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Self-Consistent and Nonparametric Maximum Likelihood Estimators
with Interval-Censored and Left-Truncated Data

Pao-sheng Shen

Department of Statistics
Tunghai University, Taichung, Taiwan, 40704
psshen@thu.edu.tw

Abstract

Interval censoring refers to a situation in which, 77, the time to occurrence of an event
of interest is only known to lie in an interval [Lf, R]. In some cases, the variable T} also
suffers left-truncation. Based on an integral equation, we propose a self-consistent estimator
(SCE) of survival function of 7. It is shown that the nonparametric maximum likelihood
estimator (NPMLE) is a solution of the integral equation. A simulation study is conducted

to compare the performance between the SCE and NPMLE. We also discuss the consistency
of the SCE.

Key Words: left truncation; interval censoring; self-consistent.

1. Introduction

Left truncated and interval-censored data often arise in epidemiology and individual
follow-up studies and possibly in other fields. Their importance stems from the common
use of prevalent cohort study designs to estimate survival from onset of a specified disease.

Consider the following example.
Example: AIDS Cohort Studies

In AIDS cohort studies, we are interested in the incubation time of the disease. An
individual is selected only when he (or she) is HIV-positive and yet none have developed
AIDS. Hence, earlier onset of AIDS would then be a truncating force for the variable of
interest. Suppose that for each individual 7 the infection time (denoted by Ty;) can be quite
accurately determined (e.g. due to blood transfusion). The recruitment starts at 75 and
the follow-up is terminated at 7.. For each individual ¢, let T} denote the time from T}; to
development of AIDS. Let V* = 70 —T; it Ty; < 79 and V;* = 0 if T; > 79. Hence, T} is

()



observable only when T* > V*). Let Cf = 7, — Ty; denote the censoring times. Furthermore,
there are many situations, in which the onset of AIDS is recorded only between an interval
although the initiating events (HIV infection) T}; is recorded exactly. Hence, the variable
of interest T} can be recorded as an interval, say [L}, Rf]. For example, under mixed case
interval-censored model (Shick and Yu (2000)), let K be a positive random integer, and for
individual ¢ let Y; ={Y;,;: k=1,2...,j =1,...,k} be an array of random variables such
that Yip1 < -+ < Yipk On the event K = k, let [L}, Rf] denote the endpoints of that
random interval among [—o00, Y; k1], [Yik1, Yika), -, [Yix, 00| which contains 7;. When T
is right censoring, we have [L}, R}| = [Yjx,00) = [C}, 00|. Hence, one observes nothing if
T < Vi, and observes ([Lf, Rf],V;*) it T > V;*. We assume that (K,Y;, V") and T are
independent and V;* is dependent of (L}, RY) with P(V;* < Lf|T; > V*) = 1. Let F(t) denote
the distribution function of 7, and G(z) and @Q(x) denote the distribution function of V;*
and C}, respectively. For any distribution function W denote the left and right endpoints
of its support by ay = inf{t : W(t) > 0} and by = inf{t : W(t) = 1}, respectively.
Throughout this article, for identifiability of T}, we assume that 77, L7, R and V;* are all

continuous, and
ag <ap and bg < bp < bg. (1.1)

Furthermore, we assume that P(L} < Rf) = 1 and given R < oo, (L}, R}) has a joint
density b(l,r), satisfying b(l,r) > 0if 0 < F/(I) < F(r) < 1.

