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中文摘要 
  

近幾年來，Advanced Encryption Standard (AES)和 Data Encryption 

Standard (DES)已被廣泛應用於電子信息的保護。然而，由於平行計算

和硬體速度的快速發展，這兩種演算法一直遭受到暴力攻擊的威脅，而

要能有效抵禦這類型的威脅，基於此，我們的研究中提出了一個新的資

料加密方法，稱為“安全的回授加密機制（簡稱 SeFEM），它採用三個安

全方案，包括一個循序邏輯式的加密/解密機制、三維運算和動態置換盒，

其能提高密鑰的破解難度，並能有效的抵禦暴力攻擊和密碼分析攻擊，

使得密文的安全等級有效的被提升。循序邏輯式的加/解密機制是一種反

饋過程，其中每一回合的操作，皆會在內部生成三把動態回授金鑰提供

給下一回合使用，而三維運算包括異或（⊕）、二進制加法（+2）和異同

（⊙）的操作，不同運算子的使用能夠進一步提高計算的複雜度。動態

置換盒會非線性的重新排列金鑰中每一個 bit 的位置，使 SeFEM 的破難

度難度提升。分析結果顯示，SeFEM 比 DES 和 AES 具有更高的安全等級、

加密效率與更好的靈活性。 

 

關鍵詞：SeFEM，循序邏輯式的機制，三維運算，動態置換盒，動態回授金

鑰 
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Abstract 
  

In recent years, the Advanced Encryption Standard (AES) and Data Encryption 

Standard (DES) have been commonly and widely used to protect important information 

carried in electronic documents. However, due to the quick development of parallel 

computing techniques and hardware speed, the two algorithms have so far faced the 

threats of Brute-Force attacks. To defend against this type of threats, in this study, we 

proposed a new data encryption approach, called the Secure Feedback Encryption 

Method (SeFEM for short), which employs three security schemes, including a 

sequential-logic style encryption/decryption mechanism, three-dimensional operation 

and dynamic transition box, to effectively enhance the security level of the delivered 

ciphertext, and increase the difficulty of cracking the encryption keys so as to well 

protect encrypted data from Brute-force and cryptanalysis attacks. The sequential-logic 

style encryption/decryption mechanism is a feedback process in which each of its 

calculation iteration/step generates three internally used dynamic feedback keys for the 

next iteration/step. The three-dimensional operation, including exclusive-or (⊕), binary 

addition (+2) and exclusive-and (⊙) operators, is utilized to further increase the 

computational complexity of the encryption process. The dynamic transition box 

nonlinearly rearranges the bits of a key for each operation, so as to increase the 

difficulty of cracking the SeFEM. The analytical results show that the SeFEM has a 

higher security level, encryption efficiency and usage flexibility than the DES and AES 

have. 

Keywords: SeFEM, a sequential-logic style mechanism, three-dimensional operation,  

          dynamic transition box, dynamic feedback keys



 

 iii 

List of Contents 
 

中文摘要................................................................................................................i  

Abstract..................................................................................................................ii 

List of Contents.....................................................................................................iii 

List of Figures….....................................................................................................v 

List of Tables.........................................................................................................vi 

1. Introduction .................................................................................................1  

2. Background and Related Work....................................................................5 

2.1 Data Encryption Standard (DES) ..........................................................5 

2.2 Advanced Encryption Standard (AES) .................................................6 

3. Feedback Encryption, Three Dimensional Operations and A Dynamic 

Transition Box..............................................................................................10 

3.1 Dynamic Transition Box........................................................................10 

3.2 Encryption..............................................................................................13 

3.3 Decryption..............................................................................................16 

3.4 Binary Adder.........................................................................................18 

4. Security Analysis and Comparison..............................................................20 

4.1 Encryption Complexity of the Dynamic Transition Box.....................20 

4.2 Complexity of the Three Dimensional Operations...............................21 

4.3 Cryptanalysis of Attacks.......................................................................24 

4.3.1. Cryptanalysis on known plaintext and the corresponding 

      ciphertext attacks...............................................................24 

4.3.2. Differential and linear attacks...................................................25 

4.4 Flexibility.............................................................................................26 



 

 iv 

4.5 Comparison………………….………………………………..……27 

5. Performance Analysis....................................................................................29 

5.1 Binary Adder Simulation.........................................................................29 

5.2 System Simulation Results...................................................................30 

6. Conclusions and Future Work.......................................................................32 

References……………………………………….………………………………34 

Appendix: System Implementation......................................................................37 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 v 

List of Figures 
 

Figure 1. An embodiment of a 16-bit mother transition box and the generated 

child transition box ................................................................................... 12 

Figure 2. An embodiment of the encryption/decryption of a block by using the 

16-bit child transition box ........................................................................ 12 

Figure 3. The encryption flow chart of the SeFEM where pi is the plaintext block 

i, i =1,2,… …n; a0=K9, b0=K10; d0=K11; KS:key size ................................ 13 

Figure 4. The encryption algorithm of the SeFEM .............................................. 18 

Figure 5. The decryption algorithm of the SeFEM .............................................. 19 

Figure 6. Program initialization ............................................................................ 37 

Figure 7. Document category and file selection ................................................... 38 

Figure 8. Select the file to be en/decrypted .......................................................... 38 

Figure 9. The completion of the encryption process………………..………………….39 

Figure 10. The completion of the decryption process………………..…………..…….40 

 

 

 
 

 

 

 

 

 

 

 



 

 vi 

List of Tables  
 

Table 1. The possible pairs of (X, Y) where Z = 1001 = X +2 Y ............................ 22 

Table 2. The summary of the features of the DES, AES and SeFEM .................. 28 

Table 3. Specifications of the experimental platform ........................................... 29 

Table 4. Costs of performing XOR, XAND, the binary adder and the 

Inverse-binary adder when the operand length = 128 bits ....................... 29 

Table 5. All computations in terms of different numbers of operations of the 

encryption/decryption processes of the DES, AES and SeFEM in 

detail.........................................................................................................30 

 
 

 

 

 

 

 

 

 

 

 

 



 

 1 

1. Introduction 

Recently, many governments and institutes have adopted electronic documents to 

substitute for traditional paper documents, aiming to achieve a paperless homeland. But 

when a high-security-level document is transmitted through networks or the Internet, an 

encryption mechanism [1-3] is often required. Also, when a military office delivers a 

command to one of its subordinates, for example, to attack an enemy group some time 

later, the command must be encrypted before being sent out, particularly when the 

delivery goes through a wireless communication system. 

On the other hand, owing to the popularity of wireless communication, wireless 

systems have been developed rapidly, and mobile devices are commonly used in our 

everyday life. However, due to their wireless transmission nature, hackers can easily 

eavesdrop on those messages sent through wireless channels. That is why security 

problems have been more serious and attracted many more researchers’ attention than 

before. Presently Data Encryption Standard (DES) [4,5] and Advanced Encryption 

Standard (AES) [5,6] are two of the most widely used cryptographic techniques adopted 

to protect transmitted messages. However, both of them utilize only one key which is 

relatively short [4-6]. On the other hand, current computer processing speeds have been 

significantly improved. The DES encryption algorithm was successfully cracked in 

1999 [4-7], implying that it is no longer a high security encryption mechanism. 

