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Abstract

In this note we consider nonparametric estimation with doubly truncated and interval-
censored (DTIC) data. Using standard convex optimization techniques, we proposed verifi-
able necessary conditions for Turnbull (1976)’s estimator to be a nonparametric maximum
likelihood estimator (NPMLE). We discuss the existence of the NPMLE based on conditions
proposed by Hudgens (2005).

Keywords: nonparametric maximum likelihood estimator; self-consistency algorithm; interval-
censoring; double truncation
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Chapter 1

Introduction

Doubly truncated survival data arise when event times are observed only if they occur
within subject specific intervals of times. This type of data play an important role in the
statistical analysis of astronomical observations (see Efron and Petrosian (1999), Moreira
and de Uña-Álvarez (2010), Shen (2010)) as well as in survival analysis (see Kalbfleisch and
Lawless (1989), Bilker and Wang (1996)). Let T denote the failure time of interest and U
and V denote the left-truncated and right-truncated variables. For doubly truncated data,
one observes nothing if T < U or T > V , and observes (T, U, V ) if U ≤ T ≤ V . In many
situations, the failure time is recorded in an interval [L,R]. Hence, T is subject to double
truncation and interval censoring. For doubly truncated and interval-censored (DTIC) data,
one observes nothing if T < U or T > V , and observes (L,R, U, V ) if U ≤ T ≤ V , where
[L,R] ⊂ [U, V ]. Consider the following application:

Example: CDC AIDS Blood Transfusion Data

The AIDS Blood Transfusion Data are collected by the Centers for Disease Control
(CDC), which is from a registry data base, a common source of medical data. The data were
retrospectively ascertained for all transfusion-associated AIDS cases in which the diagnosis
of AIDS occurred prior to the end of of the study, which was June 30, 1991 (τ

′
2), i.e. an

HIV-infected population of interest. The data consist of the time in month and only cases
having either one transfusion or multiple transfusions in the same calendar month were used.
Nevertheless, cases either diagnosed or reported after June 30, 1989 (τ2), were not included
(i.e. right truncated) to avoid bias resulting from reporting delay. Also, cases having the
AIDS prior to July 1, 1982 (τ1) were not included because this is when adults started being
infected by the virus from a contaminated blood transfusion. Because HIV was unknown
prior to 1982, and cases of transfusion-related AIDS before τ1 would have been missed (i.e.
left-truncated). Let τB be the calendar time (in years) of the initiating events (HIV infection),
and τD be the calendar time (in years) of AIDS onset. Let T = 12(τD − τB) (in month)
be the incubation time from HIV infection to AIDS. Let U = 12(τ1 − τB) (in month) and
V = 12(τ2 − τB) = U + d0 (in month), where d0 = 12(τ2 − τ1) = 84. Hence, T is observable
only when τ1 ≤ τD ≤ τ2 (i.e. U ≤ T ≤ V ). Assume for each individual, data is available
on a p× 1 vector of covariates, Z = [Z∗1 , . . . , Z

∗
p ]T (e.g. treatment, gender). It is important

to investigate the association between Z and survival function of T . In this article, we will
confine our attention to the situation where Z is discrete. Figure 1 highlights all the different
times for doubly truncated data described in Example 1.

For arbitrarily censored and truncated data, Turnbull (1976) provided a self-consistency
algorithm to obtain a nonparametric estimator for the distribution function of the failure
time of interest. Frydman (1994) noted that the characterization given by Turnbull involves
only censoring intervals and indicated that how Turnbull’s characterization can be easily
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Figure 1. Schematic depiction of doubly truncated data

modified to obtain the appropriate characterization when data are subject to censoring and
truncation. Alioum and Commenges (1996) identified a further refinement of the set where
the nonparametric maximum likelihood estimate (NPMLE) could put mass. For interval-
censored and left-truncated data, Hudgens (2005) proposed a graph theoretical approach to
describe the support set of the NPMLE for the cumulative distribution function. Using EM
algorithm of Turnbull (1976) and iterative convex minorant (ICM) algorithm (Groeneboom
and Wellner (1992)), Shen (2012) studied the performance of the NPMLE of the distribution
function of T . Simulation results indicate that the NPMLE performs adequately for finite
sample. When there is no truncation, asymptotic properties of the NPMLE have been
derived.(see Groeneboom and Wellner (1992), Gentleman and Geyer (1994), Yu et al. (1998a,
1998b), Shick and Yu (2000), van der Vaart and Wellner (2000), Song (2004)). However,
much less is known about the large sample properties of the NPMLE if the data are subject
to interval censoring and truncation.

