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Abstract

Recurrent event data frequently arise in longitudinal studies. In many applications,

subjects may experience two different types of events alternatively over time or a pair of

subjects may experience recurrent events of the same type. In this article, using the inverse-

probability weighted (IPW) approach, we propose nonparametric estimators for the joint

distribution functions of bivariate recurrence times. The asymptotic properties of the IPW

are established under independent censoring. A simulation study is conducted to investigate

the performance of the proposed estimators.
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Chapter 1

1. Introduction

Recurrent event data are frequently encountered in longitudinal studies. For the analysis
of recurrent event data, two different time scales are employed in the literature: the times
since entering the study and the times since last event. For the first type of time scale, many
statistical methods have been developed, such as Prentice et al. (1981), Andersen and Gill
(1982), Pepe and Cai (1993), Huang and Louis (1998), Wang and Wells (1998), Lin et al.
(1999, 2000), and Wang et al. (2001). The methodology considered by these authors are
based on formulation of either the intensity function or the occurrence rate function of the
underlying event process.

When the time between consecutive events (gap time) is used for study, the stochastic
ordering structure of recurrent events poses problems for statistical analysis, such as induced
censoring and sampling biases. Recently, various statistical methods have been proposed for
analysis of recurrent gap time data. Under the identically independent distributed (i.i.d.)
assumptions of gap times, Pena et al. (2000) showed that the generalized Kaplan-Meier
(1958) estimator is the nonparametric maximum likelihood estimator (NPMLE) of the sur-
vival function of the univariate recurrence time. Using the extended risk methods, Wang
and Chang (1999) proposed an estimator in the case where within-unit interoccurrence times
are correlated.

In many applications, bivariate recurrent event data can arise. Consider the following
applications.
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Case 1

The subjects experience two different types of events alternately over time. For example,
in psychiatric study, a patient with schizophrenia could be repeatedly admitted into and
discharged from a hospital. In a reliability study, a mechanical system can alternate between
periods of use and repair.

Case 2

A pair of study subjects can experience repeated occurrences of certain diseases. For example,
in a genetic study, each twin (or a parent/child) may experience repeated occurrences of
certain diseases.

The analysis of bivariate recurrent event data plays an important role in estimating
the association within bivariate recurrent events and provide a basis of model building. In
literature, many methods have been developed to estimate multivariate distribution when
events are of different types, e.g. Visser (1996), Huang and Louis (1998), Wang and Wells
(1998) and Lin et al. (1999). Although these methods can be applied to bivariate recurrent
event data, they are inefficient since only the first pair of recurrence times are used.

For data from case 1, Huang and Wang (2005) proposed a class of nonparametric esti-
mators for bivariate distribution of recurrence times by combing techniques for univariate
recurrent event data and techniques for bivariate gap times data. In Section 2, using the
inverse-probability weighted (IPW) approach, we propose an alternative nonparametric es-
timator for data from case 1. We also propose an IPW estimator for data from case 2. The
asymptotic properties of the proposed estimator are established. In Section 3, a simulation
study is conducted to investigate the performance of the proposed estimators.
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Chapter 2

2. The Proposed Estimators

2.1. Method for Case 1

Suppose that a sequence of bivariate event is to be observed in a follow-up study. Let
(Tij1, Tij2) denote the bivariate recurrence time from the (j − 1)th to jth event for the ith

pair. Let (Ci) denote the pair of censoring times, i.e. the times between the initial event to
the end of follow-up. The bivariate recurrent event process Ni = {(Tij1, Tij2) : j = 1, 2, . . . }
is subject to right censoring. Assume that subjects are sampled independently and

(A.1): There exists a latent variable Zi such that conditional on Zi, the bivariate random
vectors (Tij1, Tij2), j = 1, 2 . . . , are i.i.d.;

(A.2): The censoring time Ci is independent of (Zi, Ni).

Notice that the recurrence times Tij1 and Tij2 are allowed to be correlated conditional on
Zi. Let F (t1, t2) denote the joint distribution of Tij1 and Tij2, i.e.

F (t1, t2) =

∫
P (Tij1 ≤ t1, Tij2 ≤ t2|Zi = z)dPZ(z),

where PZ(z) is the probability distribution function of Z. Let mi be the index of censored
bivariate recurrence times for the ith individual such that

mi−1∑
j=1

(Tij1 + Tij2) ≤ Ci and

mi∑
j=1

(Tij1 + Tij2) > Ci.