Although the AES has not been cracked, no one dares to say that it is always secure in 

protecting transmitted data. In the following, we will use documents and messages 

interchangeably since documents are carried in messages. 

Both the AES and DES block ciphering [8] requires complicated calculation on their 

own parent keys so as to generate a certain number of sub-keys to encrypt plaintext. But 
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the combinatorial-logic style calculation is quite a problem since its outputs only rely on 

current inputs, without employing the outputs of its previous stage as a part of the inputs 

of its current stage to increase the security level of its ciphertext. Hence, their ciphertext 

may more easily be cracked by hackers by using cryptanalysis attacks [9], such as 

chosen plaintext attack [9], and attacks by statistical methods and Brute-force attacking 

methods [9]. Therefore, security levels of this style of encryption techniques fall short 

of our expectation. So how to improve their security levels has been one of the focuses 

of security researchers. 

The principles of modern encryption mechanisms [4] are that even though the 

encryption process of a technique has been disclosed, as long as the hackers do not 

know all the encryption keys, the delivered documents are still safe since without 

acquiring all decryption keys, it is very hard for hackers to crack the ciphertext. On the 

other hand, if a ciphertext is generated by using a combinatorial-logic block encryption 

technique [9], the sub-keys produced by the parent key given when the system starts up 

are the same, no matter how complicated the encryption process is. In fact, the same 

plaintext block will generate the same ciphertext block. In this case, hackers may crack 

the system by analyzing the relationship between plaintext blocks and the corresponding 

ciphertext blocks [8,10,11] or by using Brute-force attacking methods. Hence, due to the 

high speed of current computer systems, a combinatorial-logic block encryption 

technique may no longer be secure. 

According to our study, both the DES and AES have the following disadvantages, 

including 

1. Employing a combinational-logic encryption principle wherein the content of a 

ciphertext block, i.e., the output, is totally determined by the content of the current 

plaintext block, thus unrelated to the content of the previous plaintext blocks. 
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2. Encrypting fixed-size data blocks. This will reduce the flexibility of an encryption 

system. If the block size of an encryption algorithm can be changed flexibly, the 

encryption system is then able to encrypt data of variable lengths when necessary. This 

can thereby resist different kinds of attacks efficiently. 

3. Performing its own core computation repeatedly. For example, the DES calculates its 

core computation 16 times, whereas the AES computes its own 10 times. Although 

each repeated computation uses a new sub-key, repetitious computation by using the 

same equation not only weakens its security level, but also lowers its performance. 

4. Adopting a fixed substitution box (S-Box) to encrypt messages. This will also reduce 

its security level. If messages can be encrypted by using dynamic transition boxes, the 

security level of the underlying system will be higher since even if the same plaintext 

messages appear at different places, they will be encrypted with different transition 

boxes, consequently generating different ciphertext messages. 

Therefore, to solve these drawbacks, in this study, we propose a new encryption 

approach, called the Secure Feedback Encryption Method (SeFEM for short), in which 

plaintext blocks are encrypted by using three security mechanisms, including a 

sequential-logic style encryption method, a three-dimensional operation and a dynamic 

transition box. With this sequential-logic style encryption method, the computational 

result of an encryption round R as a part of (R+1)’s inputs is fed back to the encryption 

mechanism, thus increasing the complexity and unpredictability of the generated 

ciphertext. The three-dimensional operation, referring to three different operators, 

including a binary addition (+2) [12,13], exclusive-or (⊕), and exclusive-and (⊙), is 

used to encrypt a plaintext block. A dynamic transition box nonlinearly rearranges the 

bits of an encrypted message. The purpose is to increase the encryption complexity so 
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as to reduce the probability of the encryption process being cracked by hackers. 

The rest of this paper is organized as follows. Chapter 2 briefly introduces the DES 

and AES. Chapter 3 describes the SeFEM. Security analysis and comparison are 

presented and discussed in Chapter 4. Performance is analyzed and evaluated in Chapter 

5. Chapter 6 concludes this paper and addresses our future research. 
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2. Background and Related Work 

Block cipher refers to the process in which a fixed-length plaintext block is 

cryptographically manipulated by a series of operations to produce the corresponding 

secure ciphertext block, the length of which is often the same as that of the plaintext 

block. 

2.1 Data Encryption Standard (DES) 

The DES is a typical block cipher technique with 64 bits as its block size. But in 

practice, the keys used by this algorithm to encrypt plaintext blocks are only 56 bits in 

length [4,5]. The remaining 8 bits are parity bits or unused, implying that the security 

level of the generated ciphertext block falls short of expectation since a short key’s 

security level is generally lower than a longer key’s. 

The DES encryption structure consists of the initial permutation (IP for short), 16 

processing stages (called 16 rounds) and the final permutation (IP
-1

 for short), in which 

IP and IP
-1 

are mutually inverse arrays. Each of the 16 rounds contains a Feistel function 

[4,5], and an ⊕ operation. 

Before the first round, a plaintext block (64-bit) follows the content of the given IP 

table to permute their bits. After that, the new 64-bit block is divided into two 32-bit 

sub-blocks. Let the right sub-block be IP1,1 which is directly input to the first Feistel 

function, named round-1 Feistel which receives another input, called subkey1, to 

generate a result, denoted by result1,1 (i.e., round1’s 1
st
 result). Let the left sub-block be 

IP1,2 which is exclusive-ored with result1,1 to generate result1,2 (i.e., round1’s 2
nd

 result). 

Let IP2,1 = result1,2 and let IP2,2 = IP1,1. The rounds continue. The general rule is that 

round-i Feistel receives the two inputs, i.e., sub-key i and IPi,1, with which to generate 



 

 6 

resulti,1 which is then exclusive-ored with IPi,2 to generate resulti,2. After that, 

IP(i+1),2=IPi,1 and IP(i+1),1 = resulti,2, for all i= 1, 2, …, 16. Lastly, IP17,1 is the right half 

and IP17,2 is the left half of the 64-bit result of round 16. The right and left halves are 

input to IP
-1

 to produce the 64-bit ciphertext. 

The Feistel architecture [4] consists of four main functions, including expansion, 

key mixing, substitution, and permutation, respectively, denoted by E, ⊕, S (named 

S-Box) and P. Expansion transforms and extends a 32-bit pattern into 48 bits by using 

the expansion permutation [4,5]. The key mixing exclusive-ors E’s output, i.e., the 

48-bit output, and a 48-bit sub-key to generate a 48-bit result, which is divided into 8 

6-bit patterns as the inputs of 8 S-Boxes. Each S-Box as a non-linear transformation 

mechanism transforms a 6-bit input to a 4-bit output, implying the output of the 8 

S-Boxes is 32 bits long. After that, permutation rearranges the 32-bit output based on a 

fixed permutation process. The final result is also 32 bits in length. 