Let (L1, R1,V1),...,(Lyn, Ry, Vy,) denote the left-truncated and interval-censored data.
Note that [L;, R;] C [V}, 00], i.e. V; < L;. The nonparametric maximum likelihood estimator
(NPMLE) of F' can be obtained by using EM algorithm of Turnbull (1976). When there
is no truncation, the asymptotic properties of the NPMLE have been derived for interval-
censored data. Groeneboom and Wellner (1992) proposed an iterative convex minorant
algorithm to calculate the NPMLE and proved the uniform consistency of the NPMLE when
F' is continuous and the joint distribution function of (L}, R}) is absolutely continuous. If
(L:, RY) is continuous, the NPMLE converges slower than y/n to a non-Gaussian limiting
distribution (see Groeneboom and Wellner (1992), Shick and Yu (2000), van der Vaart and
Wellner (2000), Song (2004)). Although asymptotic properties of the NPMLE have been
derived for the interval-censored data without truncation, much less is known about the
large sample properties of the NPMLE if both interval censoring and truncation are present.
Pan and Chappell (1999) showed that the NPMLE is inconsistent when data is subject to

case 1 interval censoring and left truncation. Under the assumption of monotonic hazard



function, Pan et al. (1998) showed the consistency of the NPMLE when data is subject to

left truncation and interval censoring.

In Section 2, based on an integral equation, we propose a self-consistent estimator (SCE)
of survival function of T7*. We show that the NPMLE is a solution of the proposed inte-
gral equation. We discuss the consistency of the SCE. In Section 3, a simulation study is

conducted to compare the performance between the SCE and NPMLE.

2. The Nonparametric Estimators
2.1 The NPMLE

In this section, we briefly review the NPMLE of Sg(t) = P(T} > t) using EM algorithm
of Turnbull (1976). Notice that due to sampling scheme described in Section 1, we have
P([L;, R;] C [Vi,00)) = 1. Without loss of generality, suppose the observed data are ordered
according to L; such that Ly < Ly < --- < L,. Following Turnbull (1976), Frydman (1994)
and Alioum and Commenges (1996), we consider nonparametric estimation of F' using the n
independent pairs {Ay, B1},...,{An, Bn}, where A; = [L;, R;] and B; = [V;,00). Assuming
that the inspection process which gives rise to A; is independent of T;, we consider the
following conditional likelihood:

n

L(Sk) =] ] szggﬁg, (2.1)

1=1

&

where Ps(R) denotes the probability that is assigned to the interval by Sp. We define an
NPMLE as Sy = argmaxgcg{Lc(S)}, where S denotes the class of survival functions such
that Ps(U,B;) = 1 and L.(S) is defined, i.e. Pg(B;) > 0 for all ¢ = 1,...,n. Using
the approach of Hudgens (2005), we define K = {K;, Ky,..., Ks,}, where K; = A; for
i=1,....,n, and K; = (—o0,V;) for i = n+1,...,2n. An intersection graph for K is
constructed as follows. For each element of K, we define a corresponding vertex. Let ¢ be
the label of the vertex corresponding to K;. Denote the set of vertex by S,. Two vertices
in S, are considered connected by an edge if and only if the two corresponding regions
in K intersect. A clique is defined as a subset M of S, such that every member of M is
connected by an edge to every other member of M. A maximal clique has the additional
property that it is not a proper subset of any other clique. Let M = {Mj,..., M;} be
the subset of maximal cliques of S, that contain at least one vertex corresponding to a

censoring interval, i.e. for each M; € M, there is some i € {1,...,n} such that i € M;. Let



H ={Hy,...,H;} be the corresponding set of real representations of elements of M where
Hj = Mien; K for j =1,...,J. By Lemma 1 of Hudgens (2005), any distribution function
which increases outside U{IH- cannot be an NPMLE. By Lemma 2 of Hudgens (2005), for
fixed value of Pr(H;), the likelihood is independent of the values of I within the region Hj.

