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Abstract

Recurrent event data frequently arise in longitudinal studies. In many applications,
subjects may experience two different types of events alternatively over time or a pair of
subjects may experience recurrent events of the same type. In this article, using the inverse-
probability weighted (IPW) approach, we propose nonparametric estimators for the joint
distribution functions of bivariate recurrence times. The asymptotic properties of the IPW
are established under independent censoring. A simulation study is conducted to investigate

the performance of the proposed estimators.
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Chapter 1

1. Introduction

Recurrent event data are frequently encountered in longitudinal studies. For the analysis
of recurrent event data, two different time scales are employed in the literature: the times
since entering the study and the times since last event. For the first type of time scale, many
statistical methods have been developed, such as Prentice et al. (1981), Andersen and Gill
(1982), Pepe and Cai (1993), Huang and Louis (1998), Wang and Wells (1998), Lin et al.
(1999, 2000), and Wang et al. (2001). The methodology considered by these authors are
based on formulation of either the intensity function or the occurrence rate function of the
underlying event process.

When the time between consecutive events (gap time) is used for study, the stochastic
ordering structure of recurrent events poses problems for statistical analysis, such as induced
censoring and sampling biases. Recently, various statistical methods have been proposed for
analysis of recurrent gap time data. Under the identically independent distributed (i.i.d.)
assumptions of gap times, Pena et al. (2000) showed that the generalized Kaplan-Meier
(1958) estimator is the nonparametric maximum likelihood estimator (NPMLE) of the sur-
vival function of the univariate recurrence time. Using the extended risk methods, Wang
and Chang (1999) proposed an estimator in the case where within-unit interoccurrence times
are correlated.

In many applications, bivariate recurrent event data can arise. Consider the following
applications.



Case 1

The subjects experience two different types of events alternately over time. For example,
in psychiatric study, a patient with schizophrenia could be repeatedly admitted into and
discharged from a hospital. In a reliability study, a mechanical system can alternate between
periods of use and repair.

Case 2

A pair of study subjects can experience repeated occurrences of certain diseases. For example,
in a genetic study, each twin (or a parent/child) may experience repeated occurrences of
certain diseases.

The analysis of bivariate recurrent event data plays an important role in estimating
the association within bivariate recurrent events and provide a basis of model building. In
literature, many methods have been developed to estimate multivariate distribution when
events are of different types, e.g. Visser (1996), Huang and Louis (1998), Wang and Wells
(1998) and Lin et al. (1999). Although these methods can be applied to bivariate recurrent
event data, they are inefficient since only the first pair of recurrence times are used.

For data from case 1, Huang and Wang (2005) proposed a class of nonparametric esti-
mators for bivariate distribution of recurrence times by combing techniques for univariate
recurrent event data and techniques for bivariate gap times data. In Section 2, using the
inverse-probability weighted (IPW) approach, we propose an alternative nonparametric es-
timator for data from case 1. We also propose an IPW estimator for data from case 2. The
asymptotic properties of the proposed estimator are established. In Section 3, a simulation
study is conducted to investigate the performance of the proposed estimators.



Chapter 2

2. The Proposed Estimators
2.1. Method for Case 1

Suppose that a sequence of bivariate event is to be observed in a follow-up study. Let
(Tj1, T;j2) denote the bivariate recurrence time from the (5 — 1) to j* event for the "
pair. Let (C;) denote the pair of censoring times, i.e. the times between the initial event to
the end of follow-up. The bivariate recurrent event process N; = {(Tij1, Lij2) 1 j = 1,2,...}
is subject to right censoring. Assume that subjects are sampled independently and

(A.1): There exists a latent variable Z; such that conditional on Z;, the bivariate random
vectors (Tij1, Tije),7 = 1,2..., are i.id;

(A.2): The censoring time C; is independent of (Z;, N;).

Notice that the recurrence times 7;;; and 7;j, are allowed to be correlated conditional on
Z;. Let F(tq,t3) denote the joint distribution of 7};; and T}, i.e.

F(t, 1) = /P(Tijl < t1,Lijo < to|Z; = 2)dPy(2),

where Py(z) is the probability distribution function of Z. Let m; be the index of censored
bivariate recurrence times for the i individual such that

m;—1 i
Z (Tij1 + Lije) < €y and Z(Tiﬂ + Tij2) 2 Ci
=1 N

Hence, m; is a random variable and I;,,,; may or may not be completely observed while
Tim,o is always censored. Notice that F(ty,ty) is'identifiable only for ¢; + ¢ < 7., where 7. is
the right support of C;.

