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Abstract

In this note we consider nonparametric estimation with doubly truncated and interval-
censored (DTIC) data. Using standard convex optimization techniques, we proposed verifi-
able necessary conditions for Turnbull (1976)’s estimator to be a nonparametric maximum
likelihood estimator (NPMLE). We discuss the existence of the NPMLE based on conditions
proposed by Hudgens (2005).

Keywords: nonparametric maximum likelihood estimator; self-consistency algorithm; interval-
censoring; double truncation
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Chapter 1

Introduction

Doubly truncated survival data arise when event times are observed only if they occur
within subject specific intervals of times. This type of data play an important role in the
statistical analysis of astronomical observations (see Efron and Petrosian (1999), Moreira
and de Ufia-Alvarez (2010), Shen (2010)) as well as in survival analysis (see Kalbfleisch and
Lawless (1989), Bilker and Wang (1996)). Let T' denote the failure time of interest and U
and V denote the left-truncated and right-truncated variables. For doubly truncated data,
one observes nothing if T < U or T > V', and observes (T,U,V) if U < T < V. In many
situations, the failure time is recorded in an interval [L, R]. Hence, T is subject to double
truncation and interval censoring. For doubly truncated and interval-censored (DTIC) data,
one observes nothing if T < U or T' > V, and observes (L, R, U, V) if U < T <V, where
[L, R] C [U,V]. Consider the following application:

Example: CDC AIDS Blood Transfusion Data

The AIDS Blood Transfusion Data are collected by the Centers for Disease Control
(CDC), which is from a registry data base, a common source of medical data. The data were
retrospectively ascertained for all transfusion-associated AIDS cases in which the diagnosis
of AIDS occurred prior to the end of of the study, which was June 30, 1991 (7,), i.e. an
HIV-infected population of interest. The data consist of the time in month and only cases
having either one transfusion or multiple transfusions in the same calendar month were used.
Nevertheless, cases either diagnosed or reported after June 30, 1989 (73), were not included
(i.e. right truncated) to avoid bias resulting from reporting delay. Also, cases having the
AIDS prior to July 1, 1982 (71) were not included because this is when adults started being
infected by the virus from a contaminated blood transfusion. Because HIV was unknown
prior to 1982, and cases of transfusion-related AIDS before 71 would have been missed (i.e.
left-truncated). Let 75 be the calendar time (in years) of the initiating events (HIV infection),
and 7p be the calendar time (in years) of AIDS onset. Let T' = 12(7p — 75) (in month)
be the incubation time from HIV infection to AIDS. Let U = 12(7; — 75) (in month) and
V =12(1p — 75) = U + dy (in month), where dy = 12(m» — 1) = 84. Hence, T' is observable
only when 7 < 7p < 1 (i.e. U < T < V). Assume for each individual, data is available
on a p X 1 vector of covariates, Z = [Zf, ..., Z;]T (e.g. treatment, gender). It is important
to investigate the association between Z and survival function of T'. In this article, we will
confine our attention to the situation where Z is discrete. Figure 1 highlights all the different
times for doubly truncated data described in Example 1.

For arbitrarily censored and truncated data, Turnbull (1976) provided a self-consistency
algorithm to obtain a nonparametric estimator for the distribution function of the failure
time of interest. Frydman (1994) noted that the characterization given by Turnbull involves
only censoring intervals and indicated that how Turnbull’s characterization can be easily



V=U+d,=121,~Tp)

A
r ot o
U=12T~Tp) d,=121,"T, )=84
¥ A TN o -
1 3 3 I
Y 1 1 1 L3
T, HIV infection T,1982 Th T, T,
“ _/ 1989 1991
’ AIDS is diagnosed
T=12(1,-Tp)

Figure 1. Schematic depiction of doubly truncated data

modified to obtain the appropriate characterization when data are subject to censoring and
truncation. Alioum and Commenges (1996) identified a further refinement of the set where
the nonparametric maximum likelihood estimate (NPMLE) could put mass. For interval-
censored and left-truncated data, Hudgens (2005) proposed a graph theoretical approach to
describe the support set of the NPMLE for the cumulative distribution function. Using EM
algorithm of Turnbull (1976) and iterative convex minorant (ICM) algorithm (Groeneboom
and Wellner (1992)), Shen (2012) studied the performance of the NPMLE of the distribution
function of T'. Simulation results indicate that the NPMLE performs adequately for finite
sample. When there is no truncation, asymptotic properties of the NPMLE have been
derived. (see Groeneboom and Wellner (1992), Gentleman and Geyer (1994), Yu et al. (1998a,
1998b), Shick and Yu (2000), van der Vaart and Wellner (2000), Song (2004)). However,
much less is known about the large sample properties of the NPMLE if the data are subject
to interval censoring and truncation.