2.2 Advanced Encryption Standard (AES) 

The AES is also a kind of block cipher technique with block size 128 bits long. But its 

key length can be 128, 192 or 256 bits when necessary. The longer the length of the 

keys, the higher the security level of the system being considered. The AES uses a 

parent key to generate sub-keys. The AES encryption process is performed on a 4 × 4 

matrix, e.g., M, in which an element is 8 bits in length. The initial M contains a 

plaintext block, i.e., 128 bits (=4×4×8) long. The AES encryption has 10 rounds. Each 

round, except the last one, comprises four stages. 

In the first stage, named the SubBytes stage, an element of M, e.g., ai,j, is 

substituted by its corresponding element a’i,j retrieved from a pre-generated table, called 

a Rijndael S-Box [8,14,16], the elements of which are produced beforehand by invoking 



 

 7 

a non-linear function. In the second stage, called the ShiftRows stage, all elements of 

row ri in M are left-rotated i times, 0 i 3, even though the name of this stage is 

ShiftRows. The third stage is the MixColumns stage which linearly converts a column 

(a0,i , a1,i, a2,i, a3,i)
T
 of M, in which an element is one byte in length, to (a’0,i , a’1,i, a’2,i, 

a’3,i)
 T

 by invoking the method of the Rijndael mix columns [14-16]. In fact, this stage 

invokes an ―xtime‖ function [5,14], the inputs and outputs of which are all 1 byte in 

length. The function left shifts each input one bit with the least significant bit being 

filled by a 0. If the input’s most significant bit before shift is 1, the shift result will be 

exclusive-ored with {1b}hex . In the last stage, named the AddRoundKey stage, each ai,j 

in M is exclusive-ored with ki,j where ki,j is an element of a given round sub-key table 

used to convert ai,j to a’i,j , 0 i, j 3. In the AES, the parent key is employed by 

Rijndael's key schedule [14-16] to generate round sub-keys for each round. 

2.3 Block Cipher Modes of Operation 

The Cipher Block Chaining (CBC), the Propagating Cipher Block Chaining (PCBC), 

Cipher feedback (CFB), Output feedback (OFB) and Counter (CTR) [8] are block 

cipher standards recognized by National Institute of Standards and Technology (NIST). 

The five modes may be used in conjunction with any symmetric key block cipher 

algorithm approved by a Federal Information Processing Standard (FIPS) to increase the 

security level.  

 In the encryption process of the CBC [8,17], a plaintext block Pi is exclusive-ored 

with Initialization Vector (IV) or previous ciphertext block Ci-1 before it is input to 

Block Cipher Encryption unit. The general rule of the PCBC’s block encryption [8,17] 

is that plaintext is first exclusive-ored with IV. The exclusive-ored result and the key K 

of the system are then input to the Block Cipher Encryption unit to generate ciphertext 
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C1. After that, the result of exclusive-oring plaintext Pi-1 and ciphertext Ci-1 is 

substituted for IV to exclusive-or with the next plaintext Pi, i=2,3,...,n where is the 

number of generated plaintext. The newly generated exclusive-ored result and K are 

then input to Block Cipher Encryption unit to generate the next ciphertext Ci. 

With the CFB [8,17,18], we need an IV together with a Key K to trigger a Block 

Cipher Encryption unit. The output Oi of the unit is then exclusive-ored with a plaintext 

block Pi to produce the corresponding ciphertext block Ci. After that, CFB feeds back Ci 

to substitute for the IV to encrypt the next plaintext block Pi+1. The technical aspects of 

the OFB are very similar to those of the CFB. The only difference is that the OFB 

[8,17,18] feeds back the output of the Block Cipher Encryption unit Oi, rather than 

feeding back the ciphertext Ci, to the Block Cipher Encryption unit to encrypt the next 

plaintext block Pi+1. Furthermore, with the CTR [8,18], the feedback operation 

employed in the CFB and OFB is replaced by a counter as one of the inputs of the 

Block Cipher Encryption unit. 

Although these types of block cipher provide the security system with data 

integrity and confidentiality protection, they are not safe enough to protect data, i.e., 

they are vulnerable to known plaintext-ciphertext cryptanalysis attacks [17,18].  

In [17] and [18], some improved approaches, e.g. OPC, OPC-2, KSPC and ODC, 

were proposed. The general rule of the OPC-1 is that a key Key1 and previous 

intermediate output, e.g., Gi-1, are input to the Block Cipher Encryption unit to generate 

Oi, which is then exclusive-ored with plaintext Pi to produce Gi. Next, the Gi is 

binary-added with the previous output of the Block Cipher Encryption unit, e.g., Oi-1, to 

generate ciphertext Ci where i=1,2,3,…,n, G0=IV and O0=Key2. The general rule of the 

encryption process of the OPC-2 is that plaintext Pi and Key1 are input to the Block 

Cipher Encryption unit to generate Oi, which is then exclusive-ored with Oi-1 to generate 



 

 9 

Ci, where i=1,2,3,…,n, O0=Key2. 

With the KSPC, the key K is exclusive-ored with previous ciphertext, e.g., Ci-1, 

where the C0=IV. The exclusive-ored result is then input to the Block Cipher Encryption 

unit to encrypt current Pi. The general rule of the encryption process of the ODC is that 

Pi and K are input to the Block Cipher Encryption unit to generate the output O1, which 

is then binary-added with the exclusive-ored result of K and IV to generate Ci. After 

that, Oi is exclusive-ored with the Pi+1, and the exclusive-ored result and K are input to 

the Block Cipher Encryption unit to generate Oi+1, which is then binary-added with Oi to 

generate Ci+1, i=1,2,3,…,n, and C0=IV.  

In fact, the four modes proposed in [17] and [18] improved some of the 

shortcomings of the original Block Cipher modes of operation by using sequential 

logic-based feedback mechanisms. That is why we employ this mechanism to increase 

the security level of a protected system. 
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3. Feedback Encryption, Three Dimensional Operations and 

A Dynamic Transition Box 

The parameters and functions employed in this study are defined below. 

Plaintext block：pi ,1 i n, where n is the total number of blocks contained in the given 

 plaintext 

System keys：Ki ,1 i 8 

Dynamic keys：ai, bi, di, 1 i n 

Dynamic feedback keys：ai-1, bi-1, di-1, 1 i n 

Initial dynamic keys：a0 = K9 , b0=K10 , d0=K11 

Encryption key：ae 

Ciphertext blocks：ci, 1 i n 

A document, i.e., plaintext, is divided into n blocks, each of which is m bits in 

length, i.e., Plaintext =p1p2p3…pn. If |Pn|＜m, unoccupied bits are filled with zeros such 

that |Pn|=m. Thus, each Pi , 1 i n,
 
is m bits in length, and a key of the system is also m 

bits long, where m is a multiple of 8. 

