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Abstract

In this article, we consider estimation of Aalen’s nonparametric regression coefficients
when data is subject to double censoring. We propose two estimation techniques. The first
type of estimators, including ordinary least squared (OLS) estimator and weighted least
squared (WLS) estimators, are obtained using martingale arguments. The second type of
estimator, called the maximum likelihood (ML) estimator, is obtained via EM algorithm that
treat the survival times of left censored observations as missing. Simulation study indicated
the ML estimate is more efficient than both OLS and WLS estimators.

Keywords: Additive model; Martingale; EM algorithm.;
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Figure 1. Schematic depiction of doubly censored data described in Example 1

Chapter 1

Introduction

In survival or reliability studies, the observed data is typically censored. Left-censoring
and right censoring together naturally occur in doubly censored data. Double censoring
arises when T represents an outcome variable that can only be accurately measured within a
certain range, [L,U ], where L and U are the left- and right-censoring variables, respectively.
In some case, L is always observed. Consider the following applications.

Example 1: Follow-up Studies

In early childhood learning centers, interest often focuses upon determining when a child
learns to accomplish certain tasks. Consider a follow-up study (from calendar time τ to τ ∗)
for determining the ages T at which a child first develops the skill to accomplish certain task.
Let τB and τD denote the birth date and the date of developing the skill. Let L = τ − τB
denote the child’s age at entry and U = min(U1, U2), where U1 = τ ∗ − τB denotes the
child’s age at the termination of the program and U2 denotes the child’s age when he or
she is lost to follow-up. One can observe T = τD − τB if the child develops the skill to
accomplish the task after entering the program, i.e. L ≤ T ≤ U . However, for some children
in the program, the development may have been completed before entry, i.e. T < L (left-
censoring). Furthermore, a child may drop out or has not developed the skill by the time of
the termination of the program, i.e. U < T (right-censoring). Since the age at entry (i.e. L)
is always observed, we observe a vector (X, δ, L), where X = min(U,max(L, T )), and δ = 1
if X = T , δ = 2, if X = U , and δ = 3, if X = L. Figure 1 highlights all the different times
for doubly censored data as described in Example 1.

Assume for each individual, data is available on time-dependent covariates Z(t). Suppose
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one is interested in investigating the relationship between T and Z(t). Assume that T , L
and U are continuous. Further, assume that given Z(t), T and (L,U) are independent of
each other but L and U are dependent with P (L ≤ U) = 1. Suppose that the left and right
endpoints of T , U , and L are independent of Z(t). Let aF and bF denote the left and right
support of T , and similarly, define (aG, bG) and (aQ, bQ) as the left and right support of L
and U , respectively. Throughout this article, for identifiability of S(t|Z(t)) = P (T > |Z(t)),
we assume that aG ≤ aF ≤ aQ.

Cox’s proportional hazards model (1972) has so far been the most popular model for
the regression analysis of censored survival data. Kim et al. (2010) derived the asymp-
totic properties of the maximum likelihood estimator for the Cox’s proportional hazards
model with doubly censored data. Furthermore, Kim et al. (2013) proposed an EM algo-
rithm for estimating parameters in the Cox’s proportional hazard model. Using martingale
arguments of Chen et al. (2002), Shen (2011) propose an estimator (denoted by β̃) for es-
timating regression coefficients of transformation model when L is always observed. Under
Cox proportional hazards model, the proposed estimator is equivalent to the partial likeli-
hood estimator for left-truncated and right-censored data if the left-censoring variables L
were regarded as left-truncated variables (see Pan and Chappell (2002)). When L and U
are always observed, Cai and Cheng (2004) proposed an alternative estimator under trans-
formation with doubly censored data. Notice that the transformation model can be written
as S(t|Z(t)) = g{h(t) +βTZ(t)}, where the continuous, strictly decreasing link function g(·)
is given, h(·) is a completely unspecified strictly increasing function satisfying h(aF ) = −∞,
and β is a (p+ 1)× 1 vector of unknown regression coefficients. One disadvantage of trans-
formation model is that it does not allow time-varying coefficients. A useful and flexible
alternative to the transformation model is the Aalen’s additive risk model (Aalen (1980,
1989, 1993), McKeague (1988); and Huffer and McKeague (1991)). The model is useful to
deal with time-varying covariate effects in a simple manner, and it is important to know the
temporal effects of the covariates on the time of interest.