These lemmas allow us to consider maximizing a simpler likelihood than equation (2.1). For
each H; € H, let s; = Pp(H;) and let s be an m-dimension column vector with elements
;. We shall assume throughout that Hi,..., H; are ordered such that H; = [g;,p;] is to
the left of Hjy1 = [gjs1,pj4a] for j =1,...,J — 1, ie. [q1,p1], [g2,p2),-- -, [qs, ps], where
G <p1<q<py<---<q;<py. It follows that from lemmas 1 and 2 of Hudgens (2005)

S

that maximizing likelihood (2.1) is equivalent to maximizing
n J
L(s) = [[ 272 22)
i1 21 Bijsj
where a,; = I[H; C A;l, Bij = I[H; C B;] and I[-] is the usual indicator function. The result-

ing reduced likelihood (2.2) is exactly as described in section 2 of Alioum and Commenges
(1996). The goal is to maximize likelihood (2.2) subject to the constraints

D si=1, (2.3)

<.
—_

s;>0(G=1,...,J), (2.4)
and
J
ZO&Z‘J‘S]' > 0, (Z: 1,...,n). (25)
j=1
We shall use 2 to denote the parameter space that is given by constraints (2.3)-(2.5), i.e
J J
QZ{SERJZZSj =1;s; ZOforjzl,...,J;Zaijsj >0fori=1,...n}.
j=1 j=1

To find the maximum likelihood estimate of the vector s, we can use an EM algorithm and
the resulting self-consistent estimate of s is exactly the Turnbull’s (1976) self-consistency

algorithm as follows:

where



and
n

ME) =3

=DYEEIT
Let 5; (j =1,...,J) denote the estimators obtained from (2.6). As pointed out by Hudgens
(2005), in general, a maximizer of L.(s) subject to s €  need not exist since € is not closed.
For left-truncated and interval-censored data, Hudgens (2005) (see Theorem 1, page 578)

proposed a sufficient and necessary condition for the existence of the NPMLE as follows:

“ There is a maximizer of L.(s) subject to s € Q if and only if for each non-empty proper
subset S of {1,...,n} there is an i ¢ S such that A; C Ds, A; = Ujea: Hj, Ds = UpesB,
B, = Ujep: Hj, where Af = {j : aj; = 1} and By = {j : By; = 1}7. Based on the
the estimators §,’s, an estimator Sy (t) of Sg(t) can be uniquely defined for ¢ € [p;, ¢j+1)
by Su(p;) = Sa(gie1—) = 1 — (51 + --- + 4;), but is not uniquely defined for ¢ being in
an open innermost interval (g;,p;) with ¢; < p;. To avoid ambiguity we define S v(t) =
1—[81+ 4381 +s(t—q;)/(p; —q;)] if t € (g;,p;] and 0 < ¢; < p; < 0.

2.2 The SCE

Let Sp(t) = 1 — F(t) denote the survival function of 7" and p = P(V;* < T;") denote the

proportion of un-truncation. We have the following equation:
Se(t) = P(T? > £,V < 1) + P(TY > 1,V > 1)

= pP(V; <t < LTy > Vi) + pP(T] > 1, L] <t < RI|T; 2 Vi) + P(T] > 1,V > 1).
(2.7)

Motivated by (2.7), given p, we consider the following self-consistent estimator:

S(t) - S(R
{ZI[V<t<L]+ZI[L <t<Rj] S S Z [V>t )} (2.8)
=1

Notice that the last term of the equation (2.8) is to recover the missing information due to

left-truncation. Given the observation V; > t, a pseudo observation is recovered by adding
the weight S(t ( )/S(Vi). Let G(t) = P(V; < t) denote the sub-distribution function of V;.
Since G(t) = p~" [, 1/S#(V;)dG(t). Tt follows that np~" can be estimated by >0, 1/S#(V;)
(see Shen (2005)). Hence, a self-consistent estimator S, is given by solving the following

equation:



] {Z [v<t<L]+Z [Li<t<R;| A ((Ilf)) Z Wit 5 V)} (2.9)

Let G, (v) denote the empirical version of G(v). Similarly, Let I:In(v, 1) and Q,(I,7) denote
the empirical versions of the joint sub-distributions of H(v,l) = P(V; < v,L; < I) and
@(l, r) = P(L; <, R; <), respectively. It follows that (2.9) can be written as

Sn (t) =

[ gis] ([, fuaeare [ G550 [ e}

The following theorem shows that Sy, satisfies the equation (2.9).
Theorem 1.
The NPMLE Sy, satisfies equation (2.9).
Proof:

