1;}

/*A[i]+B[i]+carry[i-1] = 1+21+21 = 112*/

 else /*A[i]≠B[i]*/

 {C[i] = 0; carry[i] = 1;} /*A[i]+B[i]+carry[i-1] = (1+20+21) or (0+21+21) = 102*/}}

Figure 4 The encryption algorithm of the SeFEM

 19

Algorithm 2: Decryption process of the binary adder

Input: Streams A and B

Output: C (=A－2B)

{Let A=A[128]A[127] … A[2]A[1], B=B[128]B[127] … B[2]B[1], C=C[128]C[127] …

 C[2]C[1] and

carry= carry[128]carry[127] … carry[1]carry[0] where each of A[i], B[i], C[i] and

carry[i] is a binary digit, 1≤ i ≤128; carry[0]=0;

For i = 1 to 128 {

If carry[i-1] = 0 then

 If A[i] = B[i] then

 {C[i] = 0; carry[i] = 0;}

/*A[i]－2B[i]－2carry[i-1] = (1－21－20) or (0－20－20) = 002*/

 else If A[i] = 1 then {C[i] = 1; carry[i] = 0;}

/*A[i]－2B[i]－2carry[i-1] = 1－20－20 = 012*/

 else {C[i] = 1; carry[i] = 1;} /*A[i]－2B[i]－2carry[i-1] = 0－21－20 = 112*/

else /*carry[i-1]=1*/

 If A[i] = B[i] then

 {C[i] = 1; carry[i] = 1;}

/* A[i]－2B[i]－2carry[i-1] = (1－21－21) or (0－20－21) = 112*/

else If A[i] = 1 then {C[i] = 0; carry[i] = 0;}

 /*A[i]－2B[i]－2carry[i-1] = 1－20－21 = 002*/

 else {C[i] = 0; carry[i] = 1;}/*A[i]－2B[i]－2carry[i-1] = 0－21－21 = 102*/}}

Figure 5 The decryption algorithm of the SeFEM

 20

.
1











n

m
p

4. Security Analysis and Comparison

A well-designed encryption mechanism must be one with a high security level so as to

effectively protect a system from being attacked by hackers, and with high performance

and a low cost in order to efficiently encrypt and decrypt data [19]. In the following, we

will analyze the security of the SeFEM and compare it with the AES and DES

cryptographic methods.

4.1 Encryption Complexity of the Dynamic Transition Box

The child transition box as a dynamic transition box stated above is used to nonlinearly

rearrange the bits of the encrypted message. What is the probability p of recovering the

original message from the corresponding encrypted message by using the child

transition box? Lemma 1 shows the answer.

Lemma 1:

Assume that key A is m bits in length, and there are n 1’s and (m-n) 0’s in this key, n  m.

Then the probability p of recovering the original key A from the encrypted key A by

applying the child transition box is

Proof: Since the encrypted key A is nonlinearly rearranged, the number of all possible

arrangements of this key is C
m

n
)!(!

!

nmn

m


.

If the child transition box is unknown to hackers, since the encrypted key A will be

one of the possible arrangements, the probability p of recovering the original key A

from the encrypted key A on one trial is . Q.E.D.















n

m

nmn

m
p

1

)!(!

!

1

 21

In this study, the key ae is unknown to hackers, i.e., the numbers of 1’s and 0’s in

key ae are unknown to hackers. Then the number of all possible nonlinear arrangements

of the encrypted key ae
is m

m

m

m

mmmm
2

1
...

210











































 .

Hence, the probability p of recovering dynamic key ai
from the encrypted key ae

on one trial is
m

p
2

1
 .

4.2 Complexity of the Three Dimensional Operations

Let X and Y be two keys, each of which is m bits in length. The probability p of

recovering the value of an (X, Y) pair from an illegally intercepted X⊕Y is
m

p
2

1
 [12].

But what is the probability of recovering of (X, Y) from X⊙Y (or from X +2 Y)? Lemma

2 (Lemma 3) will show the results.

Lemma 2:

Since the keys X and Y are both m bits in length, the probability p with which we can

obtain a correct X and Y on one trial from an illegally intercepted X⊙Y is
m

p
2

1
 .

