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Abstract

A multi-state model (MSM) is a model for a continuous time stochastic process allowing
individuals to transit among a finite number of states. The MSM of disease have been of use
in the past in designing and evaluating cancer screening programs. Recently MSM are also
used to examines the determinants of different states of financial distress. In this article,
using MSM, we investigate key factors that affect corporate rating transitions. The tran-
sition intensities are modeled using Cox Markov models (CMM)/Cox semi-Markov models
(CSMM). Based on a data set of 123 firms in Taiwan over the period 1995 to 2010, we inves-
tigate key factors that affect the entry of four states of corporate rating: low risk, moderate
risk, high risk and default.

Keywords: Financial distress; Survival analysis; Cox proportional model; transition prob-
ability.
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Chapter 1

Introduction

Over the last decade there have been many cases of firm collapses, e.g. Enron, WorldCom,
Tyco and HealthSouth. The collapses of firms often entails significant direct and indirect
costs to many stockholders. It can be easy to blame a firm’s collapse on the economic climate
or rival firms, but the main responsibility for the firm’s well-being lies most with the senior
management team. Specifically, risk managers need to quantify their firm’s risk positions and
had to include a quantitative disclosure of market risks in their financial statements for the
convenience of investors. Collapse of firm can be avoided if key risk factors can be identified.
Financially distressed firms usually face a continuum of financial distress states before they
go bankrupt. Multi-state models (MSM) of disease have been of use in the past in designing
and evaluating cancer screening programs. Recently, MSM are also used to examines the
determinants of different states of financial distress, e.g. Chancharat et al. (2010) examined
the determinants of multiple states of financial distress by applying a competing-risks model.
They investigated the effect of financial ratios, market-based variables and company-specific
variables, including company age, size and squared size on three different states of corporate
financial distress: active companies; distressed external administration companies; and dis-
tressed takeover, merger or acquisition companies. Since MSM incorporate multiple states
of financial distress, they provide a wider range of distress scenarios and an opportunity
to examine the effect of explanatory variables across the diverse states of distress. In this
article, by applying Cox Markov models (CMM) and Cox semi-Markov models (CSMM), we
examine the determinants of four different states of company ratings: low-risk, moderate-
risk, high-risk and default. Based on a data set of 123 firms in Taiwan over the period 1995
to 2010, we investigate key factors that affect rating transitions from ‘low-risk’ to ‘moderate-
risk’, ‘moderate-risk’ to ‘high-risk’, ‘low-risk’ to ‘high-risk’ and ‘high-risk’ to ‘default’. In
Section 2, we introduce MSM, CMM, CSMM, AMM and ASMM. In Section 3, we analyze
the real data set using CMM and CSMM.
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Chapter 2

Multi-state models

2.1 Transition Probabilities and Intensities

Multi-state models (MSM) are models for stochastic processes which occupy one of a set of
discrete states at any time. The MSM are well adapted for modeling complex event histories.
They are useful in describing a process in which an individual moves through a series of states
in continuous time and can provide a better understanding of the process of the failure, i.e.
a better knowledge of the evolution of the disease/depressed over time. Based on MSM, one
may estimate progression rates, assess the effects of risk factors and survival rates. There
exists an extensive literature on MSM. Main contributions include books by Andersen et al.
(1999) and Hougaard (2000). Reviews on MSM can be found in the papers by Commenges,
(1999), Hougaard (1999) and Meira-Machado et al. (2009).

The complexity of MSM depend on the number of states defined, as well as the transitions
allowed among these states. The simplest form of MSM is the “two-state model”, with only
two states, e.g. “alive” and “dead” and a single transition between the two states. A
more complex model, three-state model, originate from splitting the “Alive” state into two
transient states. The MSM can be described using diagrams with rectangular boxes to
represent possible states and arrows between the states denoting the allowed transitions.
States can be either transient or absorbing as shown in Figure 1. A state is called an
absorbing state (e.g. death) if no transitions can emerge from the state.

For individual k, a multi-state process is a stochastic process Xk = {Xk(t), t ∈ [0, τ ]}
with a finite state space E = {1, 2, . . . ,M} and with right-continuous path: Xk(t+) = Xk(t).
For any t, the variable Xk(t) has values in E, i.e. M states. Associated with Xk is a counting
process Nijk(t), which denotes the number of direct transition from state i to j in the interval
[0, t], i.e. Nijk(t) = #{s ≤ t : Xk(s−) = i,Xk(s) = j}, i 6= j. The other process is the
indicator Yik(t) = I[Xk(t−)=i], which denotes whether the process is in state i just before time

2



2.1. TRANSITION PROBABILITIES AND INTENSITIES 3

1. Healthy 2. Diseased

3. Dead

Figure 1. Illness-death model

t. Define the filtration or history process as

Ft = {Nijk(t), Yik(u), 0 ≤ u ≤ t, k = 1, . . . , n; i, j = 1, . . . ,M}.

