壹、緒論

一.前言

西是生物體必須的微量元素之一, 硒具有保護細胞膜免受氧化劑
 損害的作用, 它可以和有毒金屬結合而消除毒性, 還具有抗癌作用。
 無機硒的毒性大, 生物活性低, 環境污染性高; 而有機硒的毒性小,
 吸收率高, 生物利用率高, 在满足動物生長發育所需的添加量範圍
 內,對環境基本污染性極低^[1]。

硒存在於土壤中,而世界各地土壤的硒含量不盡相同,各地植物 所含的硒濃度也因此不同。一般而言,食物中的瘦肉、柿子、蒜頭、 海產、蔥、南瓜等含有多量的硒,動物製品的硒含量(約0.4~1.5 μg/g) 比植物體高;一般植物穀類的硒含量約在0.1~0.8 μg/g 的範圍;在海 洋生物中,硒類的含量也比植物多,但由於魚類(尤其是體內含汞的 魚類)會形成汞—硒複合體,造成對硒的生物利用性極低,故雖然硒 在魚類的含量多但對於魚類本身的利用性極低;至於一般肉類的硒含 量為0.1~0.4 μg/g;乳製品的硒含量通常小於 0.3 μg/g^[2]。

質譜儀是化學儀器之中,最被廣泛使用的分析工具之一,它是一 種測量帶電離子質量的儀器,利用氣態游離的方法對化合物進行微量 分析,達到鑑定化合物的效果,近年來更結合串聯質譜技術,從斷裂 圖譜中得到特定的子離子訊號,以進一步研究化合物的結構及特性,

是目前一種非常方便且快速的分析方式。生化樣品通常具有微量、熱 不穩定、高極性或低揮發性等特性,應用質譜儀的高解析、高靈敏、 高效率等分析技術,可以成功的檢測分析絕大多數的生化樣品,在分 析化學、生物及醫學相關的研究領域中越來越受到科學家的重視^[3]。

本論文的研究目的是用乙基氯化甲酸與複合硒成分中硒甲基半 胱胺酸和硒代胱胺酸進行衍生化反應轉變成揮發性化合物,然後用氣 相質譜儀檢測。硒甲基半胱胺酸和硒代胱胺酸分子量都屬於低分子 量,而一般有機基質在低質量範圍常出現背景訊號干擾,改用奈米膠 體金粒子替代有機基質,使用基質輔助雷射脫附游離質譜儀搭配奈米 膠體金粒子進行複合硒成分中硒甲基半胱胺酸和硒代胱胺酸的分 析,可得到更清楚不受干擾的圖譜。

氣相層析質譜儀和基質輔助雷射脫附游離飛行時間質譜儀進行 複合硒成份中硒甲基半胱胺酸和硒代胱胺酸的分析,建立一套快速又 靈敏的分析方法,對硒類健康食品成分的分析有很大的幫助。

二. 氣相質譜儀

將待測成份直接注入層析管柱或注入注射部經加熱揮發進入層 吸管柱後,管柱以恆溫加熱或以程式控制加熱,則各成份依其熱力學 性質(化合物在層析溫度之蒸氣壓及對固定相之選擇性)之不同而固 定相及移動相(即載行氣體)中有不同之分佈,載行氣體(如氮,氫,氦) 攜帶化合物之蒸氣通過層析管,並依其蒸氣壓之不同即對固定相之選 擇性不同而得以分離不同之成份,經過偵測器得到訊號。

氣相質譜儀系統由真空系統、進樣系統、離子源、質量分器、檢 測器和電腦控制與資料處理系統等部分組成,如圖(一)表示,氣相質 譜儀的離子源是電子撞擊電離源(electron impact),它藉由離子化室燈 絲加熱產生游離電子,並經加速後撞擊氣化之樣品成分分子蒸氣,一 般有機物之游離能約7~15 eV,當電子能量超過此值即可使分子開始 離子化,形成分子離子(molecular ion)或母離子(parent ion),增加電子 的能量即增加母離子產量,能量過大會造成化學鍵斷裂形成分子碎 片,一般電子撞擊式質譜儀為獲得分子结構之資訊多採用70 eV的電 子能量。有機分子離子之穩定度一般會影響其離子強度,各類分子離 子之穩定度由大至小約為:芳香環 > 具共軛鍵之不飽和碳氫化合物 > 脂肪環 > 硫化物 > 直鏈碳氫化合物 > 硫氫化合物 > 酮類 > 胺 類 > 酯類 > 醚類 > 酸類 > 醇類。

質量分析器是質譜儀的核心,當離子以某個速度進入磁場時,會 受到與其前進方向相垂直的力,這個力成為讓離子開始轉彎的向心 力。而離子轉彎的半徑與離子的質量與電荷比有關,當離子的電荷是 一樣的時候,轉彎半徑就只與離子的質量有關,此時越重的離子其轉 彎半徑就越大,因此當離子束經過磁場時,不同質量的離子就會分 開,各自按著其質量相對應的轉彎半徑前進,質譜儀就是用此方法來 分離不同質量的物質。

由上式中可看出轉彎半徑 r 與質量-電荷比的根號成正比,因此 如果離子所帶電荷相同,在固定電壓 V 與磁場 B 的狀況下,轉彎 半徑就只與離子的質量有關。

檢測器的作用是將來自質量分析器的離子束進行放大並進行檢 測,而電子倍增檢測器是氣相質譜儀中最常用的檢測器。

電腦控制與資料處理系統的功能是快速準確地採集和處理資料; 監控質譜及色譜各單元的工作狀態;對化合物進行自動的定性定量分 析。標準質譜圖是在標準電離條件下(70 eV電子束),撞擊已知純有機 化合物所得到的質譜圖。在氣相質譜儀中,常用標準譜庫檢索的方 法,進行未知純化合物的鑑定,即利用電腦將未知純化合物的質譜圖 與電腦內保存的已知化合物的標準質譜圖,按一定程式進行比較,將 匹配度(相似度)最高的若干個化合物的名稱、分子量、分子式、識別 代號及匹配率等資料列出以供參考。

三.基質輔助雷射脫附游離飛行時間質譜法

3.1 基質輔助雷射脫附游離法的發展

雷射脫附法的發展歷史起源於1960年代,利用高能量的雷射光束 直接照射在純淨的樣品表面上(無matrix),可使其從表面脫附出完整 的離子,再用質譜儀加以分析。1987年Posthumus等人利用雷射脫附 質譜法成功地分析核苷酸、胺基酸、胜肽、醣類等生化小分子^[4]。 但由於將高能的雷射光束直接打在化合物上,會產生許多的離子碎 片,圖譜辨別比較困難,此技術所能偵測到分析物的質量上限約2000 Da^[5]。在1985 年時,由Karas和Hillenkamp以吸光之色胺酸(tryptophan) 混以不吸光的胺基酸valine、tyrosine,再以266 nm的Nd:YAG 雷射 照射後發現了色胺酸輔助分析物游離的功能,是基質輔助雷射脫附法 發展的肇始^[6]。

在1987年的一場中國-日本的聯合學術會議中,日本Shimadzu 公司的研發部門工程師田中耕一(K. Tanaka)發表了利用奈米級鈷金 屬粉末(~300Å)與甘油組合的基質,利用波長337nm的氮氣雷射照射 蛋白質樣品可將完整蛋白質分子脫附游離成氣相離子而由質譜進行 偵測。次年,田中正式在期刊上發表了此一結果^[7],可偵測到分子量 為12,360 Da的cytochrome C和分子量為25,717 Da的chymotrypsinogen 以及分子量為34,372 Da carboxypeptidase A的分子離子訊號,這是第 一次利用雷射脫附質譜法觀察到如此大的分子離子。同年,德國的研 究學者Karas 和Hillenkamp^[8]以尼古丁酸(nicotinic acid)為基質,利用 其對波長266 nm的Nd:YAG具有良好的吸收率,成功地測得溶菌酶 (lysozyme、14306 Da)和牛血清蛋白(bovine serum albumin、67 kDa) 等生物巨分子的離子訊號,Hillenkamp和Karas將這種方法正式命名為 基質輔助雷射脫附游離質譜法。MALDI 的發展對現今蛋白質體學的 研究具有相當大的貢獻,主要的優點包括極高的靈敏度、高質量偵測 範圍及操作簡易且分析時間極短等。 3.2 基質輔助雷射脫附游離法的樣品製備

分析溶液(約1 μL)與基質溶液(約1 μL)充分混合後,以微量滴定 管將混合溶液置入樣品盤(target)中,使其在空氣中自然風乾,基質和 分析物便會在樣品盤上形成共結晶,此時將含有分析物-基質共結晶 之樣品盤送入質譜儀之游離源內,以脈衝式雷射光源照射此樣品,在 真空的狀態下進行脫附游離,產生氣相分析物離子,並以質譜儀的質 量分析器進行質荷比偵測。