Proof: Let X = xm...x2x1, Y = ym...y2y1 and let Z = X⊙Y = zm...z2z1 where each of xi, yi and

zi is a binary digit, and zi = xi⊙yi, 1 i m. If zi = 0, the possible value of an (xi,yi) pair is

(0,1) or (1,0). Otherwise, the possible value is (0,0) or (1,1). Hence, when zi is known,

no matter whether it is 0 or 1, for each i, 1 i m, the probability of obtaining the correct

(xi,yi)pair on one trial is
2

1 , and then the probability to correctly recover the original

value of (X, Y) on one trial is
m

m

2

1

2

1








 . Q.E.D.

 22

Lemma 3:

Let X and Y be two keys, each of which is m bits in length. The probability p of

recovering the value of an (X, Y) pair on one trial from an illegally intercepted X+2Y is

m
p

2

1
 .

Example 1: Let X,Y and Z be three keys, each of which is 4 bits in length and

Z=X+2Y. The possible pairs of (X, Y) such that Z = 1001 are listed in Table 1.

Table 1. The possible pairs of (X, Y) where Z = 1001 = X +2 Y

Without carry With carry

X Y X Y

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1001

1000

0111

0110

0101

0100

0011

0010

0001

0000

1111

1110

1101

1100

1011

1010

1010

1011

1100

1101

1110

1111

Proof: Let Z = X+2Y. Then there are two cases for the binary addition of the most

significant bits, i.e., with carry and without carry.

Case 1: If the situation of without carry occurs, then Z= X+2Y is equivalent to Z= X+Y,

and the possible values of (X, Y) are (0, Z), (1, Z-1), (2, Z-2), …, (Z-1, 1) and

(Z, 0), i.e., a total of Z+1 possible values.

Case 2: If the situation of with carry occurs, since we ignore this carry, Z= X+2Y is

equivalent to Z=X+Y-2
m
, and the possible values of (X, Y) are (2

m
-1, Z+1),

(2
m
-2, Z+2), (2

m
-3, Z+3),..., (Z+2, 2

m
-2) and (Z+1, 2

m
-1), i.e., a total of 2

m
-Z-1

 23

possible values after ignoring the carry. Hence, for each Z, there is a total of

(Z+1) + (2
m
-Z-1) = 2

m
 possible values of (X, Y) such that Z=X+2Y. The

probability p of recovering the original value of (X, Y) on one trial is
m

p
2

1
 .

Q.E.D.

Further, before we discuss the relationship between pi and ci for each i, 1 i n, the

relationship between ae and ci for each i, 1 i n, should be addressed first. Lemma 4

will illustrate the probability of recovering the value of ae from ci.

Lemma 4:

Assume the encrypted key ae and the ciphertext block ci for each i, 1 i n, are m bits in

length. Then the probability p for recovering the original value of ae from ci on one trial

for each i, 1 i n, is
m

p
2

1
 .

Proof: According to Eq.(7),

 ,])[(

1),()]()[(

1126

8217126









iie

iiei

dbKa

niKdKbKac

(14)

where b’i-1=bi-1K7 and d’i-1 = di-1 +2 K8. In Eq.(14), two inverse operations of ⊕ and

one inverse operation of +2 are required to obtain (ae, K6, b’i-1, d’i-1) from ci. By lemma

3 and [12], due to applying the two operators a total of three times, the probability p of

recovering the original values of (ae, K6, b’i-1, d’i-1) from ci on one trial is

mm
p

8

1

2

1
3









 .

However, ,
2

1

8

1
mm

 in which
m2

1
 is the probability of recovering the original

value of ae from ci for each i, 1 i n, on one trial, and which is also the least probability

of recovering ae from ci with a blind guess. If we want to obtain ae by analyzing ci, the

values of K6, b’i-1, d’i-1 are required. However, to recover (ae, K6, b’i-1, d’i-1) from ci,

based on Eq.(7), the recovering probability is
m8

1 which is far smaller than
m2

1
 , where

 24

m2

1
 is the probability of recovering ae from ci by using a blind guess. Hence, the

probability p of recovering the original value of ae from ci on one trial for each i, 1 i n,

is
m

p
2

1
 . Q.E.D.