Notice that the history Fs of the process can also be generated by {Xk(u), u ≤ s k =
1, . . . , n}, i.e. Fs is an element of a ’filtration’ and it can be understood intuitively as the
trajectory of the process until time s. The law of multi-state processes can be specified by
the transition probabilities

Pijk(s, t,Fs) = P (Xk(t) = j|Xk(s) = i,Fs−) (i = 1, . . . ,M ; j = 1, . . . ,M).

The inference in multi-state models is traditionally performed under a Markov assumption
for which past and future are independent given its present state (Aalen and Johansen (1978);
Andersen and Keiding (2002)). Under Markov model, given the state at time s, the whole
history before s can be forgotten:

Pijk(s, t,Fs−) = P (Xk(t) = j|Xk(s) = i) = Pijk(s, t).

The observations are usually incomplete since

(1) we cannot observe the whole population of interest;

(2) we cannot observe the processes over an infinite time period.

Problem (1) can be resolved by drawing a sample from the population such that the
sample is representative of the population. Problem (2) is called right censoring. The
observation of the process Xk(t) is stopped at a certain time Ck. If at that time, the
process is in an absorbing state, e.g.‘death’, then the entire trajectory of the process has
been observed. If not, then some transition times are right-censored.

Next, we consider transition intensities. Under a Markov assumption, if a randomly
chosen individual k is in state i at time t−, the transition rate or intensity from i to j at
time t is given by

dΛijk(t) = P (Xk(t−+dt) = j|Xk(t−) = i) = P (Xk(t−+dt) = j|Xk(t−) = i),
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which holds for all Xk(u), 0 ≤ u < t with Xk(t−) = i and i 6= j. For convenience, define
dΛiik(t) = −

∑
i6=j Λijk(t) such that the row sums of the matrix dΛijk(t) = [dΛijk]M×M are all

equal to zero. For continuous case, we have dΛij(t) = λijk(t)dt for all i 6= j, where λijk(t) =
limh→0 h

−1P (Xk(t−+h) = j|Xk(t−) = i). Hence, λijk(t) is the intensity function for i−to−j
transition. Let Yik(u) = I[Xk(u−)=i]. For i 6= j; i, j ∈ E, Mijk(t) = Nijk(t)−

∫ t
0
Yik(u)λijk(u)du,

are zero mean local square-integrable martingale with respect to Ft. A state h ∈ E is
absorbing if for all t ∈ [0, τ ], j 6= h, λhjk(t) = 0.

For homogenous population, Pijk(s, t) = Pij(s, t) and λijk(t) = λij(t) for all k. The
transition probabilities can be estimated via the Aalen-Johansen (1978) estimator, which
can be thought as the generalization of the Kaplan-Meier (1958) estimator for the simple
mortality model (with states “alive” and “dead” and only one possible transition).

Next, we briefly describe nonparametric approach as follows. Let I be the identity ma-
trix and Λ a matrix-valued function with element Λij(s) =

∫ s
0
λij(u)du, where dΛii(t) =

−
∑

j 6=i dΛij(t). In the discrete case, there exists a set of times {tk : k = 1, 2, . . . }, at which
transition can occur and Pk = I + dΛ(tk) is the usual one-step probability transition matrix
of a nonhomogeneous Markov chain with element P (X(tk) = j|X(tk−) = i). Let P(r) denote
the r-step transition probability with element P (X(tr) = j|X(0) = i), r = 1, 2, . . . ,. It is
well known that

P(r) =
r∏
i=1

Pi = P1P2...Pr,

where an empty product is interpreted as I. Notice that the order of the multiplication
matters here since in general Pk matrices does not commute.

In the continuous case, dΛij(t) = λij(t)dt for all i, j, where λij(t) is the intensity function
for i− to− j transition and λii(t) = −

∑
j 6=i λij(t). Similar to discrete case, we can write

P(s, t) =
∏

(s,t]

(
I + Λ(du)

)
,

where
∏

(s,t] is the product integral over the interval (s, t] and can be defined as the limit of

a product, refining the partition s < s1 < · · · < sp+1 = t of (s, t]:

lim
max |sl−sl−1|→0

∏
l

(
I + Λ(sl−)−Λ(sl−1)

)
.

The transition probability matrix P can, for a Markov process, be recovered from the
Kolmogorov forward equations:

P(s, s) = I and
∂

∂t
P(s, t) = P(s, t)λ(t).

This can also be written as follows:

P(s, t) = P(s, s) +

∫
u∈(s,t]

∂

∂u
P(s, u)du = I +

∫
u∈(s,t]

∂

∂u
P(s, u)du.
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Since λ(u)du = Λ(du), it follows from Volterra’s equation that the unique solution to the
above equation is P(s, t). The Aalen-Johansen estimator of P(s, t) is obtained by plugging
the matrix of Nelson-Aalen estimated matrix, i.e.