3.1 Dynamic Transition Box 

The transition boxes that we propose have two types, a mother transition box and a 

child transition box. If a data block to be encrypted by a security system is m bits long 

where m is a multiple of 8, then:  

1). The mother transition box consists of g rows and h columns where m=gh, 2g,h. A 

sequence of numbers 1,2,3,…,m－1,m is randomly generated and rearranged so as to 

produce a random number sequence, which as the initial contents of this box is then 
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sequentially input to the mother transition box, implying that there are m! candidates 

of the mother transition box. 

2). The child transition box is obtained by rotating the mother transition box clockwise 

(may also be counterclockwise) t times, where the value of the count variable t is 

determined by the feedback keys. We will show this later.  Two examples of the 

16-bit mother transition box and the child transition boxes generated by exchanging 

the elements of the mother transition are illustrated Figure 1. 

3). The encryption process of a child transition box as shown in the upper half of Figure 

2 moves the j
th

 bit of the plaintext block (or of a dynamic key) to the position 

specified by the content of the j
th

 position of the child transition box, e.g., k, i.e., to 

the k
th

 position of the ciphertext block, where 1 k  m, e.g., the 1
st
 bit b0 (indexed by 

00-00) and the 2
nd

 bit b1 (indexed by 00-01) of the plaintext block are moved to the 

position specified by the content of the 1
st
 position (i.e., 1) and 2

nd
 position (i.e., 8) of 

the child transition box. The process terminates when all the bits of the plaintext 

block (or the dynamic key) are correctly moved to their positions. 

4). The decryption process of a child transition box as illustrated in the lower half of 

Figure 2 moves the k
th

 bit of a ciphertext block to the j
th

 position of the plaintext 

block where k is the content of the j
th

 position of the child transition box, e.g., b’0 and 

b’1 are moved to the 8
th

 (indexed by 10-00) and 1
st
 (indexed by 00-00) position of the 

plaintext block, respectively. The process terminates upon the completion of the 

transition of all the bits in the ciphertext block. 
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Figure 1. An embodiment of a 16-bit mother transition box and the generated child 

transition box 

 

Figure 2. An embodiment of the encryption/decryption of a block by using the 

16-bit child transition box 
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3.2 Encryption 

The encryption process of the SeFEM is shown in Figure 3. 

 

Figure 3. The encryption flow chart of the SeFEM where pi is the plaintext block i, 

i =1,2,… …n; a0=K9, b0=K10; d0=K11; KS:key size 

Step 1: Deriving an encrypted pi-key from the plaintext block pi, 1 i n. 

1). Input the plaintext block pi, 1 i n; 

2). Calculate parameter t1 = (bi-1+di-1) mod KS, 1 i n,           (1) 

where KS stands for key size; 
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3). Rotate the mother transition box clockwise by t1 times to obtain the first child 

transition box; 

4). Perform the encryption process by applying the first child transition box to pi 

to generate the encrypted pi-key, also denoted by pi, for later use. 

Step 2: Generating the dynamic keys ai, bi and di, 1in 

To simplify the following description, several notations are created, including: 

A=pi♁ai-1, B=K1♁bi-1, C=K2♁di-1, D=K3♁di-1, E=K4♁ai-1, F=K5♁bi-1 

 1). Calculate: ai=[(A+2B)⊙D]+2[(B+2C)⊙E],                           (2) 

bi=[(B+2C)⊙E]+2[(B+2C)⊙F],                            (3) 

di=[(B+2C)⊙F]+2[(A+2B)⊙D]                            (4) 

2). Calculate parameters t2= (ai-1＋bi-1) mod KS,                     (5) 

and t3= (ai-1＋di-1) mod KS;                     (6) 

3). Rotate the mother transition box clockwise t2 times to generate the second child 

transition box, and then perform the encryption process by applying this child 

transition box to the dynamic key ai, obtained by invoking Eq.(2), to generate the 

encryption key ae; 

4). Rotate the mother transition box clockwise t3 times to generate the third child 

transition box, and then perform the encryption process by applying this child 

transition box to the parameter bi, obtained by invoking Eq.(3), to generate the 

dynamic key, also denoted by bi; 

5). Rotate the original mother transition box anticlockwise t3 times to generate the 

fourth child transition box, and then perform the encryption process by applying this 

child transition box to the parameter di, obtained by invoking Eq.(4), to generate the 

dynamic key, still denoted by di ; 

Step 3: Outputting the ciphertext block ci, 1 i n 
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1). Calculate ci = [(ae⊕K6) +2(bi-1⊕K7)]⊕(di-1+2K8), 1 i n,           (7) 

2). Output the ciphertext block ci, 1 i n 

In the encryption process of the SeFEM, the parameters bi-1, di-1 and ae, rather than 

bi, di and ai, are invoked to generate ci, implying that bi, di and ai are internally used in 

the encryption/decryption processes. Hence, hackers are unable to infer the dynamic 

feedback keys ai-1, bi-1 and di-1from the dynamic keys ai, bi and di. Therefore, ai-1, bi-1 

and di-1 are very secure, and they are also changed continuously and dynamically to 

raise the security level of ci. That is why we dare to say that the SeFEM’s encryption 

process is more secure than those of the conventional feedback control mechanisms 

[8,9,11]. 

3.3 Decryption 

In fact, the SeFEM can be installed in a single machine to encrypt a stored file F, and 

decrypt the file when users wish to retrieve F. It can also be employed to encrypt a file 

H which needs to be delivered to and be decrypted at the receiving site. In both cases, 

the encryption process and decryption process have to both keep K1~K11. 

The decryption process of the SeFEM is as follows. 

Step 1: Restoring the dynamic key ai, 1 i n. 

1). Input the ciphertext block ci, 1 i n; 

2). Restore the encryption key ae where 














)()(  ,]1)()]([[

)()(  ,)]()]([[

71821671821

71821671821

KbKdcifKKbKdc

KbKdcifKKbKdc
a

iiiiii

iiiiii

e
  (8) 

3). Calculate parameter t2 where t2 = (ai-1+bi-1) mod KS; 

4). Rotate the mother transition box clockwise t2 times to generate the second child  

transition box, and then perform the decryption process by applying the child  
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transition box to the encryption key ae to restore the dynamic key ai. 

Step 2: Restoring the dynamic key bi and di, 1 i n. 

To simplify the following description, several notations are created, including: 

DGaLDGaHECBG ii ⊙)1(   ,⊙)(   ,⊙)( 2  , then 

1). Restore the encrypted pi-key 































BLGifaBDGa

BLGaifaBDGa

BHGaifaBDGa

BHGaifaBDGa

p

ii

iii

iii

iii

i

  and  a  ,)]1(]⊙)1[[(

  and    ,]]⊙)1[[(

  and    ,)]1(]⊙)[[(

  and    ,]]⊙)[[(

i1

1

1

1

;         (9) 

2). Calculate parameters: 

bi = [(B+2C)⊙E ] +2 [ (B+2C)⊙F ]                        (10) 

di = [(B+2C)⊙F ] +2 [ (A+2B)⊙D ]                        (11) 

3). Calculate parameter t3 = (ai-1+di-1) mod KS;                 (12) 

4). Rotate the mother transition box clockwise t3 times to generate the third child 

 transition box, and then perform the decryption process by applying this child 

 transition box to parameter bi, obtained by applying Eq.(10), to generate the 

 dynamic key bi for the next round. 