Let i

p

i yx  be the notation of the probability p of recovering yi from x, for

each i. For example, the probability of recovering ae from ci for each i, 1 i n, is
m2

1
,

which can be denoted as ei ac
m

 2/1
. Similarly, according the flow chart of the

SeFEM shown in Figure 3, there exist ie aa
m

 2/1 , ii pa
m

 2/1 , and

originalii pp
m

,

2/1 , implying that originalii pc
m

,

2/1 is the probability of recovering

originalip , from ci for each i, 1 i n, is
m2

1
.

4.3 Cryptanalysis of Attacks

4.3.1. Cryptanalysis on known plaintext and the corresponding ciphertext attacks

To analyze the relationship between a plaintext block and its ciphertext block of a

fixed-length-data-block system, hackers may first collect the ciphertext blocks and the

corresponding plaintext blocks of the system. When receiving a ciphertext block, they

can look up the corresponding plaintext block from the collected (plaintext block,

ciphertext block) pairs by employing parallel computing techniques.

However, as fixed-length-data-block encryption/decryption systems, the DES and

AES at maximum have 2
64

 and 2
128

 possible plaintext blocks, respectively, indicating

that currently it is hard for hackers to crack the AES with this method. But it may be

cracked in the near future. The SeFEM is a feedback control mechanism. This type of

attack can only be applied to the provisions of the first ciphertext block, but is not

 25

applicable to crack the consequent ciphertext blocks, since these ciphertext blocks are

produced by using a sequential-logic style encryption method which generates different

keys to encrypt different plaintext blocks, and cannot be decrypted by a parallel manner.

So the SeFEM can more effectively protect a system from the known

plaintext/ciphertext attack than the DES and AES can.

4.3.2. Differential and linear attacks

Both differential attack [20,21] and linear attack [20,21] have the following

characteristics:

1). Hackers need to collect a very large number of (plaintext block, ciphertext block)

pairs of a cryptographic system before attacking this system; 2). As the targets of these

attacks, the DES’s and AES’s sub-keys are derived from a single parent key; 3). The

DES and AES use static internal S-Boxes to encrypt all the delivered messages.

For each of the two systems, the ciphertext blocks collected in the (plaintext block,

ciphertext block) pairs are all derived from the same parent key and S-Box. So it is

relatively more easy for hackers to crack the parent key and S-Box by analyzing the

relationship between these plaintext blocks and ciphertext blocks collected in the

(plaintext block, ciphertext block) pairs. However, if a large number of (plaintext block,

ciphertext block) pairs is generated by invoking system keys and different transition

boxes, rather than by using a single parent key and a fixed S-Box, then it is much harder

for hackers to solve the system keys and transition boxes.

That is why the SeFEM employs three dynamic keys (i.e., ai, bi, and di), three

dynamic feedback keys (i.e., ai-1, bi-1, and di-1), eight system keys (K1 ~ K8) and three

initial keys (a0, b0, d0), to protect an information system. In fact, a total of 11

independent keys, including K1 ~ K8, a0, b0, and d0, and four dynamic child transition

 26

boxes are invoked by the SeFEM.

The differential attack and linear attack on the SeFEM are analyzed as follows:

1. The DES and AES are a combinatorial-logic style encryption mechanism so that they

suffer the differential attack and linear attack when hackers utilize parallel

decryption processing techniques. However, the SeFEM is a sequential-logic style

encryption mechanism. Hackers cannot exploit parallel decryption processing

techniques for trying to crack the SeFEM.

2. While encrypting plaintext blocks, due to using the sequential-logic style mechanism,

the three dynamic feedback keys of the SeFEM change continuously and dynamically.

That is why it can defend against these two attacks. Moreover, if a plaintext block is

64 (128) bits in length, the hackers need to analyze 2
64x11

(2
128x11

) bits before they can

crack the 11 independent keys. This is almost an impossible mission when the

sequential-logic style encryption approach is used to generate encryption keys.

3. The same plaintext blocks appearing at different positions of the plaintext will be

encrypted by different dynamic transition boxes to make the SeFEM more secure

than the DES and AES since the latter two employ static S-Boxes. Although there are

only 128 (256) different transition boxes that the SeFEM may produce, when the

boxes are 64 (128) bits long, it is difficult for hackers to identify which dynamic

transition box is currently being used to encrypt a plaintext block. Hence, the

deployment of dynamic transition boxes can effectively resist differential attack and

linear attack.