In Section 2, we demonstrate that the Kuhn-Tucker conditions provide easily verifiable
necessary conditions for Turnbull (1976)’s estimator to be a NPMLE. We discuss the exis-
tence of the NPMLE based on conditions proposed by Hudgens (2005). Several examples
are given to illustrate the existence of the NPMLE. When there is no censoring, we show
that Turnbull (1976)’s estimator is asymptotically equivalent to Efron and Petrosian (1999)’s
estimator if the initial probabilities assigned at the leftmost and rightmost innermost sets
tend to zero.
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Chapter 2

The NPMLE

2.1 Interval-censored and Doubly-truncated Data

Let (L1, R1, U1, V1), . . . , (Ln, Rn, Un, Vn) denote the observed DTIC data. Notice that
P ([Li, Ri] ⊂ [Ui, Vi]) = 1. Without loss of generality, suppose the observed data are ordered
according to Li such that L1 ≤ L2 ≤ · · · ≤ Ln. Following Turnbull (1976) and Fryd-
man (1994), we consider nonparametric estimation of F (t) using the n independent pairs
{A1, B1}, . . . , {An, Bn}, where Ai = [Li, Ri] and Bi = [Ui, Vi]. Given Bi, the conditional
likelihood of F is given by

Lc(F ) =
n∏

i=1

PF (Ai)

PF (Bi)
,

where PF (R) is the probability assigned to the interval R by F . We define an NPMLE
as F̃ = argmaxF∈F{Lc(F )}, where F denotes the class of distribution functions such that
PF (∪ni=1Bi) = 1 and Lc(F ) is defined, i.e. PF (Bi) > 0 for all i = 1, . . . , n. Based on
the approach of Hudgens (2005), we define M = {M1,M2, . . . ,M3n}, where Mi = Ai for
i = 1, . . . , n, Mi = [0, Ui] for i = n + 1, . . . , 2n and Mi = [Vi,∞) for i = 2n + 1, . . . , 3n.
Thus, we can obtain innermost intervals Hj, j = 1, . . . , J , induced by M1, . . . ,M3n to be all
the disjoint intervals which are non-empty intersections of these Mi’s such that Mi ∩Hj = ∅
or Hj for all i and j. We shall assume throughout that H1, . . . , HJ are ordered and let the
endpoints of the innermost intervals Hj be qj and pj, j = 1, . . . , J , where

0 = q1 ≤ p1 ≤ q2 ≤ p2 ≤ · · · ≤ qJ ≤ pJ =∞.

Notice that the interval [qj, pj] can be constructed (see Alioum and Commenges (1999)) by
representing on the real line the elements of L = {Li : i = 1, . . . , n}∪{Vi : i = 1, . . . , n}∪{0}
and R = {Ri : i = 1, . . . , n} ∪ {Ui : i = 1, . . . , n} ∪ {∞} by left hooks and right hooks,
respectively. By going over the real line in the direct sense, the intervals [qj, pj] are intervals
opened by a left hook and closed by a right hook, and which contain no other hook. Similar to
the Lemma 1 of Hudgens (2005), we can show that any distribution function which increases
outside ∪J

j=1Hj cannot be an NPMLE of Lc(F ). Furthermore, for fixed value of PF (Hj),
by inspection of the likelihood function Lc(F ), it follows that Lc(F ) is independent of the
values of F within the region Hj. These conclusions allow us to consider maximizing the
following simpler likelihood

Lc(s) =
n∏

i=1

∑J
j=1 αijsj∑J
j=1 βijsj

, (2.2)

where s = (s1, · · · , sJ)T , sj = PF (Hj), αij = I[Hj⊂Ai], and βij = I[Hj⊂Bi]. The resulting
reduced likelihood (2.2) is exactly as described in section 2 of Alioum and Commenges
(1996). The goal is to maximize likelihood (2.2) subject to the constraints (2.3)-(2.5) as
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follows:
J∑

j=1

sj = 1, (2.3)

sj ≥ 0 (j = 1, . . . , J), (2.4)

and
J∑

j=1

αijsj > 0, (i = 1, . . . , n). (2.5)

Thus, we can limit our search to the smaller space given by constraints (2.3)-(2.5). We shall
use Ω to denote the parameter space that is given by constraints (2.3)-(2.5), i.e.

