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研究進度與成果說明 
 

本計畫為三年期計畫之第二年計畫，茲就本年度之研究成果、執行進度說明如下。 

 

研究成果： 

審查中之期刊論文四篇（論文全文附於文末）： 

1. C. T. Shih, Y. Y. Cheng, S. Wells, Rudolf A. Römer, and C. L. Hsu, 2010, Charge 

Transport in Cancer-Related Genes and Early Carcinogenesis, submitted to Computer 

Physics Communication. 

2. C. T. Shih, Hsuan-Wen Lin, Ann-Shyn Chiang, 2010, Statistical Analysis and Modeling 

of the Temperature-Dependent Sleep Behavior of Drosophila, submitted to Computer 

Physics Communication. 

3. Chia-Hei Yang, Ching-Ling Hsu, Nan-Yow Chen, and Chi-Tin Shih, 2010, Temporal 

Dynamics of Site Percolation in Nanoparticle Assemblies, submitted to Computer 

Physics Communication. 

4. Ann-Shyn Chiang, Chih-Yung Lin, Chao-Chun Chuang, Hsiu-Ming Chang, 

Chang-Huain Hsieh, Chang-Wei Yeh, Chi-Tin Shih, Jian-Jheng Wu, Guo-Tzau Wang, 

Yung-Chang Chen, Cheng-Chi Wu, Guan-Yu Chen, Yu-Tai Ching, Ping-Chang Lee, 

Chih-Yang Lin, Hui-Hao Lin, Chia-Chou Wu, Hao-Wei Hsu, Yun-Ann Huang, Jing-Yi 

Chen, Hsin-Jung Chiang, Chun-Fang Lu, Ru-Fen Ni, Chao-Yuan Yeh, & Jenn-Kang 

Hwang, 2010, A mesoscopic atlas of brainwide wiring networks in Drosophila at single 

cell resolution, submitted to Science. 

 

研究進度： 

1. 去年度在計算 DNA 傳輸性質的緊束縛模型中加入了代表 DNA 雙螺旋特性的電子躍遷

項 t⊥後，我們將這個新模型、以及原來的一維模型應用在 OMIM@NCBI（Online 

Mendelian Inheritance in Man, National Center for Biotechnology Information）與 HGMD



（Human Gene Mutation Database）兩個人類基因突變與疾病資料庫中的 35 個癌症相關

的基因，發現仍能符合我們在 2008 年發表的論文（C. T. Shih et al., 2008, Phys. Rev. Lett. 

100, 018105）所提出的基因早期突變／修復的機制，此部分結果已投稿至 Computer 

Physics Communication。 

2. 我們繼續收集了 OMIM 與 HGMD 內與所有人類疾病相關的基因（包含十個以上的致病

點突變），發現符合我們的理論的基因超過 85%，顯示這個理論有可能是解釋早期致病

機制的普遍理論，這部份結果已在撰寫中。 

3. 我們以 Monte Carlo 模擬探討膠體溶液內的奈米金粒子在溶劑乾燥過程中，形成自我組

成的網路結構的展透行為，決定了不同的溫度以及化學勢對展透臨界密度的影響，此部

分結果已投稿至 Computer Physics Communication。 

4. 在與清華大學腦科學中心的合作研究，我們分析了果蠅的睡眠行為實驗數據，發現溫度

對睡眠行為有顯著的影響，並且提出一個理論模型來模擬其調控睡眠之神經元的活動，

此部分結果已投稿至 Computer Physics Communication。 

5. 此外，腦科學中心利用高解析度之果蠅腦神經元影像建立了「FlyCircuit」資料庫並據此

建構了果蠅腦部神經元連結網路的草圖，我們利用統計物理方法分析了此網路的特性。

此部分結果已投稿至 Science。 

 