P̂(s, t) =
∏

(s,t]

(
I + Λ̂(du)

)
,

where Λ̂ is the Nelson-Aalen matrix with element Λ̂ij(t) =
∑

s≤t Λ̂ij(ds), where

Λ̂ij(t) =

∫ t

0

I[Yi(u)>0]
dNij(u)

Yi(u)
=
∑
tl≤t

dNij(tl)

Yi(tl)
,

where Nijk(t) =
∑

kNijk(t), Yik(t) =
∑

k Yik(t). tl’s are the observed times.

A common model is the progressive three-state model (i.e. illness-death model) as shown
in Figure 1. Explicit formulae of the Aalen-Johansen estimator for the illness-death model
are as follows:

p̂11(s, t) =
∏

s<t(k)≤t

(
1− d12k + d13k

n1k

)
, p̂22(s, t) =

∏
s<t(k)≤t

(
1− d23k

n2k

)
,

p̂12(s, t) =
∑

s≤t(k)≤t

p̂11(s, t(k−1))
d12k
n1k

p̂22(t(k), t),

where t(1) < t(2) < · · · < t(d) are the event times for transitions (e.g. disease/death) arranged
in increased order, n1k and n2k denote the number of subjects at states 1 and 2, respectively,
just prior to the event time t(k), and dijk is the number of transition i→ j at time t(k). Notice
that the estimator p̂12(s, t) is a plug-in estimator obtained from the following expression:

p12(s, t) =

∫ t

s

p(s, u)λ12(u)p(u, t)dt,

by replacing p11(s, u) = p11(s, u−) by p̂11(s, u), p22(u, t) by p̂22(u, t) and λ12(u) by dΛ̂12(u)
the increment of the Nelson-Aalen estimator Λ̂12(u) =

∑
t(k)≤u d12k/n1k of the cumulative

disease intensity Λ12(t) =
∫ t
0
λ12(u)du.

2.2 Cox Markov Models (CMM)

Next, we consider heterogeneous population and for individual k there is a p × 1 vector of
possibly time-dependent covariates Zk(t) = [Z1k, . . . , Zpk]

T . One important goal in multi-
state modeling is to relate the individual characteristics to the intensity rates through a
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possibly time-dependent covariate vector Zk(t). Several models have been used in litera-
ture. A common strategy is to decouple the whole process into various survival models, by
fitting separate intensities to all permitted transitions based on some models while making
appropriate adjustments to the risk set if necessary.

For individual k, let λijk denote the intensity function for i−to−j transition of individual
k. Parametric or semiparametric models for λijk can be specified, e.g. one may specify a
parametric model depending on a vector of unknown parameters γ. Alternatively, one may
consider the semiparametric model, e.g. Aalen’s model (1980, 1989)) or Cox model (1972).

Andersen et al. (1991) developed the general theory of the “Cox Markov model” (CMM)
where the intensities of the transitions from one state to the next are specified via Cox’s
(1972) proportional hazards regression models. Under CMM, the intensities depend only
on time as measured from the origin (e.g., study entry) and not on the duration in a given
state. Under CMM, given Zk(t), λijk is written as

λijk(t) = λij0(t) exp(Zk(t)
Tβij), (2.1)

for all i, j, k with i 6= j and t > 0, where λij0(t) is an unknown baseline intensity function
and βij is p×1 vector of regression parameters for i−to−j transition. The CMM readily fits
into the multiplicative intensity framework of Cox model. Consider a right-censored sample
of n individuals from model (2.1) and define the filtration or history process as

Ft = {Nijk(t), Zk(t), Yik(u), 0 ≤ u ≤ t, k = 1, . . . , n; i, j = 1, . . . ,M},

where Nijk(t) is the right continuous process that counts the number observed direct i−to−j
transition for individual k and Yik(t) is the corresponding at risk process, i.e. the indicator
of individual k being at risk in state i just before time t. Suppose that the censoring is
independent such that for all i 6= j, k, Ft− and t > 0,

P (dNijk(t) = 1|Ft−) = Yik(t)λijk(t),

where Yik(t) = I[Xk(t−)=i]. Let Mijk(t) = Nijk(t) −
∫ t
0
Yik(s)λij0(s) exp(Zk(s)

Tβij)ds. Then,
under model (2.1), E[dMijk(t)|Ft−] = 0 and for i 6= j; i, j ∈ E, Mijk(t) are zero mean local
square-integrable martingale with respect to Ft.

Model (2.1) can be analyzed using partial likelihood arguments based on conditional
probabilities of dNijk(x), k = 1, . . . , n given {Ft−, dNij(t), i, j ∈ [0, . . . ,M − 1], i 6= j; t > 0}.
Given a transition i− to− j occurs at some t ∈ [0, τ ], the contributing

P (dNijk(t) = 1|dNij.(t) = 1,Ft−) =
Yik(t) exp(ZT

k (t)βij)∑n
l=1 Yil(t) exp(ZT

l βij)
.

