
東海大學

資訊工程研究所

碩士論文

指導教授: 楊朝棟博士

基於 OpenStack 實作一個擁有虛擬機動態資源調配方
法之雲端節能系統

Implementation of a Cloud Energy Saving System with

Virtual Machine Dynamic Resource Allocation Method base

on OpenStack

研究生: 陳建智

中華民國一零四年六月

1

摘 要

美國國家標準與技術研究院（NIST）將雲端定義為：「雲端運算是一種模式，

能方便且隨需求應變地透過連網存取廣大的共享運算資源（如網路、伺服器、

儲存、應用程式、服務等），並可透過最少的管理工作及服務供應者互動，快

速提供各項服務。」根據 Gartner 諮詢公司的分析，雲端運算是 2015 年對企

業組織而言最重要的策略科技趨勢的前十大之一。所謂的策略科技 (strategic

technology)，根據 Gartner 定義，指的是可能在未來三年對企業組織帶來重大

影響的技術。各個企業、組織與學校也都跟隨著雲端的潮流，建立大規模的雲

端運算叢集取代一人一電腦的情形。雖然虛擬化可以減少添購硬體設備的，但

是也衍生出了兩個問題-能源的消耗與閒置資源的浪費。所以我們提出了兩個方

法:1. 動態調配資源方法 2. 節電方法。如何有效節省並利用虛擬機於低負載時

的閒置資源，與如何節省伺服器的能源消耗，是我們在本篇論文裡必須面對與

解決的兩大問題。為了達到我們的目標，我們實現一個以雲端軟體 OpenStack

為基礎設施的平台並使用動態調配資源方法與節電方法來達到節省能源的目的。

我們也將會利用 PDU 紀錄的耗電量來證明我們提出的方法是有用而且真的可以

節省能源。

關鍵字: OpenStack，動態資源調配，能源節省，Live Migration，狀態監控

I

Abstract

The US National Institute of Standards and Technology (NIST) defines cloud

computing as“a model for enabling ubiquitous, convenient, on-demand network

access to a shared pool of configurable computing resources (e.g., networks, servers,

storage, applications, and services) that can be rapidly provisioned and released

with minimal management effort or service provider interaction.”According to

analysis by Gartner, Inc., cloud computing is one of the top 10 strategic technology

for most organizations in 2015. Gartner defines a strategic technology as one

with the potential for significant impact on the organization in the next three

years. Companies, organizations and academic institutions are following the cloud

computing trend; the establishment of large-scale cloud computing clusters avoids

the need to provide one person with one computer. Even though virtualization can

reduce the cost of hardware equipment, but it still faces with two problems: energy

consumption and the waste of the idle resources. To solve these two problems, we

propose two algorithms, i.e., dynamic resource allocation and energy saving. In

order to implement these two algorithms with live migration of virtual machines,

we first build an infrastructure platform based on cloud software – OpenStack.

Next, dynamic resource allocation and energy saving algorithms are designed and

implemented. Finally, we use the Power Distribution Unit (PDU) to monitor

system status and record power consumption; the real time status monitoring

data verify that the proposed algorithms are efficient in energy saving and idle

resource planning.