下年度的計畫 

1. 由於模型為不精確之近似模型，故必需計算許多模型及隨機序列，並對所得結果進行更

嚴密的統計分析。 

2. 對人類的單核苷酸變異多性狀（Single Nucleotide Polymorphism）資料庫進行電性分析，

比較其與致病突變之間的關係。 

3. 藉由引入各種特徵參數（周長面積比、金粒子團簇分佈、歐拉特徵值等）探討膠體奈米

金粒子的網路形成過程中，網路形貌隨時間的變化。 

4. 隨著果蠅腦神經網路圖譜逐漸完成，對其進行標準之複雜網路分析，並且嘗試開發針對

腦神經網路專屬的分析工具，加強與實驗生物學家之討論交流，讓此一跨領域研究平台

更加完善。 
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Charge Transport in Cancer-Related Genes and Early Carcinogenesis

Chi-Tin Shiha, Yun-Yin Chenga, Stephen A. Wellsb, Ching-Ling Hsuc, Rudolf A. Römerb

aDepartment of Physics, Tunghai University, 40704 Taichung, Taiwan and The National Center for Theoretical

Sciences, 30013 Hsinchu, Taiwan
bDepartment of Physics and Centre for Scientific Computing, University of Warwick, Gibbet Hill Road, Coventry, CV4

7AL, UK
cDepartment of Physics, Chung-Yuan Christian University, Chung-Li, Taiwan

Abstract

The electronic transmission properties of DNA molecules are believed to play a significant role in
many physical phenomena taking place in living organisms [1]. Here we study the charge transport
(CT) properties of cancer-related genes, including some of the most important tumor suppressors.
We find that the changes in averaged CT around the sites of pathogenic and cancerous mutations are
statistically smaller than those on sites where pathogenic mutations have not been observed. The results
suggested that CT might be an indicator to discriminate between pathogenic and non-pathogenic
mutations at an early stage. Mutations which cause little change in CT may be more likely to occur,
or more likely to be missed by damage-repair enzymes which probe CT, and are therefore more likely
to persist and cause disease.

Keywords: deoxyribonucleicacid, charge transport, cancer, mutation Revision : 1.27

We study the relation between the point mu-
tations and CT properties of some of the most
important tumor suppressors, together with other
cancer-associated genes. These genes regulate cell
proliferation by monitoring various molecular sig-
naling pathways. Disfunction of the tumor sup-
pressors will cause abnormal cell proliferation and
the development of cancers [2]. CT through DNA
is inhibited at the damaged sites of the sequence,
owing to misalignments of base pair π-stacking [1].
The base excision repair (BER) enzymes such as
Endonuclease III and MutY are believed to effi-
ciently locate the DNA base lesions or mismatches
by probing the inhibition of the DNA-mediated
CT due to the damages [3].

We have previously studied [4] the CT prop-
erties of the genomic sequence of the p53 tumor
suppressor gene, which is known as the “guardian
of the genome”. The results show that on av-
erage the cancerous mutations of the gene yield
smaller changes of the CT in contrast with non-

cancerous mutations. Based on such a behavior
of CT, we proposed a possible scenario of how
cancerous mutations might circumvent the DNA
damage-repair mechanism and survive to yield
carcinogenesis [4]. Here we will add to this analy-
sis by showing that the p53 gene with a randomly
rearranged sequence does not show this effect at
all. This test has also been applied to many other
genetic sequences.

The native genetic sequences and mutations of
cancer-related genes are retrieved from four differ-
ent databases [5, 6]. The genomic sequence of a
gene with length N base pairs (bps) is defined as
(s1, s2, · · · , sN ). Each point mutation of a given
gene is characterized by the set (k, s), where k

and s are the position of the point mutation in
the genomic sequence and the mutant nucleotide
which replaces the nucleotide sk of normal DNA,
respectively.

The simplest model of coherent hole transport
in DNA is given by an effective one-dimensional

Preprint submitted to COMPUTER PHYSICS COMMUNICATIONS February 25, 2010
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Figure 1: Schematic models for charge transport in DNA.
The nucleobases are given as (dark grey) circles and el-
lipses. Electronic pathways are shown as solid lines of vary-
ing thickness to indicate variation in strength. The left
model indicates the one-channel model where the sugar-
phosphate backbone is ignored. In the right model, cir-
cles denote the smaller pyrimidines, ellipses are the large
purines and (light grey) circles denote the sugar-phosphate
backbone sites. Note that diagonal hopping between
purines is favored, and between pyrimidines is disfavored,
by the larger size of the purines.