Ω = {s ∈ RJ :
J∑

j=1

sj = 1; sj ≥ 0 for j = 1, . . . , J ;
J∑

j=1

αijsj > 0 for i = 1, . . . n}.

To find the maximum likelihood estimate of the vector s, using an EM algorithm, we obtain
Turnbull’s (1976) self-consistency algorithm as follows:

s
(b)
j =

{
1 +

dj(s
(b−1))

M(s(b−1))

}
s
(b−1)
j (1 ≤ j ≤ J), (2.6)

where

dj(s
(b−1)) =

n∑
i=1

{(
αij

/ J∑
l=1

αils
(b−1)
l

)
−
(
βij

/ J∑
l=1

βils
(b−1)
l

)}
,

and

M(s(b−1)) =
n∑

i=1

1∑J
j=1 βijs

(b−1)
j

.

By (2.6), for the bth iteration, we have

ŝ
(b)
j − ŝ

(b−1)
j =

∑n
i=1 αij ŝ

(b−1)
j /

[∑J
m=1 αimŝ

(b−1)
m

]
−
∑n

i=1 βij ŝ
(b−1)
j /

[∑J
m=1 βimŝ

(b−1)
m

]∑n
i=1 1/

[∑J
m=1 βimŝ

(b−1)
m

] . (2.7)

Next, under (2.2), the log likelihood of Lc(s), denoted by l(s), is the following:

l(s) =
n∑

i=1

[
log
( J∑
j=1

αijsj
)
− log

( J∑
j=1

βijsj
)]
.

To find the maximum estimate of the vector s we maximize l(s) with respect to s subject
to constraints (2.3) and (2.4). For a concave programming problem with linear constraints,
the Kuhn-Tucker conditions (Gentleman and Geyer (1994)) are necessary and sufficient for
optimality (Rockafellar (1970), Theorem 28.1, Corollary, 28.2.2). Let ŝj (j = 1, . . . , J) denote
the estimators obtained from (2.6).
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Proposition 1.

The estimator ŝ = [ŝ1, . . . , ŝJ ]T is the local maximizer if the following conditions are
satisfied: (1)

∑J
j=1 ŝj = 1, (2) ŝj ≥ 0 (j = 1, . . . , J) and (3) dj(ŝ) = tj(ŝ) for ŝj > 0;

tj(ŝ) ≥ dj(ŝ) for ŝj = 0, where

dj(ŝ) =
n∑

i=1

αij∑J
l=1 αilŝl

and tj(ŝ) =
n∑

i=1

βij∑J
l=1 βilŝl

.

Proof: A point ŝ is the local maximizer if and only if there exists Lagrange multipliers
λj(ŝ) (j = 0, . . . , J) such that the Kuhn-Tucker conditions (2.8)-(2.12) hold, with

J∑
j=1

ŝj = 1, (2.8)

ŝj ≥ 0 (j = 1, . . . , J), (2.9)

λj(ŝ)ŝj = 0 (j = 1, . . . , J), (2.10)

λj(ŝ) ≥ 0 (j = 1, . . . , J), (2.11)

∂

∂sj

{
lc(s)+

J∑
j=1

sj(λj−λ0)
}∣∣∣∣

sj=ŝj

= dj(ŝ)−tj(ŝ)+λj(ŝ)−λ0(ŝ) = 0 (j = 1, . . . , J). (2.12)

Multiplying (2.12) by ŝj and summing yields λ0(ŝ) = n− n = 0. Hence, (2.12) is reduced to

dj(ŝ)− tj(ŝ) + λj(ŝ) = 0. (2.13)

If ŝj > 0 then (2.12) implies that λj(ŝ) = 0, and (2.13) implies that dj(ŝ) = tj(ŝ). If ŝj = 0
then (2.11) implies that λj(ŝ) ≥ 0, and (2.12) implies that tj(ŝ) ≥ dj(ŝ). Thus, for any ŝ
that satisfies conditions (1)-(3), it is the NPMLE. The proof is complete.

