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Abstract

Interval censoring refers to a situation in which, T ∗i , the time to occurrence of an event

of interest is only known to lie in an interval [L∗i , R
∗
i ]. In some cases, the variable T ∗i also

suffers left-truncation. Based on an integral equation, we propose a self-consistent estimator

(SCE) of survival function of T ∗i . It is shown that the nonparametric maximum likelihood

estimator (NPMLE) is a solution of the integral equation. A simulation study is conducted

to compare the performance between the SCE and NPMLE. We also discuss the consistency

of the SCE.

Key Words: left truncation; interval censoring; self-consistent.

1. Introduction

Left truncated and interval-censored data often arise in epidemiology and individual

follow-up studies and possibly in other fields. Their importance stems from the common

use of prevalent cohort study designs to estimate survival from onset of a specified disease.

Consider the following example.

Example: AIDS Cohort Studies

In AIDS cohort studies, we are interested in the incubation time of the disease. An

individual is selected only when he (or she) is HIV-positive and yet none have developed

AIDS. Hence, earlier onset of AIDS would then be a truncating force for the variable of

interest. Suppose that for each individual i the infection time (denoted by Tsi) can be quite

accurately determined (e.g. due to blood transfusion). The recruitment starts at τ0 and

the follow-up is terminated at τe. For each individual i, let T ∗i denote the time from Tsi to

development of AIDS. Let V ∗i = τ0 − Tsi if Tsi < τ0 and V ∗i = 0 if Tsi ≥ τ0. Hence, T ∗i is
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observable only when T ∗i ≥ V ∗i ). Let C∗i = τe−Tsi denote the censoring times. Furthermore,

there are many situations, in which the onset of AIDS is recorded only between an interval

although the initiating events (HIV infection) Tsi is recorded exactly. Hence, the variable

of interest T ∗i can be recorded as an interval, say [L∗i , R
∗
i ]. For example, under mixed case

interval-censored model (Shick and Yu (2000)), let K be a positive random integer, and for

individual i let Yi = {Yi,k,j : k = 1, 2 . . . , j = 1, . . . , k} be an array of random variables such

that Yi,k,1 < · · · < Yi,k,k. On the event K = k, let [L∗i , R
∗
i ] denote the endpoints of that

random interval among [−∞, Yi,k,1], [Yi,k,1, Yi,k,2], . . . , [Yk,k,∞] which contains T ∗i . When T ∗i

is right censoring, we have [L∗i , R
∗
i ] = [Yk,k,∞) = [C∗i ,∞]. Hence, one observes nothing if

T ∗i < V ∗i , and observes ([L∗i , R
∗
i ], V

∗
i ) if T ∗i ≥ V ∗i . We assume that (K,Yi, V

∗
i ) and T ∗i are

independent and V ∗i is dependent of (L∗i , R
∗
i ) with P (V ∗i ≤ L∗i |T ∗i ≥ V ∗i ) = 1. Let F (t) denote

the distribution function of T ∗i , and G(x) and Q(x) denote the distribution function of V ∗i

and C∗i , respectively. For any distribution function W denote the left and right endpoints

of its support by aW = inf{t : W (t) > 0} and bW = inf{t : W (t) = 1}, respectively.

Throughout this article, for identifiability of T ∗i , we assume that T ∗i , L∗i , R
∗
i and V ∗i are all

continuous, and

aG ≤ aF and bG ≤ bF ≤ bQ. (1.1)

Furthermore, we assume that P (L∗i < R∗i ) = 1 and given R∗i < ∞, (L∗i , R
∗
i ) has a joint

density b(l, r), satisfying b(l, r) > 0 if 0 < F (l) < F (r) < 1.

Let (L1, R1, V1), . . . , (Ln, Rn, Vn) denote the left-truncated and interval-censored data.