由於在結晶中基質分子的含量遠較分析物為多,因此樣品被脈衝 雷射照射時,絕大多數雷射能量會由基質分子所吸收,然後再將能量 傳遞給所環繞的分析物分子^[9],而這些受雷射能量影響區域內的分子 會在真空的狀態下,且在很短的時間內被迅速加熱、昇華而由固相轉 為氣相,進而產生游離。在MALDI的分析實驗中,是否能得到良好 的分析物訊號,適當的基質選擇具有重要的決定因素。

3.3 基質的選擇

不同的基質選擇,對於樣品的 MALDI-TOF MS 分析結果,產生 極大的差異。因為基質與分析物的互溶性,會影響兩者共結晶化的性 質,不良的共結晶體會使基質傳遞能量給分析物的效率降低,進而影 響到分析結果,因此針對不同的分析物,適當的基質選擇是一項很重 要的實驗條件,必須考慮分析物與基質對溶劑的互溶性,分析物與基 質的極性差異以及共結晶等問題。

日本學者田中耕一先生所使用鈷金屬粉末,因為取得不易、價格 昂貴、容易吸入對人體有害、靈敏度和再現性差等缺點,後來基質輔 助雷射脫附游離法的發展均以Karas和Hillenkamp^[10-12]所提出的方法 為主,並陸續研究出許多不同種類的有機酸基質。適當基質要具備以 下三種特性:(1)具有吸收雷射的能力,能在短時間內吸收雷射光的 能量並傳遞給分析物,使分析物從固體成功地脫附成氣體分子;(2) 能幫助分析物游離,基質須具有羧酸的官能基,能提供質子給已脫附 的氣態分析物分子,使其帶有質子而游離成正離子;(3)能與分析物 產生良好的共結晶,最常用的基質為α-cyano-4-hydroxycinnamic acid (CHCA)、sinapic acid(SA)、2,5-dihydroxybenzoic acid(DHB),基質的 選擇以CHCA較適合於小分子量的胜肽分析,SA較適合於大分子量的 有機酸基質的分子量、化學結構及應用範圍,這些基質都具有能與雷 射產生共振吸收的的苯環或不飽和鍵,以及具有能提供質子的羧酸官 能基,增加基質輔助脫附游離的效果。

目前所廣泛使用的基質大多以有機酸為主,適合應用於高分子量 的生化樣品檢測,但對於分子量小於600 Da的分析物,這些有機酸基 質,會產生極大的圖譜干擾訊號,大大的降低了分析靈敏度,為了改 進這個缺點,有許多研究以無機金屬^[13]當做基質,在沒有複雜的干 擾訊號下,可以成功地偵測低分子量化合物^[14-17]。本研究論文選擇以 奈米金膠體粒子為基質,應用於低分子量化合物硒甲基半胱胺酸(分 子量183)及硒代胱胺酸(分子量336)的分析。

3.4 基質輔助雷射脫附游離法的離子形成機制探討

當含有分析物與基質的結晶體經由雷射光激發後,雷射能量主要 是由基質分子吸收後再傳遞能量給其所環繞的分析物分子,而固態或 液態樣品分子在瞬間吸收能量之後,得到足夠能量進行相轉移,即由 固相過渡到氣相,且當此相轉移的速率大於受熱分解的速度時能保持 樣品分子結構的完整性而能脫附成氣相分子,此現象稱為脫附 (desorption)。而在此過程中,電荷轉移的反應會同時進行,即一連串 的離子 - 分子反應發生,樣品分子因而帶上電荷,稱為游離化 (ionization)。

MALDI中離子形成的詳細機制,至今仍在探討中。若由化學的 觀點來看機制中應包括了氣相中的光游離反應、離子一分子反應、不 均勻反應(disproportionation)、激發態質子的轉移(excited-state proton transfer)、能量池(energy pooling)、熱游離(thermal ionization)和預形成 離子的脫附(desorption of preformed ion)等。有一些模型被提出來說明 MALDI 的離子形成機制,例如Sunner 等人早期曾針對液態二次離子 質譜法(Liquid Secondary Ion Mass Spectrometry, LSIMS)對極性分子 的脫附游離現象,提出一種叫相爆炸的模型,這個模型在解釋在 MALDI 過程中為何可以產生完整的氣相分子離子也相當適合^[18,19]。 此機制說明當高能量束撞擊在凝相態的樣品上時,樣品會被快速加熱 至一相當高的溫度,當達到所謂臨界超熱(critical superheat)溫度以上 時,此時樣品分子會變得相當不穩定,而產生相爆炸的現象,也就是 將能量用於樣品分子使其從凝相態過渡至氣相態的轉移位能,而此相 轉移的速率快於熱分解的速率,因此不會熱分解的現象產生,使得樣 品分子得以保持其完整性,此模型也應可適用於解釋在MALDI 過程 中為何可產生完整的氣相分子離子。

MALDI 離子形成的機制可分為二部分:分別是一次離子形成 (primary ion formation)及二次離子形成(secondary ion formation)的過 程。一次離子形成主要是指樣品在真空中由中性分子形成離子 (primary ion)之過程,而形成的離子主要是來自經由光游離化反應所 產生的基質自由基(photoionized matrix radical)及其他以基質為基礎 所產生的衍生物。

二次離子形成即指不是由一次過程直接產生的離子,通常指分析 物離子,是基質因吸收雷射光後,變成激態分子或自由基,使其變得 很容易提供質子給分析物或其它基質分子離子;再經由基質離子與已 被脫附的分析物分子進行碰撞反應並進行一系列質子轉移而形成。

3.5 儀器構造與功能

基質輔助雷射脫附游離質譜儀,主要構造包括:(1)離子源(ion source)、(2)質量分析器(mass analyzer)及(3)偵測器(detector)三個部份。離子源係利用雷射光激發基質使之氣化,並傳遞能量和質子給待測物,而產生帶正電之離子(如圖二);質量分析器則採用飛行時間質量分析器,利用飛行時間的差異,分析不同質荷比的離子;偵測器則採用微通道(micro-channel)二次電子增大器(Secondary Electron Multiplier, SEM),可以提高離子偵測的靈敏度。

3.5.1直線式質譜分析器

基質輔助雷射脫附游離法以搭配飛行時間質量分析儀為主,其原 理為當離子在游離源室形成後,會同時給予一相同加速電壓,使得在 MALDI 游離源中所產生的所有離子在經過相同電場時均具有相同 的動能,因此飛行速度與質荷比的關係可以下式來表示:

E_{kin} = (1/2)mv² = zeU(公式一) E_{kin}:離子源中產生離子的動能 m:離子之質量 z:離子帶電荷數

v:離子飛行速度

e:每電荷之電量

U:離子源中之電位差

離子脫離離子源進入飛行管,如圖(三)所示,在無電場的狀態中自由 飛行所花費之時間為t,飛行管之長度為L,則該離子之飛行速率v, 可由公式二表示:

v = L/t(公式二)

以公式二帶入公式一,可得公式三:

 $E_{kin} = (1/2)m(L/t)^2 = zeU$(公式三)

將公式三重新整理,可得公式四:

 $m/z = (2eU/L^2)t^2 = Kt^2$(公式四)

m/z為待測離子之質荷比,由於2eU/L²可視為質譜儀固定常數(K),故 m/z與飛行時間之平方成正比關係,由公式可知當所有離子得到相同 動能而進入無重力場飛行管時,離子會因為質荷比不同,而有不同的 速度,對均一價的正電荷離子而言,質量較小的離子飛行速度較快, 質量大的飛行速度慢,因此,根據到達偵測器時間的不同,可以區分 不同質荷比的離子,此即為飛行時間質譜儀的基本原理,而一張質譜 圖只需5~100微秒即可完成。

根據質譜儀解析度(Resolution, R)之定義:

 $R = m/\Delta m = m/(m_2 - m_1)$(公式五)

公式四带入公式五,可得公式六:

$$R = t^2/(t_2-t_1) = t^2/\Delta t^2$$
....(公式六)