First, consider an initial estimator ST(LO), which puts mass only on [g;,p;] (j = 1,...,J).
Let g7(l1) denote the first step estimator. Without changing the innermost intervals and
likelihood function, we can transform data by moving all right censored and left truncated
points between p;_; and ¢; to p;_;. Similarly, move all left censored points between p;_;

and ¢; to gj. (see Li et al. (1997)). Based on the transform data, for all 7,j, we have

I[pj71<Vi§(Ij] =0, I[%SP;’ASLJ[[%>L¢] =0, [[Wipjf1§Li][[qj>Li} = 0, [[Vi>pj71}]-[vi§%*§[/i] =0,
Ip,<p; 1<ry) = 0 and Ijp,<4,—<gr) = 0. It follows that Sél)(pj_l) — S,(Ll)(qj—) = 0. Hence,
S also puts mass only on [gj,pj] (j = 1,...,J). Next, since there is no left censoring

observations in (g;, p;] and there is no left truncation observations in [g;, p;), we have for all
iy 7y Ivi<qy<rilip;>r) = 0 and Ijy;sq1 v;<p,<r,) = 0. Furthermore, given an interval [L;, R;],
we either have [q;,p;] C [Li, Ri] or [q;,p;] N [Ls, Ri] = 0. Thus, we have

n

9(1)(@—)—5(”(1")_[2 } {Z las 5] [LR]S(()(j )= 50
n n - 5 s JG ~
’ I e — SO(L) — SO(Ry)

N

CQ>

"L S, (g5—) — Sl o
+; (qjsn( ) p] ZI[VQ}J 5’ —|—Z]v<p] ]‘3/];

i=1

}. (2.10)

~—



Since there is no left truncation observations in [g;, p;), (2.10) can be written as

n

; ; LYY S (g5=) = S ()
S£1><q~—>—s;”<p->={ —} { Ty ety 2o 457) = S (1
j j ; ST(LQ)(Vi) ; [lgj.ps1€([Li,Ri]] S’r(LO)(Li) _ST(LO)(Ri)

i Z Sn(ng) _‘Sn(pj) . Z Ty, >vi Sn(‘]jg) _'Sn(pj) } (2.11)

i=1 n(‘/;) i=1 n(‘/z)
Next,
. . " 1 1l i " 1— 8y
Su(g;—) — Sulp;) = { —} { — 4+ —J}s (2.12)
’ ’ ; Z;']:I Bijsj ; Zgzl Qi Sk ; Zizl 61'}95% !

By definitions of A;, B;, o;; and §;;, it follows that equation (2.11) is equivalent to equation
(2.12). The proof is completed.

Although the NPMLE Sy, satisfies equation (2.9), it is not clear whether the SCE is

consistent or not. We discuss the consistency of the SCE as follows.

Let Q be the event {lim H,(v,1) = H(v,1),1im Q,(I,7) = Q({,r) uniformly for allv < [ <
r}. For each w € Q, let S, be the solution of (2.9). Since {S, }n>1 is bounded and monotone,
for each subsequence of natural numbers, by Helly’s selection theorem, there exists a further
subsequence, say {ny}, such that lim,,, S’nk (t) = Sp(t) pointwisely for some Sy € ©. Thus,
it suffices to show that Sy(t) = Sp(t) for all t € [ap, br|.