The log partial likelihood is given by∑
all i,j

{∫ τ

0

n∑
k=1

ZT
k (t)βij − log

( n∑
l=1

Yil(x) exp(ZT
l (t)βij)dNij.(t)

)}
. (2.2)
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The parameters βij’s can be estimated by maximizing (2.2). Let β̂ij denote the estimator.
Since E[dMijk(t)|Ft−] = 0, we have E[dMij.(t)|Ft−] = 0, i.e.

E[dNij.(t)|Ft−] = λij0(t)
n∑
k=1

Yik(t) exp(ZT
k (t)βij).

By letting dNij.(t)− λij0(t)
∑n

k=1 Yik(t) exp(ZT
k (t)βij) = 0, we obtain

λij0(t) =
dNij.(t)∑n

k=1 Yik(t) exp(ZT
k (t)βij)

.

Given β̂ij, the baseline cumulative incidence function Λij0(t) =
∫ t
0
λij0(u)du can be obtained

using the Breslow estimator (1972,1974) Λ̂ij0(β̂ij, x) =
∫ x
0
dΛ̂ij0(β̂ij, u), where

dΛ̂ij0(β̂ij, t) =
dNij.(t)∑n

k=1 Yik(t) exp(ZT
k (t)β̂ij)

,

dNij.(t) =
∑n

k=1 dNijk(t). Furthermore, Λij(t|Zk) can be estimated by

Λ̂ij(t|Zk) = Λ̂ij0(β̂ij, t) exp(ZT
k (t)β̂ij).

Given Zk, the transition probability matrix P can be estimated by

P̂(s, t|Zk) =
∏

(s,t]

(
I + Λ̂(du|Zk)

)
,

where Λ(u|Zk) is the estimated matrix with elements Λ̂ij(u|Zk).

The asymptotic properties of the estimators β̂ and Λ̂ was established by Shu et al. (2007).

Remark 1:

Notice that for three-state model, given individual k and two time points s < t, define
the transition probabilities as pij(s, t|Zk) = P (Xk(t) = j|Xk(s) = i). There are five different
transition probabilities: p11(s, t|Zk), p12(s, t|Zk), p13(s, t|Zk), p22(s, t|Zk) and p23(s, t|Zk).

First, the transition intensities λij(t|Zk), 1 ≤ i < j ≤ 3 are modelled using Cox models
assuming the process to be Markovian. Based on the estimated transition intensities, the
transition probabilities pij(s, t|Zk) for a given covariate Zk can be estimated by the so-called
forward Kolmogorov differential equation (Cox and Miller (1965)) as follows:

p̂11(s, t|Zk) =
∏
s<u≤t

(
1−

3∑
j=2

dΛ̂1j(u|Zk)
)
,
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p̂22(s, t|Zk) =
∏
s<u≤t

(
1− Λ̂23(u|Zk)

)
,

and
p̂12(s, t|Zk) =

∑
u≤t

p̂11(s, u− |Zk)dΛ̂12(du|Zk)p̂22(u+, t|Zk),

where Λ̂ij(t|Zk) = Λ̂0(t) exp(β̂TZk), where Λ̂0(t) is the breslow estimator for Λ0(t) =
∫ t
0
λ0(u)du.

The transition probability p13(s; t|Zk) can be estimated by 1− p̂11(s, t|Zk)− p̂12(s, t|Zk).

2.3 Cox Semi-Markov Models (CSMM)

In some instances, the Markovian assumption may not be satisfied for company rating data,
e.g. the transition probability to state “high-risk’ after being rated as “moderate-risk”
depends on the time since rated as “moderate-risk”, i.e. there exists a dependence on time
since entry to a state. Such dependencies can be accommodated by considering Cox semi-
Markov model (CSMM), where the future of the process does not depend on the current time
but rather on the duration in the current state. Under CSMM, each time the firm enters
a new state time is reset to 0. For a four-stage model, the differences between CMM and
CSMM (Andersen et al. 2000) resides in transition 2 → 3 and 3 → 4, in which intensities
λ23k and λ34k are modeled as

λ23(t− T2,k|Zk) = λ230(t− T2,k) exp(Zk(t)
Tβ23), (2.3)

and
λ34(t− T3,k|Zk) = λ340(t− T3,k) exp(Zk(t)

Tβ34), (2.4)

where T2,k is the entry time into state 2 for individual k and T3,k is the entry time into state
3 for individual k.