In Section 2, we demonstrate that the Kuhn-Tucker conditions provide easily verifiable
necessary conditions for Turnbull (1976)’s estimator to be a NPMLE. We discuss the exis-
tence of the NPMLE based on conditions proposed by Hudgens (2005). Several examples
are given to illustrate the existence of the NPMLE. When there is no censoring, we show
that Turnbull (1976)’s estimator is asymptotically equivalent to Efron and Petrosian (1999)’s
estimator if the initial probabilities assigned at the leftmost and rightmost innermost sets
tend to zero.



Chapter 2
The NPMLE

2.1 Interval-censored and Doubly-truncated Data

Let (Ly, R1,U1, V1), ..., (Ln, Ry, Uy, V,) denote the observed DTIC data. Notice that
P([L;, R;] C [U;, Vi]) = 1. Without loss of generality, suppose the observed data are ordered
according to L; such that Ly < Ly < --- < L,. Following Turnbull (1976) and Fryd-
man (1994), we consider nonparametric estimation of F'(¢) using the n independent pairs
{Ay, B1},...,{A,, B,}, where A; = [L;, R;] and B; = [U;,V;]. Given B;, the conditional
likelihood of F' is given by

T Pr(4)
L(F) H Pp(B;)’
where Pp(R) is the probability assigned to the interval R by F. We define an NPMLE
as F' = argmaxp 7{ Le(F)}, where F denotes the class of distribution functions such that
Pp(U,B;) = 1 and L.(F) is defined, i.e. Pp(B;) > 0 for all ¢ = 1,...,n. Based on
the approach of Hudgens (2005), we define M = {M;, My, ..., Ms,}, where M; = A, for
i=1,...,n, M; = [0,U;] for i = n+1,...,2n and M; = [V;,00) for i = 2n+1,...,3n.
Thus, we can obtain innermost intervals H;,j = 1,...,J, induced by My, ..., M, to be all
the disjoint intervals which are non-empty intersections of these M,’s such that M; N H; = ()
or H; for all 7 and j. We shall assume throughout that H;, ..., H; are ordered and let the
endpoints of the innermost intervals H; be ¢; and p;, j =1,...,J, where

0= <p <@p<p < --<q <pj=x.

Notice that the interval [g;, p;] can be constructed (see Alioum and Commenges (1999)) by
representing on the real line the elements of £L = {L; : 1 =1,... ., n}U{V;:i=1,...,n}U{0}
and R ={R; :i=1,...,n}U{U; : i = 1,...,n} U{oo} by left hooks and right hooks,
respectively. By going over the real line in the direct sense, the intervals [¢;, p;] are intervals
opened by a left hook and closed by a right hook, and which contain no other hook. Similar to
the Lemma 1 of Hudgens (2005), we can show that any distribution function which increases
outside U/_, H; cannot be an NPMLE of L.(F). Furthermore, for fixed value of Pp(H;),
by inspection of the likelihood function L.(F), it follows that L.(F') is independent of the
values of F' within the region H;. These conclusions allow us to consider maximizing the
following simpler likelihood

mY s
L(s) = [ [ =— (2.2)
i1 2j=1 PisS;

where s = (s1,--+,85)", s; = Pr(H;), ayy = Iig,ca, and Bi; = Iig,cp,). The resulting
reduced likelihood (2.2) is exactly as described in section 2 of Alioum and Commenges
(1996). The goal is to maximize likelihood (2.2) subject to the constraints (2.3)-(2.5) as



follows:
J
D si=1, (2.3)
j=1
s;>0(G=1,...,.J), (2.4)
and
J
D ais; >0, (i=1,...,n). (2.5)
j=1

Thus, we can limit our search to the smaller space given by constraints (2.3)-(2.5). We shall
use €2 to denote the parameter space that is given by constraints (2.3)-(2.5), i.e.