Hückel-Hamiltonian for CT through nucleotide
HOMO states [1], where each lattice point rep-
resents a nucleotide base (A,T,C,G) of the chain
for n = 1, . . . , N . In this tight-binding formal-
ism, the on-site potentials ǫn are given by the
ionization potentials ǫG = 7.75eV, ǫC = 8.87eV,
ǫA = 8.24eV and ǫT = 9.14eV, at the nth site,
cp. Fig. 1; tn,n+1 is assumed to be nucleotide-
independent with tn,n+1 = 0.4eV [1]

A model which is less coarse-grained is pro-
vided by the diagonal ladder model shown in Fig.
1. Here, both strands of DNA and the back-
bone are modelled explicitly and the different di-
agonal overlaps of the larger purines (A,G) and
the smaller pyrimidines (C,T) are taken into ac-
count by suitable inter-strand couplings [7]. The
intra-strand couplings are 0.35eV between iden-
tical bases and 0.17eV between different bases;
the diagonal inter-strand couplings are 0.1eV for
purine-purine, 0.01eV for purine-pyrimidine and
0.001eV for pyrimidine-pyrimidine. Perpendicu-
lar couplings to the backbone sites are 0.7eV, and
perpendicular hopping across the hydrogen bond
in a base pair is reduced to 0.005eV.

The transmission coefficient T (E) for a DNA
sequence with length Nbps for different injection
energy can be calculated for both models by using
the transfer matrix method (TMM) [8, 9]. The
position-dependent averaged transmission coeffi-

cient at the j−th base pair for transmission length
L bps is defined as

T̄j,L =
1

L

j∑
n=j−L+1

∫ E1

E0

Tn,L(E)

E1 − E0

dE (1)

where Tn,L(E) is the transmission coefficient of a
subsequence of the gene with length L and start-
ing from the position n. n ranges from j − L + 1
to j such that the subsequence contains the j−th
base pair. E0 and E1 are the lower and upper
bounds of the incident energy of the carriers, e.g.
for the 1D model used here, the values are 5.75
and 9.75eV, respectively; for the diagonal model
the bounds are 7 and 11eV. Then we examine the
difference between T (E) of the normal and mu-
tated genomic sequence of a point mutation [4]

∆̄k,s

j,L =

∫ E1

E0

|Tj,L(E) − T
k,s
j,L (E)|2

E1 − E0

dE (2)

where T
k,s

j,L (E) is the transmission coefficient of the
same segment of DNA but with the point mu-
tation (k, s). Γ(k, s; L) is the averaged effect of
the point mutation (k, s) on CT properties for all
subsequences containing the mutation and with
length L. We make use of values of L between 10
and 60 bps.

There are a total of 3N possible point muta-
tions of a gene with Nbps, a set which we denote
as Ma. The subset of pathogenic mutations is Mp.
We calculate the averaged CT effect, Γ(k, s; L) for
the full set Ma and compare the distributions for
Ma and Mp. Fig. 2 shows the distributions of
Γ for the TP53 sequence of the p53 gene. For
the 1-D model the full distribution is close to log-
normal. For both the 1-D and diagonal models
the distribution for pathogenic mutations is visi-
bly shifted towards lower values compared to the
full distribution. This difference disappears when
the sequence is randomised.

We obtain a local ranking (LR) for each
pathogenic mutation (k, s) by comparing its CT
change Γ(k, s; L) to thsoe for the other two poten-
tial mutations at the same position, obtaining a
ranking γLR(k, s; L) for the mutation (k, s) of 1,2
or 3 for lowest, middle and highest CT change.

2
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Figure 2: Distribution of the change in charge trans-
port Γ for pathogenic (white bars) and all possible (grey
bars) mutations for the p53 DNA strand with 20304
base pairs. The left/right columns show results for the
1D/diagonal models while the top/bottom rows indicate
original/shuffled DNA sequences. For the randomly shuf-
fled cases, error bars are calculated using 20 different se-
quence realizations. All results are for L = 40. The line
for the 1-D case is a fit to a log-normal distribution.