The Semi-Markov model does not readily fit into the multiplicative intensity framework
because of its renewal nature. Thus, under model (2.3), we need to circumvent this difficulty
by considering a time-shifted multivariate counting process observed over a fixed interval,
say [0, τ ], Let Ñijk(x) denote the number observed direct i−to−j transitions for individual k
whose transition time from i to j (i.e., the amount of time spent in i before going to j) is less
than or equal to x, here x represents duration scale in state i instead of the calendar time scale
which starts at zero at state 1. Similarly, define Ỹik(x) be the indicator of individual k being
at risk in state i just before time x - a “local” time to state i. Voelkel and Crowley (1984)
showed that such formulated counting processes Ñijk(x) have intensity processes λijk(x) in
the form of a multiplicative intensity model

P (dÑ23k(t) = 1|St−) = Ỹ2k(t)λ23k(t− T2k) = Ỹ2k(t)λ230(t− T2k) exp(Zk(t)
Tβ23),

where St = {Ñijk(t), Zk(t), Ỹik(u), 0 ≤ u ≤ t, k = 1, . . . , n; i, j = 1, . . . ,M}.
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Models (2.3) or (2.4) can be analyzed using partial likelihood arguments based on con-
ditional probabilities of dÑijk(t), k = 1, . . . , n given {St−, dNij(t), i, j ∈ [1, . . . ,M ], i 6= j; t >
0}. Given a transition i− to− j occurs at some x ∈ [0, τ ], the contributing

P (dÑijk(t) = 1|dÑij.(t) = 1,St−) =
Ỹik(t) exp(ZT

k (t)βij)∑n
l=1 Ỹil(t) exp(ZT

l (t)βij)
.

Let M̃ijk(t) = Ñijk(t)− Ỹik(t)λij0(t) exp(Zk(t)
Tβij). Then, under models (2.3)/(2.4),

E[dM̃ijk(t)|St−] = 0 and for i 6= j; i, j ∈ E, M̃ijk(t) are zero mean local square-integrable
martingale with respect to St. The log partial likelihood is given by

∑
all i,j

{∫ τ

0

n∑
k=1

ZT
k (t)βij − log

( n∑
l=1

Ỹil(t) exp(ZT
l βij)dÑij.(t)

)}
. (2.5)

The parameters βij’s can be estimated by maximizing (2.5). Let β̃ij denote the estimator.
Given β̃ij, the baseline cumulative incidence function Λij0(t) can be obtained by

dΛ̃ij0(β̃ij, t) =
dÑij.(t)∑n

k=1 Ỹik(t) exp(ZT
k (t)β̃ij)

,

where dÑij.(t) =
∑n

k=1 dÑijk(t).

2.4 Aalen Markov Models (AMM)

An alternative model to Cox model is the Aalen’s model (Aalen (1980, 1989, 1993), McK-
eague (1988); and Huffer and McKeague (1991)), which allows for time-dependent regression
coefficients βij(t) with

λij(t|Zk) = λij0(t) + βij(t)
TZk(t). (2.6)

The parameter Bij(t) =
∫ t
0
βij(s)ds can be estimated using the following arguments:

LetMijk(t) = Nijk(t)−
∫ t
0
Yik(s)[λij0(s)+βij(s)

TZk(s)]ds. LetRi(t) = [Ri1(t), . . . , Rin(t)]T

be a n× (p+ 1) matrix, where

Rik(t) = [Yik(t), Yik(t)Z1k(t), . . . , Yik(t)Zpk(t)]
T

is a (p + 1) × 1 vector. Let Nij(t) = [Nij1(t), . . . , Nijn(t)]T be a n × 1 vector. Let Mij(t) =

Nij(t) −
∫ t
0
Ri(u)βij(u)du is a n × 1 vector. Thus, under (2.6) E[dMij(t)|Ft−] = 0 for

i 6= j; i, j ∈ E, Mijk(t) and Mij(t)’s are zero mean local square-integrable martingale with
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respect to Ft−. Based on the arguments above, the following ordinary least squared (OLS)
estimating function can be used for the estimation of Bij(t) (Aalen (1980)):

B̂ij(t) =
∑
x≤t

R−i (x)Nij(dx) = (B̂ij0(t), B̂ij1(t), . . . , B̂ijp(t))
T ,

where Nij(dx) = Nij(x) − Nij(x−) and R−i (x) = [Ri(x)TRi(x)]−1Ri(x)T is a generalized
inverse of Ri(x). To obtain a more efficient estimator, Huffer and McKeague (1991) and
McKeague (1988) considered a weighted least-squared generalized inverse

R−Wij(u) = [Ri(u)TWij(u)Ri(u)]−1Ri(u)TWij(u),

where Wij(u) is an n × n diagonal matrix taken to have the (h, h)th element, Wij,h(u),
proportional to the inverse of the variance of dMij(t). A kernel-smoothed estimator of βij(t)
is needed for estimating the variance of dMij(t), which is given by λij(t|Zk) = Zk(t)

Tβij(t).

2.5 Aalen Semi-Markov Models (ASMM)

Similar to CSMM, for a four-stage model, the differences between AMM and ASMM resides
in transition 2→ 3 and 3→ 4, in which intensities λ23k and λ34k are modeled as

λ23(t− T12,k|Zk) = λ230(t− T12,k) + β23(t− T12,k)TZk(t), (2.7)

and
λ34(t− T23,k|Zk) = λ340(t− T23,k) + β34(t− T23,k)TZk(t). (2.8)

Similar to CSMM, models (2.7) or (2.8) can be analyzed using process Ñijk(t) and Ỹik(t).