5). Rotate the mother transition box anticlockwise t3 times to generate the fourth 

child transition box, and then perform the decryption process by applying this 

child transition box to parameter di, obtained by invoking Eq.(11), to generate  

the dynamic key di for the next round. 

Step 3: Restoring the plaintext block pi, (1 i n)  

1). Calculate parameter t1= (bi-1+di-1) mod KS 

2). Rotate the mother transition box clockwise t1 times to generate the first child  

transition box, and then perform the decryption process by applying this child  
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transition box to the encrypted pi-key to restore plaintext block pi, (1 i n). 

3.4 Binary Adder 

In the SeFEM’s encryption process, we employ a binary adder, which as a binary 

operator with two parameters, e.g., A and B, i.e., A+2B, is different from XOR in that a 

binary adder does not numerically restore B to its original value when A is added twice, 

e.g., A+2B+2A≠B, but A⊕B⊕A=B, i.e., A disappears from the exclusive-ored result.  

Given a plaintext block p, a ciphertext block c and a dynamic key K, the binary 

adder +2 is defined as follows. 

Encryption: c = p+2K, where p and K undergo binary addition, and ignore the carry 

generated by the addition of the most significant bits; 

Decryption: 









KcifKc

KcifKc
Kcp

  ,1

  ,
2

,                         (13) 

where －2 as a binary subtraction is the inverse operation of +2, and K  is the 

one’s complement of key K. 

The drawback of the binary adder is that its operational speed is a little lower than 

that of the XOR. The encryption algorithm of the binary adder with the two streams, A 

and B, i.e., C = A +2 B, of n (=128) bits long is shown in Figure 4. The decryption 

algorithm of C = A－2 B is illustrated in Figure 5.  
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Algorithm 1: Encryption process of the binary adder 

Input: Streams A and B 

Output: C (=A＋2B) 

{Let A=A[128]A[127] … A[2]A[1], B=B[128]B[127] … B[2]B[1], C=C[128]C[127] … 

 C[2]C[1] and  

carry= carry[128]carry[127] … carry[1]carry[0] where each of A[i], B[i], C[i] and 

carry[i] is a binary digit, 1≤ i ≤128; carry[0]=0; 

For i = 1 to 128 { 

If carry[i-1] = 0 then  

   If A[i] = B[i] then 

      If A[i] = 0 then {C[i] = 0; carry[i] = 0;} /*A[i]+B[i]+carry[i-1] = 0+20+20 = 002*/ 

      else {C[i] = 0; carry[i] = 1;}    /*A[i]+B[i]+carry[i-1] = 1+21+20 = 102*/  

   else /*A[i]≠B[i] */ {C[i] = 1; carry[i] = 0;}  

/*A[i]+B[i]+carry[i-1] = (1+20+20) or (0+21+20) = 012*/   

else  /*carry[i-1]=1*/  

  If A[i] = B[i] then 

     If A[i] = 0 then {C[i] = 1; carry[i] = 0;}     

/*A[i]+B[i]+carry[i-1] = 0+20+21 = 012*/ 

     Else  /*A[i]=B[i]=1*/  {C[i] = 1; carry[i] = 1;}  

/*A[i]+B[i]+carry[i-1] = 1+21+21 = 112*/ 

  else  /*A[i]≠B[i]*/ 

     {C[i] = 0; carry[i] = 1;} /*A[i]+B[i]+carry[i-1] = (1+20+21) or (0+21+21) = 102*/}} 

Figure 4 The encryption algorithm of the SeFEM 
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Algorithm 2: Decryption process of the binary adder 

Input: Streams A and B 

Output: C (=A－2B) 

{Let A=A[128]A[127] … A[2]A[1], B=B[128]B[127] … B[2]B[1], C=C[128]C[127] … 

 C[2]C[1] and  

carry= carry[128]carry[127] … carry[1]carry[0] where each of A[i], B[i], C[i] and 

carry[i] is a binary digit, 1≤ i ≤128; carry[0]=0; 

For i = 1 to 128 { 

If carry[i-1] = 0 then  

   If A[i] = B[i] then    

      {C[i] = 0; carry[i] = 0;}  

/*A[i]－2B[i]－2carry[i-1] = (1－21－20) or (0－20－20) = 002*/ 

   else If A[i] = 1 then {C[i] = 1; carry[i] = 0;}  

/*A[i]－2B[i]－2carry[i-1] = 1－20－20 = 012*/ 

       else {C[i] = 1; carry[i] = 1;} /*A[i]－2B[i]－2carry[i-1] = 0－21－20 = 112*/ 

else  /*carry[i-1]=1*/ 

  If A[i] = B[i] then 

      {C[i] = 1; carry[i] = 1;}  

/* A[i]－2B[i]－2carry[i-1] = (1－21－21) or (0－20－21) = 112*/ 

else If A[i] = 1 then {C[i] = 0; carry[i] = 0;} 

 /*A[i]－2B[i]－2carry[i-1] = 1－20－21 = 002*/ 

      else {C[i] = 0; carry[i] = 1;}/*A[i]－2B[i]－2carry[i-1] = 0－21－21 = 102*/}} 

Figure 5 The decryption algorithm of the SeFEM 



 

 20 

.
1











n

m
p

4. Security Analysis and Comparison 

A well-designed encryption mechanism must be one with a high security level so as to 

effectively protect a system from being attacked by hackers, and with high performance 

and a low cost in order to efficiently encrypt and decrypt data [19]. In the following, we 

will analyze the security of the SeFEM and compare it with the AES and DES 

cryptographic methods. 

4.1 Encryption Complexity of the Dynamic Transition Box 

The child transition box as a dynamic transition box stated above is used to nonlinearly 

rearrange the bits of the encrypted message. What is the probability p of recovering the 

original message from the corresponding encrypted message by using the child 

transition box? Lemma 1 shows the answer. 

 

Lemma 1: 

Assume that key A is m bits in length, and there are n 1’s and (m-n) 0’s in this key, n  m. 

Then the probability p of recovering the original key A from the encrypted key A by 

applying the child transition box is  

 

Proof: Since the encrypted key A is nonlinearly rearranged, the number of all possible 

arrangements of this key is C
m

n
)!(!

!

nmn

m


. 

If the child transition box is unknown to hackers, since the encrypted key A will be 

one of the possible arrangements, the probability p of recovering the original key A 

from the encrypted key A on one trial is               .  Q.E.D. 
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In this study, the key ae is unknown to hackers, i.e., the numbers of 1’s and 0’s in 

key ae are unknown to hackers. Then the number of all possible nonlinear arrangements 

of the encrypted key ae 
is m

m

m

m

mmmm
2

1
...

210









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
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
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
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



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
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


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
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Hence, the probability p of recovering dynamic key ai 
from the encrypted key ae 

on one trial is 
m

p
2

1
 .  