Those k with more than one pathogenic muta-
tions are excluded in the LR analysis. Similarly,
we define a global ranking (GR) by ranking the
normalized CT changes for all possible 3N mu-
tations. We assign global ranks γGR(k, s; L) of 1
for the lowest third of the global distribution of
CT changes, 2 for the middle third and 3 for the
top third. In Fig. 3 we show the incidences of
the three possible local and global ranks for the
cancerous mutations of p53. In local rankings, the
incidence of pathogenic mutations with lowest CT
change, γLR = 1, is significantly higher than for
γLR = 2, 3. However, this result is barely distin-
guishable from the distributions of local rankings
for shuffled sequences. In the global ranking, how-
ever, the incidence of pathogenic mutations with
γGR = 1 is higher than for γGR = 2, 3 and the
distribution for the native sequence is distinguish-
able from the distributions for shuffled sequences.

In total, we have performed these statistical
tests for 35 cancer DNA sequences [5, 6]. The
results [10] show that in about 95% of the DNA
strands the pathogenic mutations are biased to-
wards smaller changes in CT properties. Hence it
seems very likely the scenario proposed here for
early pathogenesis can be applied for an analysis
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Figure 3: Distribution of the local, LR (top row) and global,
GR (bottom row) ranking results of pathogenic mutations
of p53 (open symbols) as a function of window lengths L.
Circles indicate the proportion of pathogenic mutations
with γ = 1; squares, γ = 2; diamonds, γ = 3. The closed
symbols indicate averaged results for 20 randomly shuffled
sequences. The left/right columns distinguish results for
the 1D/diagonal models. The dotted horizontal lines show
the 33% mark expected for a uniform random distribution.

of a wide range of genetic diseases.
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and Römer, R. A., (2010), unpublished.

3



Temporal Dynamics of Site Percolation in Nanoparticle Assemblies

Chia-Hei Yanga, Ching-Ling Hsub, Nan-Yow Chenc, Chi-Tin Shiha,∗
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Abstract

This study examined a sub-monolayer disordered nanoparticle network film constructed
from colloidal self-assembly using a two-dimensional site percolation model in a dynamical
fashion. Applying free boundary conditions upon a lattice gas model, numerical results
from Monte Carlo simulations showed that the 2D site-percolation threshold would reduce
to 0.1, during time-evolving processes. The results are qualitatively consistent with the
experiments. We also introduce computational homology of the morphological self-assembled
patterns to inspect the temporal dynamics in quantification.

Keywords: Self-Assembly, Site Percolation, Monte Carlo Simulation

The morphology of deposited nanoparti-
cles gives evidence of the solvent flow his-
tory prior to complete evaporation. Ex-
perimentally, colloidal nanoparticles assem-
bly formed via deposition from solution
frequently comprised patterns on multiple
length scales resulting from various solvent
de-wetting mechanisms. The morpholog-
ical patterns are observed in the numer-
ical study of two-dimensional lattice gas
model that were first introduced by Ra-
bani et al [1] via Monte Carlo simulations.
Recently, a non-equilibrated system has re-
cently been demonstrated for thin-film so-
lutions of passivated nano-crystals during
the irreversible evaporation of the solvent
and capable of exhibiting complex transi-

∗Corresponding author.
Email address: ctshih@thu.edu.tw (Chi-Tin

Shih)

tory structures, even when equilibrium fluc-
tuations are mundane.