Keywords: OpenStack, Dynamic Resource Allocation, Energy Saving, Live

Migration, Status Monitoring

II

致謝詞

一轉眼，兩年的研究所就結束了，也代表學生生活正式的結束了。研究所兩年，

學到的東西多，但還是遠遠的不足，經過這兩年，感覺到自己的改變，改變得

更成熟，對事情的看法也不再單一，能從更多角度去思考了。

我要感謝我的研究所指導老師楊朝棟教授，在我實驗卡關時，給了我能繼續

往前的建議，還有提供能讓我上戰場的” 武器”，沒有了老師提供的設備，我的

實驗肯定會困難重重。也感謝老師讓我在畢業前去韓國參加 AINA 會議，學習

新事務，拓展國際視野。

感謝抽空前來參加論文口試的委員們，謝謝系上劉榮春老師對我的研究提供

了很多的意見、指導和鼓勵。謝謝林迺衛老師、朱正忠老師，賴冠州老師及時

文中老師，給了我很多專業上的想法與建議，因為有您們的意見讓本來不完整

的英文及鬆散的架構，在重整之後，讓我的論文能更加完整及嚴謹。

還要感謝實驗室的同學們，謝謝尹臻、getter、宇權、韻婷，在我遇到問題，

總能幫助我解決，也謝謝昭為的 NAS，陪我度過這兩年。

謝謝我的家人、國小同學、國中同學、高中同學、女朋友在我背後支持我，

不時地為我加油打氣。謝謝你們。

東海大學資訊工程學系 高效能實驗室 陳建智 104 年 07 月

III

Table of Contents

摘要 I

Abstract II

致謝詞 III

Table of Contents IV

List of Figures VII

List of Tables X

1 Introduction 1

1.1 Motivation . 2

1.2 Thesis Goal and Contributions . 3

1.3 Thesis Organization . 3

2 Background Review and Related Work 4

2.1 Background Review . 4

2.1.1 Cloud Computing . 4

IV

TABLE OF CONTENTS V

2.1.2 Virtualization . 7

2.1.3 Hypervisor . 9

2.1.4 OpenStack . 11

2.1.5 OpenStack Conceptual Architecture 14

2.1.6 Live Migration . 15

2.1.7 NFS (Network File System) 18

2.1.8 PDU (Power Distribution Units) 20

2.2 Related Work . 21

3 System Design and Implementation 27

3.1 System Architecture . 27

3.2 Design Flow . 28

3.2.1 Design Flow of DRA method 28

3.2.2 Design Flow of Energy Saving method 29

3.3 System Implementation . 30

3.3.1 Status Monitoring . 31

3.3.2 Energy Consumption Recording 31

3.3.3 DRA method . 33

3.3.4 Energy Saving method . 35

3.4 User Interface . 36

4 Experimental Results 39

4.1 Experimental Environment . 39

TABLE OF CONTENTS VI

4.2 Experimental Results and Discussion 40

4.2.1 Experiment of VM Performance 40

4.2.2 Experiment of DRA method 42

4.2.3 Experiment of Energy Saving method 45

4.2.4 Experiment of DRA and Energy Saving method 47

4.2.5 Discussion . 51

5 Conclusions and Future Work 53

5.1 Concluding Remarks . 53

5.2 Future work . 54

References 55

Appendix 59

A OpenStack Installation 59

B NFS Installation 72

C Programming Codes 74

D Monitor Codes 79

List of Figures

1.1 The Top 10 Strategic Technology Trends during 2011 to 2015 . . . 2

2.1 The overall cloud model . 5

2.2 The different between traditional architecture and virtual architecture 8

2.3 The hosted hypervisor architecture 10

2.4 The bare-metal hypervisor architecture 11

2.5 The conceptual architecture of OpenStack 15

2.6 The concept of Live Migration . 16

2.7 The phase of Pre-copy memory migration 17

2.8 The Network File System (NFS) 19

2.9 Raritan’s PDU . 20

2.10 The Power-Saving method of first paper 22

2.11 The Power-Saving method of second paper 23

2.12 The algorithm of Minimization of Migrations(MM) 25

2.13 The MECOM structure . 26

3.1 The overall system architecture . 28

VII

LIST OF FIGURES VIII

3.2 DRA method flow chart . 29

3.3 Energy Saving method flow chart 30

3.4 The Circuit of status monitoring 31

3.5 The Circuit of Energy Consumption Recording 32

3.6 PDU’s web interface . 32

3.7 The detailed information of the outlet 33

3.8 Login screen . 37

3.9 Detail of Instances . 38

3.10 Detail of Hypervisors . 38

4.1 CPU utilization and HPL score plot 41

4.2 VM’s CPU utilization before DRA method and after DRA method 44

4.3 Compute node power consumption before DRA method and after

DRA method . 45

4.4 Compute node CPU utilization before DRA method and after DRA

method . 45

4.5 Number of instance before ES method and after ES method 46

4.6 Compute node power consumption before ES method and after ES

method . 47

4.7 Compute node CPU utilization before ES method and after ES

method . 47

4.8 VM CPU utilization compare graph 49

4.9 Number of instance compare graph 49

4.10 Compute node CPU utilization compare graph 50

LIST OF FIGURES IX

4.11 Compute node power consumption compare graph 51

List of Tables

4.1 Hardware specification . 40

4.2 Software specification . 40

4.3 Details of VMs before the DRA method 42

4.4 Detail of resource size . 43

4.5 Details of VMs after applying the DRA and energy saving method . 48

X

Chapter 1

Introduction

Cloud computing brings a huge change for industry evolved with the use of the

Internet. Not only the IT industry which provides cloud computing technology,

but also the general usage of it in the government, enterprise and individuals are

changed with the born of cloud computing. In the IT industry, cloud computing

has undoubtedly caused a comprehensive impact. Nearly all most basic computer

components – processors, servers, storage devices, network equipment, informa-

tion security equipment, software, data centers, information services, smart phone,

tablet computer and other emerging mobile devices are unable to break off rela-

tions from cloud computing. In recent years, cloud computing has become one

of the hottest topics. Cloud computing mainly combines virtualization, service

management automation and standardized technology to provide flexible comput-

ing ability and data analysis method with high performance. Companies can run

many kinds of service on the cloud platform without the need to construct data

centers. This innovative computing and business model has attracted widespread

attention in industry and academia.