Hence, mi is a random variable and Timi1 may or may not be completely observed while
Timi2 is always censored. Notice that F (t1, t2) is identifiable only for t1 + t2 ≤ τc, where τc is
the right support of Ci.

2.1.1. The approach of Huang and Wang

Now, we briefly review the method proposed by Huang and Wang (2005). Denote
Xij = Tij1 + Tij2 and Yij = (Tij1, Tij2). Let Dij = Ci −

∑j−1
l=1 Xil and denote X̃ij =

min(Xij, Dij), Ỹij = Yijδij where δij = I[X̃ij≤Dij ]. We further define the functions Fa(t, y) =

E[aiI[X̃i1≤t,Ỹi1≤y,δi1=1]] and Ra(t) = E[aiI[X̃i1≥t]], where y = (y1, y2) is a vector of real numbers

and ai = a(Ci) is a nonnegative function of Ci with E[a2i ] < ∞. Under assumptions (A.1)
and (A.2), Fa(ds, y)/Ra(s) = FX,Y (ds, y)/SX(s−), where FX,Y (s, y) = P (Xi1 ≤ s, Yi1 ≤ y)
is the joint distribution function of Xi1 and Yi1 and SX(s) = P (Xi1 > s) is the marginal
survival function of Xi1 and it follows that

FX,Y (t, y) =

∫ t

0

SX(s−)Fa(ds, y)/Ra(s).
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Let m∗i = mi − 1 for mi ≥ 2 and m∗i = 1 for mi = 1. Let

F̂a(t, y) = n−1
n∑
i=1

aiI[m∗i≥1]

m∗i

m∗i∑
j=1

I[X̃ij≤t,Ỹij≤y], R̂a(y) = n−1
n∑
i=1

ai
m∗i

m∗i∑
j=1

I[X̃ij≥t].

Thus, FX,Y (t, y) can be estimated by

F̂X,Y (t, y) =

∫ t

0

ŜX(s−)F̂a(ds, y)/R̂a(s),

where

ŜX(s) =
∏
u≤s

(
1− F̂a(du,∞)

R̂a(u)

)
.

Through the identity F (t1, t2) = FX,Y (t1 + t2, (t1, t2)), it follows that F (t1, t2) can be esti-
mated by

F̂n(t1, t2) = F̂X,Y (t1 + t2, (t1, t2)) =

∫ t1+t2

0

ŜX(s−)F̂a(ds, (t1, t2))/R̂a(s).

Huang and Wang (2005) showed that n1/2(F̂n(t1, t2) − F (t1, t2)) converges to a mean zero
Gaussian process with variance-covariance function E[ϕ1(t1, t2)ϕ1(t

′
1, t
′
2)], where

ϕ1(t1, t2) =

∫ t1

0

FX,Y (s, t2)ω1(ds,∞) +

∫ t1

0

SX(s)ω1(ds, t2)− FX,Y (t1, t2)ω1(t1,∞),

where

ωi(t1, t2) =
aiI[m∗i≥1]

m∗i

m∗i∑
j=1

I[X̃ij≤t1,Ỹij≤t2]

Ra(X̃ij)
−
∫ t1

0

ai
m∗i

m∗i∑
j=1

I[X̃ij≥s]

Ra(s)2
Fa(ds, t2).

The variance-covariance function E[ϕ1(t1, t2)ϕ1(t
′
1, t
′
2)] can be consistently estimated by

n−1
n∑
i=1

ϕ̂i(t1, t2)ϕ̂i(t
′

1, t
′

2),

where

ϕ̂i(t1, t2) =

∫ t1

0

F̂X,Y (s, t2)ω̂i(ds,∞) +

∫ t1

0

ŜX(s)ω̂i(ds, t2)− F̂X,Y (t1, t2)ω̂i(t1,∞),

and

ω̂i(t1, t2) =
aiI[m∗i≥1]

m∗i

m∗i∑
j=1

I[X̃ij≤t1,Ỹij≤t2]

R̂a(X̃ij)
−
∫ t1

0

ai
m∗i

m∗i∑
j=1

I[X̃ij≥s]