Note that [Li, Ri] ⊂ [Vi,∞], i.e. Vi ≤ Li. The nonparametric maximum likelihood estimator

(NPMLE) of F can be obtained by using EM algorithm of Turnbull (1976). When there

is no truncation, the asymptotic properties of the NPMLE have been derived for interval-

censored data. Groeneboom and Wellner (1992) proposed an iterative convex minorant

algorithm to calculate the NPMLE and proved the uniform consistency of the NPMLE when

F is continuous and the joint distribution function of (L∗i , R
∗
i ) is absolutely continuous. If

(L∗i , R
∗
i ) is continuous, the NPMLE converges slower than

√
n to a non-Gaussian limiting

distribution (see Groeneboom and Wellner (1992), Shick and Yu (2000), van der Vaart and

Wellner (2000), Song (2004)). Although asymptotic properties of the NPMLE have been

derived for the interval-censored data without truncation, much less is known about the

large sample properties of the NPMLE if both interval censoring and truncation are present.

Pan and Chappell (1999) showed that the NPMLE is inconsistent when data is subject to

case 1 interval censoring and left truncation. Under the assumption of monotonic hazard
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function, Pan et al. (1998) showed the consistency of the NPMLE when data is subject to

left truncation and interval censoring.

In Section 2, based on an integral equation, we propose a self-consistent estimator (SCE)

of survival function of T ∗i . We show that the NPMLE is a solution of the proposed inte-

gral equation. We discuss the consistency of the SCE. In Section 3, a simulation study is

conducted to compare the performance between the SCE and NPMLE.

2. The Nonparametric Estimators

2.1 The NPMLE

In this section, we briefly review the NPMLE of SF (t) = P (T ∗i > t) using EM algorithm

of Turnbull (1976). Notice that due to sampling scheme described in Section 1, we have

P ([Li, Ri] ⊂ [Vi,∞)) = 1. Without loss of generality, suppose the observed data are ordered

according to Li such that L1 < L2 < · · · < Ln. Following Turnbull (1976), Frydman (1994)

and Alioum and Commenges (1996), we consider nonparametric estimation of F using the n

independent pairs {A1, B1}, . . . , {An, Bn}, where Ai = [Li, Ri] and Bi = [Vi,∞). Assuming

that the inspection process which gives rise to Ai is independent of Ti, we consider the

following conditional likelihood:

Lc(SF ) =
n∏

i=1

PSF
(Ai)

PSF
(Bi)

, (2.1)

where PS(R) denotes the probability that is assigned to the interval by SF . We define an

NPMLE as ŜM = argmaxS∈S{Lc(S)}, where S denotes the class of survival functions such

that PS(∪ni=1Bi) = 1 and Lc(S) is defined, i.e. PS(Bi) > 0 for all i = 1, . . . , n. Using

the approach of Hudgens (2005), we define K = {K1, K2, . . . , K2n}, where K1 = Ai for

i = 1, . . . , n, and Ki = (−∞, Vi) for i = n + 1, . . . , 2n. An intersection graph for K is

constructed as follows. For each element of K, we define a corresponding vertex. Let i be

the label of the vertex corresponding to Ki. Denote the set of vertex by Sv. Two vertices

in Sv are considered connected by an edge if and only if the two corresponding regions

in K intersect. A clique is defined as a subset M of Sv such that every member of M is

connected by an edge to every other member of M . A maximal clique has the additional

property that it is not a proper subset of any other clique. Let M = {M1, . . . ,MJ} be

the subset of maximal cliques of Sv that contain at least one vertex corresponding to a

censoring interval, i.e. for each Mj ∈M, there is some i ∈ {1, . . . , n} such that i ∈Mj. Let
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H = {H1, . . . , HJ} be the corresponding set of real representations of elements of M where

Hj = ∩i∈Mj
Ki for j = 1, . . . , J . By Lemma 1 of Hudgens (2005), any distribution function

which increases outside ∪Jj=1Hj cannot be an NPMLE. By Lemma 2 of Hudgens (2005), for

fixed value of PF (Hj), the likelihood is independent of the values of F within the region Hj.