Let (Li, Xi, δi, Zi(t)) (i = 1, . . . , n) denote the observed sample, where Zi(t) = [1, z1i(t), . . . , zpi(t)]
T

is a (p+ 1)× 1 vector of covariate for individual i. The additive risk model assumes that for
individual i, the conditional hazard function at time t, given Zi(t), is

λ(t|Zi(t)) = Zi(t)
Tβ(t), (1.1)

where t ∈ [aF , bF ], β(t) = [β0(t), β1(t), . . . , βp(t)]
T is a (p+1)×1 vector of regression function,

which are assumed to satisfy ∫ bQ

aG

βi(s)ds <∞, i = 0, . . . , p.

In Section 2, we propose two estimation techniques for estimating

B(t) = [B0(t), B1(t), . . . , Bp(t)]
T =

∫ t

0

β(s)ds.
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The first type of estimators, including ordinary least squared (OLS) estimator and weighted
least squared (WLS) estimators, are obtained using martingale arguments. The martingale
approach are the same as those used in Shen (2014), where left-truncated and right-censored
(LTRC) data are analyzed using Aalen’s linear model. Furthermore, using the approach of
Kim et al. (2013), we propose the second type of estimator, called the maximum likelihood
(ML) estimator. The ML estimator is obtained via EM algorithm that treat the survival
times of left censored observations as missing. In Section 3, a simulation study is conducted
to investigate the performance of the two types of estimators.
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Chapter 2

The Proposed Estimators

2.1 The OLS and WLS estimators

Let Yi(t) = I[Li<t≤Xi] and Ni(t) = I[Xi≤t,δi=1]. Let Ft denote the complete σ-field gen-

erated by {Li, Zi(x), Yi(x), Ni(x);x ≤ t}. Let Mi(t) = Ni(t) −
∫ t

0
Yi(s)Zi(s)

Tβ(s)ds. Under
model (1.1), we have

E[dNi(t)|Zi(t),Ft−] = P (t ≤ Ti < t+ dt, δi = 1|Zi(t),Ft−)

= P (t ≤ Ti < t+ dt, Li < t ≤ Ui|Zi(t),Ft−) = Yi(t)Z
T
i (t)β(t),

it follows thatMi(t) is a martingale process with respect to Ft. LetR(t) = [R1(t), . . . , Rn(t)]T

be a n × (p + 1) matrix, where Ri(t) = [Yi(t), Yi(t)z1i(t), . . . , Yi(t)zpi(t)]
T is a (p + 1) × 1

vector. Let N(t) = [N1(t), . . . , Nn(t)]T be a n × 1 vector, where Ni(t) = I[Xi≤t,δi=1]. Then

M(t) = N(t) −
∫ t

0
R(u)β(u)du is a n × 1 vector of martingales. Thus, for doubly censored

data, the following ordinary least squared (OLS) estimating function can be used for the
estimation of B(t) (see Aalen 1980):

B̂(t) =
∑
Xi≤t

R−(Xi)N(dXi) = (B̂0(t), B̂1(t), . . . , B̂p(t))
T ,

where N(dXi) = N(Xi)−N(Xi−) and R−(Xi) = [R(Xi)
TR(Xi)]

−1R(Xi)
T is a generalized

inverse of R(Xi). Under the assumptions that (a) aG ≤ aF ≤ bQ, (b) Zi(t) is bounded for
t ∈ [aF , bF ] and the limit of n−1R(t)TR(t) is nonsingular, it follows by Aalen (1980) that
B̂(t)−B(t) coincides in probability, as n→∞, with the (p+ 1)-variate martingale M̃(t) =∫ t
aF
R−(u)dM(u). The predictable covariation process 〈M̃〉(t) =

∫ t
aF
R−(u)[Diag H(u)][R−(u)]Tdu,

where Diag H(u) is the n × n diagonal matrix with (i, i)th element Zi(u)Tβ(u)Yi(u). The
variance 〈M̃〉(t) can be estimated by Σ̂(t) =