R̂a(s)2
F̂a(ds, t2).
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2.1.2. The IPW approach

Next, using the IPW approach, we propose an alternative estimator. Consider the con-
ditional distribution function

F̃ (t1, t2) = P (Ti11 ≤ t1, Ti12 ≤ t2|m∗i ≥ 1)

= P (Ti11 ≤ t1, Ti12 ≤ t2, Ti11 + Ti12 ≤ Ci)

=

∫ t2

0

∫ t1

0

SC((x+ y)−)F (dx, dy),

where SC(t) = P (Ci > t) is the survival function of Ci. Note that SC(t) can be estimated
by ŜC(t) = n−1

∑n
i=1 I[Ci>t]. Furthermore, under assumptions (A1) and (A2), conditional

on m∗i ≥ 1 and Zi, (Ti11, Ti12), (Ti21, Ti22), . . . , (Tim∗i 1, Tim∗i 2) are identically distributed. Let

n∗ =
∑n

i=1 I[m∗i≥1]. Hence, an unbiased estimator of F̃ (t1, t2) is given by

F̃n(t1, t2) =
1

n∗

n∑
i=1

I[m∗i≥1]

m∗i

m∗i∑
j=1

I[Tij1≤t1,Tij2≤t2],

since

E[F̃n(t1, t2)] = E

[
1

n∗

n∑
i=1

I[m∗i≥1]

m∗i

m∗i∑
j=1

I[Tij1≤t1,Tij2≤t2]

]

= E1

[
1

n∗

n∑
i=1

I[m∗i≥1]E2|1

[
1

m∗i

m∗i∑
j=1

I[Tij1≤t1,Tij2≤t2]

∣∣∣∣m∗i ≥ 1

]]

= E1

[
1

n∗

n∑
i=1

I[m∗i≥1]

∫ t2

0

∫ t1

0

SC((x+ y)−)F (dx, dy)

]
,

=

∫ t2

0

∫ t1

0

SC((x+ y)−)F (dx, dy) = F̃ (t1, t2),

where E2|1 and E1 denote the conditional expectation given m∗i and expectation of m∗i ,

respectively. Thus, given ŜC , F (t1, t2) can be estimated by

F̂W (t1, t2) =

∫ t2

0

∫ t1

0

1

ŜC((x+ y)−)
F̃n(dx, dy) =

1

n∗

n∑
i=1

I[m∗i≥1]

m∗i

m∗i∑
j=1

I[Tij1≤t1,Tij2≤t2]

ŜC((Tij1 + Tij2)−)
.

The asymptotic results of F̂W are given in Theorem 1.
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Theorem 1

Under assumptions (A.1), (A.2) and assuming that n∗/n converges in probability to p, then√
n(F̂W (t1, t2)− F (t1, t2)) has an asymptotically i.i.d. representation

√
n(F̂W (t1, t2)− F (t1, t2)) =

1√
n

n∑
i=1

ψi(t1, t2) + op(1),

which converges weakly to a mean zero Gaussian process with the variance-covariance func-
tion E[ψi(t1, t2)ψi(t

′
1, t
′
2)], where ψi(t1, t2) = ηi(t1, t2) + ζi(t1, t2),

ηi(t1, t2) = p−1
I[m∗i≥1]

m∗i

m∗i∑
j=1

I[Tij1≤t1,Tij2≤t2]

SC((Tij1 + Tij2)−)
− F (t1, t2),

and

ζi(t1, t2) = −
∫ t2

0

∫ t1

0

1

S2
C((x+ y)−)

[I[Ci≥(x+y)] − SC((x+ y)−)]F̃ (dx, dy).

Proof: The proof is technical and omitted here.

2.2 Method for Case 2

For data from case 2, there exist two censoring times, denoted by Ci1 and Ci2. Assumption
(A.2) is modified to

(B.2): The censoring times Ci1 and Ci2 are independent of (Zi, Ni).

For k = 1, 2, let mik be the index of censored bivariate recurrence times for the ith

individual such that
mik−1∑
j=1

Tijk ≤ Cik and

mik∑
j=1

Tijk > Cik.