Chapter 3

Corporate Rating Data

3.1 Analysis Under CMM

We consider the four-state model depicted in Figure 2. We assume that all companies are
in State 1 (low risk) at time t = 0, and that they may either visit State 2 (moderate risk) at
some time point; or not, going directly to the State 3 (high risk); or not, going to directly
to the State 4 (default). The reverse transition can occur.

The data set consists of 123 semiconductor firms which were evaluated between 1995
to 2010. Thirty-six covariates were considered for inclusion in the model by using forward
selection methods from SAS software packages.

The p-values for entry of covariates were set at 0.1. The covariates considered are shown
in Table 1.

11
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Table 1. The description of covariates (Aver.: Average; Rev.: Revnue)

Var. Variable Names Description
A1 Current Ratio Current Assets/Current Liabilities×100%
A2 Quick Ratio Liquid capital /Current Liabilities×100%
A3 Interest Expense Ratio Interest Expense /Operating Income ×100%
A4 Debt/Equity Ratio Total Liabilities /Shareholders’ Equity ×100%
A5 Debt/Asset Ratio Total Liabilities /Total Assets×100%
A6 Equity/Asset Ratio Shareholders’ Equity /Total Assets×100%
A7 P. C./Fixed Assets Ratio Permanent Capital /Fixed Assets ×100%
A8 Debt /Equity Ratio (Long&Short-term Debt) /Shareholders’ Equity ×100%
A9 C.L./Equity Ratio Contingent Liabilities /Shareholders’ Equity ×100%

A10 O. P./Capital Stock Ratio Operating Profit /Capital Stock ×100%
A11 P.B.T./C. S. Ratio Profit Before Tax /Capital Stock ×100%
B1 I.R./Equity Ratio Inventory and Receivables /Shareholders’ Equity×100%
B2 Total Assets Turnover Revenue /Aver. Total Assets
B3 Receivables Turnover Revenue /Aver. Receivables
B4 Days’ S. in A. R. Ratio Aver. Receivables /Net Rev. ×Days
B5 Inventory Turnover Operating Costs /Aver. Inventory
B6 Average Days in Sales Aver. Inventory /Operating Costs×Days
B7 Fixed Asset Turnover Revenue /Average Fixed Assets
B8 Equity Turnover Revenue /Aver. Shareholders’ Equity
B9 Days Payable Outstanding Aver. Payables /Operating Costs×Days

B10 Net Operating Cycle Days Inventory Outstanding+
Days Sales Outstanding+Days Payables Outstanding

B11 Receivables /Rev. Ratio Receivables /Rev.×100%
B12 Inventory /Rev. Ratio Inventory /Rev.×100%
C1 ROA(EBITDA) EBITDA /Aver. Total Assets ×100%
C2 ROA(EBIT) [Net Income+Interest Expense*(1-Tax Rate)]

/Aver. Total Assets ×100%
C3 Return On Assets (EBPT) EBPT /Aver. Total Assets×100%
C4 Return On Equity (BTAX) Income before Tax /Aver. Total Equity×100%
C5 Return On Equity Recurring Income /Average Total Equity ×100%
C6 Gross Profit Margin Gross Profit /Net Rev.×100%
C7 Gross Profit Rate (Real Estate) Gross Profit(Real Estate) /Net Rev. ×100%
C8 Operating Margin Operating Income /Net Rev.×100%
C9 Earning before Tax Margin Income before Tax /Net Revenue×100%

C10 Earning after Tax Margin Income after Tax Margin /Net Rev.×100%
C11 Cost-plus Ratio (Selling Price-Production Cost) /Production Cost×100%
C12 N. Non-operating In./N. Rev. Net Non-operating Income /Net Rev. ×100%
C13 R. Income(after Tax)/N. Rev. Recurring Income(after Tax) /Net Rev. ×100%
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1.   Low risk 2.   Moderate risk 3.   High risk 

4.   Default 

Figure 2. Schematic depiction of multi-state model

3.1.1 1− to− 2 transition

In the section, for 1 − to − 2 transition (i.e. low risk-to-moderate risk transition), 33 semi-
conductor firms, is used to fit Cox regression model for downgrading prediction of low risk-
to-moderate risk transition. There are 23 uncensored observations and 10 right-censored
observations. Based on the forward selection method (slentry=0.1) in SAS software, only
two covariates A10 (Operating Profit /Capital Stock Ratio) and A3 (Interest Expense Ratio)
enter the model with p-values of 0.0002 and 0.0114, respectively. The corresponding esti-
mated parameters for A10 and A3 are equal to -0.086 and 0.022. It indicates that the A10
is negatively correlated while the A3 is positively correlated with low risk-to-moderate risk
transition. Hence, the higher “Operating Profit /Capital Stock Ratio” is the lower hazard
of transition from rating low risk to moderate risk. On the other hand, the higher “Interest
Expense Ratio” is the higher hazard of this transition.