J J
QZ{SERJZZSj =1;s; ZOforjzl,...,J;Zaijsj >0fori=1,...n}.
j=1 Jj=1
To find the maximum likelihood estimate of the vector s, using an EM algorithm, we obtain
Turnbull’s (1976) self-consistency algorithm as follows:

(g(b=1)
) di(s"™V) ) @-1) .
where
n J J
i) =3 (o f st} = (84 ) ot )}
i=1 =1 =1
and

n

1
(\/1 (S(b_l)) = —i =
Z J b—1
i=1 Zj:l Bijsg' )

By (2.6), for the b iteration, we have

n A(b—1 J A(b—1 n A(b—1 J A(b—1
A(B)  Ab=1) Zi:l Qg 5 )/[Zmzl aimsgn )} F- Zi:l /gijsg' )/[Zmzl imsgn )]
8,7 —58; = . (2.7)

! 2?:1 1/ [Z;]nzl ﬁimg’(};_l)}

Next, under (2.2), the log likelihood of L.(s), denoted by [(s), is the following:

(5 =3 [log(zj: ys;) — log(jzj; @.jsj)}

i=1 j=1

To find the maximum estimate of the vector s we maximize [(s) with respect to s subject
to constraints (2.3) and (2.4). For a concave programming problem with linear constraints,
the Kuhn-Tucker conditions (Gentleman and Geyer (1994)) are necessary and sufficient for
optimality (Rockafellar (1970), Theorem 28.1, Corollary, 28.2.2). Let 5, (j = 1,...,J) denote
the estimators obtained from (2.6).



Proposition 1.

The estimator § = [3,...,8;]7 is the local maximizer if the following conditions are

satisfied: (1) 37,8, =1, (2) § > 0 (j = 1,...,J) and (3) d;(8) = t,(8) for §; > 0;
tj(8) > d;(s) for 5; = 0, where

dj(s):iL and tj(g):i By

b " P
i=1 21:1 Qi1 Sy i—1 21:1 Birdi

Proof: A point § is the local maximizer if and only if there exists Lagrange multipliers
Ai(8) (j =0,...,J) such that the Kuhn-Tucker conditions (2.8)-(2.12) hold, with

J
> s=1, (2.8)

j=1
'§]20(j:1a 7‘])7 29)
Ai(8)8;=0(=1...,J), 2.10)
Aj(8)20(=1,....J), (2.11)

%{ZC(SHZ%(M—M)} = d;(8)—t;(8)+ (&)= ho(®) =0 (j =1,....,J). (2.12)

Multiplying (2.12) by §; and summing yields Ao(S) = n —n = 0. Hence, (2.12) is reduced to

5;=5;

If §; > 0 then (2.12) implies that A;(8) = 0, and (2.13) implies that d;(s) =¢;(8). If §;, =0
then (2.11) implies that A;(s) > 0, and (2.12) implies that ¢;(8) > d;(8). Thus, for any §
that satisfies conditions (1)-(3), it is the NPMLE. The proof is complete.

Given j, let Aj = {Z Oy = ].} and Bj = {Z g ﬁij — 1} Since /Bij =1 1mphes Qi = 1,
A; C B;. Notice that the leftmost and rightmost innermost sets are equal to [¢1, p1] = [0, U]
and [q7,ps] = [Vin), 00|, respectively, where Uy is the smallest variable of U;’s and V() is
the largest variable of V;’s. Since By = B, = (), we have d;(8) = t;(8) = 0 for j = 1, J. Thus,
condition (3) of Proposition 1 always holds and we can assign zero probabilities on these
two sets, i.e. §; = 55 = 0. Next, we discuss two cases when the probabilities of the other
innermost sets are equal to zero.

Case 1:
An innermost set |q;, p;] with Bi; =1, ai; =0, and By; =0 for all i . (2.14)

If an innermost satisfies condition (2.14), then it can only be covered by one truncation set
and must has the form [V, Ug]. Under (2.14), B; = {i} and A; = 0, i.e. a;; = 0. By
d;(8) = 0 < t;(8), we need to assign zero probability on [g;, p;], i.e. §; = 0.



Case 2:
An innermost set [q;, p;] with a;; =1, and By; =0 for all i 1. (2.15)

If an innermost satisfies condition (2.15), then it can only be covered by two sets, one
interval set and its corresponding truncation set. Under (2.15), we have A; = B; = {i}. By
d;(8) = t;(8), we need to solve the equation Zi]:1 o8] = Z{:l B48;. In this case, we need to
assign zero probability on [g, p;] for any innermost set with «;; = 0 and 5, = 1.

Thus, the NPMLE assign zero probabilities on innermost sets when either Case 1 or Case
2 occurs. The assignment of zero probability may cause the nonexistence of the NPMLE.
Consider the following example.