Clearly, mik is a random variable and the last recurrence event time for the kth event of the
ith pair is subject to right censoring. Notice that mi1 may not be equal to mi2 and either
Ti1mi1 or Ti2mi is subject to right censoring.
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For data from case 2, consider the function

H̃(t1, t2) = P (Ti11 ≤ t1, Ti12 ≤ t2|mi1 ≥ 2,mi2 ≥ 2)

= P (Ti11 ≤ t1, Ti12 ≤ t2, Ti11 ≤ Ci1, Ti12 ≤ Ci2)

=

∫ t2

0

∫ t1

0

SQ(x−, y−)F (dx, dy),

where SQ(x, y) = P (Ci1 > x,Ci2 > y) denotes the joint survival function of Ci1 and Ci2.

Note that SQ(x, y) can be consistently estimated by ŜQ(x, y) = n−1
∑n

i=1 I[Ci1>x,Ci2>y]. Let
Ki = min(mi1 − 1,mi2 − 1). Furthermore, under assumptions (A1) and (B2), conditional
on (Ki, Zi, Ci), (Ti11, Ti12), (Ti21, Ti22), . . . , (TiKi1, TiKi2) are identically distributed. Let nd =∑n

i=1 I[Ki≥1]. Thus, an unbiased estimator of H̃(t1, t2) is given by

H̃n(t1, t2) = n−1d

n∑
i=1

I[Ki≥1]
Ki

Ki∑
j=1

I[Tij1≤t1,Tij2≤t2].

Hence, given ŜQ, F (t1, t2) can be estimated by

F̂W (t1, t2) =

∫ t2

0

∫ t1

0

1

ŜQ((x−, y−)
H̃n(dx, dy) = n−1d

n∑
i=1

I[Ki≥1]
Ki

Ki∑
j=1

I[Tij1≤t1,Tij2≤t2]

ŜQ(Tij1−, Tij2−)
.

The asymptotic results of F̂W are given in Theorem 2.

Theorem 2

Under assumptions (A.1), (B.2) and nd/n converges in probability to pd, then
√
n(F̂W (t1, t2)−

F (t1, t2)) has an asymptotically i.i.d. representation

√
n(F̂W (t1, t2)− F (t1, t2)) =

1√
n

n∑
i=1

ξi(t1, t2) + op(1),

which converges weakly to a mean zero Gaussian process with the variance-covariance func-
tion E[ξi(t1, t2)ξi(t

′
1, t
′
2)], where ξi(t1, t2) = ςi(t1, t2) + υi(t1, t2),

ςi(t1, t2) =
I[Ki≥1]
Ki

Ki∑
j=1

I[Tij1≤t1,Tij2≤t2]

SQ(Tij1−, Tij2−)
− F (t1, t2)

and

υi(t1, t2) = −
∫ t2

0

∫ t1

0

1

S2
Q(x−, y−)

[I[Ci1≥x,Ci2≥y)] − SQ(x−, y−)]F̃ (dx, dy).

Proof: The proof is similar to that of Theorem 1 and is omitted.



8

Chapter 3

3. Simulation study

3.1 Data of Case 1

To evaluate the performance of the propose estimator F̂W , we conduct numerical simula-
tion studies. We consider the setup used by Huang and Wang (2005). The latent variable Zi
is generated from an exponential distribution with mean 1. Given Zi = z, the i.i.d. bivariate
recurrence times are generated from Clayton’s bivariate failure time distribution (Clayton
(1978)) with joint survival function

S(t1, t2|z) = (S1(t1|z)1−θ + S2(t2|z)1−θ − 1)
1

1−θ , (3.1)

where θ ≥ 1, S1(t1|z) = P (Tij1 > t1) = exp(−ezt21) and S2(t2|z) = P (Tij2 > t2) =
exp(−e−zt1.52 ). The values of θ are chosen as 3 and 9 so that the corresponding Kendall’s tau
are 0.5 and 0.8, respectively. The distribution of Ci is uniform(0, τc), with τc = 8, 15 such
that the proportion of subjects having at least one pair of recurrence times is approximately
68% for τc = 8 and 81% for τc = 15. The sample size is chosen as n = 200 and the replication
is 1000 times. Table 1 shows the biases, standard deviations (std) and root mean squared
errors (rmse) of the estimator F̂W at grid points based on the combination of t1 and t2 with
t1 = 0.5, 1, 2 and t2 = 1, 2, 4. For purpose of comparison, we also report the results of Huang
and Wang’s estimator with wight function ai = Ci, which perform best according to Tables
1 to 4 of Huang and Wang (2005).