1

Chapter 1 Introduction 2

1.1 Motivation

According to analysis by Gartner [1], Inc., cloud computing is one of the top

10 strategic technology trends for most organizations in 2015. Gartner defines

a strategic technology as one with the potential for significant impact on the

organization in the next three years. Factors that denote significant impact include

a high potential for disruption to the business, end users or IT, the need for a

major investment, or the risk of being late to adopt. These technologies impact

the organization’s long-term plans, programs and initiatives. As shown in Figure

1.1, during 2011 to 2015, cloud computing is always listed as one of the top 10

strategic technology trends.

Figure 1.1: The Top 10 Strategic Technology Trends during 2011 to 2015

Cloud computing is the trend of today’s IT industry. Companies, organizations

and academic institutions are following the cloud computing; the establishment of

large-scale cloud computing clusters replaces the old case of one person with one

computer. Even though virtualization can reduce the cost of hardware equipment,

but it still spawns an issue – energy consumption. Virtual machines (VMs) with

many kinds of service can run on the cloud cluster, but these services may not

Chapter 1 Introduction 3

be always accessed and remain high loading all the time. Therefore, we propose

two methods: Dynamic Resource Allocation (DRA) [2–5] method and Energy

Saving [6–8] method. How to effectively save and use the idled resources on low

loading VMs, and save energy consumption on servers are the two issues we have

to face and solve.

1.2 Thesis Goal and Contributions

The goal of this work is to implement a cloud system consisting of the effective

DRA method, energy saving method, user interface, and status monitoring unit.

The proposed system is built based on the software OpenStack, an infrastructure

platform for the cloud. Next, we use two algorithms to improve traditional DRA

and energy saving methods. By the improved DRA algorithm, we can reduce idled

resource on the VMs. The improved energy saving algorithm reduces the energy

consumption of the entire cloud cluster. All servers will be connected to a PDU

and the power consumption of them are recorded and monitored. The results of

the PDU power consumption records verify that the two proposed algorithms are

effective.

1.3 Thesis Organization

In Chapter 2, we review background information including cloud computing, vir-

tualization, hypervisor, OpenStack, live migration, NFS, PDU and related work.

Chapter 3 introduces the architecture of our system and its implementation. Chap-

ter 4 shows the experimental environment, results and analysis. Chapter 5 gives

some conclusions and future work.

Chapter 2

Background Review and Related

Work

In order to improve conventional dynamic allocation resource and energy sav-

ing methods, this section reviews some background information, including cloud

computing, virtualization, hypervisor, OpenStack, live migration, NFS, PDU and

related work.

2.1 Background Review

2.1.1 Cloud Computing

The NIST definition of cloud computing is: ”a model for enabling ubiquitous,

convenient, on-demand network access to a shared pool of configurable computing

resources (e.g., networks, servers, storage, applications, and services) that can

be rapidly provisioned and released with minimal management effort or service

provider interaction.” This model of cloud computing consists of five essential

characteristics, three service models, and four deployment models, as shown in

Figure 2.1:

4

Chapter 2 Background Review and Related Work 5

Figure 2.1: The overall cloud model

According to NIST definition of cloud computing, it identifies ”five essential char-

acteristics”:

• On-demand Self-service

• Broad Network Access

• Resource Pooling

• Rapid Elasticity

• Measured Service

The so-called cloud computing service type is able to provide the service to users,

and allows users to obtain resources through such a service. According to the NIST

definition, cloud service architecture follows the service type divided into three

layers, namely, infrastructure as a service (IaaS), Platform as a Service (PaaS)

and software as a service (SaaS). And are introduced as follows:

Chapter 2 Background Review and Related Work 6

• Infrastructure as a Service (IaaS): The capability provided to the consumer

is to offer processing, storage, networks, and other fundamental computing

resources where the consumer is able to deploy and run arbitrary software,

and which can include operating systems and applications. The consumer

does not manage or control the underlying cloud infrastructure but has con-

trol over operating systems, storage, and deployed applications; and possibly

limited control of select networking components (e.g., host firewalls).

• Platform as a Service (PaaS): The capability provided to the consumer is

to deploy onto the cloud infrastructure consumer-created or acquired appli-

cations created using programming languages, libraries, services, and tools

supported by the provider. The consumer does not manage or control the un-

derlying cloud infrastructure including network, servers, operating systems,

or storage, but has control over the deployed applications and possibly con-

figuration settings for the application-host environment.