∫ t
aF
R−(u)[Diag dN(u)][R−(u)]Tdu, where

Diag dN(u) is the n×n diagonal matrix with (i, i)th element dNi(u). Hence,
√
n(B̂(t)−B(t))

converges in distribution to a zero-mean Gaussian process and a pointwise 100(1−α)% confi-
dence intervals for Bj(t) (j = 0, . . . , p) can be calculated using the formula B̂j(t)± zα/2σ̂j(t),
j = 1, . . . , p, where zα/2 is the upper α/2 quantile of the standard normal, B̂j(t) (j = 0, . . . , p)

is the jth cumulative regression function of the OLS estimator B̂(t), and σ̂2
j (t) is the jth di-

agonal entry of the covariance matrix Σ̂.

For right censored data, to obtain a more efficient estimator, Huffer and McKeague (1991)
and McKeague (1988) considered a weighted least-squared generalized inverse R−w(u) =
[R(u)TW (u)R(u)]−1R(u)TW (u), where W (u) is an n × n diagonal matrix taken to have
the (j, j)th element, Wjj(u), proportional to the inverse of the variance of dMi(t). A kernel-
smoothed estimator of βj(t) is needed for estimating the variance of dMi(t), which is given
by λ(t|Zi(t)) = Zi(t)

Tβ(t). We consider a two-step estimation procedure as follows.
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The first step:

Using B̂(u), a kernel-smoothed estimator of βj(t) is given by

β̂j(t) =

∫ bF

aF

1

hn
K

(
t− u
hn

)
dB̂j(u),

where K(·) is a left-continuous function on (0, 1] with
∫

(0,1]
K(u)du = 1 and hn is a positive

bandwidth parameter that tends to 0 as n→∞.

The second step:

The estimators β̂j(u) (j = 1, . . . , p) are used to estimate the weight function Wjj(u) =
[λj(u|Zj(u))]−1 by Ŵjj(u) = [β̂0(u) +

∑p
j=1 zji(u)β̂j(u)]−1. These weights are then used to

compute R̂−w(u) = [R(u)T Ŵ (u)R(u)]−1R(u)T Ŵ (u), where Ŵ (u) is the diagonal matrix with
(j, j)th element, Ŵjj(u).

Thus, for doubly censored data, we obtain the following weighted least squared (WLS)
estimator:

B̂w(t) =
∑
Xi≤t

R̂−w(Xi)N(dXi) = (B̂w0(t), B̂w1(t), . . . , B̂wp(t))
T .

By Theorem 4.1.2 of Ramlau-Hansen (1983), if hn → 0 and nhn → ∞, then the smoothed
least squared β̂j(u) is uniformly consistent over [hn, bF ]. It follows that the estimated matrix
Ŵ (u) is a uniformly consistent estimator of the true weight W (u) with (j, j)th element
Wjj(u) = [β0(u) +

∑p
j=1 zjiβj(u)]−1 over [hn, bF ]. Under the assumption that the limit of

n−1R(t)T Ŵ (t)R(t) is nonsingular, it follows by Aalen (1980) that B̂w(t)−B(t) coincides in
probability, as n → ∞, with the (p + 1)-variate martingale M̃w(t) =

∫ t
aF
R−w(Xi)dMw(u).

The predictable covariation process 〈M̃w〉(t) =
∫ t
aF
R−w(u)[Diag H(u)][R−w(u)]Tdu, which can

be estimated by Σ̂w(t) =
∫ t
aF
R̂−w(u)[Diag dN(u)][R̂−w(u)]Tdu. Thus, pointwise 100(1 − α)%

confidence intervals for Bj(t) can be calculated using the formula B̂wj(t)± zα/2σ̂wj(t), where

B̂wj(t) (j = 0, . . . , p) is the jth cumulative regression function of the OLS estimator B̂w(t),
and σ̂2

wj(t) is the jth diagonal entry of the covariance matrix Σ̂w.