Given j, let Aj = {i : αij = 1} and Bj = {i : βij = 1}. Since βij = 1 implies αij = 1,
Aj ⊂ Bj. Notice that the leftmost and rightmost innermost sets are equal to [q1, p1] = [0, U(1)]
and [qJ , pJ ] = [V(n),∞], respectively, where U(1) is the smallest variable of Ui’s and V(n) is
the largest variable of Vi’s. Since B1 = BJ = ∅, we have dj(ŝ) = tj(ŝ) = 0 for j = 1, J . Thus,
condition (3) of Proposition 1 always holds and we can assign zero probabilities on these
two sets, i.e. ŝ1 = ŝJ = 0. Next, we discuss two cases when the probabilities of the other
innermost sets are equal to zero.

Case 1:

An innermost set [qj, pj] with βij = 1, αij = 0, and βi′j = 0 for all i
′ 6= i. (2.14)

If an innermost satisfies condition (2.14), then it can only be covered by one truncation set
and must has the form [Vj, Uk]. Under (2.14), Bj = {i} and Aj = ∅, i.e. αij = 0. By
dj(ŝ) = 0 < tj(ŝ), we need to assign zero probability on [qj, pj], i.e. ŝj = 0.
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Case 2:

An innermost set [qj, pj] with αij = 1, and βi′j = 0 for all i
′ 6= i. (2.15)

If an innermost satisfies condition (2.15), then it can only be covered by two sets, one
interval set and its corresponding truncation set. Under (2.15), we have Aj = Bj = {i}. By
dj(ŝ) = tj(ŝ), we need to solve the equation

∑J
l=1 αilŝl =

∑J
l=1 βilŝl. In this case, we need to

assign zero probability on [ql, pl] for any innermost set with αil = 0 and βil = 1.

Thus, the NPMLE assign zero probabilities on innermost sets when either Case 1 or Case
2 occurs. The assignment of zero probability may cause the nonexistence of the NPMLE.
Consider the following example.

Example 1

For example, for n = 3 with observations U1 < L1 < U2 < R1 < V1 < U3 < L2 <
R2 < V2 < L3 < R3 < V3, we have innermost sets [q1, p1] = [0, U1], [q2, p2] = [L1, U2],
[q3, p3] = [V1, U3], [q4, p4] = [L2, R2], [q5, p5] = [L3, R3], and [q6, p6] = [V3,∞]. In this
example, α12 = α24 = α35 = 1, β12 = β23 = β24 = β34 = β35 = 1, and the rest of indicators
are equal to zero. Since β23 = 1, βi′3 = 0 for i

′
= 1, 3, and α23 = 0, we have d3(ŝ) = 0 and

t3(ŝ) = 1/(ŝ3 + ŝ4). Thus, ŝ3 = 0. Furthermore, since β35 = β34 = 1, βi′5 = 0 for i
′

= 1, 2,
and α35 = 1, we have d5(ŝ) = 1/ŝ5 and t5(ŝ) = 1/(ŝ4 + ŝ5). Thus, ŝ4 = 0. However, since
d4(ŝ) = 1/ŝ4 and t4(ŝ) = 1/(ŝ3 + ŝ4)+1/(ŝ4 + ŝ5). Both d4(ŝ) and t4(ŝ) are infinity by setting
ŝ3 = 0 and ŝ4 = 0. Thus, the NPMLE does not exist.

For left-truncated and interval-censored (LTIC) data, Hudgens (2005, Theorem 1) pro-
posed a necessary and sufficient condition for the existence of an NPMLE, which can be
rephrased as follows:

For each non−empty proper subset S of C = {1, . . . , n}, let Sc denote the complement of S.

There exists an i ∈ Sc such that if αij = 1 then βi′j = 1 for some i
′ ∈ S. (2.16).

Let S−i be the subset of Ω with i deleted from Ω. Let Sc
−i = {i} be the complement set

of S−i. Since the only element in Sc
−i is the element i, under (2.16), the following condition

holds:
if αij = 1, then there exists an i

′ 6= i such that βi′j = 1. (2.17)

Condition (2.17) requires that given an innermost set is covered by a censoring set [Li, Ri]
then it must be covered by some truncation set [Ui

′ , Vi′ ] with i
′ 6= i. Under (2.17), Case 2

will not occur.