The numerical simulation of percola-
tion [2] has been well studied for decades
since its first proposition in 1941. Conven-
tionally, such investigations are mainly fo-
cused on simple-sampling mechanism only
without any consideration of dynamical
process. However, a dramatic example of a
non-equilibrated system has recently been
demonstrated for thin-film solutions of pas-
sivated nano-crystals during the irreversible
evaporation of the solvent. It is to em-
phasis that such systems far from equilib-
rium can exhibit complex transitory struc-
tures, even when equilibrium fluctuations
are mundane. Following this study, it is re-
ported by Hsu et al [3] that the site per-
colation threshold in a two-dimensional dis-
ordered lattice gas model constructed from

Preprint submitted to Elsevier February 10, 2010
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Figure 1: Four frames of nano patterns at the 0th,
200th, 300th and 500th of 500 Monte Carlo sweeps.
One Monte Carlo sweep (MCS) is defined as one sol-
vent cycle followed by one nanoparticle cycle. Lat-
tice Size is 512× 512 and nanoparticle size is 3× 3.
T = 0.4 and Coverage of nano cells is 0.30. Types
of cells are labeled by Blue(liquid solvent cell area),
Red (nano cell area) and White(dry cell area).

colloidal self-assembly is 40%, lower than
the conventional value. Therefore, an in-
tensified study with tactics from statistical
physics on the subject self-assembly system
is motivated.

The Hamiltonian of a lattice gas model in
simulation[1] is:

E = −εll

∑
i,j

lilj − εnl

∑
i,j

nilj

−εnn

∑
i,j

ninj + µ
∑

i

li. (1)

Here, n, l are cell numbers of nano and sol-
vent liquid. εll, εnl, and εnn are, respec-
tively, the values of interaction energy be-
tween two cells of liquid, liquid-nano, and
nano-nano. µ = µ0 is the value of chem-
ical potential. To ensure that nanoparti-
cles are well solvated by the liquid prior to
solvent de-wetting, the values of attractive
interaction energy are chosen as: εll ≡ 1,

εnl = 1.5, and εnn = 2.0.[4] By express-
ing thermal energy kBT and chemical po-
tential µ in units of εll, we consider only
two independent energy scales. Fluctua-
tions in solvent density are controlled by the
Metropolis algorithm.[5] Nearest and next-
nearest neighbors are all taken into account
when calculating the energy change associ-
ated with a particular solvent transition.[6]
For the convenience to compare with other
studies which use the global energy in the
nearest-neighbor model, here the values of
the interaction energy summing from near-
est and next-nearest neighbors are there-
fore multiplied by a re-normalization factor
58.6%.

The evolved 2D site-percolation thresh-
old reduces to 0.4 in Ref. [3], during time-
evolving processes. However, after a long
time of realization, the nanoparticle would
aggregate toward the central part of the
board and prevent percolation events. The
late-time percolation threshold identified by
crossing probability would be questionable.
An alternative from the concept of percola-
tion probability [2] is improvised. At every
Monte Carlo sweep, we calculate the value
of Pnano−max: the probability of an arbi-
trary nanoparticle belonging to the maxi-
mum nano cluster, and plot it as a sigmoid
function through out all possible occupied
probability of nanoparticles, in Fig. 2(b).

To represent the sigmoid curve position
during the dynamic process in Fig. 2(b),
we define the value of pc at which value
the probability of one arbitrary nano cell
within the largest nano cluster is 0.5. It de-
scribes the overall behaviour of a nano self-
assembly system in temporal dynamics, as
in Fig. 3.

In this work we are concerned only with
simulation morphologies before significant
coarsening has occurred and after the initial
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Figure 2: Tracking the Sigmoid curve position of
the nano clustering probability in time. T = 0.4
and µ = 2.25. Lattice size is 512 × 512. We use
open boundary conditions. Fig. 2(a) The fraction
of liquid solvent for different values of nano cover-
age during the time evolution processes. Fig. 2(b)
Pnano−max, the average probability that one arbi-
trary nano cell within the maximum nano cluster
of 200 samples. The probability curve shifts from
right at MCS=0 to left at MCS=400. The quan-
tity of Pnano−max is deviated from the definition of
percolation probability in Ref. [2].
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Figure 3: A set of temporal dynamics of pc values in
time evolution processes with different constant pa-
rameter of T = 0.1, 0.2, 0.3, 0.38, 0.4, 0.5, 0.6, 0.8,
1.0, 1.5 and 2.0. For instance, above the red-square
curve of T = 0.4 is the greater-than-half probabil-
ity of an arbitrary nano cell within the largest nano
cluster obtained from Fig. 2(b). The numbers of
realizations for each process are different from 20
to 200 due to limitation of computational time.