4.4 Flexibility

Both the DES’s and AES’s data blocks are fixed in length, which dramatically reduces

the flexibility of an encryption system. If the encryption system can encrypt data of

 27

different lengths, i.e., the size of a data block can be flexibly varied, then the system can

more effectively resist possible attacks than the DES and AES can.

To overcome the disadvantages of the DES and AES, i.e., those inherent to the

encryption of fixed-size data blocks, the SeFEM enables the encryption of flexible-size

data blocks in the situation where the plaintext blocks to be encrypted and those

encryption parameters and mechanisms, including system keys, initial keys, dynamic

keys, dynamic feedback keys, encryption key, dynamic transition boxes, and the

resultant ciphertext blocks, need to be the same size. In fact, the SeFEM can flexibly be

adopted by different encryption systems, particularly those most suitable for mobile

systems. If the encryption system needs to extend the size of a data block to increase its

security level, the SeFEM is still applicable. But the DES and AES are not, implying

that the SeFEM is more flexible for use than the DES and AES.

4.5 Comparison

The DES was cracked due to its short key length (only 56 bits long), rather than owing

to its algorithmic flaws. Although the key length of the AES is 128 bits, parallel

computing technologies have been developed rapidly, and the AES may someday be

cracked. Table 2 summarizes the features of the DES, AES and SeFEM.

 28

Table 2. Summary of the features of the DES, AES and SeFEM

Method

Characteristics
DES AES SeFEM Remark

Algorithm
Excelle

nt

Excelle

nt
Excellent

Up to the present, the algorithm has

not been cracked by hackers.

Operation

structure
Good Good Excellent

The DES and AES are

combinatorial-style encryption

mechanisms, whereas SeFEM is a

sequential-logic style encryption

mechanism.

Flexibility Low Low High －

Parallel

decryption
Yes Yes No －

Security of key(s) Low Middle High SeFEM has 11 system keys

Security of

transition box
Low Middle High

The transition boxes of the DES

and AES are fixed in length,

whereas the SeFEM’s is dynamic.

Known plaintext/

ciphertext attack
Low Middle High

Security level for defending the

attack

Differential

attack
Low Middle High

Security level for defending the

attack

Linear attack Middle High High
Security level for defending the

attack

Security Low Middle High －

 29

5. Performance Analysis

In this chapter, we simulate and analyze the en/decryption processes of the SeFEM and

evaluate their performance. Table 3 lists the specifications of the simulation

environment.

Table 3. Specifications of the experimental platform

Component Description

CPU Intel(R) Core(TM) Q9400 2.66GHz

RAM 3 GB

OS Windows 7

Programming tools Java 1.7.0_13/ Eclipse

5.1 Binary Adder Simulation

From the algorithms shown in Figures 4 and 5, we can see that their operation processes

are almost the same. So the costs of performing the encryption and decryption of the

binary adder are the same. The costs of performing XOR, XAND and en/decryption of

the binary adder are listed in Table 4, in which the costs of the binary adder and the

inverse-binary adder are each only about two times that of XOR, implying that the

binary adder is practically feasible.

Table 4. Costs of performing XOR, XAND, the binary adder and the

Inverse-binary adder when the operand length = 128 bits

Operator XOR

(⊕)

XAND

(⊙)

Binary adder (＋

2)

Inverse- Binary adder

(－2)

Execution

time(us)

5.376 5.377 10.369 10.369

 30

5.2 System Simulation Results

The performance of an encryption method heavily depends on the amount of

computations that the method has. All computations in terms of different numbers of

operations for the DES, AES and SeFEM in detail are listed in Table 5, which also

shows that the total load and cost of the AES are much higher than those of the SeFEM,

implying that the SeFEM is qualitatively more efficient than the AES. Hence the

ranking of the performance of the three security mechanisms is SeFEM > AES > DES.

The quantitative analysis on the performance of the AES and SeFEM will be a part of

our future studies.

 The implementation of the SeFEM is shown in the Appendix of this thesis.

Table 5. All computations in terms of different numbers of operations of the

encryption/decryption processes of the DES, AES and SeFEM in detail

Scheme Encryption Decryption

DES (64-bit

block) [4,6]

16 ⊕s (32 bits) + 16 ⊕s (48

bits) + 1 IP (64 bits) + 1 IP-1

(64 bits) + 128 S-Box (6 bits)

+ 16 Expansions (48 bits) + 16

Permutations (32 bits)

The number of operations is the

same as that of the encryption

process.