由公式六得知質譜分析之解析度與飛行時間之平方有關,分子量越大之化合物,飛行時間越長,需要越高的儀器解析度,越不易測量。

3.5.2 反射式質譜分析器

反射式飛行時間質譜儀如圖(四)所示,在直線型飛行管末端以多 片電極方式施加強度遞減的正電場,其為一個減速反向電場,當離子 進入這一段電場後,會漸漸被減速而停止,並因為電性相斥關係被減 速而彎曲,接著會再受此正電場區作用,進而使得離子被反向加速再 進入另一端的飛行管,飛行後被偵測器所偵測,此設計可以有效地改 善樣品離子在離子源中因速度及動能分佈所造成的飛行時間差異,可 提高解析度。而利用反射式TOF 設計,也發展出一種稱為游離源後 碎裂的功能(post source decay, PSD)^[20],因為有些介穩離子(metastable ions)在飛行經TOF管至偵測器的過程當中,會因為本身內能過高導致 碎裂,由於碎裂離子和其母離子只是動能不同但仍具有相同的飛行速 度,若以直線型式飛行時間管終端的偵測器偵測,則因其到達偵測器 的時間相同而無法分辨,但反射式飛行時間質譜儀則可根據離子動能 的不同加以區分。因為具有較小動能的碎裂離子會較快被反向電場減 速轉彎,而較早到達另端偵測器;具有較大動能的離子則反之,如此 就可以區分碎裂離子和其母離子,並可應用於分析物結構的判定。

3.6 MALDI-TOF MS的特點

(1)高靈敏度

MALDI-TOF MS 是一方便、快速以及非常靈敏的分析方法,因 為分析一個樣品大約只需五至十分鐘,且一個樣品槽只需滴入少量樣 品與基質之混合物(~1 µL)即可進行分析。基質的選擇及樣品的製備 均扮演相當重要的角色,在適當調整基質與分析物莫耳比例,偵測極 限可低至 fmol 至 amol 左右,十分適用於取得不易的微量生化樣品分 子分析。

(2)高質量偵測範圍

基質輔助雷射脫附游離法是一種軟性游離方式(soft ionization), 它能使高分子量化合物如蛋白質、DNA及RNA等,間接的靠基質吸 收能量,以完成的結構脫附成氣態離子,配合適合的基質,可分析這 些具有高質量的生物巨分子。

(3) 簡易的樣品製備方法

MALDI 的樣品製備非常簡單,一般是將約 0.5 μL 的基質(10~30 mg/mL)與待測分析物之混合物滴於乘載樣品的樣品盤上,待樣品中

溶劑揮發後,會形成類似結晶狀的固體,即可將此樣品盤送入質譜儀進行分析。

四.奈米粒子的簡介

4.1 奈米粒子的性質

奈米材料是指尺度大小在一至一百奈米之間的微小物質,當物質 的尺寸小到奈米的範圍之後由於粒徑尺寸縮小,粒子數目增加,而表 面原子數佔有比例也相對增加使得表面能量增加,讓奈米粒子具有很 高的活性,再加上量子效應與小尺寸效應,使得奈米粒子會有很多不 同於其本身整體材料的物理化學性質,除了表面積遽增外,如光學性 質、電學性質、磁學性質、擴散、材料強度、延展性、催化能力及磁 性等等,這些性質也會隨著粒徑大小不同而有變化,具備潛在的發展 價值,故奈米材料的相關研究相當受到重視,且應用範圍因而也更為 廣泛。

4.2 奈米粒子的製備

奈米粒子之製備分為三大類:

(1) 雷射消熔法^[21-24] (laser ablation method)

雷射消熔法主要利用高能量雷射不斷射擊,將大塊的塊材打成奈 米尺度大小之粒子。在傳統氣體研究中,雷射消熔法有利於金屬氣體

分子的形成,唯若欲形成大量之固態金屬奈米顆粒,只在氣相中進 行,非常不方便。金屬奈米顆粒的製備而言,多半把金屬放在各式溶 液中,利用雷射光之高能量消熔金屬,並藉由溶液所提供之低溫環境 及穩定劑(stabilizing reagent)使所生成之奈米金屬粒子得以均勻分散 於溶液中,並免於進一步發生融合(coalescence)。

(2)金屬氣相合成法^[25](metal vapor synthesis)

金屬氣相合成法主要利用將金屬藉由各種原子化法氣化成氣態 原子,再控制其冷凝過程使其聚集成奈米尺度大小之固態粒子。此法 最早為 1927年由 Roginski 與 Schalnikoff 所發表,將鎘、鉛或鉈加熱 蒸發後,與苯或甲苯(有機稀釋劑)蒸氣在液態空氣所冷卻之冷卻棒上 共凝聚(cocondensation),再藉由加熱分離之程序,獲得此金屬之膠體 懸浮液。

另一個此方法發展過程中之經典過程為將真空腔抽至一定之真 空度以上,充入低壓之純惰性氣體(氦或氫)利用惰性氣體的導流,使 得由加熱坩堝中蒸發出之金屬煙霧向上移動,靠近充滿液態氮之冷卻 棒,此時金屬蒸氣和惰性氣體產生多次碰撞而損失能量之金屬煙霧 團,亦漸漸冷卻而形成過飽和蒸氣團,是以在冷卻棒上析出,並在其 表面上積聚而成奈米尺度大小之金屬顆粒,再進一步分離即可收集到 所需之奈米顆粒。其中可藉由控制惰性氣體的壓力、溫度及蒸發物質 的溫度來控制奈米顆粒粒徑大小,不過由於此方法不利於大量製備, 又較費時間,因為需將真空腔抽到一定之真空度以上方可進行,在實 際應用上受到較多限制。

(3)化學還原法^[26-28] (chemical reduction method)

化學還原法主要是將各種溶液系統中之其它氧化態之金屬離 子,利用化學方法還原成奈米尺度大小之零價金屬粒子,其直徑取決 於金屬鍵的強度和金屬鹽類與還原劑的氧化電位差異,以控制奈米粒 子的成長方向與形狀,常用於 Ni、Cu、Co、Fe、Au、Ag 等奈米粒 子的製備。

4.3 奈米膠體金粒子 [29-33] 的介紹

膠體粒子(colloidal particle)是指尺度大小在一至一百奈米之間的 微粒,一般無法用肉眼鑑別,看似一般透明有色溶液。膠體粒子表面 皆以正電荷或負電荷形式存在,使得粒子之間互相排斥,因此可以穩 定的懸浮在溶液中不會凝聚(coagulation)的發生,在製程時常加入穩 定用的 ligand、polymers 或 surfactants 而產生陽離子或陰離子,此種 離子存在於固體表面的現象稱為吸附作用(adsorption)。另外,當粒徑 小於 50 奈米時,在布朗運動的作用下,膠體粒子足以抵抗地心引力, 因此可以得到穩定的懸浮液體,短時間內,甚至長達數月,都不會有 明顯的沉澱現象。

金奈米粒子照光後,這些顆粒表面的自由電子被激發,吸收特定 波長的光子能量,產生瞬間誘導式偶極,並以此特定頻率進行偶極震 盪(collective dipolar oscillation),稱之表面電漿共振(Surface Plasmon Resonance, SPR),金奈米粒子會吸收何種波長的光子能量進行偶極 震盪,完全根據顆粒大小和形狀,如果顆粒為球形對稱,會吸收520 nm 波長的光子能量,溶液呈紅色;然而這些球形對稱的顆粒若是彼 此聚集在一起,則對於 600~800nm 波長的光會產生共振而有吸收的 現象,溶液進而呈現藍色。這個現象在許多文獻中已有詳細的探討, 可以藉由古典靜電場理論來描述,起源於非對稱巨集型狀及偶極之間 的相互作用力,所造成在電磁場下產生的表面電漿共振吸收。如果顆 粒為圓柱形狀,根據長短軸比值的不同,而有不同的吸收波帶位置, 當粒子之長短軸比值愈小,吸收波長愈偏向 520 nm,溶液呈現藍色, 當粒子之長短軸比值愈大時,吸收波長愈偏向 800~900 nm 或更長, 溶液則呈褐色或再度返回紅色,由於溶液的顏色和粒子的形狀以及在 溶液中分散的狀態有關,所以一般可以藉由溶液所呈現的顏色,來判 斷懸浮性金奈米粒子的結構狀態。因為金吸收範圍很大,所以雖然它 最大的吸收峰值通常在 520 nm 或更長,但是在本實驗使用的雷射波 長355 nm 地方也有吸收值。

本實驗所使用的奈米膠體金粒子是從 Sigma 公司購得, 奈米尺寸

5nm,主要由化學還原法製備而成。

五. 硒半胱胺酸簡介

1973 年 Rotruck 等人首先發現 glutathione peroxidase (GPx) 中含 有 selenium;經過了 20 餘年來的努力才將這群人體重要的酵素解密, 也改寫核酸鹼基配對的定律,首先在 GPx 的 mRNA 上發現以 non-Watson-Crick base pair 的結構,並以 UGA 為密碼(codon)直接插 入蛋白質的胺基酸序列,真正成為核糖體媒介的第 21 種胺基酸,即 硒半胱胺酸^[34-37,42,43]。硒化物可能具有化學防癌與阻止癌細胞生長的 能力,但需要先透過形成胺基酸再組成蛋白酵素或其他小分子^[38]。 這類酵素所執行的工作包括銷毀細胞代謝所產生的自由基,誘發轉型 細胞的凋亡,甲狀腺素的活化與分解,甚至關係到精蟲的型態與活 力,為人體必需的稀有元素。^[39,40]