3.1.2 2− to− 3 transition

In the section, 86 semiconductor firms is used to fit Cox regression model for downgrading
prediction of moderate risk-to-high risk transition. There are 28 uncensored observations
and 58 right-censored observations. Five covariates, namely, A9 (Contingent Liabilities
/Equity Ratio), B10 (Net Operating Cycle), A5 (Debt /Asset Ratio), C1 (Return On As-
sets(EBITDA)) and B5 (Inventory Turnover) enter the model with p-values of 0.036, 0.0008,
0.002, 0.036 and 0.048, respectively. The corresponding estimated parameters for the five
covariates are equal to 0.062, 0.02, 0.046, -0.482 and 0.046. It indicates that covariate C1
is negatively correlated with moderate risk-to-high risk transition while four covariates (A9,
B10, A5 and B5) are positively correlated with this transition. The results show that the
increase in the C1 variable (Return On Assets(EBITDA)) will decrease this transition prob-
ability, while the increase in A9/B10/A5/B5 will increase this transition probability.
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3.1.3 1− to− 3 transition

For 1− to− 3 transition, no covariate is selected into model. One explanation for this result
is that only few observations with 1− to− 3 transition are available.

3.1.4 3− to− 4 transition

In the section, for 3 − to − 4 transition (i.e. high risk-to-default transition), 33 semicon-
ductor firms is used to fix Cox regression model for the prediction of Low risk-to-Moderate
risk transition. There are 27 uncensored observations and 6 right-censored observations.
Forward selection procedure (slentry=0.1) in SAS software is conducted to select important
covariates. Only three covariates C4 (Return On Equity (BTAX)), A11 (Profit Before Tax
/Capital Stock Ratio) and A9 (Contingent Liabilities /Equity Ratio) enter the model with
p-values of 0.004, 0.015 and 0.027, respectively. The corresponding estimated parameters for
three covariates are equal to -0.173, 0.231 and 0.166. It indicates that the C4 is negatively
correlated with high risk-to-default transition while A9 and A11 are positively correlated
with this transition.

3.2 Analysis Under CSMM

3.2.1 1− to− 2 transition

In the section, for 1− to−2 transition (i.e. low risk-to-moderate risk transition), twenty-five
semiconductor firms is used to fix Cox regression model for the prediction of Low risk-
to-Moderate risk transition. There are 15 uncensored observations and 10 right-censored
observations. Forward selection procedure (slentry=0.1) in SAS software is conducted to
select important covariates. Only two covariates C2 (Return On Assets(EBIT × (1-Tax
Rate)) and C9 (Earning before tax margin) enter the model with p-values of 0.0176 and
0.0003, respectively, i.e. there is a significant relationship between the two covariates and
downgrading time in the semiconductor industry. The corresponding estimated parameters
for C2 and C9 are equal to 0.472 and -0.109. It indicates that the C2 is positively correlated
with Low risk-to-Moderate risk transition while the C9 is negatively correlated with this
transition. Hence, the higher Return On Assets the higher hazard of transition from rating
Low risk to Moderate risk. On the other hand, the higher Earning before tax margin the
lower hazard of transition from rating Low risk to Moderate risk.
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3.2.2 2− to− 3 transition

In the section, 83 semiconductor firms is used to fix Cox regression model for the downgrading
prediction of moderate risk-to-high risk transition. There are 27 uncensored observations
and 56 right-censored observations. Based on forward selection procedure (slentry=0.1),
five covariates C2(Return On Assets(EBIT×(1-Tax Rate))), A3(Interest Expense Ratio),
B3(Receivables Turnover), B5(Inventory Turnover) and B10(Net Operating Cycle) enter
the model with p-values of less than 0.0001, 0.0001, less than 0.0001, 0.0023 and 0.1038,
respectively. The corresponding estimated parameters for five covariates are equal to -0.228,
-0.004, 0.01, 0.406 and 0.027, which indicates that two covariates (C2 and A3) are negatively
correlated while the three covariates (B10, B3 and B5) are positively correlated with this
transition. The results show that the increase in the C2/A3 variables will decrease the
transition probability from moderate risk to high risk, On the other hand, the increase in
the B3/B5/B10 variables will increase this transition probability.

3.2.3 1− to− 3 transition

For 1− to− 3 transition, no covariate is selected into model. One explanation for this result
is that only few observations with 1− to− 3 transition are available.

3.2.4 3− to− 4 transition

In the section, 26 semiconductor firms is used to fix Cox regression model for the downgrading
prediction of high risk-to-default transition. There are 6 uncensored observations and 20
right-censored observations. Based on forward selection procedure (slentry=0.1), only one
covariate C2 (Return On Assets(EBIT×(1-Tax Rate))) is entered in the model with p-values
of 0.0027. The corresponding estimated parameters for C2 is equal to -0.124. It indicates
that the C2 is negatively correlated with high risk-to-default transition, i.e. the increase in
the C2 variable will decrease the transition probability from high risk to default.

