摘要

在本論文中,我們利用溶膠-凝膠法與固態反應法製備

(Ba_{0.6}Sr_{0.4})TiO₃-(Ni_{0.9}Co_{0.03}Mn_{0.07})Fe₂O₄磁電複材,並觀察其微結構介

電性質、及磁性質的變化。結果發現BST-NCMFO的複合比例對於磁

電複材的材料性質會有顯著的影響。

BST-NCMFO磁電複材在空氣下經1400°C的溫度燒結不同時間,

其相對密度皆能達到88%以上。熱膨脹係數、介電常數、及飽和磁化

量,在相同BST複合比例時,固態反應法製備之磁電複材性質皆優於

溶膠-凝膠法製備之磁電複材,而矯頑場則是以溶膠-凝膠法製備之磁

電複材性質優於固態反應法製備之磁電複材。除純BST及純NCMFO

外,介電常數以複合BST比例為75 mol%時為最高,飽和磁化量以複

合NCMFO比例為75 mol%為最高。固態反應法製備之磁電複材以複

合NCMFO比例為50 mol%的矯頑場為最大,而溶膠-凝膠法製備之磁

電複材以複合NCMFO比例為25 mol%的矯頑場為最大。

關鍵詞:磁電複材、介電常數、飽和磁化量、矯頑場。

ABSTRACT

In this thesis, we reported on the microstructure, dielectric properties, and magnetic properties of the $(Ba_{0.6}Sr_{0.4})TiO_3$ - $(Ni_{0.9}Co_{0.03}Mn_{0.07})Fe_2O_4$ magnetoelectric composites prepared by sol-gel and solid state methods. The BST percentage of BST-NCMFO composites has a strong influence on the material properties.

The composites were sintered at a constant temperature of 1400 °C but the sintering times were different. The relative density of each composite is beyond 88%. At the same BST percentage, the thermal expansion coefficient, dielectric constant, and magnetization of the composites prepared by solid state method are better than that prepared by sol-gel method. However, the coercivity of the composites prepared by sol-gel method is better than that prepared by solid state method. Except for pure BST and pure NCMFO, the composite of 75 mol% BST has a maximum dielectric constant and the composite of 75 mol% NCMFO has a maximum magnetization. Both the composite of 25 mol% NCMFO prepared by sol-gel method and the composite of 50 mol% NCMFO prepared by solid state method have the maximum value of coercivities.

Key word: magnetoelectric composite, dielectric constant, magnetization, coercivity.

目錄

中文摘要
英文摘要
目錄
表目錄
圖目錄VI
第一章 序論
1-1 前言
1-2 研究目的與動機
第二章 基礎理論及文獻回顧
2-1 介電材料
2-1-1 鈦酸鍶鋇(Ba,Sr)TiO₃材料的特性
2-1-2 極化機構
2-1-3 介電性質
2-2 磁性材料
2-2-1 磁性原理
2-2-2 磁性性質與分類
2-2-3 鐵酸鎳(NiFe ₂ O ₄ , NFO)材料特性

2-3	磁電材料::::::::::::::::::::::::::::::::::::	29
	2-3-1 單一相磁電材料	29
	2-3-2 複合式磁電材料	33
	2-3-3 磁電偶合效應	36
第三	三章 實驗方法及設備	38
3-1	實驗藥品....................................	42
3-2	粉體製備	44
	3-2-1 固態反應法製備粉體	44
	3-2-2 溶膠-凝膠法製備粉體	44
3-3	磁電複材塊材製備...................................	46
3-4	性質測量與分析	48
	3-4-1 塊材密度量測	48
	3-4-2 X 光繞射分析儀 (XRD)	48
	3-4-3 掃描式電子顯微鏡 (SEM)	48
	3-4-4 熱機械分析儀 (TMA)	49
	3-4-5 介電性質量測	49
	3-4-6 磁性質量測	49
	3-4-7 微波性質量測	49

第四章 結果與討論	•													•	•			50
4-1 密度測量																	٠	50
4-2 XRD 結構分析																	•	53
4-3 表面微結構 .																	٠	56
4-4 熱性質分析 .																	•	67
4-5 介電性質分析	•			•				•		•	•	•	•		•		•	69
4-6 磁性質分析 .																	•	76
4-7 微波訊號分析	•		•						•					•	•			80
第五章 結論		•	•	•	•	•	•		•	•			•				•	83
第六章 文獻回顧 .																	•	86
B付 録																		91