Similar to the approach of Shen (2014), we choose bandwidth using the integrated square
error (ISE) for an estimator β̂j(t), which is defined as

ISE(β̂j) =

∫ t2

t1

(β̂j(s)− βj(s))2ds

=

∫ t2

t1

(β̂j(s))
2dt− 2

∫ t2

t1

β̂j(s)βj(s)ds+

∫ t2

t1

(βj(s))
2dt, (2.1)

where [t1, t2] ⊂ [aF , bF ]. Since the last term of (2.1) does not depend on bandwidth or kernel
function selected for β̂j(s), the ISE is proportional to

Uj(hn) =

∫ t2

t1

(β̂j(s)− βj(s))2ds
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=

∫ t2

t1

(β̂j(s))
2ds− 2

∫ t2

t1

∫ bF

aF

1

hn
K

(
t− u
hn

)
I[u6=t]dB̂j(u)dBj(s)

' Ûj(hn) =

∫ t2

t1

(β̂j(s))
2ds− 2

∫ t2

t1

∫ bF

aF

1

hn
K

(
t− u
hn

)
I[u6=t]dB̂j(u)dB̂j(s).

To minimize Ûj(hn), we need to specify lower and upper bound for hn, between which we
can identify the value that minimize Ûj(hn).

2.2 The ML Estimator

In Section 2.1, the proposed based estimators OLS and WLS are based on martingale
process, which requires that L is always observed. Furthermore, they may have the dis-
advantage of less efficiency compared with ML approach. This argument is explained as
follows.

Under model (1.1), the likelihood function is given by

L(β) =
n∏
i=1

[λ(Xi|Zi(t))]I[δi=1]

[
e−

∫Xi
0 λ(u|Zi(u))du

]I[δi 6=3]
[
1− e−

∫Xi
0 λ(u|Zi(u))du

]I[δi=3]

.

Given Li’s, the conditional likelihood for the observations with δi 6= 3 is given by

LC(β) =
∏
δi 6=3

[λ(Xi|Zi(t))]I[δi=1]

[
e−

∫Xi
Li

λ(u|Zi(u))du

]I[δi 6=3]

.

Then, by Greenwood and Wefelmeyer (1990, 1991) and Sasieni (1992), consider a one-
dimensional parametric submodel with β(t) = αη(t) and dαη(t)/dη = a(t) = (a1(t), . . . , ap(t))

T

so that ∂ log λ(Xi|Zi(t))/∂η = Zi(t)
Ta(t)/λi(t|Zi(t)) = wi(t|Zi(t)). The score function by

differentiating the conditional log likelihood of LC with respect to η is given by

l̇c(η) =
∑
δi 6=3

{∫ bF

aF

a(t)TZi(t)

λi(t|Zi(t))
dNi(t)−

∫ bF

aF

I[Li<t≤Xi]
a(t)TZT

i (t)

λi(t|Zi(t))
ZT
i (t)dB(t)

}

=

∫ bF

aF

∑
δi 6=3

wi(t|Zi(t))dMi(t).

Setting l̇c(η) = 0 and solving for B(t), say B̂c(t), we obtain∫ bF

aF

aT (t)
∑
δi 6=3

Zi(t)

λi(t)|Zi(t))
dNi(t) =

∫ bF

aF

aT (t)
∑
δi 6=3

I[Li<t≤Xi]
Zi(t)Z

T
i (t)

λi(t)|Zi(t))
dB̂c(t)

for all such a(t). Let R−w(u) = [R(u)TW (u)R(u)]−1R(u)TW (u). Substituting B̂c(t) =∑
Xi≤tR

−
w(Xi)N(dXi) into above equation gives a solution for any vector of function a(t).

However, B̂c(t) is not an estimator since W (u) is unknown. Replacing W (t) by Ŵ (t), one is
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led to consider the WLS estimator B̂w(t). Thus, the WLS estimator is not efficient since it
is an approximate conditional maximum likelihood type estimator.