evaporation stage. This corresponds to less
than 1000 Monte Carlo sweeps for most of
the system, except some require up to 4000
Monte Carlo sweeps due to the dominations
of liquid-evaporation mechanism of nucle-
ation and growth. [4] We therefore termi-
nate our simulation at four thousand Monte
Carlo sweeps. With Metropolis algorithm,
we explore the phase space in two differ-
ent parameters: interaction energy εll and
chemical potential µ.

Having described the site graining thresh-
old in temporal process and explored the
phase space in two parameters: interaction
εll in Fig. 3 and chemical potential µ, the
following observation are so concluded: The
criteria to terminate the simulation is at the
steady duration of the position of series of
sigmoid curves of the percolation strength
because the fractions of solvent remains in
the evaporation process is highly dependent
of the nano coverage in Fig. 2(a). In Fig. 4,
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we use the value of pc to trace the phase
change. Above the curve, the self-assembly
system is with higher probability to aggre-
gate to a greater one of clusters to occupy a
large portion of the board it is easier to per-
colate. Interestingly, our result in Fig. 4(a)
indicates higher site percolation threshold
are also shown at higher values of temper-
ature. When the value of T is close to 2.0,
the nano-particles are strongly perturbed by
liquid solvent due to thermal fluctuation.
Hence, the pc values are close to 0.6, the per-
colation threshold of the typical site perco-
lation. On the other hand, when the value
of T decreases, the liquid solvent remains
on the lattice board. Nanoparticles still ag-
gregate but move slower, and change into a
network-like cluster. As a result, the final
pc would gradually get closer to the case of
the typical 2D site percolation model as the
value of T is lower.

In Fig. 4(b), when the chemical potential
µ is high, the liquid solvent gets harder to
evaporate. The nanoparticle patterns are
not able to sustain in evolution and the sys-
tem starts a new simple sampling of nano-
particles when it reaches a steady state.
That makes the system much more similar
to a typical site percolation. So the value of
pc gets closer to 0.6 if the chemical potential
µ increases. At the binodal line, µ = 2, it
corresponds to phase coexistence of the liq-
uid and vapor. When µ > 2 and is less
the spinodal limit, liquid solvent remains
locally metastable on the substrate surface
and it leads to network-like nano morpholo-
gies. Naturally, in much lower nanoparticle
density, the system would form giant clus-
ters and easily percolate as µ approaching 2
from above.

A finite-size comparison of two pc curves
from 512× 512 and 1024× 1024 are studied
at T = 0.5 and µ = 2 with both realizations
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Figure 4: Behaviors of pc in two different parameter
spaces. Lattice size is 512 × 512. Fig. 4(a) The
relation between pc and T under constant chemical
potential µ = 1.5, 2.25 and 3.25. At T = 0.4 and
µ = 2.25, the minimum value of pc is 0.279. At µ =
1.5 the minimum of pc = 0.446 is at T = 0.2. At
µ = 3.25 the minimum of pc = 0.429 is at T = 1.25.
Fig. 4(b) The relation between pc and µ. Here the
temperature value is in constant; T = 0.4, 0.5, 1.0,
and 1.5. The minimum of pc would be induced right
above the binodal line, µ = 2.
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of 200 samples and their final steady pc val-
ues are 0.3462±0.0136 and 0.3529±0.0128,
respectively. Their dynamic behaviors in
time are qualitatively in good agreement.

