3-2-2-3 修飾後金屬氫化物之快速充電性能

3-2-2-2 節的測試都是快速放電方面的測試,但應用在油電混合車的電池,快速充電性也是個很重要的性能,因此在此節中吾人進行了兩項關於快速充電的測試。其中之一是在較大的 SOC(0%~120% SOC)範圍充電,接著是以大電流在 40%~80% SOC 範圍內進行充電。

首先測試是以大電流充電,其測試程序為以 4、12、20、28 與 30C 速率充電到 120% SOC,再以 0.2C 放電到 0.95V,計算其電容量 後和理論電容量計算利用率。

表 3-35 和表 3-36 為利用表 3-2 中化學鍍鎳條件修飾金屬氫化物後,分別從 0% 充電到 120% SOC 時活性物之利用率,同樣的在此討論數據時,都以表 3-35 為主(計算利用率時不考慮鎳含量)。由表 3-35 可發現,金屬氫化物經化學鍍鎳後對於其快速充電之利用率不具提升作用,在表 3-35 中顯示以 30C 速率充電時,經修飾後利用率最好的為 No.2 的 69.9%,和未修飾的 66.3%差異性不大。吾人推論化學鍍修飾對快速充電改質效果不大的原因敘述如下。

金屬氫化物電極充電時,氫原子會由電解質擴散到電極表層,被 吸附後接著再擴散到其內部形成金屬氫化物,其總反應以(3-8)式表示

表 3-35 以表 3-2 化學鍍鎳條件修飾之金屬氫化物電極以大電流從

0%充電到 120%SOC 之活性物利用率(不計入化學鍍鎳)

電極組成:正極:跟耐能電池購得之商業化正極。

負極:0.7g 金屬氫化物+0.07ml 水+0.07ml 甲醇+56μPVA(7.69wt.%)。 測試程序:在電池完成活化後,以 4 、12 、20 、28 和 30C 充電從 0% SOC 充電到 120% SOC,再以 0.2C 放電到 0.95V, T=30°C。

No.#	Utilization/%					
	Charge rate(range from 0% SOC to 120% SOC)					
	4C	12C	20C	28C	30C	
*	95.0±0.5	82.1±0.03	75.2±0.9	70.8±1.4	66.3±1.7	
1	77.4±2.8	72.1±3.3	68.5±2.9	63.8±1.7	56.8±4.2	
2	92.5±2.3	84.0±0.9	77.4±0.5	71.8±0.1	69.9±0.1	
3	96.8±0.03	86.3±0.2	78.0±0.1	70.5±0.5	67.1±0.3	
4	85.7±0.6	74.9±2.2	66.5±3.6	58.0±4.8	52.8±4.1	
5	64.3±0.7	54.7±0.3	49.3±0.7	44.5±0.5	41.6±0.6	
6	89.8±0.9	77.5±1.2	70.2±1.1	64.4±0.8	62.9±0.6	
7	90.6±0.9	77.8±2.0	67.5±2.1	56.7±0.3	50.9±0.9	
8	88.5±1.5	79.0±0.002	70.7±0.5	64.0±1.0	61.8±1.2	
9	83.8±1.0	68.8±2.6	63.7±1.5	59.7±0.9	58.9±0.6	
10	26.0±0.5	20.7±0.7	18.9±0.4	16.8±0.3	16.3±0.2	
11	63.6±4.4	52.2±3.5	42.6±1.2	38.2±2.5	35.1±1.1	
12	89.1±2.2	75.2±1.6	60.4±3.9	55.6±1.7	46.8±1.8	
13	87.4±0.9	74.3±0.5	68.5±1.7	61.2±0.8	57.5±1.5	
14	1.3±0.3	2.5±0.1	3.4±0.005	4. 1±0.002	4.3±0.5	
15	26.3±1.3	22.5±0.2	20.1±0.3	18.3±0.5	15.7±0.5	
16	89.7±1.2	79.3±3.4	71.7±4.3	66.0±4.4	63.6±3.2	

#此編號與表 3-2 相同 *未經化學鍍鎳修飾金屬氫化物

表 3-36 以表 3-2 化學鍍鎳條件修飾之金屬氫化物電極以大電流從

0%充電到 120%SOC 之活性物利用率(計入化學鍍鎳)

電極組成:正極:跟耐能電池購得之商業化正極。

負極:0.7g 金屬氫化物+0.07ml 水+0.07ml 甲+ 56μ PVA(7.69wt.%)。 測試程序:在電池完成活化後,以 $4 \times 12 \times 20 \times 28$ 和 30C 充電從 0% SOC 充電到 120% SOC,再以 0.2C 放電到 0.95V, T=30℃。