在遺傳密碼中, 硒半胱胺酸的編碼是 UGA(即乳白密碼子), 通常 用作終止密碼子。但如果在 mRNA 中有一個硒半胱胺酸插入序列 (selenocysteine insertion sequence, SECIS), UGA 就用作硒半胱胺酸的 編碼。SECIS 序列是由特定的核苷酸序列和鹼基配對形成的二級結構 決定的。在真菌中, SECIS 直接跟在 UGA 密碼子之後, 和 UGA 在 同一個閱讀框裏。而在古細菌和真核生物中, SECIS 在 mRNA 的 3'-

不轉譯區域(3'-UTR)中,可以引導多個 UGA 密碼子編碼硒半胱胺酸 殘基。當細胞生長缺乏硒時,硒蛋白的轉譯(translation)會在 UGA 密 碼子處中止,成爲不完整而沒有功能的蛋白。^[34-36,39,41-43]

六. 硒甲基半胱胺酸的簡介^[38]

根據 Andreadou 等人的研究一些小分子的 Se 化合物如 Se-methylselenocysteine 可與 free redical [O] 結合形成 Se-methylselenocysteine selenoxide 再經 lyase 的水解產生 methylselenenic acid 和 pyruvate(如圖五)。

而 Se-methylselenocysteine 大量存在於 selenized yeast 及 selenized garlic(大蒜)中,為最好的化學防癌實驗材料。Se-methylselenocysteine 有能力清除癌化起始細胞,可以導致癌化細胞的凋亡或是抑制變型細 胞的生長,這種機轉稱為 chemoprevention。在許多實驗室的研究報 告顯示硒化物對抗癌細胞的機轉值得注意。Thompson 證實了硒化物 誘發變型細胞凋亡的啟動不需要 DNA damage 和細胞 P53 的突變。有 許多型式的硒化物可以有效的抑制 cell cycle protein kinase (cdk-2) 與 cell signaling protein kinases 的活性;若以 methylated form 的硒化 物也有同樣效果。硒化物會改變 cell cycle protein kinase, 減少 cdk-2 作用在 G1/S phase 的活性,阻礙細胞進入 S phase 減少 DNA 的合成。 以某個角度來看,關於小分子硒化物對人體的幫助充滿了想像。

七.衍生化技術

進行氣相層析技術而所採用的衍生化反應,在衍生化試劑的選擇 上,應滿足以下之條件:

- 衍生化反應迅速以利於定性與定量之檢測,反應條件簡單,容易 操作等。
- 行生化反應具高選擇性,僅對待測物進行反應,即是衍生化反應 具有專一性。

本論文用的衍生反應(圖六和圖七)^[44] 是利用乙基氯化甲酸(ethyl chloroformate) 與 具 有 胺 基 (NH₂) 和 羧 酸 基 (COOH) 的 Se-methylselenocysteine 或 selenocystine 反 應 , 將 Se-methylselenocysteine 或 selenocystine 轉變成具有高揮發性的衍生 化合物,選擇適當的衍生化技術應用,可以擴大氣相層析技術的應用 範圍,在分析樣品的前處理過程中是一相當重要的步驟。

八.研究動機

洋蔥、大蒜、青花椰菜和孢子甘藍含有硒甲基半胱胺酸和硒半胱 胺酸,這兩個硒化合物具有清除癌化起始細胞的功能,目前分析植物 中的硒胺基酸種類有許多方法,包括高效液相層析感應耦合電漿質譜 儀(HPLC-ICP-MS)^[45,46]、氣相感應耦合電漿質譜儀(GC-ICP-MS)^[47,48]、 氣相火焰離子檢測儀^[40]、氣相原子放射檢測儀^[50]、液相層析電噴灑 游離法質譜儀^[51]、氣相火燄發光檢測儀^[52]及毛細管電泳^[53],而利用 氣相質譜儀和 MALD-TOF-MS 檢測硒甲基半胱胺酸和硒代胱胺酸的 研究,目前並沒有文獻的深入探討。

硒化物的揮發性低、易熱解離,無法直接以氣相層析質譜儀做偵 測,本論文發展出利用乙基氯化甲酸進行衍生化的反應,將硒甲基半 胱胺酸或硒代胱胺酸,轉變成具高揮發性化合物,成功地應用在氣相 質譜儀的檢測。

西甲基半胱胺酸和硒代胱胺酸的分子量分別為183 Da和336 Da,屬於低分子量的化合物,無法以MALDI-TOF MS做偵測,因為 有機酸基質在低質量範圍,會有嚴重的基質干擾訊號出現,本研究利 用奈米膠體金為基質,取代傳統的有機酸基質,進行硒甲基半胱胺酸 和硒代胱胺酸的分析,建立一套快速、簡單又靈敏的分析方法。

貳、實驗

一、藥品

- 硒甲基半胱胺酸(Se-methylselenocysteine)MW=183:係ACROS公司產品,純度98%。
- 硒代胱胺酸(selenocystine)MW=336:係ACROS公司產品,純度 98%。
- 8. 膠體金(gold colloid solution; Au; MW=196.97):係Sigma公司產品, 平均奈米尺寸3.0~5.5nm(monodisperse),濃度~0.01%HAuCl4。
- α-氰基-4-羥基桂皮酸(α-cyano-4-hydroxycinnamic acid;
 C₁₀H₇NO₃; MW=189.17)(α-CHCA): 係ACROS公司產品,純度 97%。
- 5. 3,5-二甲氧基-4-羥基桂皮酸(3,5-dimethoxy-4-hydroxycinnamic acid, sinapinic acid; C₁₁H₁₂O₅; MW=224.22) (SA): 係Alfa Aesar 公司產品;純度98%。
- 6. 二羟基苯甲酸(2,5-dihydroxybenzoic acid; C₇H₆O₄; MW=154.12)

 (DHB); 係Alfa Aesar公司產品;純度99%。
- 三氟醋酸(trifluoroacetic acid; CF₃COOH) (TFA): 係Alfa Aesar公司產品;純度99%。
- 8. 吡啶(pyridine; C5H5N): 係Mallinckrodt Baker公司產品; 純度100

- 9. 乙基氯化甲酸(ethyl chloroformate; C₃H₅ClO₂):係Sigma-Aldrich公司產品,純度98%。
- 10. 乙醇(ethyl Alcohol; C₂H₅OH): 係OSAKA島久藥品公司產品, 試藥級。
- 11. 氫氧化銨(ammonium hydroxide; NH4OH):聯工化學廠出品,試藥級。
- 12. 氫氧化鈉(sodium hydroxide; NaOH): PANREAC QUIMICA SA公司產品,純度98%。
- 13. 磷酸二氫鈉(sodium dihydrogenphosphate; NaH2PO4): 係 Aldrich 公司(Milwaukee, WI, USA)產品,純度 99%。
- 14. 氯仿(chloroform): TEDIA公司產品,試藥級,純度99.97%。
- 15. 甲醇(methanol): MERCK公司產品, 試藥級, 純度99.9%。
- 硼氫化鈉 (sodium borohydride): Lancaster 公司產品,試藥級,純度 98%。
- 17. 氰甲烷(acetonitrile):景明化工股份有限公司產品,HPLC級,純度98%。
- 18. 強效 Albion 複合型硒: Swanson 公司產品

二、儀器設備

- 1. 基質輔助雷射脫附游離飛行時間質譜儀裝置:Bruker Daltonics 公司(Germany)產品,型號:microflex。
- 2. 氣相質譜儀(GC-Mass): Perkin Elmer 公司, GC 型號: Autosystem XL, Mass 型號: TurboMass Gold
- 3. 桌上型微量高速離心機: 詠欣有限公司產品,型號: MCD-2000。
- 4. 高速離心機:HSIANGTAI 公司產品,型號:CN-10H

三、實驗方法

3-1 GC-MS 藥品配製

(1) 10%NaBH₄溶液的配製

以電子天平稱取 1 g NaBH₄ 的固体,並溶於 10 ml 0.2 M 的 NaOH 溶液中,製備成 10% NaBH₄溶液。

(2) Selenocystine 標準溶液的配製

以用電子天平稱取 0.006 g 的 Selenocystine 固体樣品放入取樣瓶 中,加入 3 ml 超純透析用水和 1 ml 的 10%NaBH4溶液,並搖晃到溶 解,放入 90 °C 的烘箱中加熱維持十分鐘,於室溫中等待冷卻,製備 成濃度為 1500 ppm 的標準樣品的溶液。

(3) Se-methylselenocysteine 配製

以電子天平稱取 0.0034 g 的 Se-methylselenocysteine 固体樣品, 溶於 2 ml 0.1 M 的 HCl 溶液中,製備成濃度為 1700 ppm 的標準樣品 的溶液。

3-2 GC-MS 實際樣品配製和衍生化方法

圖(八)表示

- 3-3 GC-MS實驗參數的設定
- 1. GC column : DB5 (60 m \times 0.25 mm i.d. , 0.25 μm film)
- 2. 注入口的温度: 250 度
- 3. Carrier gas rate : 1 ml/min.