2.1.1. The approach of Huang and Wang

Now, we briefly review the method proposed by Huang and Wang (2005). Denote
Xi' = Ejl + E]Q and }/ij = (ﬂjl,ﬂjg). Let Dij = Oz — Zi:_ll Xil and denote Xij =
min(X;;, D;;), ffij = Y,;0,; where §;; = ][f(ijSDij]' We further define the functions F,(t,y) =
Elailz, <5 <ysu=1) and Ro(t) = Elailjg, 54, where y = (y1,y2) is a vector of real numbers
and a; = a(C;) is a nonnegative function of C; with E[a?] < oo. Under assumptions (A.1)
and (A.2), F,(ds,y)/R.(s) = Fxy(ds,y)/Sx(s—), where Fxy(s,y) = P(Xiu < s,Yn <vy)
is the joint distribution function of X;; and Y;; and Sx(s) = P(X;; > s) is the marginal
survival function of X;; and it follows that

Fyy(ty) = / Sx(s—) Fu(ds, y)/ Ra(s).



Let mf =m; — 1 for m; > 2 and m} =1 for m; = 1. Let

a;
*
i=1 " j=1

(X >1]"

~ _ - aif[m;*zu o S _
Fa(t7 y) =n"! Z T Z I[Xijgt:?ijgyp Ra(y) =n"
j=1

i=1 4

Thus, Fxy(t,y) can be estimated by

Fy(ty) = / Sx(s—) Eu(ds, y)/ Ra(s),

where

Sx(s) :g<1 - %)

Through the identity F(t1,t2) = Fxy(t1 + to, (t1:t2)), it follows that F'(¢;,t2) can be esti-
mated by

titta b .
Fo(t,ta) = Fxy(ty +tg, (t1,t2)) = / Sx(s=)Fu(ds, (t1,t2))/Ra(s).
0

Huang and Wang (2005) showed that n'/2(E},(t;, 1) — F(t1,1,)) converges to a mean zero
Gaussian process with variance-covariance function E[py (¢, t2)p1(t),t,)], where

t1 t1
r(thst) = / Py (5,2 01(ds, 00) + / S (s)wn(ds:ts) ~ Fxy (tr, ta)on(t1, 00),
0 0

where

* 2
m; j Ra(Xz) m; = Ra(s)

az’[[m*>1] . I[X—-<t Yi; <t " a; o I[X-->]
wilty, ta) =~y ESH S —/ LY U= Fu(ds, ).
' =1 0 j=1

The variance-covariance function E[p; (t1,2)p1 (2, ty)] can be consistently estimated by
n! Z ¢i<t17 t2)@i(t/17 t/2)7
i=1

where
t1 R t1 R R
Gi(tr,12) = / Fx y (s, ta)w;(ds, 00) +/ Sx(s)wilds, ta) — Fxy (t1,t2)wi(t1, 00),
0 0

and i .
a;li,- m; Io - t1 : m; Ie o
Qi(ty, ta) = [ ;21] Z %5y <t Y <ta] _/ G—*ZMFa(dS,tQ)-
i = Rq(Xi5) o M ST Rq(s)?

% 1




2.1.2. The IPW approach

Next, using the IPW approach, we propose an alternative estimator. Consider the con-
ditional distribution function

F(ty,ts) = P(Tyy < t1, Tia < to|mj > 1)

= P(Ti1 < t1,Tio < to,Tin + Tia < Cy)

//so ©+y)—)F(dz, dy),

where Sc(t) = P(C; > t) is the survival function of C;. Note that Sc(t) can be estimated
by Sc(t) = n! > i1 1i¢;>y. Furthermore, under assumptions (A1) and (A2), conditional
on m; > 1 and Z;, (Tin, Tia), (Tizr; Tioz); - - - (Time1, Timz2) are identically distributed. Let
n*=>" 1 im#>1]- Hence, an unbiased estimator of F (t1,t3) is given by

1 Timz>1] <
F (tla t2) Z T Z I[Tijlitl,TijQStﬂ’

n*
=1 L j=1

since

y 1 -[m*>1
E[Fn(tb tz)] =i E |:E Zl [ml ] Z I[T7,31<t1 T’L]2<t2]j|
| =2 e .
=X Y s By | D imgicta sl mi > 1
i=1 T =1

1 n to t1
=B Sl [ Sel(o - s an)|
i=1 St 20
t2 t1 ~
= / / Sc((x+y)—)F(dx,dy) = F(t1,ts),
o Jo

where FEj; and E; denote the conditional expectation given mj and expectation of mj,

respectively. Thus, given S¢, F (t1,t2) can be estimated by

][m >1] m 1<t1 T; 2<7f2]
w(t1, t2) / / E,(dx, dy) = Tij i
X FX L

Ul + TZﬂ) )

The asymptotic results of Fyy are given in Theorem 1.