Hudgens (2005) pointed out that for DTIC data condition (2.16) is a sufficient condition
for the existence of the NPMLE but not a necessary condition. Hudgens (2005) illustrated
this point using the following example.
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Example 2

For example, for n = 3 with U1 = U2 < L1 < U3 < L2 < R1 < L3 < R3 < V3 <

R2 < V1 = V2. In this case, we have [q1, p1] = [0, U1], [q2, p2] = [L1, U3], [q3, p3] = [L2, R1],
[q4, p4] = [L3, R3], [q5, p5] = [V3, R2] and [q6, p6] = [V1,∞]. Although condition (2.16) is not
satisfied with the choice of S = {3}, the weaker condition (2.17) is satisfied, e.g. α12 = 1→
β22 = 1, α13 = 1 → β23 = 1, α11 = α14 = α15 = 0, α21 = α22 = 0, α23 = 1 → β13 = 1,
α24 = 1→ β14 = 1, α25 = 1→ β15 = 1, α31 = α32 = α33 = α35 = 0, and α34 = 1→ β24 = 1.

Moreover, d2(ŝ) = t2(ŝ)→ 1/(ŝ2+ ŝ3) = 2, i.e. ŝ2+ ŝ3 = 0.5; d3(ŝ) = t3(ŝ)→ 1/(ŝ2+ ŝ3)+
1/(ŝ3+ŝ4+ŝ5) = 2+1/(ŝ3+ŝ4), i.e. ŝ5 = 0; d4(ŝ) = t4(ŝ)→ 1/(ŝ3+ŝ4)+1/ŝ4 = 2+1/(ŝ3+ŝ4),
i.e. ŝ4 = 0.5. Finally, since ŝ5 = 0, we need d5(ŝ) ≤ t5(ŝ)→ 1/(ŝ3+ŝ4+ŝ5) ≤ 2, i.e. ŝ3+0.5 ≥
0.5, which always holds. Thus, for any δ ∈ [0, 0.5], the estimator ŝ = (0, 0.5− δ, δ, 0.5, 0, 0)T

is the NPMLE.

The following example demonstrate that for DTIC data (2.17) is not a necessary condition
for the existence of the NPMLE although it is a weaker condition than (2.16).

Example 3

For example, for n = 2 with U1 < L1 < R1 < V1 < U2 < L2 < R2 < V2. In this
case, we have [q1, p1] = [0, U1], [q2, p2] = [L1, R1], [q3, p3] = [V1, U2], [q4, p4] = [L2, R2] and
[q5, p5] = [V2,∞]. In this example, α12 = α24 = 1, β12 = β24 = 1, and the rest of indicators
are equal to zero. Since α12 = 1, β12 = 1, and β22 = 0, (2.17) does not hold. For ŝj > 0, we
have d2(ŝ) = 1/ŝ2 = t2(ŝ) and d4(ŝ) = 1/ŝ4 = t4(ŝ). Thus, for any δ ∈ [0, 1], the estimator
ŝ = (0, δ, 0, 1− δ, 0)T is the NPMLE.

In conclusion, suppose there are K innermost sets with Am = ∅, then we assign zero
probabilities on those K sets. For those innermost sets with nonempty Aj, by dj(ŝ) = tj(ŝ),
we need to solve J −K equations as follows∑

i∈Aj

1

ηi(ŝ)
=
∑
i∈Aj

1

ζi(ŝ)
+

∑
i∈Bj−Aj

1

ζi(ŝ)
, (2.18)

where ηi(ŝ) =
∑J

l=1 αilŝl and ζi(ŝ) =
∑J

l=1 βilŝl. When Aj = {i}, i.e. with only one element,
Case 2 will not occur under (2.17) since Bj − Aj 6= ∅. If all the solutions are nonnegative,
then the solution is the NPMLE. If some of ŝj’s are equal to zero, the solution is still the
NPMLE if the left-hand side of (2.18) is smaller than right-side of (2.18) for those ŝj’s.