No.#		Utilization/%					
	Charge rate(range from 0% SOC to 120% SOC)						
	4C	12C	20C	28C	30C		
*	95.0±0.5	82.1±0.03	75.2±0.9	70.8±1.4	66.3±1.7		
1	75.2±2.7	70.1±3.2	66.5±2.8	62.0±1.6	55.2±4.1		
2	85.8±2.1	78.0±0.8	71.9±0.5	66.7±0.1	64.9±0.1		
3	89.2±0.02	79.5±0.1	71.9±0.1	65.0±0.4	61.8±0.2		
4	81.6±0.6	71.3±2.1	63.3±3.4	55.2±4.6	50.3±3.9		
5	58.3±0.7	50.6±1.4	45.6±1.4	40.9±1.1	39.1±0.9		
6	79.9±0.8	69.1±1.1	62.5±1.0	57.4±0.8	56.1±0.5		
7	81.9±0.8	70.4±1.9	61.0±1.9	49.5±1.5	45.9±0.9		
8	82.9±1.6	74.0±0.2	66.2±0.7	60.0±1.1	57.9±1.3		
9	74.3±0.8	61.0±2.3	56.5±1.3	52.9±0.8	52.2±0.5		
10	26.3±0.2	20.8±0.5	18.8±0.4	16.3±0.2	16.1±0.1		
11	62.3±4.3	51.1±3.4	41.7±1.1	37.4±2.5	34.4±1.0		
12	82.2±2.0	69.3±1.4	55.7±3.6	51.3±1.6	43.1±1.6		
13	81.7±0.7	68.7±1.0	63.3±1.1	55.6±0.6	51.3±1.0		
14	1.3±0.3	2.5±0.1	3.4±0.01	4.1±0.0	4.3±0.5		
15	26.3±1.3	22.5±0.2	19.9±0.4	18.0±0.8	15.7±0.5		
16	82.7±1.1	73.1±3.1	66.1±4.0	60.8±4.0	58.6±3.0		

#此編號與表 3-2 相同 *未經化學鍍鎳修飾金屬氫化物

$$M + H_2O + e^- \rightarrow OH^- + MH$$
 (3-8)

當充電速率加大時,氫原子和電極活性物形成金屬氫化物(MH)的速度小於電解還原 H₂O 生成氫原子的速率,因此金屬氫化物電極表面存積過多之氫原子,將結合以氫氣的方式釋出[70],其反應式為(3-9)

$$MH + H_2O + e^- \rightarrow OH^- + H_2 + M$$
 (3-9)

因此在快速充電時,氫原子和電極活性物形成金屬氫化物的反應 為速率決定步驟,此反應在金屬氫化物內部進行,但化學鍍鎳修飾只 能修飾到金屬氫化物外層,對於其內部的性質影響不大,且所鍍上的 鎳不具儲氫能力,所以金屬氫化物經化學鍍鎳修飾後,對於充電性能 並沒有很大的改善。

圖 3-38 到圖 3-42 為未修飾金屬氫化物、利用表 3-2 中 No.2 和 No.3 條件修飾後金屬氫化物在各充電速率下之充電曲線,可發現隨 著充電速率增加至 28C 以上時,充電曲線之電壓不是很穩定,同時 吾人觀察到電池產生大量的氣體,因此吾人推論造成電壓不穩就是因 為大量氣體的析出所造成,而氣體的析出也就影響了電池整體的充電效率。圖 3-43 為 Shi 等人[70]以 1C 速率對鎮/金屬氫化物電池充

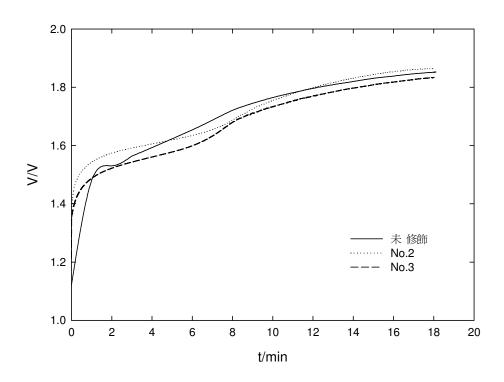


圖 3-38 未經化學鍍鎳修飾金屬氫化物與以表 3-2 中 No.2 和 No.3 化 學鍍鎳條件修飾之金屬氫化物以在 4C 充電速率下之充電 曲線

負極:0.7g 金屬氫化物+0.07ml 水+0.07ml 甲+56μPVA(7.69wt.%)。 測試程序:在電池完成活化後以 4C 充電到 120% SOC,再以 0.2C 放電到 0.95V,T=30 ℃。