• Software as a Service (SaaS): The capability provided to the consumer is

to use the provider’s applications running on a cloud infrastructure. The

applications are accessible from various client devices through either a thin

client interface, such as a web browser (e.g., web-based email), or a program

interface. The consumer does not manage or control the underlying cloud

infrastructure including network, servers, operating systems, storage, or even

individual application capabilities, with the possible exception of limited

user-specific application configuration settings.

Cloud computing, according to their ownership of providers and users, can be

divided into four categories, namely the public, private, community, and hybrid

cloud.

• Public Cloud: The cloud infrastructure is provided for open use by the

general public. It may be owned, managed, and operated by a business,

academic, or government organization, or some combination of them. It

exists on the premises of the cloud provider.

Chapter 2 Background Review and Related Work 7

• Private Cloud: The cloud infrastructure is provided for exclusive use by a

single organization comprising multiple consumers (e.g., business units). It

may be owned, managed, and operated by the organization, a third party,

or some combination of them, and it may exist on or off premises.

• Hybrid Cloud: The cloud infrastructure is a composition of two or more

distinct cloud infrastructures (private, community, or public) that remain

unique entities, but are bound together by standardized or proprietary tech-

nology that enables data and application portability (e.g., cloud bursting for

load balancing between clouds).

• Community Cloud: The cloud infrastructure is provided for exclusive use

by a specific community of consumers from organizations that have shared

concerns (e.g., mission, security requirements, policy, and compliance con-

siderations). It may be owned, managed, and operated by one or more of

the organizations in the community, a third party, or some combination of

them, and it may exist on or off premises.

2.1.2 Virtualization

In computing, virtualization [9–13] refers to the act of creating a virtual (rather

than actual) version of something, including (but not limited to) a virtual com-

puter hardware platform, operating system, storage device, or computer network

resources. With virtualization, the computer’s physical resources, such as servers,

network, memory, and storage, are abstractly presented after conversion, so that

users can apply those resources in a better way than the original configuration.

Simply put, virtualization is a technology that allows the user to transform hard-

ware into software, and it allows the user to run multiple operating systems simul-

taneously on a single computer.

Chapter 2 Background Review and Related Work 8

Virtual architecture is different from traditional architecture, as shown in Figure

2.2. Traditional architecture can run single operating system on a single com-

puter, but the virtual architecture can run multiple operating systems on a single

computer.

Figure 2.2: The different between traditional architecture and virtual archi-
tecture

There are many benefits of virtualization, such as:

• Encapsulation - VMs can be described in a file

– Possible to ”snapshot”

– Easy to move

• Enables running multiple operating systems

• Consolidation and use of unused computation power

• Resource management

• High availability and disaster recovery

• Create ”Base Environment”

• Safe testing of new software

• Easy Management

Chapter 2 Background Review and Related Work 9

2.1.3 Hypervisor

A hypervisor [14] or virtual machine monitor (VMM) is a piece of computer soft-

ware, firmware or hardware that creates and runs VMs. A computer on which a

hypervisor is running one or more VMs is defined as a host machine. Each VM

is called a guest machine. The hypervisor presents the guest operating systems

with a virtual operating platform and manages the execution of the guest operat-

ing systems. Multiple instances of a variety of operating systems may share the

virtualized hardware resources.

Simply stated, a hypervisor creates a layer of abstraction that isolates an OS and

its associated applications from the underlying computing hardware. The isolation

effectively mitigates software from its traditional reliance on hardware devices and

their drivers. The implications of this behavior are profound. A hypervisor al-

lows OSes and their application workloads to run on a broader array of hardware.

Similarly, multiple OSes and workloads, each a unique VM or VM instance, can

reside on the same system to simultaneously share computing resources. Each VM

can be migrated between computing platforms on demand with little (if any) pro-

cessing disruption. The result is better use of computing platforms with seamless

workload migration and backup capabilities. Hypervisors generally fall into two

categories: hosted and bare-metal. Both offer distinct benefits and drawbacks.

A hosted hypervisor, as shown in Figure 2.3, runs within the OS and allows addi-

tional OS and application instances to run on top of it. Examples of the hosted

hypervisors include VMware Server and Microsoft Virtual Server, as well as numer-

ous endpoint-based virtualization platforms like VMware Workstation, Microsoft

Virtual PC and Parallels Workstation.

There are advantages of the hosted hypervisor:

• Virtualization installs like application rather than like OS.

• Can run alongside conventional applications.