In this section, using empirical likelihood, we consider an alternative approach for esti-
mating B(t). This approach has the advantage that it does not requires that the left censored
variable L is always observed. To construct an empirical likelihood for the Aalen’s model,
we first discretize the function B(t) by assuming that B(t) has jump only at times in the
set S, where S consists of all Xi with δi = 1 and X(1), the smallest order statistic among
X1, . . . , Xn, if X(1) is left censored. The reason for the choice of S is that maximum em-
pirical likelihood (ML) estimator without a covariate becomes the self-consistent estimator
(Mykland and Ren (1996)). Let t1 < t2 · · · < td denote the distinct point in the set S. Let
Λ(t|b;Zi(t)) =

∑d
k=1 I[tk≤t]Zi(tk)

TdB(tk) and ∆Λ(t|b;Zi(t)) = Λ(t|b;Zi(t))− Λ(t− |b;Zi(t)),
where b = (b(t1), . . . , b(td))

T , b(tk) = dB(tk) = (dB0(tk), dB1(tk), . . . , dBp(tk))
T . Then an

empirical likelihood is given by

L(b) =
n∏
i=1

[∆Λ(Xi|b;Zi(Xi)) exp{−Λ(Xi|b;Zi(Xi))}]I[δi=1]

[exp{−Λ(Xi|b;Zi(Xi))}]I[δi=2] [1− exp{(−Λ(Xi|b;Zi(Xi))}]I[δi=3] ,

and the log empirical likelihood becomes

l(b) =
n∑
i=1

I[δi=1][log(∆Λ(Xi|b;Zi(Xi))− Λ(Xi|b;Zi(Xi))]

−
n∑
i=1

I[δi=2]Λ(Xi|b;Zi(Xi)) +
n∑
i=1

I[δi=3][log(1− exp{(−Λ(Xi|b;Zi(Xi))}].

The ML estimator of b can be obtained by maximizing the empirical likelihood l(b) with
respect to bj under the constraint ∆Λ(t|dB;Zi(t)) ≥ 0 for t ∈ S. However, one may encounter
computational difficulties since the number of parameters maximized is proportional to the
number of uncensored observations which can be huge when the sample size n is large. Hence,
using the approach of Kim et al. (2013), we consider an alternative approach, namely EM
algorithm, for obtaining ML of b. The main idea of the EM algorithm is to treat the survival
times of left censored observations as missing. Notice that the empirical likelihood implies
that given Xi, δi = 3 and Zi(t) (t ≤ Xi) the conditional distribution of the unobserved
lifetime, say Ti, is discrete having mass on {tk : tk ≤ Xi} and

P (Ti = tk|Xi, δi = 3, b) =
pi(tk; b)∑
tl≤Xi pi(tl; b)

, (2.2)

where pi(tj; b) = ∆Λ(tk|b;Zi(tk)) exp{−Λ(tk|b;Zi(tk))}. Define X̃i = Xi if δi = 1 or 2 and
X̃i = Ti if δi = 3. Similarly, let δ̃i = δi if δi = 1 or 2 and δ̃i = 1 if δi = 3. For subject i,
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define ∆Nik = I[X̃i=tk,δ̃i=1] and Yik = I[X̃i≥tk]. If Ti were observed then the complete empirical

likelihood based on (X̃i, δ̃i) (i = 1, . . . , n) is given by

Lc(b) =
n∏
i=1

d∏
k=1

[∆Λ(tk|b;Zi(tk))]∆Nik exp{−YikΛ(tj|b;Zi(tk))},

and the corresponding log empirical likelihood becomes

lc(b) =
n∑
i=1

d∑
k=1

{∆Nik[log(∆Λ(tk|b;Zi(tk))]− YikΛ(tk|b;Zi(tk))}.

E-step:

Define D = {(X1, δ1), · · · , (Xn, δn)}. The E-step is to calculate

lE(b) = EN,Y [lc(b)|D, b(m))] =
n∑
i=1

d∑
k=1

{EN,Y [∆Nik|D, b(m)][log(∆Λ(tk|b(m);Zi(tk))]

−EN,Y [Yik|D, b(m)]Λ(tk|b(m), Zi(tk))},

where EN,Y [·|D, b(m)] is the conditional expectation of Nik’s and Yik’s given the data and the

mth iteration parameter values b(m) = (b(m)(t1), . . . , b(m)(td))
T , b(m)(tk) = (dB

(m)
0 (tk), dB

(m)
1 (tk), . . . , dB

(m)
p (tk))

T .
For δi = 1, both Nik and Yik are known and hence no expectation is needed. For δi = 3, the
conditional expectation (2.2) implies that

eik = EN,Y [∆Nik|D, b(m)] =
pik(b

(m))∑
tl≤Xi pil(b

(m))
for tk ≤ Xi,

and eik = 0 for tk > Xi, where

pik(b
(m)) = ∆Λ(tk|b(m);Zi(tk)) exp{−Λ(tk|b(m);Zi(tk))}.