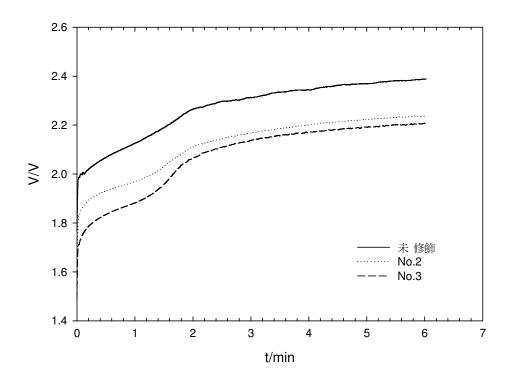


圖 3-39 未經化學鍍鎳修飾金屬氫化物與以表 3-2 中 No.2 和 No.3 化 學鍍鎳條件修飾之金屬氫化物以在 12C 充電速率下之充電 曲線

負極:0.7g 金屬氫化物+0.07ml 水+0.07ml 甲+ $56\mu PVA$ (7.69wt.%)。 測試程序:在電池完成活化後以 12C 充電到 120% SOC,再以 0.2C 放電到 0.95V,T=30 ℃。

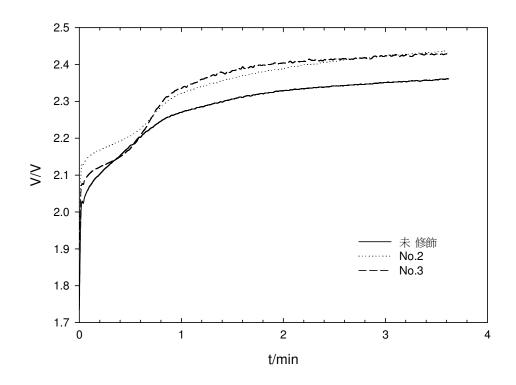


圖 3-40 未經化學鍍鎳修飾金屬氫化物與以表 3-2 中 No.2 和 No.3 化 學鍍鎳條件修飾之金屬氫化物以在 20C 充電速率下之充電 曲線

負極:0.7g 金屬氫化物+0.07ml 水+0.07ml 甲+ $56\mu PVA$ (7.69wt.%)。 測試程序:在電池完成活化後以 20C 充電到 120% SOC,再以 0.2C 放電到 0.95V,T=30 ℃。

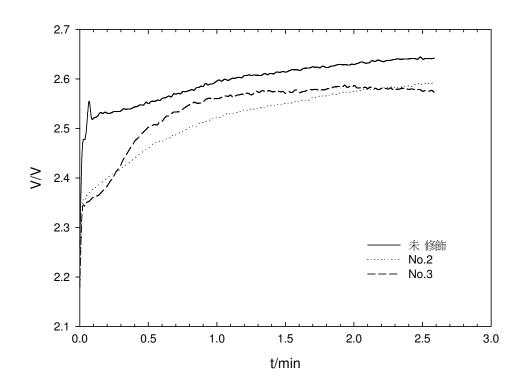


圖 3-41 未經化學鍍鎳修飾金屬氫化物與以表 3-2 中 No.2 和 No.3 化 學鍍鎳條件修飾之金屬氫化物以在 28C 充電速率下之充電 曲線

負極:0.7g 金屬氫化物+0.07ml 水+0.07ml 甲+ $56\mu PVA$ (7.69wt.%)。 測試程序:在電池完成活化後以 28C 充電到 120% SOC,再以 0.2C 放電到 0.95V,T=30 ℃。

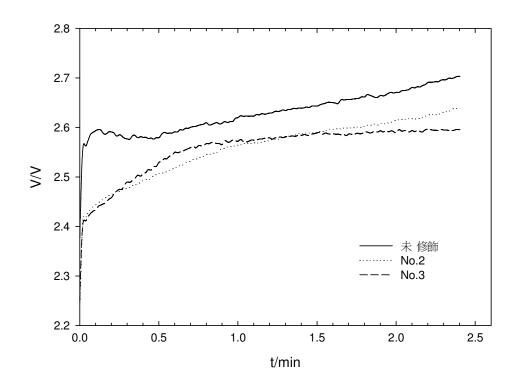


圖 3-42 未經化學鍍鎳修飾金屬氫化物與以表 3-2 中 No.2 和 No.3 化 學鍍鎳條件修飾之金屬氫化物以在 30C 充電速率下之充電 曲線

負極:0.7g 金屬氫化物+0.07ml 水+0.07ml 甲+ $56\mu PVA$ (7.69wt.%)。 測試程序:在電池完成活化後以 30C 充電到 120% SOC,再以 0.2C 放電到 0.95V,T=30 ℃。