Theorem 1

Under assumptions (A.1), (A.2) and assuming that n*/n converges in probability to p, then
V(Eyw (ty, ty) — F(ty,t5)) has an asymptotically i.i.d. representation

Vi(Fy (ty,ts) — F(ty, t)) \/‘ Zwl t1,ta) + 0,(1),

which converges weakly to a mean zero Gaussian process with the variance-covariance func-
tion E[vi(t1, t2)i(ty, 1)), where ¢;(t1,t2) = mi(ts, ta) + Gi(t1, 2),

Timz>1) <ty Tijo<ts]
i t ’t —1 7,]1 1, 7,]2 2 _ F t 7t ’
77( 1 2) m Z SC zgl _{_7—1”2) ) ( 1 2)

and

Gttt = — [ [ lidslat = Sl ) (s dy).

Proof: The proof is technical and omitted here.
2.2 Method for Case 2

For data from case 2, there exist two censoring times, denoted by Cj; and Cj,. Assumption
(A.2) is modified to

(B.2): The censoring times Cj; and Cjp are independent of (Z;, N;).

For k = 1,2, let my, be the index of censored bivariate recurrence times for the i
individual such that

m—1 Mk
Z Tijr < Cy, and ZTijk > Cig.
Jj=1 J=1

Clearly, m;;, is a random variable and the last recurrence event time for the k' event of the
h pair is subject to right censoring. Notice that m,;; may not be equal to m;s and either
Ti1m;, or Tiom, is subject to right censoring.



For data from case 2, consider the function
H(t,ta) = P(Tin < t1, Tiz < ta|mi > 2,myp > 2)

= P(Th1 < t1,Tihs < t3,Tin1 < Cit, Tz < Cia)

//SQ x—,y—)F(dz,dy),

where Sg(z,y) = P(Ciy; > x,Ciy > y) denotes the joint survival function of Cj; and Cj,.
Note that Sg(z,y) can be consistently estimated by SQ(x, y) =30 Lo se.cnsy)- Let
K; = min(m;; — 1,m;s — 1). Furthermore, under assumptions (A1) and (B2), conditional
on (K;, Z;,Cy), (T, Tiz), (Ti1, Tia2), - - - (Tik,1, Tik,2) are identically distributed. Let ng =
S Iik,>1. Thus, an unbiased estimator of H(t,,ty) is given by

. 1
Hy(ty,t2) =1y Z e memtl, Tija<ts]-

i=1 P

Hence, given S'Q, F(ty,t) can be estimated by

t2 t 1 ~ 1 [[Kizﬂ 3 I[T131<t17Tij2St2]
Fw<t1, tg) - A—Hn(dx7 dy) _ nd Z Z
o Jo So((z—,y—)

= K; SQ( ij1— TijZ_).

The asymptotic results of Fy are given in Theorem 2.
Theorem 2

Under assumptions (A.1), (B.2) and ng/n converges inprobability to pg, then \/n(Ey (1, t2)—
F(t1,t3)) has an asymptotically i.i.d. representation

V(B (t1, 1) — Fty, ta)) Z@ (t1, t2) + 0p(1),

which converges weakly to a mean zero Gaussian process with the variance-covariance func-
tion E[&;(t1,12)&(ty,t5)], where &(t1,t2) = Gi(t1, t2) + vit1, t2),

A
Git1,t2) = L 2 Sof [qul’ Z;QZ] = F(t1,12)
z j=1 z]l 172 )
and
vi(t,t2) / / [I[Cuzx,cizzy)] - SQ(:E_v y_)]ﬁ(d$v dy).

Proof: The proof is similar to that of Theorem 1 and is omitted.