Similarly, we have

rik = EN,Y [Yik|D, b(m)] = 1−
k−1∑
l=1

eik

for δi = 3 and tk ≤ Xi, and rik = 0 for tk > Xi.

M-step:

The M-step updates the parameter values b(m) by b(m+1) which maximizes lE(b). Next,
we explain how to obtain b(m+1).
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Let eik = ∆Nik and rik = Yik for δi = 1 or δi = 2. Let Ỹi(t) =
∑

tk≥t rik, Ñi(t) =∑
tk≤t eik, R̃i(t) = [Ỹi(t), Ỹi(t)z1i(t), . . . , Ỹi(t)zpi(t)]

T , and a Ñ(t) = [Ñ1(t), . . . , Ñn(t)]T . Us-

ing B(m)(u) =
∑

tk≤u b
(m)(tk), a kernel-smoothed estimator of β

(m)
j (t) is given by

β
(m)
j (t) =

∫ bF

aF

1

hn
K

(
t− u
hn

)
dB

(m)
j (u).

Let (R
(m)
w (u))− = [R(u)TW (m)(u)R(u)]−1R(u)TW (m)(u), where W (m)(u) is an n×n diagonal

matrix taken to have the (j, j)th element, W
(m)
jj (u) = [β

(m)
0 (u) +

∑p
j=1 zjiβ

(m)
j (u)]−1. Then,

by Greenwood and Wefelmeyer (1990, 1991) and Sasieni (1992), an approximate maximum
likelihood estimate B(m+1) is given by

B(m+1)(t) =
∑
Xi≤t

(R̃(m)
w (tk))

−Ñ(dtk).

Based on B(m+1), a kernel-smoothed estimator of b(m+1)(t) is given by

b(m+1)(t) =

∫ bF

aF

1

hn
K

(
t− u
hn

)
dB

(m+1)
j (u).

Let b̂M = (b̂M(t1), . . . , b̂M(td))
T denote the converged estimator using EM algorithm,

where b̂M(tk) = (b̂M0(tk), b̂M1(tk), . . . , b̂Mp(tk))
T .
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Chapter 3

Simulation Studies

A simulation study is conducted to compare the performance of B̂j(t), B̂wj(t) and B̂Mj(t).
We consider the simulation model λ(t|z1i) = 1 + zT1iβ1(t), where β1(t) = t and z1i’s are
generated from discrete distribution with P (z1i = j) = 0.25 for j = 1, 2, 3, 4. The left
censoring time L is independent of the failure time and exponentially distributed with pa-
rameter θL = 2, 4, 8 (mean=1/θL). The right censoring variable U was generated from L+1.
Sample size is set at 100 and 200. The optimum bandwidth hn is selected from the grid
{0.15, 0.2, 0.25, 0.3, 0.35, 0.4} by minimizing Ûj(hn), where we set [t1, t2] = [T(1), T(nd)], T(1)

and T(nd) is the smallest and largest uncensored observation of Xi’s, respectively. Sample
size is set at 100 and 300. The replication time is 1000. Tables 1 and 2 shows the mean
average biases (bias) over all simulation runs and empirical root mean squared errors (rmse)
of B̂i(tp), B̂wi(tp) and B̂Mi(tp) at p = 0.25, 0.75. Table 1 also shows the ratio (denoted by
ratio) of the simulated root mean squared error (rmse) of B̂Mi to that of B̂wi.