These lemmas allow us to consider maximizing a simpler likelihood than equation (2.1). For

each Hj ∈ H, let sj = PF (Hj) and let s be an m-dimension column vector with elements

sj. We shall assume throughout that H1, . . . , HJ are ordered such that Hj = [qj, pj] is to

the left of Hj+1 = [qj+1, pj+1] for j = 1, . . . , J − 1, i.e. [q1, p1], [q2, p2], . . . , [qJ , pJ ], where

q1 ≤ p1 < q2 ≤ p2 < · · · < qJ ≤ pJ . It follows that from lemmas 1 and 2 of Hudgens (2005)

that maximizing likelihood (2.1) is equivalent to maximizing

Lc(s) =
n∏

i=1

∑J
j=1 αijsj∑J
j=1 βijsj

, (2.2)

where αij = I[Hj ⊂ Ai], βij = I[Hj ⊂ Bi] and I[·] is the usual indicator function. The result-

ing reduced likelihood (2.2) is exactly as described in section 2 of Alioum and Commenges

(1996). The goal is to maximize likelihood (2.2) subject to the constraints

J∑
j=1

sj = 1, (2.3)

sj ≥ 0 (j = 1, . . . , J), (2.4)

and
J∑

j=1

αijsj > 0, (i = 1, . . . , n). (2.5)

We shall use Ω to denote the parameter space that is given by constraints (2.3)-(2.5), i.e.

Ω = {s ∈ RJ :
J∑

j=1

sj = 1; sj ≥ 0 for j = 1, . . . , J ;
J∑

j=1

αijsj > 0 for i = 1, . . . n}.

To find the maximum likelihood estimate of the vector s, we can use an EM algorithm and

the resulting self-consistent estimate of s is exactly the Turnbull’s (1976) self-consistency

algorithm as follows:

s
(b)
j =

{
1 +

dj(s
(b−1))

M(s(b−1))

}
s
(b−1)
j (1 ≤ j ≤ J), (2.6)

where

dj(s
(b−1)) =

n∑
i=1

{(
αij

/ J∑
k=1

αiks
(b−1)
k

)
−
(
βij

/ J∑
k=1

βiks
(b−1)
k

)}
,
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and

M(s(b−1)) =
n∑

i=1

1∑J
j=1 βijs

(b−1)
j

.

Let ŝj (j = 1, . . . , J) denote the estimators obtained from (2.6). As pointed out by Hudgens

(2005), in general, a maximizer of Lc(s) subject to s ∈ Ω need not exist since Ω is not closed.

For left-truncated and interval-censored data, Hudgens (2005) (see Theorem 1, page 578)

proposed a sufficient and necessary condition for the existence of the NPMLE as follows:

“ There is a maximizer of Lc(s) subject to s ∈ Ω if and only if for each non-empty proper

subset S of {1, . . . , n} there is an i /∈ S such that Ai ⊂ DS, Ai = ∪j∈A∗
i
Hj, DS = ∪k∈SBk,

Bk = ∪j∈B∗
k
Hj, where A∗i = {j : αij = 1} and B∗k = {j : βkj = 1}”. Based on the

the estimators ŝj’s, an estimator ŜM(t) of SF (t) can be uniquely defined for t ∈ [pj, qj+1)

by ŜM(pj) = ŜM(qj+1−) = 1 − (ŝ1 + · · · + ŝj), but is not uniquely defined for t being in

an open innermost interval (qj, pj) with qj < pj. To avoid ambiguity we define ŜM(t) =

1− [ŝ1 + · · ·+ ŝj−1 + sj(t− qj)/(pj − qj)] if t ∈ (qj, pj] and 0 < qj < pj <∞.

2.2 The SCE

Let SF (t) = 1− F (t) denote the survival function of T and p = P (V ∗i ≤ T ∗i ) denote the

proportion of un-truncation. We have the following equation:

SF (t) = P (T ∗i > t, V ∗i ≤ t) + P (T ∗i > t, V ∗i > t)

= pP (V ∗i ≤ t < L∗i |T ∗i ≥ V ∗i ) + pP (T ∗i > t, L∗i < t ≤ R∗i |T ∗i ≥ V ∗i ) + P (T ∗i > t, V ∗i > t).