Example 1

For example, for n = 3 with observations Uy < L1 < Uy < Ry < V] < U3z < Ly <
Ry < Vo < L3 < Ry < V3, we have innermost sets [q1,p1] = [0,U1], [q2,p2] = [L1,Us),
[g3,p3] = [V1,Us], |aa,p4] = [Lo, Ro], [g5,p5] = [Ls, R3], and [ge,ps] = [V3,00]. In this
example, ajg = oy = ag5 = 1, B2 = Paz = Paa = P34 = F35 = 1, and the rest of indicators
are equal to zero. Since fBo3 = 1, By5 = 0 for i’ = 1,3, and a3 = 0, we have d3(8) = 0 and
t3(8) = 1/(83 + 84). Thus, s3 = 0. Furthermore, since f35 = (34 = 1, By5 = 0 for i =1,2,
and ags = 1, we have d5(S) = 1/55 and ¢5(8) = 1/(54 + S5). Thus, §4 = 0. However, since
dy(8) = 1/84 and t4(S) = 1/(83+84) +1/(84+ 85). Both dy(S) and #4(8) are infinity by setting
S3 = 0 and 54 = 0. Thus, the NPMLE does not exist.

For left-truncated and interval-censored (LTIC) data, Hudgens (2005, Theorem 1) pro-
posed a necessary and sufficient condition for the existence of an NPMLE, which can be
rephrased as follows:

For each non—empty proper subset S of C ={1,...,n},let S¢ denote the complement of S.

There exists an i € S¢ such that if a;; =1 then By; =1 for some i€8. (2.16).

Let S_; be the subset of Q with i deleted from €. Let S¢, = {i} be the complement set
of S_;. Since the only element in S€¢; is the element ¢, under (2.16), the following condition
holds:

if a;; = 1, then there exists an i # i such that By =1 (2.17)

Condition (2.17) requires that given an innermost set is covered by a censoring set [L;, R;]
then it must be covered by some truncation set [Uy, V] with i # i. Under (2.17), Case 2

AR

will not occur.

Hudgens (2005) pointed out that for DTIC data condition (2.16) is a sufficient condition
for the existence of the NPMLE but not a necessary condition. Hudgens (2005) illustrated
this point using the following example.
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Example 2

For example, for n = 3 with U} = Uy < L1 < U3 < Ly < Ry < L3 < Ry < V3 <
Ry < Vi = V5. In this case, we have [thl] = [O, Ul], [QQ,pQ] = [Ll,Ug,], [Q3,p3] = [LQ,Rl],
[q4, ps] = [Ls, R3], [g5,p5] = [V3, Ra] and [gs, ps] = [Vi, 00]. Although condition (2.16) is not
satisfied with the choice of S = {3}, the weaker condition (2.17) is satisfied, e.g. ;o =1 —
Pro =1 13 =1 Pz =1, an =1y = a3 =0, azn = ap =0, agz =1 = fi3 = 1,
an=1=fu=1lLas=1=fis=1 a3 =ap=ag3=a3s =0, and azgg =1 = Py = 1.

MOI‘GOVGI‘, dg(é) = tg(é) — 1/(§2+§3) = 2, ie. §2—|—§3 = 057 dg(é) = tg(é) — 1/<§2+§3)+
1/(§3+§4+§5) = 2+1/(§3—|—§4), 1e §5 = 0; d4(§) = t4(§) — 1/(§3+§4)+1/§4 = 2+1/(§3+§4),
i.e. 54 = 0.5. Finally, since $5 = 0, we need d5(8) < t5(8) — 1/(83+84+385) < 2,i.e. §3+0.5 >
0.5, which always holds. Thus, for any § € [0,0.5], the estimator § = (0,0.5 — 4, 6,0.5,0,0)7
is the NPMLE.

The following example demonstrate that for DTIC data (2.17) is not a necessary condition
for the existence of the NPMLE although it is a weaker condition than (2.16).

Example 3

For example, for n = 2 with U; < L1 < Ry < Vi < U; < Ly < Ry < V3. In this
case, we have [qlapl] = [07 Ul]v [QQ7p2] = [L17R1]7 [Q37p3] = [‘/17U2]a [C_I4,p4] = [LQ’RQ] and
(g5, p5] = [Va,00]. In this example, a1s = a9y = 1, B1g = Pog = 1, and the rest of indicators
are equal to zero. Since ajp = 1, f12 =1, and fy2 = 0, (2.17) does not hold. For §; > 0, we
have dy(8) = 1/8y = 5(8) and dy(8) = 1/84 = t4(S). Thus, for any § € [0,1], the estimator
§=1(0,6,0,1—0,0)T is the NPMLE.