2.2. Doubly-truncated Data

In this section, we consider the special case when there is no censoring, i.e. doubly
truncated data. Let (T1, U1, V1), . . . , (Tn, Un, Vn) denote the truncated sample, where Ti =
Li = Ri is the truncated failure times. Let f = (f1, . . . , fn) be a distribution putting
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probability fi on Ti’s. The conditional nonparametric likelihood can be written as

L1(f) =
n∏

j=1

fjkj∑n
i=1 Fiki

=
n∏

j=1

fj
Fj

,

where Fi =
∑n

m=1 fmJim, Jim = I[Ui≤Tm≤Vi] = 1 if Ui ≤ Tm ≤ Vi and equal to zero otherwise.
Efron and Petrosian (1999) proposed a conditional NPMLE by maximizing the conditional
log likelihood l(f) = log(L1(f)), which results in the following equation:

f̂j =
1∑n

i=1 Jij/
∑n

m=1 f̂mJim
. (j = 1, . . . , n) (2.19)

An interesting question is “ When there is no censoring, does Turnbull’s estimator reduce
to the Efron and Petrosian (1999)’s estimator ?” Intuitively, these two estimators should
be different since Turnbull’s estimator put probabilities at some innermost intervals which
differs from Ti’s. The following proposition shows that they are asymptoically equivalent to
each other.

Proposition 2. If the initial probabilities assigned at [0, U(1)] and [V(n),∞] tend to zero,
Turnbull (1976)’s estimator is asymptotically equivalent to Efron and Petrosian (1999)’s
estimator.

Proof: For doubly truncated data, since Ai = {Ti} (i.e. Ti = Ei = Ri), there are n
innermost sets with a single point, i.e. qj = pj. Given j and pj = qj, we have αij = 1 for

some i = ij and equal to 0 for i 6= ij. Thus, when qj = pj, since
∑J

m=1 αijmŝ
(b−1)
m = ŝ

(b−1)
j ,

(2.7) is reduced to

ŝ
(b)
j − ŝ

(b−1)
j =

1−
∑n

i=1 βij ŝ
(b−1)
j /

[∑J
m=1 βimŝ

(b−1)
m

]∑n
i=1 1/

[∑J
m=1 βimŝ

(b−1)
m

] ,

i.e.

ŝ
(b)
j =

1 +
∑n

i=1(1− βij)ŝ
(b−1)
j /

[∑J
m=1 βimŝ

(b−1)
m

]∑n
i=1 1/

[∑J
m=1 βimŝ

(b−1)
m

] . (2.20)

Notice that (2.20) differs from (2.19).

Furthermore, for the other innermost sets with pj < qj, we have αij = 0 for all i and
(2.7) is reduced to

ŝ
(b)
j − ŝ

(b−1)
j =

−
∑n

i=1 βij ŝ
(b−1)
j /

[∑J
m=1 βimŝ

(b−1)
m

]∑n
i=1 1/

[∑J
m=1 βimŝ

(b−1)
m

] . (2.21)

When qj < pj, since αij = 0 for all i, we have dj(ŝ) = 0 ≤ tj(ŝ), which implies that the mass
ŝj of the interval [qj, pj] should be zero unless βij = 0 for all i. As n→∞, this can happen

only at [q1, p1] = [0, U(1)] and [qJ , pJ ] = [V(n),∞], and by (2.21), we have ŝ
(b)
1 − ŝ

(b−1)
1 = 0 and



12

ŝ
(b)
J − ŝ

(b−1)
J = 0. Thus, if the initial probabilities assigned at [0, U(1)] and [V(n),∞] tend to

zero, Turnbull (1976)’s estimator asymptotically put probabilities only at Ti’s. In this case,

we have J = n+ 2 and the estimator ŝ
(b)
j asymptotically satisfies the following equation:

ŝ
(b)
j =

1 +
∑n

i=1(1− Jij)ŝ
(b−1)
j /

[∑n+1
m=2 Jimŝ

(b−1)
m

]∑n
i=1 1/

[∑n+1
m=2 Jimŝ

(b−1)
m

] ,

which implies that

ŝ
(b−1)
j

n∑
i=1

Jij
1∑n+1

m=2 Jimŝ
(b−1)
m

= 1.

By (2.19), the proof is complete.
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Chapter 3

Concluding Remarks

In this note, for ICDT data, we have proposed verifiable conditions for Turnbull (1976)’s
estimator to be an NPMLE. We point out that when condition (2.17) does not hold, we
need to assign zero probabilities on innermost sets, which may induce the nonexistence of
the NPMLE. However, it is not a necessary condition although it is a weaker condition than
(2.16). Further research is required to establish a necessary and sufficient condition for ICDT
data.
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