(2.7)

Motivated by (2.7), given p, we consider the following self-consistent estimator:

Ŝ(t) =
1

np−1

{ n∑
i=1

I[Vi≤t<Li] +
n∑

i=1

I[Li≤t<Ri]
Ŝ(t)− Ŝ(Ri)

Ŝ(Li)− Ŝ(Ri)
+

n∑
i=1

I[Vi>t]
Ŝ(t)

Ŝ(Vi)

}
. (2.8)

Notice that the last term of the equation (2.8) is to recover the missing information due to

left-truncation. Given the observation Vi > t, a pseudo observation is recovered by adding

the weight Ŝ(t)/Ŝ(Vi). Let G̃(t) = P (Vi ≤ t) denote the sub-distribution function of Vi.

Since G̃(t) = p−1
∫ t

0
1/SF (Vi)dG(t). It follows that np−1 can be estimated by

∑n
i=1 1/SF (Vi)

(see Shen (2005)). Hence, a self-consistent estimator Ŝn is given by solving the following

equation:
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Ŝn(t) =[ n∑
i=1

1

Ŝn(Vi)

]−1{ n∑
i=1

I[Vi≤t<Li] +
n∑

i=1

I[Li≤t<Ri]
Ŝn(t)− Ŝn(Ri)

Ŝn(Li)− Ŝn(Ri)
+

n∑
i=1

I[Vi>t]
Ŝn(t)

Ŝn(Vi)

}
. (2.9)

Let G̃n(v) denote the empirical version of G̃(v). Similarly, Let H̃n(v, l) and Q̃n(l, r) denote

the empirical versions of the joint sub-distributions of H̃(v, l) = P (Vi ≤ v, Li ≤ l) and

Q̃(l, r) = P (Li ≤ l, Ri ≤ r), respectively. It follows that (2.9) can be written as

Ŝn(t) =[ ∫
1

Ŝn(v)
G̃n(dv)

]−1{∫
v≤t<l

H̃n(dv, dl)+

∫
l≤t<r

Ŝn(t)− Ŝn(r)

Ŝn(l−)− Ŝn(r)
Q̃n(dl, dr)+

∫
v>t

Ŝn(t)

Ŝn(v)
G̃n(dv)

}
.

The following theorem shows that ŜM satisfies the equation (2.9).

Theorem 1.

The NPMLE ŜM satisfies equation (2.9).

Proof:

First, consider an initial estimator Ŝ
(0)
n , which puts mass only on [qj, pj] (j = 1, . . . , J).

Let Ŝ
(1)
n denote the first step estimator. Without changing the innermost intervals and

likelihood function, we can transform data by moving all right censored and left truncated

points between pj−1 and qj to pj−1. Similarly, move all left censored points between pj−1

and qj to qj. (see Li et al. (1997)). Based on the transform data, for all i, j, we have

I[pj−1<Vi≤qj ] = 0, I[Vi≤pj−1≤Li]I[qj>Li] = 0, I[Vi≤pj−1≤Li]I[qj>Li] = 0, I[Vi>pj−1]I[Vi≤qj−≤Li] = 0,

I[Li≤pj−1<Ri] = 0 and I[Li≤qj−≤Ri] = 0. It follows that Ŝ
(1)
n (pj−1) − Ŝ

(1)
n (qj−) = 0. Hence,

Ŝ
(1)
n also puts mass only on [qj, pj] (j = 1, . . . , J). Next, since there is no left censoring

observations in (qj, pj] and there is no left truncation observations in [qj, pj), we have for all

i, j, I[Vi≤qj<Li]I[pj≥Li] = 0 and I[Vi>qj ]I[Vi≤pj<Li] = 0. Furthermore, given an interval [Li, Ri],

we either have [qj, pj] ⊆ [Li, Ri] or [qj, pj] ∩ [Li, Ri] = ∅. Thus, we have

Ŝ(1)
n (qj−)− Ŝ(1)

n (pj) =

[ n∑
i=1

1

Ŝ
(0)
n (Vi)

]−1{ n∑
i=1

I[[qj ,pj ]∈([Li,Ri]]
Ŝ
(0)
n (qj−)− Ŝ(0)

n (pj)