Since H, and Q,, converge uniformly to H and Q, respectively and S, satisfies (2.9), by

the bounded convergence theorem Sy satisfies the following equation: Sy(t) =

[ simen] ([, om0 [ Sh=simome [ 5o}

(2.13)
Equation (2.13) can be written as
L Gdv) = : So(t) = So(r)
So(t) /U<t SO(U)G(dv) =/ H(dv,dl)+/l<t<r So(0) _SO(T)Q(dl,dr). (2.14)

Let H(v,l) = P(V¥ < w,L* < 1) and Q(I,r) = P(L! < r,R* < r). Since G(dv) =
P 1Se(0)G(do), F(dv,dl) = p~ Sp(1)H (dv,d), and Q(dL, dr) = p*[Sp(l) — Sp(r)]QUl, dr),

(2.14) can be written as

p S (t) /<t is((;))) G(dv) =p* /<t<l Sr(l)H (dv,dl)



7 /K %Wo — Sp(r)Q(dv, dl, dr). (2.15)

Replacing Sy(-) of (2.15) by Sr(-), we obtain
p tSE(t)G(t) = p_l/ Sr(l)H (dv,dl) +p_1/ [SE(t) — Sp(r)|Q(dl,dr). (2.16)
v<t<l I<t<r
Note that (2.16) is equivalent to
P(T >, Vi <UTF 2 V7)) = P(VE <t < Li[T7 2 Vi') + P(T7 > ¢, L <t < R[T7 > V7).
Subtracting (2.16) from (2.15), we obtain
h(t)K(t) =

T L T T
(2.17)

where K(t) = G(t) — P(L; <t < R}) and h(t) = Sp(t) — Sp(t). Hence, to obtain the

consistency of the SCE, one need the following condition:

If (2.17) holds on t € (ap,br) then h(t) =0 for t € (ap,br) (2.18).

Hence, if (2.18) holds, we have So(t) = Sp(t). Since all limit points of S, must satisfy
(2.15), by Helly-Bray selection theorem we have S,(t) — Sg(t) a.s. for t € (ap,bp) and
SUDye (ap br) 15, (t) — Sp(t)] — 0 as if S, is a sequence of monotone, right continuous and

bounded functions on (ar,br).

Similar to doubly censored data (see Gu and Zhang (1993)) condition (2.18) may hold
if one can show that suppose K(t) > 0 holds on {t : 0 < S(¢) < 1} then h(t) = 0 for
all ¢ provided that h(t+) # h(t) = S(t+) < S(t) on {t : 0 < S(t) < 1}, h(t) = 0 on
{t : S(t) = 0 or S(t) = 1}. Although we are not able to establish the consistency of the
SCE, the simulation study in Section 3 indicate that the SCE performs adequately.

3. Simulation Results

A simulation study is conducted to investigate the performance of the proposed estimator
F(t). The T’s are i.i.d. exponential distributed with mean equal to 1. The V;*’s are i.i.d.
exponential distributed with scale parameters § = 1,2 and 4, i.e. G(z;0) = 1 — exp(—x0)



for x > 0. The T and V;* are independent to each other. To make the truncated sample
interval-censored, we first generate a random variable X; = 2 + B(n,,0.5), where B(n,,0.5)
is a binomial random variable with n. = 5,8. Given X; = k, we then generate k i.i.d uniform
random variables Uj; ~ U(0,1) (j = 1,...,k). Define Zy; = V;* + Uy;, Zoy = Uy + Zy;,
Zsi = Us; + Zo, -+, Zii = Zy—1,i + Uri. We keep the sample if 7} > V;* and regenerate a
sample if T* < V;*. If T} falls in the interval [Z;;, Zj41,] (j =1,...,k—1), then let L} = Z;
and R} = Zj1,;. 17 > Zp, then let LY = Z;; and R = 10000. The goal is to estimate
S(t,) = p, with p = 0.8, 0.5 and 0.2. Based on left-truncated and interval-censored data
(Vi, L, R;) (i = 1,...,n), we obtain the proposed estimator S,(t,) and the NPMLE Sy(t,).
For both estimators, the initial estimator is the product-limit estimator for left-truncated
and right-censored data (see Wang (1987)) based on midpoint imputation. The convergence
criterion was set | S (¢,) — S (¢,)] < 0.001 or | STV (¢,) — S (¢,)] < 0.001. The sample
sizes are chosen as 200 and 400. The replication is 1000 times. Tables 1 through 3 show the
empirical biases, standard deviations (std.) and root mean squared errors (rmse) of S, and
Syr. Tables 1 through 3 also list the proportion of truncation P(T* < V;*) (denoted by ¢r).
Based on the results of Tables 1 through 3, we conclude that:

(i) Given ¢r, the rmse of the estimators S, and S); increase as n. decreases, i.e. mean

interval length increases.