In conclusion, suppose there are K innermost sets with A,, = (), then we assign zero
probabilities on those K sets. For those innermost sets with nonempty A;, by d;(8) = t;(8),
we need to solve J — K equations as follows

1 1 1
Z—:Zm‘l- > 261 (2.18)

1€EA; i (S) 1€EA; 1€EB;—A;

where 7;(8) = 22]:1 a8 and ((8) = Z{zl Biusi. When A; = {i}, i.e. with only one element,
Case 2 will not occur under (2.17) since B; — A; # 0. If all the solutions are nonnegative,
then the solution is the NPMLE. If some of 3;’s are equal to zero, the solution is still the
NPMLE if the left-hand side of (2.18) is smaller than right-side of (2.18) for those §,’s.

2.2. Doubly-truncated Data

In this section, we consider the special case when there is no censoring, i.e. doubly
truncated data. Let (71,U1,V1),..., (T, U, V,,) denote the truncated sample, where T; =
L; = R; is the truncated failure times. Let f = (fi,...,f,) be a distribution putting
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probability f; on T;’s. The conditional nonparametric likelihood can be written as

Y bk ks
j=1 Zi:l Eiki j=1 Iy
where F; =" | fndim, Jim = lu,<t,<vi) = 1 if U; < T, <'V; and equal to zero otherwise.
Efron and Petrosian (1999) proposed a conditional NPMLE by maximizing the conditional
log likelihood [(f) = log(L4(f)), which results in the following equation:
f 1 G=1,..n) (219)
j = m m = =4 ...,n .
Zi:l JZJ/ Zm:l Jmdim

An interesting question is “ When there is no censoring, does Turnbull’s estimator reduce
to the Efron and Petrosian (1999)’s estimator ?” Intuitively, these two estimators should
be different since Turnbull’s estimator put probabilities at some innermost intervals which
differs from 7;’s. The following proposition shows that they are asymptoically equivalent to
each other.

Proposition 2. If the initial probabilities assigned at [0, Uq)] and [V{,), o0] tend to zero,
Turnbull (1976)’s estimator is asymptotically equivalent to Efron and Petrosian (1999)’s
estimator.

Proof: For doubly truncated data, since A; = {T;} (i.e. T; = E; = R;), there are n
innermost sets with a single point, i.e. ¢; = p;. Given j and p; = q], we have a;; = 1 for
some ¢ = 4; and equal to 0 for 7 # ;. Thus, when ¢; = p;, since Zm 1 ozzjmé(b - §§-b_1),

(2.7) is reduced to

A(b—1) J b—1
(0) _ A(-1) _ — i 1/BZJ 5 /[Zm 1 Pim$ gﬂ )}
Zz 1 1/|:Zm 1 imSm ]

Y

i.e.
n a(b=1 b—1
(b _ 1+ Zz’:l( _Bij> ¢ )/[ZiZ 1 Bim$ $n )}
Jo -1 .
Ez 1 1/ [Zm 1 zmsgn ):|
Notice that (2.20) differs from (2.19).

(2.20)

Furthermore, for the other innermost sets with p; < ¢;, we have «a;; = 0 for all ¢ and
(2.7) is reduced to

(b-1) (b—1)
(b) (-1 _ ZZ 1BZJ J /[Zm 1ﬁzm m :|

8;" — 3 b—1

! ’ Zz 11/[Zm11m$n )}
When ¢; < p;, since a;; = 0 for all ¢, we have d;(8) = 0 < t;(8), which implies that the mass
§; of the interval [g;, p;] should be zero unless §;; = 0 for all i. As n — oo, this can happen
only at g1, p1] = [0, U] and [gs, ps] = [V(n), 00|, and by (2.21), we have s(b) §§b‘” =0 and

(2.21)
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§l(Ib) - §f,l)_1) = 0. Thus, if the initial probabilities assigned at [0, U(y)] and [V{,), o0] tend to
zero, Turnbull (1976)’s estimator asymptotically put probabilities only at T;’s. In this case,
we have J = n + 2 and the estimator §§-b) asymptotically satisfies the following equation:
n ~(b—1 n+1 A(b—1
o LS = T8 [0 T
;=

Sy 1/ [y Timsin ] ’

which implies that
RN 1 _
55 Z‘]iiznﬂ P GOA L

i=1 m=2 JimSm

By (2.19), the proof is complete.
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Chapter 3

Concluding Remarks

In this note, for ICDT data, we have proposed verifiable conditions for Turnbull (1976)’s
estimator to be an NPMLE. We point out that when condition (2.17) does not hold, we
need to assign zero probabilities on innermost sets, which may induce the nonexistence of
the NPMLE. However, it is not a necessary condition although it is a weaker condition than
(2.16). Further research is required to establish a necessary and sufficient condition for ICDT
data.
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