Ŝ
(0)
n (Li)− Ŝ(0)

n (Ri)

+
n∑

i=1

Ŝn(qj−)− Ŝn(pj)

Ŝn(Vi)
−

n∑
i=1

I[Vi≤qj ]
Ŝn(qj−)

Ŝn(Vi)
+

n∑
i=1

I[Vi≤pj ]
Ŝn(pj)

Ŝn(Vi)

}
. (2.10)
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Since there is no left truncation observations in [qj, pj), (2.10) can be written as

Ŝ(1)
n (qj−)− Ŝ(1)

n (pj) =

[ n∑
i=1

1

Ŝ
(0)
n (Vi)

]−1{ n∑
i=1

I[[qj ,pj ]∈([Li,Ri]]
Ŝ
(0)
n (qj−)− Ŝ(0)

n (pj)

Ŝ
(0)
n (Li)− Ŝ(0)

n (Ri)

+
n∑

i=1

Ŝn(qj−)− Ŝn(pj)

Ŝn(Vi)
−

n∑
i=1

I[qj≥Vi]
Ŝn(qj−)− Ŝn(pj)

Ŝn(Vi)

}
. (2.11)

Next,

ŜM(qj−)− ŜM(pj) =

[ n∑
i=1

1∑J
j=1 βijsj

]−1{ n∑
i=1

αij∑J
k=1 αikŝk

+
n∑

i=1

1− βij∑J
k=1 βikŝk

}
ŝj. (2.12)

By definitions of Ai, Bi, αij and βij, it follows that equation (2.11) is equivalent to equation

(2.12). The proof is completed.

Although the NPMLE ŜM satisfies equation (2.9), it is not clear whether the SCE is

consistent or not. We discuss the consistency of the SCE as follows.

Let Ω be the event {lim H̃n(v, l) = H̃(v, l), lim Q̃n(l, r) = Q̃(l, r) uniformly for allv < l <

r}. For each ω ∈ Ω, let Ŝn be the solution of (2.9). Since {Ŝn}n≥1 is bounded and monotone,

for each subsequence of natural numbers, by Helly’s selection theorem, there exists a further

subsequence, say {nk}, such that limnk→∞ Ŝnk
(t) = S0(t) pointwisely for some S0 ∈ Θ. Thus,

it suffices to show that S0(t) = SF (t) for all t ∈ [aF , bF ].

Since H̃n and Q̃n converge uniformly to H̃ and Q̃, respectively and Ŝn satisfies (2.9), by

the bounded convergence theorem S0 satisfies the following equation: S0(t) =[ ∫
1

S0(v)
G̃(dv)

]−1{∫
v≤t<l

dH̃(v, l) +

∫
l≤t<r

S0(t)− S0(r)

S0(l)− S0(r)
Q̃(dl, dr) +

∫
v>t

S0(t)

S0(v)
G̃(dv)

}
.

(2.13)

Equation (2.13) can be written as

S0(t)

∫
v≤t

1

S0(v)
G̃(dv) =

∫
v≤t<l

H̃(dv, dl) +

∫
l≤t<r

S0(t)− S0(r)

S0(l)− S0(r)
Q̃(dl, dr). (2.14)

Let H(v, l) = P (V ∗i ≤ u, L∗i ≤ l) and Q(l, r) = P (L∗i ≤ r, R∗i ≤ r). Since G̃(dv) =

p−1SF (v)G(dv), H̃(dv, dl) = p−1SF (l)H(dv, dl), and Q̃(dl, dr) = p−1[SF (l)−SF (r)]Q(dl, dr),

(2.14) can be written as

p−1S0(t)

∫
v≤t

SF (v)

S0(v)
G(dv) = p−1

∫
v≤t<l

SF (l)H(dv, dl)
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+p−1
∫
l≤t<r

S0(t)− S0(r)

S0(l)− S0(r)
[SF (l)− SF (r)]Q(dv, dl, dr). (2.15)

Replacing S0(·) of (2.15) by SF (·), we obtain

p−1SF (t)G(t) = p−1
∫
v≤t<l

SF (l)H(dv, dl) + p−1
∫
l≤t<r

[SF (t)− SF (r)]Q(dl, dr). (2.16)

Note that (2.16) is equivalent to

P (T ∗i > t, V ∗i ≤ t|T ∗i ≥ V ∗i ) = P (V ∗i ≤ t < L∗i |T ∗i ≥ V ∗i ) + P (T ∗i > t, L∗i < t < R∗i |T ∗i ≥ V ∗i ).