(ii) The biases of the estimators S, are larger than that of Sy, for most of the cases considered.
In terms of rmse, the NPMLE S); outperforms the SCE S,. When n = 400, the performance

of the estimators S'n and S v are close to each other for most of the cases considered.



Table 1. Simulation results for bias, standard deviation and

root mean squared error for estimating S (tg,g)

=

Sn(to2) Sw(to.2)
0 n. n qr bias std rmse bias std rmse
1 5 200 0.50 -0.016 0.029 0.033 -0.010 0.029 0.031
1 5 400 0.50 -0.009 0.020 0.022 -0.008 0.019 0.021
1 8 200 0.50 -0.014 0.029 0.032 -0.012 0.028 0.030
1 8 400 0.50 -0.006 0.018 0.020 -0.008 0.017 0.019
2 5 200 0.43 -0.0120.039 0.041 -0.010 0.037 0.037
2 5 400 0.43 -0.009 0.021 0.022 -0.006 0.020 0.022
2 8 200 0.43 -0.0130.036 0.038 -0.012 0.036 0.038
2 8 400 0.43 -0.007 0.021 0.022 -0.008 0.020 0.021
4 5 200 0.31 -0.0110.037 0.039 -0.007 0.035 0.036
4 5 400 0.31 -0.0050.021 0.022 -0.006 0.020 0.021
4 8 200 0.31 -0.0150.0350.040 -0.012 0.035 0.037
4 8 400 0.31 -0.007 0.019 0.020 -0.009 0.018 0.020

Table 2. Simulation results for bias, standard deviation and

root mean squared error for estimating S (t0,5)

S

n

qr

=

Sn(tos)
bias std rmse

Sar (to.5)
bias std rmse

200
400

0.50
0.50

-0.008 0.059 0.060
-0.010 0.025 0.027

-0.006 0.057 0.057
-0.007 0.025 0.026

200
400

0.50
0.50

-0.012 0.057 0.058
-0.008 0.022 0.023

-0.013 0.055 0.057
-0.009 0.021 0.023

200
400

0.43
0.43

-0.023 0.055 0.060
-0.012 0.038 0.041

-0.018 0.053 0.056
-0.010 0.037 0.038

200
400

0.43
0.43

-0.026 0.053 0.059
-0.014 0.036 0.038

-0.021 0.051 0.055
-0.011 0.036 0.038

200
400

0.31
0.31

-0.036 0.067 0.076
-0.016 0.040 0.041

-0.031 0.064 0.072
-0.019 0.037 0.039

[ N Y N N I N N R N i e e B et AN

Co 0ol Ut U1 00 CO| U Ut 0O OO Ot Ot

200
400

0.31
0.31

-0.031 0.064 0.071
-0.013 0.037 0.039

-0.026 0.062 0.067
-0.012 0.036 0.038

10



Table 3. Simulation results for bias, standard deviation and

root mean squared error for estimating S (tg,g)

=

Sn(tos) Swu(tos)
0 n. n qr bias std rmse bias std rmse
1 5 200 0.50 -0.0120.048 0.049 -0.009 0.046 0.047
1 5 400 0.50 -0.008 0.027 0.028 -0.005 0.026 0.026
1 8 200 0.50 -0.010 0.045 0.046 -0.007 0.045 0.046
18 400 0.50 -0.009 0.026 0.027 -0.005 0.025 0.025
2 5 200 0.43 -0.0320.069 0.076 -0.027 0.067 0.072
2 5 400 0.43 -0.017 0.041 0.044 -0.021 0.040 0.045
2 8 200 0.43 -0.029 0.066 0.072 -0.030 0.065 0.072
2 8 400 0.43 -0.016 0.039 0.042 -0.020 0.038 0.043
4 5 200 0.31 -0.0410.073 0.083 -0.039 0.069 0.080
4 5 400 0.31 -0.023 0.048 0.053 -0.019 0.046 0.050
4 8 200 0.31 -0.0320.070 0.077 -0.035 0.067 0.076
4 8 400 0.31 -0.021 0.046 0.051 -0.020 0.045 0.049