表目錄

表2-1	磁性分類表	25
表2-2	BiFeO₃摻雜第三元素及其修飾性質..............	32
表2-3	常見磁電複合材料與製程	34
表2-4	磁電複合材料介電常數與飽和磁化量值	35
表3-1	磁電複材複合比例與燒結時間關係表	47
表4-1	磁電複材之NCMFO與BST粒徑大小	66
表 4-2	磁電複材之飽和磁化量	78
表4-3	磁電複材之矯頑場	66

圖目錄

圖	2.1	鈣鈦礦結構	7
圖	2.2	鈦酸鋇於(100)方向極化時,鈦離子及鋇離子相對於氧離子的	J
		位移量	7
圖	2.3	隨溫度的改變, 鈦酸鋇結構晶體上的變化	8
圖	2.4	不同頻率對不同極化機構之介電常數及介電損失的影響	l 1
圕	2.5	極化的四種不同物理機制	12
圕	2.6	室溫下,離子遷移損失、離子震動與變形損失在 tan d 中所值	5
		的比例。	16
圖	2.7	電子軌道磁矩	19
圖	2.8	電子自旋磁矩	19
圖	2.9	磁交互作用力	20
圖	2.10) 磁滯曲線	22
圖	2.11		28
圖	2.12	2 BiFeO ₃ 結構圖	31
圖	3.1	Sol-gel 法製作磁電塊材流程圖	39
圕	3.2	Solid state 法製作磁電塊材流程圖	10
圕	3.3	磁電塊材性質量測流程圖	11
ഭ	<i>1</i> 1	1400 燒結溫度下 NCMFO 燒結時問題相對率度關係圖 5	()

圖 4.2	仕 1400 燒結溫度卜,磁電復材之複合比例與相對密度關係	Ŕ
	圖	52
圖 4.3	以溶膠-凝膠法製備之磁電複材,在1400 燒結溫度下各複語	合
	比例之 XRD 量測結果	54
圖 4.4	以固態反應法製備之磁電複材,在1400 燒結溫度下各複合	;
	比例之 XRD 量測結果	55
圖 4.5	以溶膠-凝膠法製備不同複合比例之磁電複材 SEM 微結構圖	,
	放大倍率為 1000 倍	58
圖 4.6	以固態反應法製備不同複合比例之磁電複材 SEM 微結構圖	,
	放大倍率為 1000 倍	59
圖 4.7	以溶膠-凝膠法製備不同複合比例之磁電複材 SEM 微結構圖	,
	放大倍率為 10000 倍	6 0
圖 4.8	以固態反應法製備不同複合比例之磁電複材 SEM 微結構圖	,
	放大倍率為 10000 倍	61
圖 4.9	以溶膠-凝膠法製備之磁電複材,其大晶粒之 EDS 元素含量	tt
	例圖	62
圖 4.10)以溶膠-凝膠法製備之磁電複材,其小晶粒之 EDS 元素含量	1
	比例圖····································	63

圖 4.11	以固態反應法製備之磁電複材 , 其大晶粒之 EDS 元素含量比
	例圖
圖 4.12	以固態反應法製備之磁電複材,其小晶粒之 EDS 元素含量比
	例圖
圖 4.13	磁電複材之熱膨脹係數變化圖
圖 4.14	以溶膠-凝膠法製備磁電複材之介電常數對頻率變化圖 72
圖 4.15	以固態反應法製備磁電複材之介電常數對頻率變化圖 72
圖 4.16	以溶膠-凝膠法製備磁電複材之介電損失對頻率變化圖 73
圖 4.17	以固態反應法製備磁電複材之介電損失對頻率變化圖 73
圖 4.18	磁電複材在 10MHz 時介電常數比較圖
圖 4.19	磁電複材在 10MHz 時介電損失比較圖
圖 4.20	以溶膠-凝膠法製備之磁電複材在 10MHz 時介電常數與介電
	損失對照圖
圖 4.21	以固態反應法製備之磁電複材在 10MHz 時介電常數與介電
	損失對照圖
圖 4.22	以溶膠-凝膠法製備磁電複材之磁滯曲線77
圖 4.23	以固態反應法製備磁電複材之磁滯曲線
圖 4.24	溶膠-凝膠法製備之磁電複材在不同頻率作用下,介電常數
	差值(?e)對磁場的變化圖 81

圖 4.25	固態反應法製備之磁電複材在不同頻率作用下,介電常數
	差值(?e')對磁場的變化圖