Subtracting (2.16) from (2.15), we obtain

h(t)K(t) =

S0(t)

∫
v≤t

h(v)

S0(v)
G(dv)−

∫
l≤t<r

h(l)[S0(t)− S0(r)]

S0(l)− S0(r)
Q(dl, dr)−

∫
l≤t<r

h(r)[S0(l)− S0(t)]

S0(l)− S0(r)
Q(dl, dr),

(2.17)

where K(t) = G(t) − P (L∗i ≤ t < R∗i ) and h(t) = S0(t) − SF (t). Hence, to obtain the

consistency of the SCE, one need the following condition:

If (2.17) holds on t ∈ (aF , bF ) then h(t) = 0 for t ∈ (aF , bF ) (2.18).

Hence, if (2.18) holds, we have S0(t) = SF (t). Since all limit points of Ŝn must satisfy

(2.15), by Helly-Bray selection theorem we have Ŝn(t) → SF (t) a.s. for t ∈ (aF , bF ) and

supt∈(aF ,bF ) |Ŝn(t) − SF (t)| → 0 a.s if Ŝn is a sequence of monotone, right continuous and

bounded functions on (aF , bF ).

Similar to doubly censored data (see Gu and Zhang (1993)) condition (2.18) may hold

if one can show that suppose K(t) > 0 holds on {t : 0 < S(t) < 1} then h(t) = 0 for

all t provided that h(t+) 6= h(t) ⇒ S(t+) < S(t) on {t : 0 < S(t) < 1}, h(t) = 0 on

{t : S(t) = 0 or S(t) = 1}. Although we are not able to establish the consistency of the

SCE, the simulation study in Section 3 indicate that the SCE performs adequately.

3. Simulation Results

A simulation study is conducted to investigate the performance of the proposed estimator

F̂ (t). The T ∗i ’s are i.i.d. exponential distributed with mean equal to 1. The V ∗i ’s are i.i.d.

exponential distributed with scale parameters θ = 1, 2 and 4, i.e. G(x; θ) = 1 − exp(−xθ)
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for x > 0. The T ∗i and V ∗i are independent to each other. To make the truncated sample

interval-censored, we first generate a random variable Xi = 2 + B(nc, 0.5), where B(nc, 0.5)

is a binomial random variable with nc = 5, 8. Given Xi = k, we then generate k i.i.d uniform

random variables Uji ∼ U(0, 1) (j = 1, . . . , k). Define Z1i = V ∗i + U1i, Z2i = U2i + Z1i,

Z3i = U3i + Z2i, · · · , Zki = Zk−1,i + Uki. We keep the sample if T ∗i ≥ V ∗i and regenerate a

sample if T ∗i < V ∗i . If T ∗i falls in the interval [Zji, Zj+1,i] (j = 1, . . . , k− 1), then let L∗i = Zji

and R∗i = Zj+1,i. If T ∗i > Z∗k,i then let L∗i = Zk,i and R∗i = 10000. The goal is to estimate

S(tp) = p, with p = 0.8, 0.5 and 0.2. Based on left-truncated and interval-censored data

(Vi, Li, Ri) (i = 1, . . . , n), we obtain the proposed estimator Ŝn(tp) and the NPMLE ŜM(tp).

For both estimators, the initial estimator is the product-limit estimator for left-truncated

and right-censored data (see Wang (1987)) based on midpoint imputation. The convergence

criterion was set |Ŝ(r+1)
M (tp)− Ŝ(r)

n (tp)| < 0.001 or |Ŝ(r+1)
n (tp)− Ŝ(r)

n (tp)| < 0.001. The sample

sizes are chosen as 200 and 400. The replication is 1000 times. Tables 1 through 3 show the

empirical biases, standard deviations (std.) and root mean squared errors (rmse) of Ŝn and

ŜM . Tables 1 through 3 also list the proportion of truncation P (T ∗i < V ∗i ) (denoted by qT ).