4. GC oven temperature program :

	Rate	Temp (°C)	Hold
Initial	0 °C/min	120	0 min
1	20 °C/min	290	5 min

- 5. Scan time : 1.02 sec
- 6. Mass range : 50~550 m/z

3-4 MALDI-TOF MS 藥品配製

(1) MALDI基質溶液的配製

(A)稱取10 mg的CHCA固體樣品,加入1 mL含有0.1%TFA的50% 氰

甲烷及50%純水溶液中,經超音波震盪溶解,以離心機離心,取 上層澄清液,製備成飽和的CHCA溶液。

(B)稱取10 mg的SA固體樣品,加入1 mL含有0.1%TFA的50% 氰

甲烷及50%純水溶液中,經超音波震盪溶解,以離心機離心,取 上層澄清液,製備成飽和的SA溶液。

(C)稱取 7.5mg 的 DHB 固體樣品溶於含有 300µl 的氰甲烷、150µl 的 純水及 50µl 的 3%TFA 混合溶液中,經超音波震盪溶解,以離心 機離心,取上層澄清液,製備成飽和的 DHB 溶液。

(2) 10⁻²M 的 NaH₂PO₄溶液配製

稱取 0.06g 的 NaH₂PO₄ 固体溶於 50ml 的超純透析用水中,製備成 10⁻² M 溶液。

(3) Selenocystine 標準溶液配製

以電子天平稱取 0.002 g 的 selenocystine 固体樣品放入取樣瓶, 加入 2 ml 的 3%(v/v)HCl,並且搖晃直到溶解,取出 200 μl 溶液與 200 μl 的 10⁻² M NaH₂PO₄ 溶液混合。 (4) Se-methylselenocysteine 配製

以電子天平稱取 0.002 g 的 Se-methylselenocysteine 固体樣品溶於 2 ml 的 3%(v/v)HCl 中,製備成濃度為 1000 ppm 的標準溶液。 3-5 MALDI-TOF MS 實際樣品配製

複合型硒食品罐中取出一顆膠囊,將膠囊中粉末倒入離心管中, 加入2ml3%(v/v)的HCl[或2ml3%(v/v)NH4OH]並攪拌、搖晃,然後 離心(轉速2600rpm)十分鐘,取上層澄清液放入取樣瓶,再經過0.45 μm Nylon 膜過濾,取200μl樣品溶液與200μl的10⁻²MNaH₂PO4混 合。

3-6 樣品盤前處理

實驗前用拭鏡紙沾取分析級甲醇擦拭樣品盤,先去除樣品盤上大 部分的汙染物,再將樣品盤放入甲醇和水混合的溶液中,超音波震盪 20分鐘,移除廢液,以去離子沖洗樣品盤表面,沖掉殘留物,再用 拭鏡紙沾取分析級甲醇擦拭樣品盤一次,待表面溶劑揮發後即可使 用。

3-7 MALDI-TOF MS 操作條件

本實驗 MALDI-TOF MS 為 MicroFlex,具備波長為 337 nm 的氮 氣脈衝式雷射,其飛行模式可分直線型和反射型,其飛行管長度分別 為 1.05 m 和 1.96 m,各自有一偵測器進行偵測,而本研究皆使用反

射型模式進行操作,其操作參數的設定如表(二)所示。

參、結果與討論

一、氣相層析質譜分析

1-1 標準品的測定

1-1-1 Se-methylselenocysteine 標準品測定

Se-methylselenocysteine 的揮發性極低,無法以 GC-MS 直接偵 測,必須經過衍生化的反應(如圖七),將胺基和羧酸基轉化成具有乙 基酯類的官能基,以提高化合物的揮發性,純化的衍生物再以GC-MS 偵測,所得到的氣相層析圖如圖(九)所示,衍生物 CICO2Et-derivatized Se-methylselenocysteine 的帶留時間為 8.93 分鐘 圖(十)為此一標準品 的質譜圖,圖中m/z=279、280、281、283及285等訊號,為標準品 Se-methylselenocysteine 因硒同位素 ⁷⁶Se、⁷⁷Se、⁷⁸Se、⁸⁰Se 及 ⁸²Se 質 量差異,所形成的分子離子(molecular ion)訊號,其強度比為 1:1:3:5:1,符合自然界中硒同位素的理論含量(表(三));除了分子離子 的訊號以外,圖(十)也出現許多因分析物化學結構的裂解所形成的斷 裂離子(fragment ion)訊號,如斷裂 N-C 鍵、丟失 COOCH₂CH₃形成 m/z=210的訊號,或是丟失 NH₂CO₂CH₂CH₃的結構得到 m/z=194 的 訊號, m/z=194 若再丢失 CH3 則形成 m/z=179 的訊號, 另外, m/z=138 為 $[CH_3^{80}SeCH_2CHNH_2]^+$ 、 m/z=109 為 $[CH_3^{80}SeCH_2]^+$ 、 m/z=74 為

[HCO₂CH₂CH₃]⁺所形成的訊號。分子離子的斷裂模式及其產生的斷裂 離子之質荷比數據,歸納於圖(十一)中。

1-1-2 Selenocystine 標準品測定

Selenocystine 也不具有足夠的揮發性極低,無法直接以 GC-MS 進行偵測,必須經過衍生化的樣品前處理步驟(如圖六),才能得到良 好的質譜分析結果。Selenocystine 經過衍生化反應後,以 GC-MS 進 行偵測,所得到的氣相層析圖如圖(十二)所示, CICO2Et-derivatized selenocysteine 的滯留時間為 10.58 分鐘,圖(十三)為此標準品的質譜 圖,圖中m/z=264、265、266、268及270等訊號,為標準品 Selenocystine 因硒同位素 76 Se、 77 Se、 78 Se、 80 Se 及 82 Se 質量差異,所形成的分子 離子(molecular ion)訊號,其強度比為 1:1:3:5:1,符合自然界中硒同位 素的理論含量(表(三));除了分子離子的訊號以外,圖(十三)也出現許 多因分析物化學結構的裂解所形成的斷裂離子(fragment ion)訊號,如 斷裂 N-C 鍵、丟失 COOCH₂CH₃形成 m/z = 195 的訊號, 或是丟失 NHCOOCH₂CH₃的結構得到 m/z = 180 的訊號, m/z = 195 若再丢失 CH₃CH₂O 得到 m/z = 150 的訊號, 另外, m/z = 134 為[OCCCH₂⁸⁰Se]⁺、 m/z = 74 為[HCO₂CH₂CH₃]⁺ 所形成的訊號。將這些斷裂模式及其產 生的斷裂離子之質荷比數據,歸納於圖(十四)中。

1-2 複合型硒健康食品中 Selenocystine 和 Se-methylselenocysteine 的成份分析

複合型硒健康食品,以圖(八)所顯示的流程圖,進行樣品的前處 理及衍生化反應,最後的產物經過純化以GC-MS 偵測,所得到的氣 相層析圖,如圖(十五)所示,圖中滯留時間為 8.92 和滯留時間是 10.58 兩個訊號,十分吻合 Se-methylselenocysteine 標準品(圖九)及 Selenocysteine 標準品(圖十二)的滯留時間(8.93 及 10.58),可確認複合 型硒健康食品含有 Se-methylselenocysteine 及 selenocystine 兩種分析 物的成份。另外,由複合型硒健康食品,經過前處理及衍生化反應後, 所測得的質譜圖(圖(十六)及圖(十七))與標準品 Se-methylselenocysteine 和 selenocysteine 的質譜圖(圖(十)及圖(十三)) 做一比較,發現複合型硒健康食品的質譜圖(圖(十六))與 Se-methylselenocysteine標準品的質譜圖(圖(十))相似度極高,圖(十七) 與 selenocysteine 標準品的質譜圖(圖(十三))的相似度也很高,而且圖 譜中硒的同位素強度比率符合表三,自然界硒同位素的相對含量,經 由滞留時間與質譜圖的比對,可確定複合型硒健康食品中含有 selenocystine 和 Se-methylselenocysteine 的成份。