Remark 2:

From the above analysis, we see that the covariates selected in the model under CMM
differ from that under CSMM. This is expected due to different assumption between the two
models.
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3.3 Assessing Model Adequacy

Next, based on martingale residuals, we check whether CMM or CSMM is a better choice.
Under CMM, for i→ j transition, let

M̂ijk(t) = Nijk(t)−
∫ t

0

Yik(u) exp(Zk(u)T β̂ij)dΛ̂ij0(β̂ij, u).

Define M̂ijk = M̂ijk(∞). Analogous to the properties of the martingales, these residuals

satisfy
∑

k M̂ijk = 0 and for large samples, Cov(M̂ijk, M̂ijl) ' 0 for all l 6= k.

Similarly, under CSMM, for i→ j transition, let

ˆ̃Mijk(t) = Ñijk(t)−
∫ t

0

Ỹik(u) exp(Zk(u)T β̃ij)dΛ̃ij0(β̃ij, u)

Define ˆ̃Mijk = ˆ̃Mijk(∞).

The martingale residual gives a measure of the difference between the observed and fitted
value as expected from the model. The plot of the martingale residuals (i.e. M̂ijk for CMM

and ˆ̃Mijk) versus risk score (i.e. Zk(u)T β̂ij for CMM and Zk(u)T β̂ij for CSMM) can be used
to detect extreme values. However, martingale residuals are highly skewed. The deviance
residuals defined by a transformation of the martingale has a more normally shaped than
martingale.

The deviance residual, denoted by D̂ijk for CMM and ˆ̃Dijk for CSMM are given by

D̂ijk = sign[M̂ijk][−2(M̂ijk + δk log(δk − M̂ijk))]
1/2

and
ˆ̃Dijk = sign[ ˆ̃Mijk][−2( ˆ̃Mijk + δk log(δk − ˆ̃Mijk))]

1/2,

respectively.

The deviance residual has a value of zero when the martingale is zero. The logarithm
tends to inflate the value of deviance residual when the martingale is close to one and shrink
large negative values. When no influential observations exit and censoring is light, the
plot of deviance residual versus the risk score will appear as a normal distribution. When
censoring is heavy (i.e. many observations with δk = 0), a lot of points near zero distort
the normal distribution. Possible influential observations will have large absolute values of
deviance residuals. Furthermore, large positive values of martingale residual indicate that the
estimated intensities are lower than the true intensities, i.e. the observed transition actually
occur before the model predicts it. On the contrary, large negative values of martingale
residual indicate that the observed transition actually occur after the model predicts it.
Both cases lead to large values of deviance residuals.
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Figures 3 and 4 show the plots of deviance residual versus the risk score for CMM and
CSMM, respectively. For CMM, among 86 observations, there are four points (2.19, 2.37,
2.43 and 2.54) with values of deviance residuals lager than 2.0. For CSMM, among 83
observations, there are three points (2.09, 2.17. 2.47) with values of deviance residuals lager
than 2.0. Hence, the CSMM seems to fit better than the CMM, i.e. the transition probability
to state high-risk after being rated as “moderate-risk” may depend on the time since rated
as “moderate-risk”.



Chapter 4

Conclusions

In this article, we have demonstrated the use of CMM model in analyzing corporate rating
data. Under CMM model, It is found that key factors that affect rating transitions from ‘low
risk’ to ‘moderate risk’ are A3 and A10 while the key factors that affect rating transitions
from ‘moderate risk’ to ‘high risk’ are A5, A9, B5, B10 and C1. The key factors that affect
rating transitions from ‘high risk’ to ‘default’ are A9, A11 and C4. Our transition model has
baseline intensities of regression parameters specific to each transition type. By comparing
the MSM with the Cox model with time-dependent covariates, we have demonstrated that
the MSM can provide new insights while confirming some of the results obtained from the
Cox model.

In this article, it is assumed that the onset time of a state can be observed exactly.
However, in practice, the corporate is usually rated at a given number of visits, leading to
interval-censored observations. Incorporation of interval-censored data into the proportional
hazards model does not enable canceling of the baseline hazard function, i.e. the partial
likelihood approach is not available for interval-censored data. Pan (2000) used a multiple
imputation procedure to fill-in failure times for the interval censored events and then applied
the standard partial likelihood analysis. Heller (2011) proposed an alternative methodology,
which is based on estimating equations and uses an inverse probability weight to select event
time pairs where the ordering is unambiguous. Sun et al. (2015) proposed two simple esti-
mation approaches that do not need estimation of the baseline cumulative hazard function.
Further research is required to extend CMM/CSMM model to interval censored data.
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