11

4. Applications

For purpose of illustration, we apply both estimators to the CDC AIDS Blood Transfusion
Data. The AIDS Blood Transfusion Data are collected by the Centers for Disease Control
(CDC), which is from a registry data base, a common source of medical data (see Kalbfleish
and Lawless (1989)). The data were retrospectively ascertained for all transfusion-associated
AIDS cases in which the diagnosis of AIDS occurred prior to the end of of the study, which
was June 30, 1991. The data consist of the time in month and only cases having either one
transfusion or multiple transfusions in the same calendar month were used. Cases having the
AIDS prior to July 1, 1982 (75) were not included because this is when adults started being
infected by the virus from a contaminated blood transfusion. Because HIV was unknown
prior to 1982, and cases of transfusion-related AIDS before 75 would have been missed
(i.e. left-truncated). Let Ty be the calendar time (in years) of the initiating events (HIV
infection), and 7p be the calendar time (in years) at which AIDS is diagnosed. Let T} =
12(tp — Ty;) (in month) be the incubation time from HIV infection to AIDS. Let V;* =
12(79 —Ty;) (in month) denote the left-truncated variable. Hence, T is observable only when
TF > V*). There were 295 truncated observations. To introduce interval censoring, similar
to the setup in simulation study, we generate a random variable X = 2 + B(6,0.8). Given
X, = k, we then generate k i.i.d uniform random variables Uj;; ~ U(0,1) (j = 1,..., k). Using

the approach of Section 3, we obtain the truncated interval observations (L;, R;, Vi) (i =
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1,...,295). For purpose of comparison we also obtain the estimators of S(¢) (denoted by
Sg) by using the exact observations (T, V;)’s (i.e. left-truncated data). Table 4 shows
the results of the three estimators S M Sn and S’E at some selected values of ¢t. Table 4
indicates that the differences between Sy (t) and Sg(t) (denoted by diff1) are smaller than
that between S, (t) and Sg(t) (denoted by diff2).

Table 4. Estimation of the distribution function

of the incubation time for AIDS Blood Transfusion Data

t Sg(t) Su(t) S,(t) difft  diff2
10 0.835 0.819 0.813 -0.016 -0.022
15 0.684 0.669 0.665 -0.015 -0.019
20 0.577 0.565 0.559 -0.012 -0.016
25 0.456 0.447 0.443 -0.009 -0.013
30 0.372 0.359 0.354 -0.013 -0.018
35 0.287 0.276 0.271 -0.011 -0.016
40 0.204 0.193 0.188 -0.011 -0.015
45 0.158 0.150 0.148 -0.008 -0.010
50 0.114 0.104 0.101 -0.010 -0.013
55 0.102 0.094 0.090 -0.008 -0.012
60 0.091 0.085 0.082 -0.006 -0.009
70 0.070 0.066 0.062 -0.004 -0.008
80 0.052 0.047 0.046 -0.005 -0.006

5. Discussions

For interval-censored and left truncated data, Turnbull’s algorithm leads to a self-consistent
equation which is not in the form of an integral equation. Large sample properties of the
NPMLE have not been previously examined because of, we believe, among other things, the
lack of such an integral equation. In this article, we have presented a SCE using an integral
equation and shown that the NPMLE is a solution of the integral equation. If we can show
the consistency of the SCE under certain conditions then the consistency of the NPMLE can

therefore be established. More research is needed to investigate this problem.
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