4.2 Complexity of the Three Dimensional Operations 

Let X and Y be two keys, each of which is m bits in length. The probability p of 

recovering the value of an (X, Y) pair from an illegally intercepted X⊕Y is 
m

p
2

1
 [12]. 

But what is the probability of recovering of (X, Y) from X⊙Y (or from X +2 Y)? Lemma 

2 (Lemma 3) will show the results. 

 

Lemma 2: 

Since the keys X and Y are both m bits in length, the probability p with which we can 

obtain a correct X and Y on one trial from an illegally intercepted X⊙Y is 
m

p
2

1
 . 

Proof: Let X = xm...x2x1, Y = ym...y2y1 and let Z = X⊙Y = zm...z2z1 where each of xi, yi and 

zi is a binary digit, and zi = xi⊙yi, 1 i m. If zi = 0, the possible value of an (xi,yi) pair is 

(0,1) or (1,0). Otherwise, the possible value is (0,0) or (1,1). Hence, when zi is known, 

no matter whether it is 0 or 1, for each i, 1 i m, the probability of obtaining the correct 

(xi,yi)pair on one trial is 
2

1 , and then the probability to correctly recover the original 

value of (X, Y) on one trial is 
m

m

2

1

2

1








 . Q.E.D. 
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Lemma 3: 

Let X and Y be two keys, each of which is m bits in length. The probability p of 

recovering the value of an (X, Y) pair on one trial from an illegally intercepted X+2Y is 

m
p

2

1
 . 

Example 1: Let X,Y and Z be three keys, each of which is 4 bits in length and 

Z=X+2Y. The possible pairs of (X, Y) such that Z = 1001 are listed in Table 1. 

Table 1. The possible pairs of (X, Y) where Z = 1001 = X +2 Y 

Without carry  With carry 

X Y X Y 

0000 

0001 

0010 

0011 

0100 

0101 

0110 

0111 

1000 

1001 

1001 

1000 

0111 

0110 

0101 

0100 

0011 

0010 

0001 

0000 

1111 

1110 

1101 

1100 

1011 

1010 

 

1010 

1011 

1100 

1101 

1110 

1111 

 

Proof: Let Z = X+2Y. Then there are two cases for the binary addition of the most 

significant bits, i.e., with carry and without carry. 

Case 1: If the situation of without carry occurs, then Z= X+2Y is equivalent to Z= X+Y,  

and the possible values of (X, Y) are (0, Z), (1, Z-1), (2, Z-2), …, (Z-1, 1) and 

(Z, 0), i.e., a total of Z+1 possible values. 

Case 2: If the situation of with carry occurs, since we ignore this carry, Z= X+2Y is  

equivalent to Z=X+Y-2
m
, and the possible values of (X, Y) are (2

m
-1, Z+1), 

(2
m
-2, Z+2), (2

m
-3, Z+3),..., (Z+2, 2

m
-2) and (Z+1, 2

m
-1), i.e., a total of 2

m
-Z-1  
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possible values after ignoring the carry. Hence, for each Z, there is a total of  

(Z+1) + (2
m
-Z-1) = 2

m
 possible values of (X, Y) such that Z=X+2Y. The  

probability p of recovering the original value of (X, Y) on one trial is 
m

p
2

1
 . 

Q.E.D. 

 

Further, before we discuss the relationship between pi and ci for each i, 1 i n, the 

relationship between ae and ci for each i, 1 i n, should be addressed first. Lemma 4 

will illustrate the probability of recovering the value of ae from ci. 

Lemma 4: 

Assume the encrypted key ae and the ciphertext block ci for each i, 1 i n, are m bits in 

length. Then the probability p for recovering the original value of ae from ci on one trial 

for each i, 1 i n, is 
m

p
2

1
 . 

Proof: According to Eq.(7),
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(14)  

where b’i-1=bi-1K7 and d’i-1 = di-1 +2 K8. In Eq.(14), two inverse operations of ⊕ and 

one inverse operation of +2 are required to obtain (ae, K6, b’i-1, d’i-1) from ci. By lemma 

3 and [12], due to applying the two operators a total of three times, the probability p of 

recovering the original values of (ae, K6, b’i-1, d’i-1) from ci on one trial is

mm
p

8

1

2

1
3









 .   

However,    ,
2

1

8

1
mm

 in which
m2

1
  is the probability of recovering the original 

value of ae from ci for each i, 1 i n, on one trial, and which is also the least probability 

of recovering ae from ci with a blind guess. If we want to obtain ae by analyzing ci, the 

values of K6, b’i-1, d’i-1 are required. However, to recover (ae, K6, b’i-1, d’i-1) from ci, 

based on Eq.(7), the recovering probability is 
m8

1  which is far smaller than
m2

1
  , where
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m2

1
   is the probability of recovering ae from ci by using a blind guess. Hence, the 

probability p of recovering the original value of ae from ci on one trial for each i, 1 i n, 

is 
m

p
2

1
 . Q.E.D. 

Let i

p

i yx   be the notation of the probability p of recovering yi from x, for 

each i. For example, the probability of recovering ae from ci for each i, 1 i n, is 
m2

1
, 

which can be denoted as ei ac
m

 2/1
. Similarly, according the flow chart of the 

SeFEM shown in Figure 3, there exist ie aa
m

 2/1 , ii pa
m

 2/1 , and 

originalii pp
m

,

2/1 , implying that originalii pc
m

,

2/1  is the probability of recovering 

originalip ,  from ci for each i, 1 i n, is 
m2

1
. 

4.3 Cryptanalysis of Attacks 

4.3.1. Cryptanalysis on known plaintext and the corresponding ciphertext attacks 

To analyze the relationship between a plaintext block and its ciphertext block of a 

fixed-length-data-block system, hackers may first collect the ciphertext blocks and the 

corresponding plaintext blocks of the system. When receiving a ciphertext block, they 

can look up the corresponding plaintext block from the collected (plaintext block, 

ciphertext block) pairs by employing parallel computing techniques. 

However, as fixed-length-data-block encryption/decryption systems, the DES and 

AES at maximum have 2
64

 and 2
128

 possible plaintext blocks, respectively, indicating 

that currently it is hard for hackers to crack the AES with this method. But it may be 

cracked in the near future. The SeFEM is a feedback control mechanism. This type of 

attack can only be applied to the provisions of the first ciphertext block, but is not 
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applicable to crack the consequent ciphertext blocks, since these ciphertext blocks are 

produced by using a sequential-logic style encryption method which generates different 

keys to encrypt different plaintext blocks, and cannot be decrypted by a parallel manner. 

So the SeFEM can more effectively protect a system from the known 

plaintext/ciphertext attack than the DES and AES can. 

4.3.2. Differential and linear attacks 

Both differential attack [20,21] and linear attack [20,21] have the following 

characteristics: 

1). Hackers need to collect a very large number of (plaintext block, ciphertext block) 

pairs of a cryptographic system before attacking this system; 2). As the targets of these 

attacks, the DES’s and AES’s sub-keys are derived from a single parent key; 3). The 

DES and AES use static internal S-Boxes to encrypt all the delivered messages. 