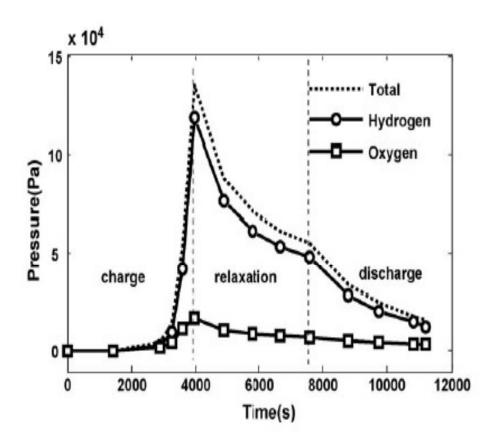


圖 3-43 Shi 等人以 1C 速率對鎮/金屬氫化物電池充放電時,以 GC 偵測電池內部氣體壓力變化圖[70]

放電時,使用 GC 偵測電池內部氣體的氣壓變化,由圖中可發現在充電終點時壓力會突然變大 ,而這壓力變化的來源主要是來自於產生氫氣,而氧氣的含量變化不大。因此吾人認為觀察到電池產生的氣體是以氫氣為主,並伴隨少量的氧氣。

接著進行在較小的 SOC 範圍內(40%~80% SOC)進行大電流充電, 測試程序為以 0.2C 從 0%充電到 40%SOC, 再分別以 4、12、20、28 和 30C 從 40% 充到 80% SOC, 之後再以 0.2C 放電,計算其放電容量 和充電效率,充電效率定義為放電容量和充電容量之比,進行此項測 試的目的是因為應用在油電混合車的鎳/金屬氫化物電池,經常要在 小 SOC 範圍內快速充電。表 3-37 為修飾後金屬氫化物之充電效率, 由表中也可發現化學鍍鎳在此範圍內之充電效率同樣的大多低於未 修飾者,較佳者(No.2、3、5、6、9 與 12)與未修飾者比較改善不大, 和前述以大電流從 0% 充到 120% SOC 時的結果一樣,雖然測試程序 改變,但其修飾效果還是不顯著。而表 3-37 中所得充電效率均較表 3-35 所得者佳, 這是因為表 3-36 中所得測試程序中, 前半段是以 0.2C 充電 40% SOC,故其充電效果會比全部都以大電流充電之表 3-34 來 的好。

表 3-37 以表 3-2 化學鍍鎳條件修飾之金屬氫化物電極以大電流從

40%充電到 80%SOC 之充電效率

電極組成:正極:跟耐能電池購得之商業化正極。

負極:0.7g 金屬氫化物+0.07ml 水+0.07ml 甲+ 56μ PVA(7.69wt.%)。 測試程序:在電池完成活化後,電池先以 0.2C 充電到 40% SOC,以 4、12、20、28 和 30C 充電到 80% SOC,再以 0.2C 放電到 0.95V, T=30°C。

No.#	Charge efficiency/%					
	Charge rate(charge from 40% SOC to 80% SOC)					
	4C	12C	20C	28C	30C	
*	94.9±0.3	85.7±0.6	83.2±0.3	81.4±0.1	80.7±0.2	
1	82.9±2.5	80.0±2.4	78.2±2.5	76.8±2.4	76.4±3.1	
2	93.2±1.8	92.0±0.2	88.3±0.2	85.3±0.1	84.7±0.1	
3	96.0±0.2	93.4±0.3	89.3±0.2	86.1±0.1	85.0±0.5	
4	95.0±0.1	87.2±1.5	84.8±1.0	83.8±2.4	79.3±1.6	
5	92.0±1.0	90.7±0.7	87.2±0.8	83.9±0.1	81.8±0.8	
6	93.7±0.3	90.5±0.5	84.5±0.5	82.0±1.0	80.5±0.5	
7	91.7± 0.2	88.4±0.7	84.8±1.2	81.5±1.3	79.8±0.8	
8	94.1±0.1	87.7±0.5	84.9±1.2	82.3±1.9	79.3±0.1	
9	90.4±1.7	86.5±1.3	83.3±2.0	80.9±2.2	80.4±2.4	
10	36.2±1.2	35.1±1.1	34.6±0.6	33.6±0.6	32.8±0.8	
11	88.6±4.2	79.9±0.2	76.3±0.2	74.1±0.2	72.6±0.2	
12	92.3±2.3	87.8±2.4	84.3±1.7	81.6±1.3	80.4±0.6	
13	93.4±2.1	88.4±3.3	84.5±3.5	76.1±1.5	75.2±2.0	
14	0.5±0.1	0.8 ± 0.1	1.2±0.2	1.7±0.2	2.1±0.2	
15	50.7±0.3	48.9±3.1	49.0±1.0	48.6±0.8	48.4±0.3	
16	87.8±4.7	84.4±1.9	81.6±0.9	78.9±0.9	78.0±1.0	

#此編號與表 3-2 相同 *未經化學鍍鎳修飾金屬氫化物