Generally, the idea of pc value to describe
a dynamic percolation system is feasible. It
suggests that systems of drying-mediated
nanoparticle assembly would aggregate into
huge clusters in low nano coverage such as
0.119 at T = 0.4 when the chemical poten-
tial µ is right above its binodal line. Never-
theless, it must be considered with the phys-
ical limits since it neglects the condition of
percolation.
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Abstract

The sleep behavior of drosophila is analyzed under different temperatures. The activity per minute
of the flies is recorded automatically. Sleep for a fruit fly is defined as the periods without any
activity and longer than 5 minutes. Several parameters such as total sleep time, circadian sleep
profile, quality of sleep are analyzed. The sleep behaviors are significantly different for flies at different
temperature. Interestingly, the durations of daytime sleep periods show a common scale-free power
law distribution. We propose a stochastic model to simulate the dynamics of sleep-wake process to
explain the distribution of daytime sleep.

Keywords: drosophila; sleep behavior; computational neuroscience

Sleep is an important part of animal behav-
ior which is controlled by complex interactions in
the neural circuits in the brains. The mechanism
which regulates sleep behavior is still unclear.
Drosophila melanogaster is an excellent model an-
imal to study the complex “genetics ↔ neuron ↔
brain ↔ behavior” network due to its short gener-
ation time, mass reproduction, ease of screening,
and comprehensive genetic tools[1]. Sleep behav-
ior has also been studied for a decade[2, 3]. Re-
cent studies show that sleep is linked to many
essential functions of brain like memory and
plasticity[4, 5, 6].

In contrast to the mammals whose sleep can
be defined by monitoring the brain activity by
electroencephalography or other techniques, fruit
fly’s sleep can only be defined from their activity
and response to external stimuli[7]. The activity
of the fruit flies was measured by the drosophila
activity monitor system (DAMS) developed by

∗Corresponding author.
Email address: ctshih@thu.edu.tw (Chi-Tin Shih)

TriKinetics (Waltham MA). Each fly was loaded
into a 65mm × 5mm tube with fresh food in one
end and then placed in the DAMS. An infrared
beam was made to cross the tube perpendicu-
larly. Each DAMS holds 32 tubes and records
the infrared beam interruptions caused when a
fly walked across the beam. The flies were in the
tubes for 1 day adaptation and recorded for the
following 3 days under 12-hour light (L) followed
by 12-hour dark (D) period during the whole pro-
cess to mimic the day-night cycles. The raw data
recorded by DAMS were time series of the number
of infrared beam interruptions for each minute.
The sleep episodes were defined as the periods
longer than 5 minutes without any activity[7, 8].
We developed a program to automatically ana-
lyze the raw data and calculate the characteristic
parameters of fly’s sleep.

Fig. 1 shows the sleep profile for three days for
the female flies at different temperatures T = 18,
25, and 30◦C. The favorable temperature for flies
is roughly 22 ∼ 27◦C. All three groups show circa-
dian rhythm which is synchronized by the 24-hour

Preprint submitted to Elsevier February 28, 2010
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Figure 1: The averaged minutes of sleep for each 30-minute
period for the fruit flies at temperature T = 18◦C (black,
83 flies), T = 25◦C (red, 34 flies), and T = 30◦C (green,
84 flies). The white and black bars on the horizontal axis
represent the LD cycles of the environment.

LD cycles. The error bars reflect the high degree
of diversity of individual flies. However, the ef-
fect of temperature on sleep is still statistically
significant.

To compare the sleep behavior for flies at dif-
ferent temperature in more detail, several char-
acteristic parameters are calculated and shown in
Fig. 2: total sleep in daytime (Sday) and night-
time (Snight) (Fig. 2(a) and (b), respectively);
consolidation index CI (Fig. 2(c)) which is de-
fined as (

∑
i S

2
i )/(

∑
i Si) where Si is the length of

i−th sleep episode in minutes and the summation
runs over all sleep episodes; averaged sleep bout
length in daytime (Lday) and nighttime (Lnight)
(Fig. 2(d) and (e), respectively); latency of night-
time sleep defined as the starting time of the first
sleep episode in nighttime (Fig. 2(f)); sleep bout
number in daytime (Nday) and nighttime (Nnight)
(Fig. 2(g) and (h), respectively); and the activity
per waking minute (Fig. 2(i)). From Fig. 1 and
Fig. 2, the temperature-dependent features of fly
sleep are summarized as following:

1. Flies at 18◦C slept almost all the night time.

2. Flies at 18◦C and 25◦C slept much more in
night than in daytime. Their sleep quality
is also better (less bout number and longer
bout length) in night.
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Figure 2: Characteristic parameters (see text) for flies at
temperature T = 18◦C (black), T = 25◦C (light grey),
and T = 30◦C (dark grey).