3.2 Data of Case 2

The distribution of Tij1 and Tij2 are the same as that used in case 1. The C1i and C2i

are independently generated from uniform(0, τc), with τc = 8, 15. The proportion of subjects
having at least one pair of recurrence times is approximately 68% for τc = 8 and 80% for
τc = 15. The sample size is chosen as n = 100, 200 and the replication is 1000 times. Table
3 reports the simulation results.

Based on Tables 1 and 2, we have conclusions as follows.

(1) For case 1, Table 1 indicates that the biases of both estimators are very small. For most
of cases considered, the standard deviations of the IPW estimator F̂W are very close to that
of F̂n, the estimator of Huang and Wang (2005). Given (t1, t2), the standard deviations of
both estimators decrease as τc increases, i.e. the proportion of subjects having at least one
pair of recurrence times increases.

(2) For case 2, Table 2 indicates that the IPW estimator F̂W works reasonably well. The
biases are small for most of the cases considered and the standard deviations decreases as τc
(or c) increases.
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Table 1. Simulation results for F̂n and F̂W (Case 1)

F̂n F̂W
θ τc t1 t2 bias std rmse bias std rmse
3 8 0.5 1 0.002 0.022 0.022 -0.003 0.024 0.024
3 8 0.5 2 0.003 0.028 0.028 -0.002 0.030 0.030
3 8 0.5 4 0.003 0.032 0.032 -0.003 0.034 0.034
3 8 1.0 1 0.006 0.029 0.029 -0.004 0.030 0.030
3 8 1.0 2 0.000 0.035 0.035 -0.001 0.037 0.037
3 8 1.0 4 0.001 0.034 0.034 -0.003 0.036 0.036
3 8 2.0 1 0.006 0.030 0.030 0.004 0.032 0.032
3 8 2.0 2 -0.001 0.036 0.036 -0.003 0.038 0.038
3 8 2.0 4 0.000 0.032 0.032 -0.004 0.033 0.033
3 15 0.5 1 0.002 0.017 0.017 -0.001 0.019 0.019
3 15 0.5 2 0.003 0.021 0.021 -0.003 0.021 0.021
3 15 0.5 4 0.003 0.025 0.025 -0.003 0.025 0.025
3 15 1.0 1 0.007 0.023 0.024 -0.006 0.023 0.023
3 15 1.0 2 -0.000 0.026 0.026 -0.002 0.026 0.026
3 15 1.0 4 0.000 0.026 0.026 -0.001 0.027 0.027
3 15 2.0 1 0.006 0.024 0.025 0.004 0.024 0.024
3 15 2.0 2 -0.002 0.028 0.028 -0.003 0.028 0.028
3 15 2.0 4 -0.001 0.025 0.025 0.000 0.026 0.026
9 8 0.5 1 -0.003 0.024 0.024 -0.002 0.026 0.026
9 8 0.5 2 -0.002 0.029 0.029 -0.002 0.030 0.030
9 8 0.5 4 -0.003 0.033 0.033 -0.004 0.035 0.035
9 8 1.0 1 -0.001 0.029 0.029 -0.003 0.028 0.028
9 8 1.0 2 -0.002 0.034 0.034 -0.004 0.035 0.035
9 8 1.0 4 0.000 0.035 0.035 0.001 0.037 0.037
9 8 2.0 1 0.002 0.029 0.029 0.000 0.028 0.028
9 8 2.0 2 -0.001 0.036 0.036 0.001 0.036 0.036
9 8 2.0 4 0.002 0.032 0.032 0.006 0.033 0.033
9 15 0.5 1 -0.002 0.018 0.018 -0.002 0.021 0.021
9 15 0.5 2 -0.002 0.021 0.021 0.005 0.023 0.023
9 15 0.5 4 -0.004 0.026 0.026 -0.005 0.025 0.025
9 15 1.0 1 -0.001 0.022 0.022 0.004 0.024 0.024
9 15 1.0 2 0.001 0.026 0.026 -0.003 0.027 0.027
9 15 1.0 4 -0.003 0.025 0.025 -0.002 0.026 0.026
9 15 2.0 1 0.003 0.022 0.022 0.001 0.022 0.022
9 15 2.0 2 -0.002 0.028 0.028 -0.003 0.030 0.030
9 15 2.0 4 -0.004 0.024 0.024 -0.004 0.025 0.025
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Table 2. Simulation results for F̂W (Case 2)