Chapter 2 Background Review and Related Work 10

• Avoid code duplication – OS already has process scheduler, memory man-

agement, device support etc.

• More suitable for personal users.

Figure 2.3: The hosted hypervisor architecture

The bare-metal hypervisor, as shown in Figure 2.4, is the most commonly deployed

type, and it can be installed directly onto the computing hardware. Its OS installs

and runs above the hypervisor. Major virtualization products that can be termed

as bare-metal hypervisors include Oracle VM, VMware ESXi, Microsoft Hyper-V

and Citrix XenServer.

There are advantages of Bare-Metal Hypervisor:

• Better performance with lower overhead.

• Highly efficient direct I/O pass-through architecture for network and disk.

• Complete control over hardware.

• Advanced features like live migration available.

• Suitable for production environments.

Chapter 2 Background Review and Related Work 11

Figure 2.4: The bare-metal hypervisor architecture

2.1.4 OpenStack

OpenStack [15–18] is a free and open-source cloud computing software platform.

It began in 2010 as a joint project of Rackspace Hosting and NASA. Currently,

it is managed by the OpenStack Foundation, a non-profit which oversees both

development and community-building around the project. And OpenStack.org

released it under the terms of the Apache License. Users primarily deploy it as

an IaaS solution. The technology consists of a series of interrelated projects that

control pools of processing, storage, and networking resources throughout a data

center which users manage through a web-based dashboard, command-line tools,

or a RESTful API.

OpenStack has a modular architecture with various code names for its components.

• Compute (Nova)

OpenStack Compute (Nova) is a cloud computing fabric controller, which is

the main part of an IaaS system. It is designed to manage and automate

pools of computer resources and can work with widely available virtualization

technologies, as well as bare metal and high-performance computing (HPC)

configurations. KVM, VMware, and Xen are available choices for hypervisor

Chapter 2 Background Review and Related Work 12

technology, together with Hyper-V and Linux container technology such as

LXC.

• Object Storage (Swift)

OpenStack Object Storage (Swift) is a scalable redundant storage system.

Objects and files written to multiple disk drives spread throughout servers

in the data center, with the OpenStack software responsible for ensuring

data replication and integrity across the cluster. Storage clusters scale hor-

izontally simply by adding new servers. Should a server or hard drive fail,

OpenStack replicates its content from other active nodes to new locations in

the cluster. Because OpenStack uses software logic to ensure data replica-

tion and distribution across different devices, inexpensive commodity hard

drives and servers can be used. The Total Cost of Ownership (TCO) can be

higher than using enterprise-class storage because many copies require high

availability.

• Block Storage (Cinder)

Cinder is a block storage service for OpenStack. It is designed to allow the

use of either a reference implementation (LVM) to present storage resources

to end users that can be consumed by the OpenStack Compute Project

(Nova). The short description of Cinder is that it virtualizes pools of block

storage devices and provides end users with a self service API to request and

consume those resources without requiring any knowledge of where their

storage is actually deployed or on what type of device.

• Networking (Neutron)

OpenStack Networking (Neutron, formerly Quantum) is a system for manag-

ing networks and IP addresses. OpenStack Networking ensures the network

is not a bottleneck or limiting factor in a cloud deployment, and gives users

self-service ability, even over network configurations.

• Dashboard (Horizon)

Chapter 2 Background Review and Related Work 13

OpenStack Dashboard (Horizon) provides administrators and users a graph-

ical interface to access, provision, and automate cloud-based resources. The

design accommodates third party products and services, such as billing,

monitoring, and additional management tools. The dashboard can also be

branded for service providers and other commercial vendors who want to

make use of it. The dashboard is one of several ways users can interact

with OpenStack resources. Developers can automate access or build tools to

manage resources using the native OpenStack API or the EC2 compatibility

API.

• Identity Service (Keystone)

OpenStack Identity (Keystone) provides a central directory of users mapped

to the OpenStack services they can access. It acts as a common authentica-

tion system across the cloud operating system and can integrate with existing

backend directory services like LDAP. It supports multiple forms of authen-

tication including standard username and password credentials, token-based

systems and AWS-style (i.e. Amazon Web Services) logins. Additionally,

the catalog provides a list of all of the services deployed in an OpenStack

cloud in a single registry. Users and third-party tools can determine which

resources they can access by programs.

• Image Service (Glance)

OpenStack Image Service (Glance) provides discovery, registration, and de-

livery services for disk and server images. Stored images can be used as a

template. It can also be used to store and catalog an unlimited number of

backups. The Image Service can store disk and server images in a variety

of back-ends, including OpenStack Object Storage. The Image Service API

provides a standard REST interface for querying information about disk

images and lets clients stream the images to new servers.