For each of the two systems, the ciphertext blocks collected in the (plaintext block, 

ciphertext block) pairs are all derived from the same parent key and S-Box. So it is 

relatively more easy for hackers to crack the parent key and S-Box by analyzing the 

relationship between these plaintext blocks and ciphertext blocks collected in the 

(plaintext block, ciphertext block) pairs. However, if a large number of (plaintext block, 

ciphertext block) pairs is generated by invoking system keys and different transition 

boxes, rather than by using a single parent key and a fixed S-Box, then it is much harder 

for hackers to solve the system keys and transition boxes. 

That is why the SeFEM employs three dynamic keys (i.e., ai, bi, and di), three 

dynamic feedback keys (i.e., ai-1, bi-1, and di-1), eight system keys (K1 ~ K8) and three 

initial keys (a0, b0, d0), to protect an information system. In fact, a total of 11 

independent keys, including K1 ~ K8, a0, b0, and d0, and four dynamic child transition 
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boxes are invoked by the SeFEM. 

The differential attack and linear attack on the SeFEM are analyzed as follows: 

1. The DES and AES are a combinatorial-logic style encryption mechanism so that they 

suffer the differential attack and linear attack when hackers utilize parallel 

decryption processing techniques. However, the SeFEM is a sequential-logic style 

encryption mechanism. Hackers cannot exploit parallel decryption processing 

techniques for trying to crack the SeFEM.  

2. While encrypting plaintext blocks, due to using the sequential-logic style mechanism, 

the three dynamic feedback keys of the SeFEM change continuously and dynamically. 

That is why it can defend against these two attacks. Moreover, if a plaintext block is 

64 (128) bits in length, the hackers need to analyze 2
64x11 

(2
128x11

) bits before they can 

crack the 11 independent keys. This is almost an impossible mission when the 

sequential-logic style encryption approach is used to generate encryption keys. 

3. The same plaintext blocks appearing at different positions of the plaintext will be 

encrypted by different dynamic transition boxes to make the SeFEM more secure 

than the DES and AES since the latter two employ static S-Boxes. Although there are 

only 128 (256) different transition boxes that the SeFEM may produce, when the 

boxes are 64 (128) bits long, it is difficult for hackers to identify which dynamic 

transition box is currently being used to encrypt a plaintext block. Hence, the 

deployment of dynamic transition boxes can effectively resist differential attack and 

linear attack. 

4.4 Flexibility 

Both the DES’s and AES’s data blocks are fixed in length, which dramatically reduces 

the flexibility of an encryption system. If the encryption system can encrypt data of 



 

 27 

different lengths, i.e., the size of a data block can be flexibly varied, then the system can 

more effectively resist possible attacks than the DES and AES can. 

To overcome the disadvantages of the DES and AES, i.e., those inherent to the 

encryption of fixed-size data blocks, the SeFEM enables the encryption of flexible-size 

data blocks in the situation where the plaintext blocks to be encrypted and those 

encryption parameters and mechanisms, including system keys, initial keys, dynamic 

keys, dynamic feedback keys, encryption key, dynamic transition boxes, and the 

resultant ciphertext blocks, need to be the same size. In fact, the SeFEM can flexibly be 

adopted by different encryption systems, particularly those most suitable for mobile 

systems. If the encryption system needs to extend the size of a data block to increase its 

security level, the SeFEM is still applicable. But the DES and AES are not, implying 

that the SeFEM is more flexible for use than the DES and AES. 

4.5 Comparison 

The DES was cracked due to its short key length (only 56 bits long), rather than owing 

to its algorithmic flaws. Although the key length of the AES is 128 bits, parallel 

computing technologies have been developed rapidly, and the AES may someday be 

cracked. Table 2 summarizes the features of the DES, AES and SeFEM. 
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Table 2. Summary of the features of the DES, AES and SeFEM 

Method 

Characteristics 
DES AES SeFEM Remark 

Algorithm 
Excelle

nt 

Excelle

nt 
Excellent 

Up to the present, the algorithm has 

not been cracked by hackers. 

Operation 

structure 
Good Good Excellent 

The DES and AES are 

combinatorial-style encryption 

mechanisms, whereas SeFEM is a 

sequential-logic style encryption 

mechanism. 

Flexibility Low Low High － 

Parallel 

decryption 
Yes Yes No － 

Security of key(s) Low Middle High SeFEM has 11 system keys 

Security of 

transition box 
Low Middle High 

The transition boxes of the DES 

and AES are fixed in length, 

whereas the SeFEM’s is dynamic. 

Known plaintext/ 

ciphertext attack 
Low Middle High 

Security level for defending the 

attack 

Differential 

attack 
Low Middle High 

Security level for defending the 

attack 

Linear attack Middle High High 
Security level for defending the 

attack 

Security Low Middle High － 
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5. Performance Analysis 

In this chapter, we simulate and analyze the en/decryption processes of the SeFEM and 

evaluate their performance. Table 3 lists the specifications of the simulation 

environment. 

Table 3. Specifications of the experimental platform 

Component Description 

CPU Intel(R) Core(TM) Q9400 2.66GHz 

RAM 3 GB 

OS Windows 7 

Programming tools Java 1.7.0_13/ Eclipse 

5.1 Binary Adder Simulation 

From the algorithms shown in Figures 4 and 5, we can see that their operation processes 

are almost the same. So the costs of performing the encryption and decryption of the 

binary adder are the same. The costs of performing XOR, XAND and en/decryption of 

the binary adder are listed in Table 4, in which the costs of the binary adder and the 

inverse-binary adder are each only about two times that of XOR, implying that the 

binary adder is practically feasible. 

Table 4. Costs of performing XOR, XAND, the binary adder and the 

Inverse-binary adder when the operand length = 128 bits 

Operator XOR 

(⊕) 

XAND 

(⊙) 

Binary adder (＋

2) 

Inverse- Binary adder 

(－2) 

Execution 

time(us) 

5.376 5.377 10.369 10.369 
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5.2 System Simulation Results  

The performance of an encryption method heavily depends on the amount of 

computations that the method has. All computations in terms of different numbers of 

operations for the DES, AES and SeFEM in detail are listed in Table 5, which also 

shows that the total load and cost of the AES are much higher than those of the SeFEM, 

implying that the SeFEM is qualitatively more efficient than the AES. Hence the 

ranking of the performance of the three security mechanisms is SeFEM > AES > DES. 

The quantitative analysis on the performance of the AES and SeFEM will be a part of 

our future studies. 

 The implementation of the SeFEM is shown in the Appendix of this thesis. 

Table 5. All computations in terms of different numbers of operations of the 

encryption/decryption processes of the DES, AES and SeFEM in detail 

Scheme Encryption Decryption 

DES (64-bit 

block) [4,6] 

16 ⊕s (32 bits) + 16 ⊕s (48 

bits) + 1 IP (64 bits) + 1 IP-1 

(64 bits ) + 128 S-Box (6 bits) 

+ 16 Expansions (48 bits) + 16 

Permutations (32 bits) 

The number of operations is the 

same as that of the encryption 

process. 