θ = 3 θ = 9
τc t1 t2 n bias std rmse bias std rmse
8 0.5 1 100 -0.006 0.031 0.031 -0.003 0.029 0.029
8 0.5 1 200 -0.004 0.024 0.024 -0.002 0.023 0.023
8 0.5 2 100 -0.008 0.037 0.038 -0.000 0.031 0.031
8 0.5 2 200 -0.009 0.030 0.031 -0.002 0.024 0.024
8 0.5 4 100 -0.011 0.044 0.045 -0.003 0.034 0.034
8 0.5 4 200 -0.007 0.037 0.038 -0.005 0.024 0.024
8 1.0 1 100 -0.008 0.039 0.040 -0.009 0.032 0.033
8 1.0 1 200 -0.006 0.030 0.031 -0.004 0.030 0.030
8 1.0 2 100 -0.006 0.052 0.052 0.001 0.040 0.040
8 1.0 2 200 -0.007 0.039 0.040 0.002 0.034 0.034
8 1.0 4 100 -0.013 0.053 0.055 0.001 0.038 0.038
8 1.0 4 200 -0.008 0.037 0.038 -0.002 0.032 0.032
8 2.0 1 100 -0.006 0.042 0.043 -0.008 0.034 0.035
8 2.0 1 200 0.000 0.029 0.029 0.001 0.030 0.030
8 2.0 2 100 -0.007 0.055 0.056 -0.008 0.041 0.042
8 2.0 2 200 -0.003 0.039 0.039 0.003 0.034 0.034
8 2.0 4 100 -0.015 0.049 0.051 -0.005 0.040 0.040
8 2.0 4 200 -0.010 0.035 0.036 -0.001 0.033 0.033

15 0.5 1 100 -0.003 0.034 0.034 0.001 0.028 0.028
15 0.5 1 200 -0.002 0.020 0.020 0.000 0.018 0.018
15 0.5 2 100 -0.003 0.038 0.038 0.001 0.035 0.035
15 0.5 2 200 -0.003 0.023 0.024 -0.000 0.025 0.025
15 0.5 4 100 -0.004 0.043 0.043 -0.001 0.041 0.041
15 0.5 4 200 -0.003 0.027 0.027 -0.002 0.025 0.025
15 1.0 1 100 -0.002 0.042 0.042 0.001 0.035 0.035
15 1.0 1 200 -0.003 0.022 0.022 0.000 0.021 0.021
15 1.0 2 100 0.006 0.052 0.052 0.002 0.040 0.040
15 1.0 2 200 0.004 0.025 0.026 0.003 0.026 0.026
15 1.0 4 100 0.002 0.048 0.048 0.004 0.042 0.042
15 1.0 4 200 -0.003 0.026 0.026 0.002 0.024 0.024
15 2.0 1 100 0.002 0.043 0.043 0.001 0.035 0.035
15 2.0 1 200 0.000 0.024 0.024 0.002 0.021 0.021
15 2.0 2 100 0.006 0.055 0.055 0.000 0.041 0.041
15 2.0 2 200 0.003 0.027 0.027 0.000 0.024 0.024
15 2.0 4 100 0.002 0.048 0.048 0.003 0.039 0.039
15 2.0 4 200 0.003 0.023 0.023 -0.002 0.026 0.026
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Chapter 4

4. Discussion

The estimation of the bivariate distribution of recurrence times are important in analyzing
the association of bivariate recurrent events. In this article, we propose IPW estimators for
estimating bivariate recurrent times. For data of case 1, the propose estimator is almost as
efficient as the estimator of Huang and Wang (2005). For data of case 2, simulation results
indicate that the IPW estimator performs well. For informative censoring, the proposed IPW
estimator also performs well and remains consistent if the censoring mechanism is estimated
consistently. In some cases, assumption (A.1) may be violated, e.g. there exits trend in the
bivariate recurrence times. Further research is required in developing statistical methods to
deal with this situation.
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