Based on the results of Tables 1 through 3, we conclude that:

(i) Given qT , the rmse of the estimators Ŝn and ŜM increase as nc decreases, i.e. mean

interval length increases.

(ii) The biases of the estimators Ŝn are larger than that of ŜM for most of the cases considered.

In terms of rmse, the NPMLE ŜM outperforms the SCE Ŝn. When n = 400, the performance

of the estimators Ŝn and ŜM are close to each other for most of the cases considered.



10

Table 1. Simulation results for bias, standard deviation and

root mean squared error for estimating S(t0.2)

Ŝn(t0.2) ŜM(t0.2)
θ nc n qT bias std rmse bias std rmse
1 5 200 0.50 -0.016 0.029 0.033 -0.010 0.029 0.031
1 5 400 0.50 -0.009 0.020 0.022 -0.008 0.019 0.021
1 8 200 0.50 -0.014 0.029 0.032 -0.012 0.028 0.030
1 8 400 0.50 -0.006 0.018 0.020 -0.008 0.017 0.019
2 5 200 0.43 -0.012 0.039 0.041 -0.010 0.037 0.037
2 5 400 0.43 -0.009 0.021 0.022 -0.006 0.020 0.022
2 8 200 0.43 -0.013 0.036 0.038 -0.012 0.036 0.038
2 8 400 0.43 -0.007 0.021 0.022 -0.008 0.020 0.021
4 5 200 0.31 -0.011 0.037 0.039 -0.007 0.035 0.036
4 5 400 0.31 -0.005 0.021 0.022 -0.006 0.020 0.021
4 8 200 0.31 -0.015 0.035 0.040 -0.012 0.035 0.037
4 8 400 0.31 -0.007 0.019 0.020 -0.009 0.018 0.020

Table 2. Simulation results for bias, standard deviation and

root mean squared error for estimating S(t0.5)

Ŝn(t0.5) ŜM(t0.5)
θ nc n qT bias std rmse bias std rmse
1 5 200 0.50 -0.008 0.059 0.060 -0.006 0.057 0.057
1 5 400 0.50 -0.010 0.025 0.027 -0.007 0.025 0.026
1 8 200 0.50 -0.012 0.057 0.058 -0.013 0.055 0.057
1 8 400 0.50 -0.008 0.022 0.023 -0.009 0.021 0.023
2 5 200 0.43 -0.023 0.055 0.060 -0.018 0.053 0.056
2 5 400 0.43 -0.012 0.038 0.041 -0.010 0.037 0.038
2 8 200 0.43 -0.026 0.053 0.059 -0.021 0.051 0.055
2 8 400 0.43 -0.014 0.036 0.038 -0.011 0.036 0.038
4 5 200 0.31 -0.036 0.067 0.076 -0.031 0.064 0.072
4 5 400 0.31 -0.016 0.040 0.041 -0.019 0.037 0.039
4 8 200 0.31 -0.031 0.064 0.071 -0.026 0.062 0.067
4 8 400 0.31 -0.013 0.037 0.039 -0.012 0.036 0.038
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Table 3. Simulation results for bias, standard deviation and

root mean squared error for estimating S(t0.8)

Ŝn(t0.8) ŜM(t0.8)
θ nc n qT bias std rmse bias std rmse
1 5 200 0.50 -0.012 0.048 0.049 -0.009 0.046 0.047
1 5 400 0.50 -0.008 0.027 0.028 -0.005 0.026 0.026
1 8 200 0.50 -0.010 0.045 0.046 -0.007 0.045 0.046
1 8 400 0.50 -0.009 0.026 0.027 -0.005 0.025 0.025
2 5 200 0.43 -0.032 0.069 0.076 -0.027 0.067 0.072
2 5 400 0.43 -0.017 0.041 0.044 -0.021 0.040 0.045
2 8 200 0.43 -0.029 0.066 0.072 -0.030 0.065 0.072
2 8 400 0.43 -0.016 0.039 0.042 -0.020 0.038 0.043
4 5 200 0.31 -0.041 0.073 0.083 -0.039 0.069 0.080
4 5 400 0.31 -0.023 0.048 0.053 -0.019 0.046 0.050
4 8 200 0.31 -0.032 0.070 0.077 -0.035 0.067 0.076
4 8 400 0.31 -0.021 0.046 0.051 -0.020 0.045 0.049