AES (128-bit

block,

128-bit key)

[16]

(AddRoundKey)

176 ⊕s (8 bits)

The number of operations is the

same as the sum of the numbers of

those operations employed by the

encryption process for the three

stages, including AddRoundKey,

SubBytes, and ShiftRows

(SubBytes)

160 Substitutions (8 bit) [22]

(ShiftRows)

30 ShiftRows (128 bit)

(MixColumns)

36 Rijndael columns mixing

[15] (128 bits)

(MixColumns)

36 Rijndael columns mixing [15]

(128 bits).

(Generally, the operations of a

decryption process are often more

complex than those of the

corresponding encryption

 31

process.)

SeFEM

(128-bit

block)

9 ⊕s (128 bits) + 3 ⊙s (128

bits)+

7 +2s (128 bits) + 3 ts’

generation, i.e., t1, t2 and t3 (8

bits) + 4 child boxes’

generation (128 bits) +

4 permutations (128 bits)

6 ⊕s (128 bits)+

3 －2s (128 bits) + 3 ⊙s (128

bits)+

7 +2s (128 bits) + 3 ts’ generation,

i.e., t1, t2 and t3 (8 bits) + 4 child

boxes’ generation (128 bits) +

4 permutations (128 bits)

 32

6. Conclusions and Future Work

The encryption architectures of the DES and AES are similar, i.e., a combinational-logic

encryption mechanism. So they may be decrypted by using parallel computing

techniques. But the SeFEM’s is a sequential-logic encryption approach. It is almost

impossible for hackers to solve it with parallel techniques. Both the DES and AES

utilize a single parent key to generate sub-keys, with which to encrypt messages. So

they can more easily be cracked. The SeFEM employs 11 independent system keys to

encrypt messages, making it very difficult to be cracked. Also, the transition boxes

invoked by the DES and AES are static, while those employed by the SeFEM are

dynamic. Of course, the latter is more secure than the former two. Further, both the DES

and AES encrypt fixed-size data blocks, while the SeFEM’s is flexible, thus more

suitable for use by mobile systems than the DES and AES. Each of the DES and AES

has only one encryption operator, i.e., exclusive-or. But the SeFEM employs three. It

means that the DES and AES adopt a one-dimensional key-exchange operation and the

SeFEM utilizes a three-dimensional one so that the SeFEM is more difficult to be

cracked than the DES and AES are. Also, the DES and AES encryption techniques

repeatedly perform their own core operations. But the SeFEM has no duplicated

encryption computation, making its own encryption process more efficient than those of

the DES and AES. Table 5 shows that the qualitative performance ranking of the DES,

AES and SeFEM is SeFEM > AES > DES [23].

Moreover, if the SeFEM requires a parent key before the encryption process begins,

we can substitute for the initial feedback key d0 with the parent key. Then the dynamic

key di and the dynamic feedback key di-1 will change as d0 is replaced by the input

parent key. Furthermore, the keys di and di-1, due to the effect of the feedback

 33

mechanism, change their values continuously, consequently greatly increasing their

security levels.

Compared to existing data encryption methods, the SeFEM is a novel one, not only

because it uses the sequential-logic style encryption mechanism, three-dimensional

operations and dynamic transition boxes, but also more importantly it hides its dynamic

keys
ib ,

id , and
ia which are internally used to generate those encryption parameters

employed in both the encryption and decryption processes of the security system, and

thus are invisible to hackers. That is why its sequential-logic style encryption

mechanism is more secure than conventional ones.

In the SeFEM, ciphertext generated after the first round will be protected by the

sequential-logic style encryption mechanism. However, because it is unprotected by this

encryption mechanism, hackers have the opportunity to break the ciphertext generated

in the first round by collecting and analyzing a large number of the first ciphertext block.

However, in an actual breaking process, it is almost impossible for hackers to crack the

security system by only collecting and analyzing the first (plaintext block, ciphertext

block) pair. In fact, the opportunity of cracking the first ciphertext block does exist in

the SeFEM. Let the first-stage ciphertext be the message directly output from the

SeFEM, when the corresponding plaintext is input. Thus a mechanism which can

effectively prevent hackers from collecting (plaintext block, first-stage ciphertext block)

pairs, especially the first (plaintext block, first-stage ciphertext block) pair, is required.