Chapter 3

3. Simulation study
3.1 Data of Case 1

To evaluate the performance of the propose estimator FW, we conduct numerical simula-
tion studies. We consider the setup used by Huang and Wang (2005). The latent variable Z;
is generated from an exponential distribution with mean 1. Given Z; = z, the i.i.d. bivariate
recurrence times are generated from Clayton’s bivariate failure time distribution (Clayton
(1978)) with joint survival function

1

S(tl,tQ‘Z) = (Sl(tﬂZ')lie + 52(t2|2>179 — 1) -0 (31)

where 0 > 1, Si(t1]z) = P(Tiji > 1) = exp(=e®t}) and Ss(ta]z) = P(Tijp > t2) =
exp(—e*t3®). The values of § are chosen as 3 and 9 so that the corresponding Kendall’s tau
are 0.5 and 0.8, respectively. The distribution of C; is uniform(0,7.), with 7. = 8,15 such
that the proportion of subjects having at least one pair of recurrence times is approximately
68% for 7, = 8 and 81% for 7, = 15. The sample size is chosen as n = 200 and the replication
is 1000 times. Table 1 shows the biases, standard deviations (std) and root mean squared
errors (rmse) of the estimator Ey at grid points based on the combination of ¢, and t, with
t; =0.5,1,2 and t5 = 1,2,4. For purpose of comparison, we also report the results of Huang
and Wang’s estimator with wight function a; = C;, which perform best according to Tables
1 to 4 of Huang and Wang (2005).

3.2 Data of Case 2

The distribution of T;j; and Tjjo are the same as that used in case 1. The Cy; and Cy;
are independently generated from uniform(0, 7.), with 7. = 8, 15. The proportion of subjects
having at least one pair of recurrence times is approximately 68% for 7. = 8 and 80% for
T. = 15. The sample size is chosen as n = 100,200 and the replication is 1000 times. Table
3 reports the simulation results.

Based on Tables 1 and 2, we have conclusions as follows.

(1) For case 1, Table 1 indicates that the biases of both estimators are very small. For most
of cases considered, the standard deviations of the IPW estimator Fjy are very close to that
of F),, the estimator of Huang and Wang (2005). Given (ty,t5), the standard deviations of
both estimators decrease as 7. increases, i.e. the proportion of subjects having at least one
pair of recurrence times increases.

(2) For case 2, Table 2 indicates that the IPW estimator Fyy works reasonably well. The
biases are small for most of the cases considered and the standard deviations decreases as 7.
(or ¢) increases.



Table 1. Simulation results for £, and Fyy (Case 1)

F, Fy
0 1. t1 ty bias std rmse bias std rmse
3 8 05 1 0.002 0.022 0.022 -0.003 0.024 0.024
3 8 05 2 0.003 0.028 0.028 -0.002 0.030 0.030
3 8 05 4 0.003 0.032 0.032 -0.003 0.034 0.034
3 8 1.0 1 0.006 0.029 0.029 -0.004 0.030 0.030
3 8 1.0 2 0.000 0.035 0.035 -0.001 0.037 0.037
3 8 1.0 4 0.001 0.034 0.034 -0.003 0.036 0.036
3 8 20 1 0.006 0.030 0.030 0.004 0.032 0.032
3 8 20 2 -0.001 0.036 0.036 -0.003 0.038 0.038
3 8 20 4 0.000 0.032 0.032 -0.004 0.033 0.033
3 15 05 1 0.002 0.017 0.017 -0.001 0.019 0.019
3 15 0.5 2 0.003 0.021 0.021 -0.003 0.021 0.021
3 15 05 4  0.003 0.025 0.025 -0.003 0.025 0.025
3 15 1.0 1 0.007 0.023 0.024 -0.006 0.023 0.023
3 15 1.0 2 -0.000 0.026 0.026 -0.002 0.026 0.026
3 15 1.0 4 0.000 0.026 0.026 -0.001 0.027 0.027
3 15 20 1 0.006 0.024 0.025 0.004 0.024 0.024
3 15 20 2 -0.002 0.028 0.028 -0.003 0.028 0.028
3 15 20 4 -0.001 0.025 0.025 0.000 0.026 0.026
9 8 05 1 -0.003 0.024 0.024 -0.002 0.026 0.026
9 8 0.5 2 -0.002 0.029 0.029 -0.002 0.030 0.030
9 8 05 4 -0.003 0.033 0.033 -0.004 0.035 0.035
9 8 1.0 1 - -0.001L 0.029 0.029 -0.003 0.028 0.028
9 8 1.0 2 -0.002 0.034 0.034 -0.004 0.035 0.035
9 8 1.0 4 ~ 0.000 0.035 0.035 0.001 0.037 0.037
9 8 20 1 0.002 0.029 0.029 0.000 0.028 0.028
9 8 20 2 -0.001 0.036 0.036 0.001 0.036 0.036
9 &8 20 4 0.002 0.032 0.032 0.006 0.033 0.033
9 15 05 1 -0.002 0.018 0.018 -0.002 0.021 0.021
9 15 05 2 -0.002 0.021 0.021 0.005 0.023 0.023
9 15 05 4 -0.004 0.026 0.026 -0.005 0.025 0.025
9 15 1.0 1 -0.001 0.022 0.022 0.004 0.024 0.024
9 15 1.0 2 0.001 0.026 0.026 -0.003 0.027 0.027
9 15 1.0 4 -0.003 0.025 0.025 -0.002 0.026 0.026
9 15 2.0 1 0.003 0.022 0.022 0.001 0.022 0.022
9 15 2.0 2 -0.002 0.028 0.028 -0.003 0.030 0.030
9 15 2.0 4 -0.004 0.024 0.024 -0.004 0.025 0.025