1-3 檢量線及偵測極限

檢量線的製作是將硒甲基半胱胺酸的標準品配製成 60 ppm、50 ppm、30 ppm、10 ppm 及 5 ppm 的分析溶液,以這些不同濃度的分析 溶液分別做 GC-MS 的偵測,以各別層析圖的波峰面積與分析液濃度 作圖(圖十八),由圖中的檢量線,計算其線性範圍及相關係數並列於 表(四)之中

硒代胱胺酸標準品的檢量線製作,類似於硒甲基半胱胺酸的步 驟,所獲得的檢量線如圖(十九)所示,其線性範圍及相關係數列於表 四之中。

由表(四)的偵測極限(LOD)數據,可發現硒甲基半胱胺酸的偵測 極限只有 0.1433 ppm,遠低於硒代胱胺酸的 0.795 ppm,可能是因為 硒代胱胺酸的分子量較大,結構較複雜容易產生各種形成的斷裂,降 低 GC-MS 對該分析物的偵測極限靈敏度;另外,硒代胱胺酸具有 Se-Se 的結構,容易在氣相層析儀的高溫環境中,產生 Se-Se 化學鍵 的斷裂,對於偵測極限也有影響。

由表(四)所列出的的檢量線公式,計算複合型硒健康食品中硒甲基半 胱胺酸及硒代胱胺酸的濃度分別為 191.367 ppm 及 156.247 ppm
二、基質輔助雷射脫附游離質譜分析

2-1 最佳的基質的選擇

正確的基質選擇對於分析物離子化的效率有相當大的影響,通常 MALDI-TOF MS 實驗首要的步驟,就是找出最適當的基質,要考慮 的因素包括分析物與基質的互溶性、共結晶性、結晶形狀…等,皆會 影響分析物的質譜訊號強度。最常使用的基質有 α -CHCA、DHB、SA 等有機酸化合物,這些基質在低質量的圖譜範圍內,會產生嚴重的干 擾訊號,不利於低分子量化合物的分析,圖(二十)為這三種基質本身 所產生的背景干擾訊號,其中圖(A)為 α -CHCA 基質的質譜圖,m/z = 190.0 是[CHCA+H]⁺所形成的訊號,m/z = 379.6 是[2CHCA+H]⁺ 所形 成的訊號;圖(B)為 DHB 基質的質譜圖,m/z = 153.9 為[DHB]⁺所形成 的訊號;圖(C)為 SA 質譜的質譜圖,m/z = 207.1 為[SA+H-H₂O]⁺所形 成的訊號,m/z = 225.1 則為[SA+H]⁺所形成的訊號。

本論文的實驗,選擇以奈米膠體金為基質,取代傳統的有機酸基 質 α-CHCA、DHB 及 SA 等,發現低質量的干擾訊號大大降低,只有 m/z=197.0 ([Au]⁺)、m/z=394.4 ([Au₂]⁺), m/z=591.8 ([Au₃]⁺)等背景訊 號(圖二十一),可成功地應用於低分子量化合物的檢測。

複合型硒健康食品分別以有機酸 α-CHCA、DHB、SA 為基質和 以奈米膠體金為基質進行 MALDI-TOF MS 的分析,所獲得的圖譜如 圖(二十二)及圖(二十三)所示。複合型硒健康食品以 α-CHCA 和 SA 為基質,無法產生 Se-methylselenocysteine(分子量=183)的分子離子訊 號。α-CHCA 無法產生分析物的訊號,可能是因為 α-CHCA 和 se-methylselenocysteine 的共結晶不均匀,導致離子化效率不佳,且 α -CHCA 在低分子量的範圍內,會有離子化加成物的產生,造成訊號 干擾與抑制的現象,因此沒有屬於分析物的訊號產生;而 SA 無法成 功地游離 Se-methylselenocysteine,則是因為 SA 通常較適合應用於蛋 白質等生化巨分子的偵測。此外,雖然 DHB 可成功地游離 Se-methylselenocysteine,形成[M+H]⁺、m/z = 183.9 的訊號,如圖(二 十二)的圖(B)所示,但是在 m/z=183 的附近,有許多基質的干擾訊號 出現,容易影響到正確的分析訊號之偵測。利用奈米膠體金當基質, 能成功地游離分析物,形成[M+Na]⁺、m/z=206.001 及[M-H+2Na]⁺、 m/z = 228 等訊號,如圖(二十三)所示。

2-2 實驗條件的探討

2-2-1 最佳鹽酸萃取濃度

在複合型硒健康食品的樣品前處理過程中,須加入HCl以提升對 於分析物的萃取效率。本實驗中所要探討的實驗條件為利用不同濃度 的HCl, 萃取複合型硒中Se-methylselenocysteine的成份, 再以 MALDI-TOF MS進行分析物的偵測,所獲得的訊號強度與HCI萃取濃 度的關係,如圖(二十四)所示。由圖中可以了解以1%(v/v)及2%(v/v) 的HCl萃取濃度,所測得到的Se-methylselenocysteine訊號平均強度均 很低,只有4782及4927,可見萃取效果不好;若以3%(v/v)、4%(v/v) 或5%(v/v)的HCl萃取濃度,進行Se-methylselenocysteine分析物的萃 取,則可獲得顯著的訊號提升,強度分別為10207、9249及9103;但 過高的HCl萃取濃度,如6%(v/v)HCl、8%(v/v)HCl或10%HCl則萃取 效果反而降低,可能是因為高濃度的HCI會破壞 Se-methylselenocysteine的化學結構,使得分析物的訊號強度減弱。經 過本實驗的探討,最佳的鹽酸萃取濃度為3%(v/v)。

39

2-2-2 最佳氫氧化銨萃取濃度

在複合型硒健康食品的樣品前處理過程中,也可利用氫氧化銨溶 液取代HCl,進行分析物Se-methylselenocysteine的萃取實驗,圖(二十 五)為不同的氫氣化銨溶液濃度與Se-methylselenocysteine訊號強度關 係圖,由圖中可以發現當氫氣化銨溶液的萃取濃度為3%(v/v)~5%(v/v) 時,可獲得最佳的實驗結果。比較以HCl溶液或是NH4OH溶液分別進 行分析物的萃取時,發現若是以HCl當樣品前處理的萃取溶液,質譜 沒有m/z = 360.8的雜訊出現,但若是以NH4OH當萃取溶液,質譜圖則 出現明顯的m/z = 360.8訊號,對於分析物selenocystine所形成的 [(SeCys)₂+Na][†]、m/z = 359.3訊號,有嚴重的干擾現象不易偵測。由以 上的實驗結果得知,以HCl為萃取溶液可以獲得較佳的分析結果。 2-2-3 最佳的奈米膠體金基質添加量

在MALDI-TOF MS的實驗中, 奈米膠體基質的添加量多寡, 會 影響分析物脫附/游離的能力,本實驗將探討添加不同濃度的奈米膠 體金,對於分析物偵測訊號的影響。將複合型硒健康食品分別與体積 稀釋成1倍、5倍及50倍的奈米膠體金溶液充分混合,取2 µL置入樣品 盤中,在大氣中靜置、乾燥,即可進行MALDI-TOF MS的質譜分析。 以不同濃度的奈米膠體金為基質,分析複合型硒食品中 Se-methylselenocysteine的成份得到的質譜,如圖(二十六)所示,從圖 中可以發現,當奈米膠體金的濃度下降時(圖C、体積稀釋50倍),分 析物的訊號強度 $[M+Na]^+$ 、m/z = 206及 $[M-H+2Na]^+$ 、m/z = 228也跟 著下降,而以濃度較高(圖(A)、体積稀釋1倍)的奈米膠體金為基質, 所產生的訊號強度最強。不同的奈米膠體金添加量,對分析物的訊號 強度有很明顯的影響,其原因可能是因為若奈米膠體金的濃度太低, 則吸收雷射的能量相對減少,使得分析物無法藉由奈米膠體金傳遞足 夠的雷射能量,減少汽化脫附/游離的比率,因此奈米奈米膠體金添 加量的最佳條件,為使用体積稀釋1倍的奈米膠體金。