Table 1. Simulated biases and rmse of B̂0(tp), B̂w0(tp) and B̂M0(tp)

B̂0(tp) B̂w0(tp) B̂M0(tp)
θL p n hn pL pR bias rmse bias rmse bias rmse ratio
2 0.25 100 0.30 0.43 0.13 0.018 0.404 0.019 0.395 0.012 0.387 0.98
2 0.25 300 0.25 0.43 0.13 0.009 0.205 0.007 0.203 0.005 0.196 0.97
2 0.75 100 0.30 0.43 0.13 -0.094 0.653 -0.085 0.643 -0.045 0.631 0.98
2 0.75 300 0.25 0.43 0.13 -0.037 0.293 -0.013 0.288 -0.010 0.280 0.97
4 0.25 100 0.25 0.25 0.17 -0.019 0.320 -0.016 0.316 -0.012 0.307 0.97
4 0.25 300 0.20 0.25 0.17 -0.016 0.214 -0.012 0.209 -0.005 0.198 0.95
4 0.75 100 0.30 0.25 0.17 -0.067 0.441 -0.056 0.430 -0.031 0.413 0.96
4 0.75 300 0.25 0.25 0.17 -0.014 0.270 0.008 0.261 -0.007 0.249 0.95
8 0.25 100 0.25 0.13 0.22 -0.007 0.244 -0.008 0.238 0.013 0.226 0.95
8 0.25 300 0.20 0.13 0.22 -0.005 0.164 -0.006 0.162 0.007 0.151 0.93
8 0.75 100 0.30 0.13 0.22 -0.022 0.461 -0.016 0.453 0.018 0.437 0.96
8 0.75 300 0.25 0.13 0.22 -0.015 0.215 0.006 0.206 0.010 0.193 0.94
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Table 2. Simulated biases and rmse of B̂1(tp), B̂w1(tp) and B̂M1(tp)

B̂1(tp) B̂w1(tp) B̂M1(tp)
θL p n hn pL pR bias rmse bias rmse bias rmse ratio
2 0.25 100 0.30 0.43 0.13 -0.014 0.168 -0.015 0.162 -0.019 0.155 0.97
2 0.25 300 0.25 0.43 0.13 -0.006 0.079 -0.006 0.077 -0.009 0.074 0.96
2 0.75 100 0.30 0.43 0.13 0.024 0.278 0.021 0.270 -0.017 0.265 0.98
2 0.75 300 0.25 0.43 0.13 -0.005 0.119 0.001 0.117 -0.006 0.114 0.97
4 0.25 100 0.25 0.25 0.17 -0.015 0.131 0.010 0.127 0.014 0.120 0.94
4 0.25 300 0.20 0.25 0.17 -0.011 0.075 0.007 0.075 0.006 0.071 0.95
4 0.75 100 0.30 0.25 0.17 0.016 0.206 0.012 0.200 0.010 0.193 0.97
4 0.75 300 0.25 0.25 0.17 -0.002 0.125 -0.005 0.122 0.004 0.116 0.95
8 0.25 100 0.25 0.13 0.22 -0.007 0.122 0.008 0.118 0.007 0.112 0.95
8 0.25 300 0.20 0.13 0.22 -0.005 0.066 0.002 0.062 0.002 0.057 0.92
8 0.75 100 0.30 0.13 0.22 0.008 0.207 0.007 0.205 0.011 0.194 0.95
8 0.75 300 0.25 0.13 0.22 0.005 0.095 0.002 0.091 0.006 0.085 0.93

Based on the results of Tables 1 and 2, we have the following conclusions:

(1) For the estimation of Bi(t), the standard deviations of all the three estimators increase
as the proportion of censoring (i.e. pL + pR) increases. The optimum bandwidth decreases
as sample size increases.

(2) In term of rmse, the ML estimator B̂Mi(t) outperforms both B̂wi(t) and B̂i(t). The ratio
of the simulated rmse of B̂Mi to that of B̂wi ranges from 0.92 to 0.98.

(3) Although the WLS estimator is superior to the OLS estimator, we encountered moderate
gain in efficiency when n = 100. Bandwidth selection using the ISE scheme appears to have
some room for improvement.

Chapter 4

Conclusions

In this article, for doubly censored data, we have considered three estimators, namely,
the OLS, WLS and ML estimators. For doubly censored data, we pointed out that the WLS
estimator is an approximate conditional maximum likelihood type estimator. Simulation
results indicate that the ML estimator performs better than OLS and WLS estimators.
Further research is needed in establishing the asymptotic distribution of the ML estimator.
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