Also, we would like to analyze the quantitative performance of the AES, DES and

SeFEM so that users can know the time that the three systems require to encrypt

different types of input data. These constitute our future studies.

 34

References

[1] Y.L. Huang and F.Y. Leu, ―Constructing a Secure Point-to-Point Wireless

Environment by Integrating Diffie-Hellman PKDS RSA and Stream Ciphering for

Users Known to Each Other,‖ Journal of Wireless Mobile Networks, Ubiquitous

Computing, and Dependable Applications, vol. 2, no. 3, September 2011, pp. 96-107.

[2] S.M. Lee, D.S. Kim and J.S. Park, ―A Survey and Taxonomy of Lightweight

Intrusion Detection Systems,‖ Journal of Internet Services and Information Security,

vol. 2, issue 1/2, February 2012, pp. 119-131.

[3] S.K. Pandey and R. Barua, ―Efficient Construction of Identity Based Signcryption

Schemes from Identity Based Encryption and Signature Schemes,‖ Journal of

Internet Services and Information Security, Vol. 1, No.2/3, August 2011, pp.

161-180.

[4] J. Katz and Y. Lindell, Introduction to Modern Cryptography, Chapman &

Hall/CRC Press, 2008.

 [5] C.H. Yang, Network Security: Theory and Practice, Xbook Marketing Co. Ltd.,

September, 2008.

[6] M. Bellare and P. Rogaway, Introduction to Modern Cryptography, chapter 3, May

11, 2005.

http://digidownload.libero.it/persiahp/crittografia/2005_Introduction_to_Modern_Cr

yptography.pdf

[7] J. Hunker and C.W. Probst, ―Insiders and Insider Threats—an Overview of

Definitions and Mitigation Techniques,‖ Journal of Wireless Mobile Networks,

Ubiquitous Computing, and Dependable Applications, Vol. 2, No. 1, March 2011, pp.

4–27.

http://www.cs.ucdavis.edu/~rogaway/classes/227/spring05/book/main.pdf
http://digidownload.libero.it/persiahp/crittografia/2005_Introduction_to_Modern_Cryptography.pdf
http://digidownload.libero.it/persiahp/crittografia/2005_Introduction_to_Modern_Cryptography.pdf

 35

[8] M. Dworkin, ―Recommendation for Block Cipher Modes of Operation Methods and

Techniques,‖ National Institute of Standards and Technology Special Publcation.

800-38A 2001 Edition, December 2001.

[9] Types of Cryptographic Attacks. In Domain 5: Cryptography. Retrieved February 27,

2011, fromhttp://www.giac.org/resources/whitepaper/cryptography/57.php

[10] S. Klaus, Cryptography and Public Key Infrastructure on the Internet, John Wiley

and Sons, 1
st
 edition, June 2, 2003.

[11] A.J. Menezes, P.C. van Oorschot and S.A. Vanstone, "Chapter 7: Block Ciphers".

Handbook of Applied Cryptography. CRC Press. ISBN 0-8493-8523-7. October

1997.

[12] Y.F. Huang, F.Y. Leu, C.H. Chiu and I.L. Lin, "Improving Security Levels of

IEEE802.16e Authentication by Invoking Diffie-Hellman PKDS," Journal of

Universal Computer Science, Vol. 17, No.6, March 2011, pp. 891-911.

[13] A.P. Moore, D.M. Cappelli, T.C. Carony, E. Shaw, D. Spooner and R.F. Trzeciak,

―A Preliminary Model of Insider Theft of Intellectual Property,‖ Journal of Wireless

Mobile Networks, Ubiquitous Computing, and Dependable Applications, Vol. 2, No.

1, March 2011, pp. 28–49.

[14] E. Barkan and E. Biham, "In How Many Ways Can You Write Rijndael?" in

Proceedings of ASIACRYPT 2002, (Lecture Notes in Computer Science), edited

by Y. Zheng, vol. 2501. Berlin, Germany: Springer-Verlag, Dec. 2002, pp.

160-175.

[15] J. Daemen and V. Rijmen, ―AES Proposal: Rijndael,‖ The First Advanced

Encryption Standard Candidate Conference, NIST, September 1999.