Table 2. Simulation results for Fy (Case 2)

0=3 =9
T, 11 ta n bias std rmse bias std rmse
8 0.5 1 100 -0.006 0.031 0.031 -0.003 0.029 0.029
8 0.5 1 200 -0.004 0.024 0.024 -0.002 0.023 0.023
8 0.5 2 100 -0.008 0.037 0.038 -0.000 0.031 0.031
8§ 0.5 2 200 -0.009 0.030 0.031 -0.002 0.024 0.024
8 0.5 4 100 -0.011 0.044 0.045 -0.003 0.034 0.034
8 0.5 4 200 -0.007 0.037 0.038 -0.005 0.024 0.024
8§ 1.0 1 100 -0.008 0.039 0.040 -0.009 0.032 0.033
8 1.0 1 200 -0.006 0.030 0.031 -0.004 0.030 0.030
8 1.0 2 100 -0.006 0.052 0.052 0.001 0.040 0.040
8 1.0 2 200 -0.007 0.039 0.040 0.002 0.034 0.034
8§ 1.0 4 100 -0.013 0.053 0.055 0.001 0.038 0.038
8 1.0 4 200 -0.008 0.037 0.038 -0.002 0.032 0.032
8§ 2.0 1 100 -0.006 0.042 0.043 -0.008 0.034 0.035
8 2.0 1 200 0.000 0.029 0.029  0.001 0.030 0.030
8 2.0 2 100 -0.007 0.055 0.056 -0.008 0.041 0.042
8 2.0 2 200 -0.003 0.039 0.039 0.003 0.034 0.034
8 2.0 4 100 -0.015 0.049 0.051 -0.005 0.040 0.040
8 2.0 4 200 -0.010 0.035 0.036 -0.001 0.033 0.033
15 0.5 1100 -0.003 0.034 0.034 0.001 0.028 0.028
15 0.5 1 200 -0.002 0.020 0.020 0.000 0.018 0.018
15 0.5 2 100 -0.003 0.038 0.038 0.001 0.035 0.035
15 0.5 2 200 -0.003 0.023 0.024 -0.000 0.025 0.025
15 0.5 4 100  -0.004 0.043 0.043 -0.001 0.041 0.041
15 0.5 4 200 -0.003 0.027 0.027 - -0.002 0.025 0.025
15 1.0 1 100 -0.002 0.042 0.042 0.001 0.035 0.035
15 1.0 1 200 -0.003 0.022 0.022 0.000 0.021 0.021
15 1.0 2 100 0.006 0.052 0.052 0.002 0.040 0.040
15 1.0 2 200 0.004 0.025 0.026 0.003 0.026 0.026
15 1.0 4 100 0.002 0.048 0.048 0.004 0.042 0.042
15 1.0 4 200 -0.003 0.026 0.026 0.002 0.024 0.024
15 2.0 1 100 0.002 0.043 0.043 0.001 0.035 0.035
15 20 1 200 0.000 0.024 0.024 0.002 0.021 0.021
15 2.0 2 100 0.006 0.055 0.055 0.000 0.041 0.041
15 2.0 2 200 0.003 0.027 0.027 0.000 0.024 0.024
15 2.0 4 100 0.002 0.048 0.048 0.003 0.039 0.039
15 2.0 4 200 0.003 0.023 0.023 -0.002 0.026 0.026

10



11

Chapter 4

4. Discussion

The estimation of the bivariate distribution of recurrence times are important in analyzing
the association of bivariate recurrent events. In this article, we propose IPW estimators for
estimating bivariate recurrent times. For data of case 1, the propose estimator is almost as
efficient as the estimator of Huang and Wang (2005). For data of case 2, simulation results
indicate that the IPW estimator performs well. For informative censoring, the proposed IPW
estimator also performs well and remains consistent if the censoring mechanism is estimated
consistently. In some cases, assumption (A.1) may be violated, e.g. there exits trend in the
bivariate recurrence times. Further research is required in developing statistical methods to
deal with this situation.
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