41

2-2-4 最佳NaH₂PO₄添加量

複合型硒健康食品的樣品前處理,在不加入10⁻² M NaH₂PO₄溶液 的實驗條件下,以3%(v/v)HCl溶液進行萃取,經過0.45 μm Nylon過濾 後,使用奈米膠體金當基質,所測得的質譜圖,如圖(二十七),圖中 只有屬於 Se-methylselenocysteine 的 [SeMSC+Na]⁺、 m/z=206 及 $[SeMSC-H+2Na]^+$ 、m/z = 228的訊號出現,而沒有複合型硒健康食品 中的另一成份selenocystine訊號產生。若在樣品前處理的過程中,添 加入10⁻² M的NaH₂PO₄溶液, 並加以混合震動, 進行分析物的萃取步 驟,由圖(二十七)的圖(B)中可發現有新增加的m/z=359.3質譜訊號出 現,由電荷比的計算,推論為selenocystine所形成的[(SeCys)2+Na]+訊 號,可見添加NaH2PO4對selenocystine訊號的形成有很大的影響,可 能是因為selenocystine的結構較不容易接鈉離子,不易形成 $[(SeCys)_2+Na]^+$ 的訊號、如圖(A), 實驗中若添加入 10^{-2} M的NaH₂PO₄ 溶液,可提供大量的鈉離子來源,促進selenocystine與鈉離子結合而 形成圖(B)中[(SeCys)₂+Na]⁺、m/z = 359.3的訊號。添加NaH₂PO₄溶液 於複合型硒健康食品的實驗中,對於selenocystine的偵測有極佳的幫 助(圖(二十七)),若進一步探討最佳的NaH2PO4添加量,可配製不同體 積比的NaH2PO4與樣品溶液,再分別進行MALDI-TOF-MS的偵測,所 得的實驗結果、如圖(二十八)所示。由圖中發現當NaH2PO4與複合型 硒溶液的體積比為0.25時,所測得的selenocystine平均訊號強度約等於 1320,在所有NaH₂PO₄/複合型硒溶液不同的体積比實驗中訊號最低, 可能是因為若NaH₂PO₄溶液的添加量太少,則鈉離子的濃度降低, selenocystine接鈉離子的機會相對減少,影響[(SeCys)₂+Na]⁺的訊號強 度;當NaH₂PO₄/複合型硒溶液的體積比增加為0.5或1時,所測得的 [(SeCys)₂+Na]⁺平均訊號,分別為9621和1320強度最強;另外,當 NaH₂PO₄/複合型硒溶液的體積大於1時,平均訊號強度則遞減,無法 達到提升分析訊號的效果。 2-3 檢量線及偵測極限

檢量線的製作是將硒甲基半胱胺酸的標準品配製成 100 ppm、50 ppm、5 ppm、0.5 ppm 及 0.05 ppm 的分析溶液,這些不同濃度的分析 溶液分別做 MALDI-TOF-MS 的偵測,以各別層析圖的波峰面積與分 析液濃度作圖(圖二十九),由圖中的檢量線計算其線性範圍及相關係 數,並列於表(五)之中

硒代胱胺酸標準品的檢量線製作,類似於硒甲基半胱胺酸的步
驟,所獲得的檢量線如圖(三十)所示,其線性範圍及相關係數列於表
(五)之中。

由表(五)的偵測極限(LOD)數據,可發現硒甲基半胱胺酸的偵測 極限只有 0.013 ppm,遠低於硒代胱胺酸的偵測極限 0.65 ppm,可能 是因為硒代胱胺酸的分子量較大,結構較複雜容易產生各種形成的斷 裂。

肆、結論

本研究利用氣相質譜儀和基質輔助雷射游離飛行時間質譜儀,成 功地分析複合硒健康食品中Se-methylselenocysteine和selenocystine的 成份。我們提出一個簡單、有效的衍生化方法,將分析物轉變成具有 揮發性的 ClCO₂Et-derivatized se-methylselenosteine 和 高 CICO₂Et-derivatized selenocysteine衍生物,經由氣相層析質譜儀做進 一步的圖譜偵測。我們也發展出一個新的分析技術,利用奈米膠體金 當基質,取代傳統的有機酸基質,進行MALDI-TOF-MS的質譜分析, 此一分析方法, 樣品不須經過衍生化反應, 可直接進行分析物的偵 測,具有簡化實驗步驟、提升分析效率的效果。另外, 奈米膠體金可 與分析物產生均匀的共結晶現象,提高實驗數據的再現性,並能去除 傳統有機酸基質在低質量範圍的圖譜干擾現象,建立一個快速且準確 的分析方法, 達到我們預期的研究目標。未來的研究方向, 包括應用 其他類型的奈米膠體金屬顆粒,如奈米膠體銀、奈米膠體鈷等為基 質,探討最佳的奈米膠體金屬基質之選擇,也可應用於其它低分子量 化合物的檢測分析。

操作參數	Reflector mode
Laser Frequency(Hz)	20
Ion Source 1(kv)	19
Ion Source 2(kv)	16.25
Len(kv)	9.55
Reflector(kv)	20
Pulsed Ion Extraction(ns)	60
Number of shot	200
Laser energy(µl/pulse)	29~32

Mass of Selenium	Theoretical Natural Abundance (%)	Relative Abundance
(Se) Isotope		
74	0.8	0
76	8.29	1
77	7.61	1
78	22.22	3
80	45.93	5
82	8.85	1

表(三) [54] 自然界中硒同位素的理論含量

表(四)GC-MS分析硒甲基半胱胺酸和硒代胱胺酸檢量線及偵测

極限

	硒甲基半胱胺酸	硒代胱胺酸
Calibration range (ppm)	60~5	50~5
Calibration equation	y=552.24x-1622.6	y=549.17x+352.65
Correlation coefficient,R ²	0.9726	0.884
Retention time (min)	8.92	0.58
LOD (ppm)	0.1433	0.795

表(五) MALDI-TOF MS 分析硒甲基半胱胺酸和硒代胱胺酸的檢量線

	硒甲基半胱胺酸	硒代胱胺酸
Calibration range (ppm)	100~0.05	100~1
Calibration equation	y=5.9149x+491.19	y=1.1671x+246.25
Correlation coefficient, R ²	0.9478	0.964
LOD (ppm)	0.013	0.65

及偵測極限

圖(一) 氣相層析質譜儀的儀器構造圖

圖(二) 基質輔助雷射脫附游離質譜儀的離子源構造圖與游離/

脫附原理

圖(三) 直線式質譜分析器的構造圖與操作原理

圖(四) 反射式質譜分析器的構造圖與操作原理

圖(五) 硒類化物與自由基的反應方程式

圖(六) 乙基氯化甲酸與 selenocystine 的衍生化反應


```
se-methylselenocysteine
```

圖(七) 乙基氯化甲酸與 Se-methylselenocysteine 的衍生化反應

圖(八) GC-MS 實際樣品配製和衍生化方法的流程圖

圖(九) 標準品 Se-methylselenocysteine 的衍生物之氣相層析圖(滯

留時間為 8.93 分鐘)

圖(十) 標準品 Se-methylselenocysteine 的衍生物之質譜圖

圖(十一) 標準品 Se-methylselenocysteine 的衍生物所形成的斷裂離子

及其質荷比

圖(十二) 標準品 Selenocysteine 的的衍生物之氣相層析圖(滯留時間

為10.58分鐘)

圖(十三) 標準品 Selenocysteine 的衍生物之質譜圖

圖(十五) 複合型硒健康食品的氣相層析圖 Se-methylselenocysteine 的滯留時間為 8.92 分鐘、selenocysteine 的滯留時間為 10.58 分鐘