[16] Federal Information Processing Standards Publication 197, ―Announcing the

Advanced Encryption Standard (AES)‖ November 26, 2001.

http://books.google.com/books?id=9NqidkUqHdgC&pg=PA45
http://www.cacr.math.uwaterloo.ca/hac/
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/0-8493-8523-7

 36

[17] Y.L. Huang, F.Y. Leu, J.C. Liu, J.H. Yang, C.W. Yu, C.C. Chu, C.T. Yang,

―Building a block cipher mode of operation with feedback keys,‖ Industrial

Electronics (ISIE), 2013 IEEE International Symposium on, May 2013, pp. 1-4.

[18] Y.L. Huang, F.Y. Leu, J.H. Yang, ―Building a block cipher mode of operation with

two keys,‖ The Asian Conference on Availability, Reliability and Security

(AsiaARES 2013), Mar. 2013, pp. 392-398.

[19]T. Eisenbarth, S. Kumar, L. Uhsadel, C. Paar and A. Poschmann, ―A Survey of

Lightweight-Cryptography Implementations,‖ IEEE Design & Test of Computers,

Dec. 2007, pp. 522-533.

[20] H.M. Heys, ―A tutorial on linear and differential cryptanalysis,‖ Technical Report

CORR 2001-17, Centre for Applied Cryptographic Research, Department of

Combinatorics and Optimization, University of Waterloo, March 2001.

[21] Y.S. Yeh, C.Y. Lee, T.Y. Huang and C.H. Lin ―A Transpositional Advanced

Encryption Standard (AES) Resists 3-Round Square Attack,‖ International Journal

of Innovative Computing, Information and Control, vol. 5, no. 5, May 2009, pp.

1253-1264.

[22] L. Cui and Y. Cao "A New S-Box Structure Named Affine-Power-Affine,‖

International Journal of Innovative Computing, Information and Control, Vol. 3, No.

3, June 2007, pp. 751-759.

[23] H.Z. Yao, ―The Comparison of Efficiency and Security between AES and DES,‖

Journal of Zhongkai University of Agriculture and Technology, February 2006, pp.

44–48.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6554304
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6554304

 37

Appendix: System Implementation

In this appendix, we show the implementation of the SeFEM, which is written in

JAVA language on a JAVA working environment. The operation procedure is as

follows.

Step 1:

Start up the system by clicking the SeFEM icon shown on the screen (see the right

portion of Figure 6). When the program is successfully started up, as illustrated in the

left portion of Figure 6, the ―Message board‖ window shows ―Initialized successfully‖

to indicate that the SeFEM has been successfully initialized.

Figure 6. Program initialization

Step 2:

Click ―Open file‖ button, as shown in the right portion of Figure 7, user can then

select the file to be en/decrypted, e.g., F. Now the ―Message board‖ window displays

the file path (see Figure 8a). If the filename extension of F is not ―SeFEM‖, meaning

that F is an un-encrypted file, then the system activates the two buttons, denoted by

 38

―Encrypt‖ and ―Reselect‖. Otherwise the system considers that the user would like to

decrypt F, it then activates the two buttons, named ―Decrypt‖ and ―Reselect‖ (see

Figure 8b). Here ―Reselect‖ button is activated so that when the user does not want to

en/decrypt the selected file, he/she can press this button to choose another one.

Figure 7. Document category and file selection

(a)The selected file is to be encrypted (b)The selected file is to be decrypted

Figure 8. Select the file to be en/decrypted

 39

Step 3:

Press the ―Encrypt‖ (or ―Decrypt‖) button is to run the program. The ―Progress bar‖

window shown in the middle of the left portion of Figures 9 and 10 indicates the

percentage which has been finished by the program. After the completion of the

encryption (decryption), ―Message board‖ window shows a message to indicate the

completion of the operation, and displays the consumed time. In the ―Message board‖

window shown in Figure 10, we select penguins.SeFEM and press the ―Reselect‖ button.

But the reselected file is still penguins.SeFEM. After the selected file is completely

encrypted/decrypted, if we click ―Open file‖ button again, we can select the next file for

en/decryption.

Figure 9. The completion of the encryption process

 40

Figure 10. The completion of the decryption process