4. Applications

For purpose of illustration, we apply both estimators to the CDC AIDS Blood Transfusion

Data. The AIDS Blood Transfusion Data are collected by the Centers for Disease Control

(CDC), which is from a registry data base, a common source of medical data (see Kalbfleish

and Lawless (1989)). The data were retrospectively ascertained for all transfusion-associated

AIDS cases in which the diagnosis of AIDS occurred prior to the end of of the study, which

was June 30, 1991. The data consist of the time in month and only cases having either one

transfusion or multiple transfusions in the same calendar month were used. Cases having the

AIDS prior to July 1, 1982 (τ0) were not included because this is when adults started being

infected by the virus from a contaminated blood transfusion. Because HIV was unknown

prior to 1982, and cases of transfusion-related AIDS before τ0 would have been missed

(i.e. left-truncated). Let Tsi be the calendar time (in years) of the initiating events (HIV

infection), and τD be the calendar time (in years) at which AIDS is diagnosed. Let T ∗i =

12(τD − Tsi) (in month) be the incubation time from HIV infection to AIDS. Let V ∗i =

12(τ0−Tsi) (in month) denote the left-truncated variable. Hence, T ∗i is observable only when

T ∗i ≥ V ∗i ). There were 295 truncated observations. To introduce interval censoring, similar

to the setup in simulation study, we generate a random variable X = 2 + B(6, 0.8). Given

Xi = k, we then generate k i.i.d uniform random variables Uji ∼ U(0, 1) (j = 1, . . . , k). Using

the approach of Section 3, we obtain the truncated interval observations (Li, Ri, Vi) (i =
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1, . . . , 295). For purpose of comparison we also obtain the estimators of S(t) (denoted by

ŜE) by using the exact observations (Ti, Vi)’s (i.e. left-truncated data). Table 4 shows

the results of the three estimators ŜM , Ŝn and ŜE at some selected values of t. Table 4

indicates that the differences between ŜM(t) and ŜE(t) (denoted by diff1) are smaller than

that between Ŝn(t) and ŜE(t) (denoted by diff2).

Table 4. Estimation of the distribution function

of the incubation time for AIDS Blood Transfusion Data

t ŜE(t) ŜM(t) Ŝn(t) diff1 diff2
10 0.835 0.819 0.813 -0.016 -0.022
15 0.684 0.669 0.665 -0.015 -0.019
20 0.577 0.565 0.559 -0.012 -0.016
25 0.456 0.447 0.443 -0.009 -0.013
30 0.372 0.359 0.354 -0.013 -0.018
35 0.287 0.276 0.271 -0.011 -0.016
40 0.204 0.193 0.188 -0.011 -0.015
45 0.158 0.150 0.148 -0.008 -0.010
50 0.114 0.104 0.101 -0.010 -0.013
55 0.102 0.094 0.090 -0.008 -0.012
60 0.091 0.085 0.082 -0.006 -0.009
70 0.070 0.066 0.062 -0.004 -0.008
80 0.052 0.047 0.046 -0.005 -0.006

5. Discussions

For interval-censored and left truncated data, Turnbull’s algorithm leads to a self-consistent

equation which is not in the form of an integral equation. Large sample properties of the

NPMLE have not been previously examined because of, we believe, among other things, the

lack of such an integral equation. In this article, we have presented a SCE using an integral

equation and shown that the NPMLE is a solution of the integral equation. If we can show

the consistency of the SCE under certain conditions then the consistency of the NPMLE can

therefore be established. More research is needed to investigate this problem.
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