圖(十六) 複合型硒健康食品成份中 Se-methylselenocysteine 衍生物的

質譜圖

圖(十七) 複合型硒健康食品成份中 Selenocysteine 衍生物的質譜圖

圖(十八) 硒甲基半胱胺酸的 GC-MS 檢量線

濃度	面積
60 ppm	29906
50 ppm	25992
30 ppm	18766
10 ppm	2420
5 ppm	397

圖(十九) 硒代胱胺酸的 GC-MS 檢量線

濃度	面積
50 ppm	31290
40 ppm	21192
30 ppm	11370
10 ppm	9699
5 ppm	2347

圖(二十) 有機酸基質(A) α-CHCA (B) DHB及(C) SA所產生的背景訊

號質譜圖

圖(二十一) 以奈米膠體金為基質所產生的背景訊號質譜圖

圖(二十二) 複合型硒健康食品以(A) α-CHCA、(B) DHB 及(C) SA 為

基質所測得的質譜圖

圖(二十三) 複合型硒健康食品以奈米膠體金為基質所測得的質

圖(二十四) HCl萃取濃度與Se-methylselenocysteine訊號強度的關係

圖(二十五) NH4OH萃取濃度與Se-methylselenocysteine訊號強度的關

係

圖(二十六) 奈米膠體金基質體積稀釋成(A)1倍(B)5倍(C)50倍分析

複合型硒中健康食品Se-methylselenocysteine的成份所獲

得的質譜圖

圖(二十七)(A)沒有添加 (B)添加10⁻²M的NaH₂PO₄溶液對質譜圖的影響

圖(二十八) 不同的體積比NaH2PO4溶液與複合型硒溶液與所測得

的selenocystine訊號強度關係

圖(二十九) 硒甲基半胱胺酸的 MALDI-TOF-MS 檢量線

濃度	平均面積
100 ppm	1069
50 ppm	806
5 ppm	605
0.5 ppm	489
0.05 ppm	407

圖(三十) 硒代胱胺酸的 MALDI-TOF-MS 檢量線

濃度	平均面積
100 ppm	358
50 ppm	313
10 ppm	270
5 ppm	245
1 ppm	239

參考文獻

- 1. Kim, Y. Y.; Mahan, D. C., Animal. Sci. 2001, 79, 942
- Wardlaw, G.; Hampl, J., Perspectives in Nutrition, 2006, 7th edition, 422.
- 3. 左梅,碩士論文,私立東海大學化學研究所,2005年.
- Posthumus, M. A.; Kistemker, P. G.; Meuzelar, H. L. C., Anal. Chem., 1978, 50, 985.
- 5. Linder, B.; Seydel, U., Anal. Chem., 1985, 57, 895.
- 6. Karas, M.; Bachman, D.; Hillenkamp, F., Anal. Chem., 1985, 57, 2935.
- 7.Tanaka, K.; Waki, H.; Ido, Y.; Akita, S.; Yoshida, Y.; Yoshida, T., Rapid Commin Mass Spectrometry, 1988, 2, 151.
- 8. Karas, M.; Hillenkamp, F., Anal. Chem, 1988, 20, 2299.
- Kussmann, M.; Nordhoff, E.; Rahbek-Nielsen, H.; Haebel, S.; Rossel-Larsen, M.; Jakobsen, L.; Gobom, J.; Mirgorodskaya, E.; Kroll-Kristensen, A.; Palm, L.; Roepstorff, P., *J. Mass. Spectrom.*, 1997, 32, 593.
- Schurenberg, M.; Dresewered, K.; Hillenkamp, F., *Anal. Chem.*, 1999, 71, 221.
- Karas, M.; Bahr, Ute.; Strupat, K.; Hillenkamp, F.; Tsarbopoulos, A.;
 Pramanik, B. N., *Anal. Chem.*, **1995**, 67, 675.
- Zhao, S.; Somayajula, K. V.; Sharkey, A. G.; Hercules, D. M.;
 Hillenkamp, F; Karas, M.; Ingendoh, A., *Anal. Chem.*, **1991**, 63, 450.
- Yalcin, T.; Wallace, W. E.; Guttman, C. M.; Li, L., Anal. Chem.,
 2002, 74, 4750.

- 14.Cohen, L. H.; Gusev, A. I., J. Anal. Bioanal. Chem., 2002, 373, 571.
- 15. Santos, L. S.; Haddad, R.; Hoehr, N. F.; Pilli, R. A.; Eberlin, M. N., *Anal. Chem.*, **2004**, 76, 2144.
- 16. McCombie, G.; Knochenmuss, R., Anal. Chem., 2004, 76, 4990.
- 17. Kim, H. J.; Lee, J. K.; Park, S. J.; RO, H. W.; Yoo, D. Y.; Yoon, D. Y., *Anal. Chem.*, 2000, 72, 5673.
- 18. Sunner, J.; Ikpnomou, M. G.; Kebarle, P., Anal. Chem., 1988, 60, 98.
- 19. Sunner, J., J. Mass Spectrom., 1993, 28, 805.
- 20. Cotter, R. J., J. Am. Chem. Soc, 1992, 105~108.
- 21. Mafune, F.; Kohno, J. Y.; Takeda, Y.; Kondow, T; Sawabe, H., *J. Phy. Chem. B* , **2000**, 104, 8333.
- 22. Mafune, F.; Kohno, J. Y.; Takeda, Y.;Kondow, T.; Sawabe, H., *J. Phy. Chem. B* , **2000**, 104, 9111.
- 23. Mafune, F.; Kohno, J. Y.; Takeda, Y.;Kondow, T.; Sawabe, H., *J. Phy. Chem. B* , **2001**, 105, 5114.
- 24.Yeh, M. S.; Yang, Y. S.; Lee, Y. P.; Lee, H. F.; Yeh. Y. H.; Yeh, C. S.*J. Phy. Chem. B*, **1999**, 103, 6851.
- Bradley, J. S., The Chemistry of Transition Metal Colloid. In Cluster and Colloid; Schmid, G,Ed;VCH Publisher: New York, NY (USA), 1994, 459.
- Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R., J. Chem. Soc. Chem. Commun. , 1994, 801~802.
- 27.Puntes, V. F.; Krishman, K. M.; Alivisatos, A. P., *Science*, 2001, 291, 2115.
- 28. Guo, L.; Huang, Q; Li, X. Y.; Yan, S., J. Phy. Chem., 2001, 3, 1661.

- 29.Okitsu, K.; Bandow, H.; Maeda, Y., Chem. Mater., 1996, 8, 315.
- Okitsu, K; Mizukoshi, Y. B.; Yamamoto, T. A.; Nagata, Y.; Maeda,
 Y., J. Phy. Chem. B, 1997, 101, 5470.
- Mizukoshi, Y.; Okitsu, K.; Maeda, Y.; Yamamto, T. A.; Oshima, R.; Nagata, Y., *J. Phy. Chem. B*, **1997**, 101, 7033.
- 32.Yu, H.; Gibbons, P. C.; Kelton, K. F.; Buhro, W. E., J. Am. Chem. Soc., 2001, 123, 9198.
- Crooks, R. M.; Zhao, M.; Sun, L.; Chechik, V; Yeung, L. K., Acc. Chem. Res., 2001, 34, 181.
- Burtis, C. A.; Ashwood, E. R., Tietz textbook of clinical Chemistry,
 3th, Philadelphia, WB Saunder., 1999.
- Copeland, P. R.; Fletcher, J. E.; Carlson, B. A., *EMBO J*, 2000, 19, 300.
- Kryukov, G. V.; Kryukov, V. M.; Gladyshev, V. N., J. Biol. Chem. , 1999, 274, 33888.
- 37. Martin, D. W.; Mayes P. A.; Rodwell V. W.; Granner D. K., Harper's review of Biochemistry, 20th Los Altos, California, **1985**, 183, 362.
- 38. Ganther, H. E., Carcinogenesis, 1999, 20, 1657.
- 39. Kohrle, J., Biochimie, 1999, 81, 527.
- 40. Ursini, F.; Heim, S.; Kiess, M., J. Am. Chem. Soc., 1999, 285, 1393.
- 41. Stadtman, T. C., Selenocysteine, Ann. Rev. Biochem., 1996, 65, 83.
- 42. Sun, Q. A.; Wu, Y.; Zappacosta, F., J. Biol. Chem. ,1999, 274, 24522.
- 43. Suppmann, S.; Persson B. C.; Böck, A., *EMBO J*, **1999**, 18, 2284.
- Pelaez, M. V.; Byon, M. M.; Garcia Alanso, J. I.; Sanz-Medel, A., J. Anal. Atom. Spectrom., 2000, 15, 1217.
- 45. LaFuente, J. M. G.; Dlaska, M.; Sanchez, M. L. F.; Sanz-Medel, A.,

J. Anal. Atom. Spectrom., 1998, 13, 423.

- 46. McSheehy, S.; Yang, W.; Pannier, F.; Szpunar, J.; Lobinski, R.; Auger, J.; Potin-Gaultier, M., *Anal. Chim. Acta*, **2000**, 421, 367.
- 47. Devos, C.; Sandra, K.; Sandra, P., *J. Pharm. Biomed. Anal.*, **2002**, 27, 507.
- 48. Pelaez, M. V.; Byon, M. M.; Garcia Alanso, J. I.; Sanz-Medel, A., J. Anal. Atom. Spectrom., 2000, 15, 1217.
- 49. Husek, P., J. Chromatogr. B, 1998, 717, 57.
- 50. Uden, P. C.; Bird, S. M.; Kotrebai, M.; Nolibos, P.; Tyson, J. F.; Block, E.; Denoyer Fresenius , E., *Anal. Chem.*, **1998**, 362, 447.
- McSheehy, S.; Pohl, P.; Szpunar, J.; Potin-Gaultier, M.; Lobinski, R.; J. Anal. Atom. Spectrom., 2001, 16, 68.
- De La Calle-Guntinas, M. B.; Brunori, C.; Scerbo, R.; Chiavarini, S.; Quevauviller, P.; Adams, F.; Morabito, *R., J. Anal. Atom. Spectrom.* , **1997**, 12, 1041.
- 53. Gilon, N.; Potin-Gautier, M., J. Chromatogr. A, 1996, 732, 369.
- 54. MacLeod, F.; McGaw, B. A.; Shand, C. A.; MacLeod, F., *Talanra*, **1996**, 43, 1091.