• Telemetry (Ceilometer)

OpenStack Telemetry Service (Ceilometer) provides a single point of con-

tact for billing systems, providing all the counters they need to establish

Chapter 2 Background Review and Related Work 14

customer billing, across all current and future OpenStack components. The

delivery of counters is traceable and auditable, the counters must be easily

extensible to support new projects, and agents doing data collections should

be independent of the overall system.

• Orchestration (Heat)

Heat is the main project in the OpenStack Orchestration program. It im-

plements an orchestration engine to launch multiple composite cloud ap-

plications based on templates in the form of text files that can be treated

like code. A native Heat template format is evolving, but Heat also at-

tempts to provide compatibility with the AWS CloudFormation template

format, so that many existing CloudFormation templates can be launched

on OpenStack. Heat provides both an OpenStack-native ReST API and a

CloudFormation-compatible Query API.

• Database (Trove)

Trove is Database as a Service for OpenStack. It is designed to run entirely

on OpenStack, with the goal of letting users to quickly and easily utilize

the features of a relational or non-relational database without the burden

of handling complex administrative tasks. Cloud users and database ad-

ministrators can offer and manage multiple database instances as needed.

Initially, the service will focus on providing resource isolation at high perfor-

mance while automating complex administrative tasks such as deployment,

configuration, patching, backups, restores, and monitoring.

2.1.5 OpenStack Conceptual Architecture

Launching a VM or instance involves many interactions among several services.

Figure 2.5 provides the conceptual architecture of a typical OpenStack environ-

ment.

Chapter 2 Background Review and Related Work 15

Figure 2.5: The conceptual architecture of OpenStack

In this work, we use version IceHouse. We just use Nova, Glance, Keystone and

Horizon in our model.

2.1.6 Live Migration

Live migration [20–24],as shown in Figure 2.6, refers to the process of moving a

running VM or application between different physical machines without discon-

necting the client or application. Memory, storage, and network connectivity of

the VM are transferred from the original guest machine to the destination.

Chapter 2 Background Review and Related Work 16

Figure 2.6: The concept of Live Migration

Two techniques for moving the VM’s memory state from the source to the desti-

nation are pre-copy memory migration and post-copy memory migration.

• Pre-copy memory migration, as shown in Figure 2.7.

– Warm-up phase

In pre-copy memory migration, the hypervisor typically copies all the

memory pages from source to destination while the VM is still running

on the source. If some memory pages change (become ’dirty’) during

this process, they will be re-copied until the rate of re-copied pages is

not less than the page dirty rate.

– Stop-and-copy phase

After the warm-up phase, the VM will be stopped on the original host,

the remaining dirty pages will be copied to the destination, and the VM

will be resumed on the destination host. The time between stopping the

VM on the original host and resuming it on destination is called ”down-

time”, and it ranges from a few milliseconds to seconds according to the

size of memory and applications running on the VM. There are some

techniques to reduce live migration down-time, such as using probability

density function of memory change.

Chapter 2 Background Review and Related Work 17

Figure 2.7: The phase of Pre-copy memory migration

• Post-copy memory migration

Post-copy VM migration is initiated by suspending the VM at the source.

With the VM suspended, a minimal subset of the execution state of the VM

(CPU state, registers and, optionally non-pageable memory) is transferred

to the target. The VM is then resumed at the target. Concurrently, the

source actively pushes the remaining memory pages of the VM to the target

- an activity known as pre-paging. At the target, if the VM tries to access

a page that has not yet been transferred, it generates a page-fault. These

faults, known as network faults, are trapped at the target and redirected to

the source, which responds with the faulted page. Too many network faults

can degrade performance of applications running inside the VM. Hence pre-

paging can dynamically adapt the page transmission order to network faults

by actively pushing pages in the vicinity of the last fault. An ideal pre-

paging scheme would mask large majority of network faults, although its

Chapter 2 Background Review and Related Work 18

performance depends upon the memory access pattern of the VM’s work-

load. Post-copy sends each page exactly once over the network. In contrast,

pre-copy can transfer the same page multiple times if the page is dirtied

repeatedly at the source during migration. On the other hand, pre-copy re-

tains an up-to-date state of the VM at the source during migration, whereas

with post-copy, the VM’s state is distributed over both source and destina-

tion. If the destination fails during migration, pre-copy can recover the VM,

whereas post-copy cannot.