3. Total daytime sleep and nighttime sleep are
about the same for flies at 30◦C. However,
their sleep quality is better in daytime.

4. The nighttime sleep for groups at 25 and
30◦C is more fragile than that at 18◦C.

5. The flies fall asleep faster in night for lower
temperature.

6. Almost all the flies at 25◦C and 30◦C aroused
when the light was turn on. On the other
hand, many of the flies at 18◦C kept on sleep-
ing in the meantime.

Note that Fig. 2(i) shows that the activities
(number of times which the fly passed the central
infrared beam per waking minute) for the three
groups are not significantly different. The result
excludes the possibility that the effect of temper-
ature can be just related to fly’s activity and have
nothing to do with sleep.

Although the sleep behavior showed diverse fea-
tures for different temperature, we found they
shared a common statistical property. We calcu-
lated the cumulative distribution function (CDF)
of the daytime bout length Lday as

C(Lday) =

L0∑
l=Lday

p(l) (1)
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Figure 3: Cumulative distribution function C(Lday) of the
daytime sleep length Lday for T = 18◦C (circles), T =
25◦C (triangles), and T = 30◦C (squres). The data can be
fitted by a power-law function (red dotted line).

where p(l) is the probability of the length of a
sleep episode in daytime is l minute and L0 is
the longest sleep duration. Fig. 3 shows C(Lday)
for the three temperatures. The straight lines
for T = 18◦C and T = 25◦C in this log-log
plot can be fitted by a power-law decay function
C(Lday) = 5.52 × L−1.08

day up to Lday ∼ 200. The
flies in high temperature T = 30◦C spent more
daytime for sleep therefore its C(Lday) had fatter
tail for large Lday. However, C(Lday) for the high
temperature group can also be fitted by the same
function for Lday ≤ 40. Interestingly, the expo-
nent is very close to the −1 of the Zipf’s law in
linguistics[9]. On the other hand, the CDFs for
the nighttime bout length Lnight at different tem-
perature do not have such common property. To
understand the common property at daytime, we
use a simple model to simulate fly’s sleep. Assume
that x(t) is the mean-field state to represent the
overall activity of the population of neurons which
regulate fly sleep. The fly is active as x(t) ≥ 0 and
quiescent for x(t) < 0 at time t. The dynamics
of x(t) is defined as ∆x(t) = x(t + 1) − x(t) = ǫ

for ∆ ≥ x(t) ≥ 0 (active) and b
x

+ ǫ for x(t) < 0
(quiescent), where ǫ is an uncorrelated Gaussian
random variable with zero mean and unity width.
∆ and b are the tuning parameters in the simula-

tion. b is the bias toward the active state when the
fly is quiescent and ∆ is a cutoff of x(t). The au-
tocorrelation of x(t) comes from the bias b. The
model has similar form as the one used in the
study of human sleep in nighttime[10].

The time series of the activity is generated from
the model to simulated fly’s activity in the DAMS.
We found when b = 0.5 and ∆ = 10 the CDF of
sleep bout length is C(L) = 5.45 × L−1.09, which
agrees very well with the C(Lday) observed in ex-
periments. The key point of the model is that b,
the bias toward the active state, is necessary for
the flies should keep on the alert in daytime to
react when life-threatening events occur.

In summary, the effect of temperature on fly’s
sleep behavior is studied by statistical methods
and numerical simulation of a phenomenologi-
cal mean-field model. The sleep phenotypes for
different temperature are significantly different
in circadian sleep profile, total sleep time, bout
length, bout number in day and night, latency,
and consolidation index. However, the different
phenotypes have a common power-law CDF with
exponent ∼ −1 for daytime sleep durations. This
can be explain that the flies have to keep on the
alert in daytime to protect themselves.
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