AES (128-bit 

block, 

128-bit key) 

[16]  

(AddRoundKey)  

176 ⊕s (8 bits) 

The number of operations is the 

same as the sum of the numbers of 

those operations employed by the 

encryption process for the three 

stages, including AddRoundKey, 

SubBytes, and ShiftRows 

(SubBytes) 

160 Substitutions (8 bit) [22] 

(ShiftRows) 

30 ShiftRows (128 bit) 

(MixColumns)  

36 Rijndael columns mixing 

[15] (128 bits) 

(MixColumns)  

36 Rijndael columns mixing [15] 

(128 bits). 

(Generally, the operations of a 

decryption process are often more 

complex than those of the 

corresponding encryption 
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process.) 

SeFEM 

(128-bit 

block) 

9 ⊕s (128 bits) + 3 ⊙s (128 

bits)+ 

7 +2s (128 bits) + 3 ts’ 

generation, i.e., t1, t2 and t3 (8 

bits) + 4 child boxes’ 

generation (128 bits) + 

4 permutations (128 bits) 

6 ⊕s (128 bits)+ 

3 －2s (128 bits) + 3 ⊙s (128 

bits)+ 

7 +2s (128 bits) + 3 ts’ generation, 

i.e., t1, t2 and t3 (8 bits) + 4 child 

boxes’ generation (128 bits) + 

4 permutations (128 bits) 
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6. Conclusions and Future Work 

The encryption architectures of the DES and AES are similar, i.e., a combinational-logic 

encryption mechanism. So they may be decrypted by using parallel computing 

techniques. But the SeFEM’s is a sequential-logic encryption approach. It is almost 

impossible for hackers to solve it with parallel techniques. Both the DES and AES 

utilize a single parent key to generate sub-keys, with which to encrypt messages. So 

they can more easily be cracked. The SeFEM employs 11 independent system keys to 

encrypt messages, making it very difficult to be cracked. Also, the transition boxes 

invoked by the DES and AES are static, while those employed by the SeFEM are 

dynamic. Of course, the latter is more secure than the former two. Further, both the DES 

and AES encrypt fixed-size data blocks, while the SeFEM’s is flexible, thus more 

suitable for use by mobile systems than the DES and AES. Each of the DES and AES 

has only one encryption operator, i.e., exclusive-or. But the SeFEM employs three. It 

means that the DES and AES adopt a one-dimensional key-exchange operation and the 

SeFEM utilizes a three-dimensional one so that the SeFEM is more difficult to be 

cracked than the DES and AES are. Also, the DES and AES encryption techniques 

repeatedly perform their own core operations. But the SeFEM has no duplicated 

encryption computation, making its own encryption process more efficient than those of 

the DES and AES. Table 5 shows that the qualitative performance ranking of the DES, 

AES and SeFEM is SeFEM > AES > DES [23]. 

Moreover, if the SeFEM requires a parent key before the encryption process begins, 

we can substitute for the initial feedback key d0 with the parent key. Then the dynamic 

key di and the dynamic feedback key di-1 will change as d0 is replaced by the input 

parent key. Furthermore, the keys di and di-1, due to the effect of the feedback 
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mechanism, change their values continuously, consequently greatly increasing their 

security levels. 

Compared to existing data encryption methods, the SeFEM is a novel one, not only 

because it uses the sequential-logic style encryption mechanism, three-dimensional 

operations and dynamic transition boxes, but also more importantly it hides its dynamic 

keys 
ib , 

id , and 
ia  which are internally used to generate those encryption parameters 

employed in both the encryption and decryption processes of the security system, and 

thus are invisible to hackers. That is why its sequential-logic style encryption 

mechanism is more secure than conventional ones. 

In the SeFEM, ciphertext generated after the first round will be protected by the 

sequential-logic style encryption mechanism. However, because it is unprotected by this 

encryption mechanism, hackers have the opportunity to break the ciphertext generated 

in the first round by collecting and analyzing a large number of the first ciphertext block. 

However, in an actual breaking process, it is almost impossible for hackers to crack the 

security system by only collecting and analyzing the first (plaintext block, ciphertext 

block) pair. In fact, the opportunity of cracking the first ciphertext block does exist in 

the SeFEM. Let the first-stage ciphertext be the message directly output from the 

SeFEM, when the corresponding plaintext is input. Thus a mechanism which can 

effectively prevent hackers from collecting (plaintext block, first-stage ciphertext block) 

pairs, especially the first (plaintext block, first-stage ciphertext block) pair, is required. 

Also, we would like to analyze the quantitative performance of the AES, DES and 

SeFEM so that users can know the time that the three systems require to encrypt 

different types of input data. These constitute our future studies. 
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Appendix: System Implementation 

In this appendix, we show the implementation of the SeFEM, which is written in 

JAVA language on a JAVA working environment. The operation procedure is as 

follows. 

Step 1:  

Start up the system by clicking the SeFEM icon shown on the screen (see the right 

portion of Figure 6). When the program is successfully started up, as illustrated in the 

left portion of Figure 6, the ―Message board‖ window shows ―Initialized successfully‖ 

to indicate that the SeFEM has been successfully initialized. 

 

Figure 6. Program initialization 

Step 2:  

Click ―Open file‖ button, as shown in the right portion of Figure 7, user can then 

select the file to be en/decrypted, e.g., F. Now the ―Message board‖ window displays 

the file path (see Figure 8a). If the filename extension of F is not ―SeFEM‖, meaning 

that F is an un-encrypted file, then the system activates the two buttons, denoted by 
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―Encrypt‖ and ―Reselect‖. Otherwise the system considers that the user would like to 

decrypt F, it then activates the two buttons, named ―Decrypt‖ and ―Reselect‖ (see 

Figure 8b). Here ―Reselect‖ button is activated so that when the user does not want to 

en/decrypt the selected file, he/she can press this button to choose another one.  

  

Figure 7. Document category and file selection 

  

(a)The selected file is to be encrypted (b)The selected file is to be decrypted 

Figure 8. Select the file to be en/decrypted 
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Step 3:  

Press the ―Encrypt‖ (or ―Decrypt‖) button is to run the program. The ―Progress bar‖ 

window shown in the middle of the left portion of Figures 9 and 10 indicates the 

percentage which has been finished by the program. After the completion of the 

encryption (decryption), ―Message board‖ window shows a message to indicate the 

completion of the operation, and displays the consumed time. In the ―Message board‖ 

window shown in Figure 10, we select penguins.SeFEM and press the ―Reselect‖ button. 

But the reselected file is still penguins.SeFEM. After the selected file is completely 

encrypted/decrypted, if we click ―Open file‖ button again, we can select the next file for 

en/decryption.    

 

Figure 9. The completion of the encryption process 
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Figure 10. The completion of the decryption process 