2.1.7 NFS (Network File System)

Network File System (NFS) [25–27], as shown in Figure 2.8, is a distributed file

system protocol originally developed by Sun Microsystems in 1984, allowing a

user on a client computer to access files over a network much like the local stor-

age. NFS, like many other protocols, builds on the Open Network Computing

Remote Procedure Call (ONC RPC) system. The Network File System is an open

standard defined in Request for Comments (RFCs), allowing anyone to implement

the protocol. Even though different universities and laboratories have developed

a variety of distributed file systems, NFS is the first product is applicable for both

academic and commercial use.

Chapter 2 Background Review and Related Work 19

Figure 2.8: The Network File System (NFS)

NFS’s basic principle is ”to allow different clients and server nodes share the same

file system through a set of RPC”, thus, independent of the operating system, NFS

allows different hardware and operating systems to share a common file system.

NFS provides the following services:

• Search file in the directory.

• List the files in the directory.

• Manage Directory.

• Obtain attribute of all files.

• The file read / write

NFS is often used with Unix operating systems (such as Solaris, AIX and HP-UX)

and Unix-like operating systems (such as Linux and FreeBSD). It is also available

to operating systems such as the classic Mac OS, OpenVMS, IBM i, certain editions

of Microsoft Windows, and Novell NetWare, and alternative remote file access

protocols including the Server Message Block (SMB, also known as CIFS), Apple

Chapter 2 Background Review and Related Work 20

Filing Protocol (AFP), NetWare Core Protocol (NCP), and OS/400 File Server

file system (QFileSvr.400).

2.1.8 PDU (Power Distribution Units)

A Power Distribution Unit (PDU) [28,29],as shown in Figure 2.9, is a device used

in data centers to distribute AC power to multiple servers and other equipment.

The PDUs range from simple 120 volts power strips to units that break out 120

volts from 240 volts and three-phase power. Advanced units can be managed

remotely via the SNMP management protocol or from a Web browser or other

management console, enabling outlets to be turned on and off at prescribed times

and in a proper sequence to shut down and power up equipment.

Figure 2.9: Raritan’s PDU

The growing complexity of IT environments, from wiring closets and server rooms

to data centers of all sizes, has increased the need for reliable power distribution

to the rack level. Eliminating power management problems is essential for IT and

facilities managers to maintain system availability of increasing higher density

equipment. The PDU is an essential element in managing power capacity and

functionality for critical networks, servers and data center equipment.

Chapter 2 Background Review and Related Work 21

• Basic PDU

The most basic PDU is a large power strip without surge protection. It

is designed to provide standard electrical outlets for data center equipment

and has no monitoring or remote access capabilities. The floor-mounted and

rack-mounted PDUs can be more sophisticated, providing data that can be

used for power usage effectiveness (PUE) calculations.

• Floor-mounted PDU

A floor-mounted PDU, sometimes called a main distribution unit (MDU),

provides an important management bridge between a building’s primary

power and various equipment racks within a data center or network opera-

tions center (NOC). Each PDU can handle larger amounts of energy than

an ordinary power strip (300 kilovolt-amps or higher depending on the man-

ufacturer and model) and typically provides power to multiple equipment

racks.

• Rack-mountable PDU

A rack-mountable PDU mounts directly to an equipment rack so it can

control and monitor power to specific servers, switches and other data center

devices and assist in balancing power loads. Rack-mountable PDAs are

known by several different names, including smart PDUs and intelligent

PDUs. Such PDUs include three-phase displays for devices sharing power

and remote management tools that use the Simple Network Management

Protocol (SNMP) to provide administrators with the ability to adjust and

monitor power demands from offsite locations.

2.2 Related Work

In the recent years, there are many power-saving and live migration research. We

choose some related research about power-saving, live migration, and dynamic

resource allocation for discussion.

Chapter 2 Background Review and Related Work 22

As shown in [6], after a number of relevant research and experiments, the authors

obtained some conclusions from analysis of the experimental results. Live migra-

tion of VMs will not cause significant additional electricity costs. The proposed

power-saving method is proven to be effective. And about 7% to 14% saving of

power consumption is achieved in their design. The percentage of power saving de-

pends on not only the power-saving method but also the real operation situations

of VMs and hosts. Their main function of the power-saving method is to obtain

and analyze resource usage information of servers and VMs through the resource

status monitoring program. If the required resources of VMs are less than those

supported by currently running servers, then via Libvirt live migration instruc-

tions the VMs are centralized and some server is shut down to achieve the goal

of energy saving. And as the resource requirement of the whole system increases,

some of standby servers might be awakened to join the computing cluster, and

appropriate live migrations of VMs are performed among the operating servers.

Their power-saving method is shown in Figure 2.10.

Figure 2.10: The Power-Saving method of first paper

The authors in [30] proposed a power saving algorithm as shown in Figure 2.11,

including the power saving method program and its work flow, where hostR is

resource usage of host i, hostN is the host network usage, sumVM is sum of VM

resource usage in the host, and VMmax is the VMs used the most resources in

Chapter 2 Background Review and Related Work 23

the host. Their proposed method first checks the system status data; if hostR or

hostN is more than the hard cap the host needs to perform load balance; if the

system has no hosts that can be loaded with more VMs, the method will turn on

a host and has the VMmax to migrate to other hosts; if the host is still in high

loading, other VMs on it will be migrated until the host is with loading lower than

the hard cap; if the hostR is lower than the soft cap, the host may be merged, and

the method will find a host to turn it off if the sum of two host VMs loading is

lower than the soft cap. Because over the soft cap the host performance is down,

and if after merging the host loading is over the hard cap the host needs to perform

load balance; hence, the merge causes wastes of power and time.

Figure 2.11: The Power-Saving method of second paper

In [5], the authors studied dynamic resource allocation. Their work advances the

cloud computing field in two ways. First, it plays a significant role in the reduction

of data center energy consumption costs, and thus helps to develop a strong and

competitive cloud computing industry. Second, consumers are increasingly be-

coming conscious about the environment. A recent study shows that data centers

represent a large and rapidly growing energy consumption sector of the economy

and a significant source of CO2 emissions. Reducing greenhouse gas emissions is a

Chapter 2 Background Review and Related Work 24

key energy policy focus of many countries around the world. The authors presented

and evaluated energy-aware resource allocation algorithms utilizing the dynamic

consolidation of VMs. Their experiment results show that their approach leads to

a substantial reduction of energy consumption in cloud data centers in comparison

to static resource allocation techniques. The authors aim at putting in a strong

thrust on open challenges identified in their paper to enhance the energy-efficient

management of cloud computing environments. They proposed Minimization of

Migrations (MM) policy to select the minimum number of VMs needed to migrate

from a host to lower the CPU utilization below the upper utilization threshold if

the upper threshold is violated. The pseudo-code for the MM algorithm for the

over-utilization case is presented in Figure 2.12. The algorithm sorts the list of

VMs in the decreasing order of the CPU utilization. Then, it repeatedly looks

through the list of VMs and finds a VM that is the best to migrate from the host.

The best VM is the one that satisfies two conditions. First, the VM should have

the utilization higher than the difference between the host’s overall utilization and

the upper utilization threshold. Second, if the VM is migrated from the host, the

difference between the upper threshold and the new utilization is the minimum

across the values provided by all the VMs. If there is no such a VM, the algorithm

selects the VM with the highest utilization, removes it from the list of VMs, and

proceeds to a new iteration. The algorithm stops when the new utilization of the

host is below the upper utilization threshold. The complexity of the algorithm is

proportional to the product of the number of over-utilized hosts and the number

of VMs allocated to these hosts.

Chapter 2 Background Review and Related Work 25

Figure 2.12: The algorithm of Minimization of Migrations(MM)

In [20], the authors presented the design, implementation and evaluation of memory-

compression-based VM migration approach (MECOM for short), which first intro-

duces memory compression technique into live VM migration. Based on memory

page characteristics, they designed a particular memory compression algorithm for

live migration of VMs. Based on the analysis of memory data characteristics, they

first classified pages into the following kinds: (1) pages composed of a great many

of zero bytes and sporadic nonzero bytes; (2) pages with high word-similarity; (3)

pages with low word-similarity. For the first kind of pages, we can scan the whole

page and just record the information about the offset and value of nonzero bytes.

For the second kind of pages, we can use methods that embody strong similarities,

such as WKdm, which is a unique combination of dictionary and statistic tech-

niques specifically designed to quickly and efficiently compress memory data. The

last kind of pages has weak regularities, and then a universal approach with a high

Chapter 2 Background Review and Related Work 26

compression ratio is appropriate. LZO, a modern implementation of Lempel–Ziv

compression, is an option. Because the smaller amount of data is transferred and

only very low compression overhead is introduced, the total migration time and

downtime are both decreased significantly. Service degradation is also decreased

greatly. Their experimental results show that their system can get better aver-

age performance than Xen: up to 27.1% on VM downtime, upto 32% on total

migration time, and up to 68.8% data cut down that must be transferred. Their

MECOM structure is shown in Figure 2.13.

Figure 2.13: The MECOM structure

Chapter 3

System Design and

Implementation

With the popularity of cloud computing, using the idle resources of VMs with low

loading and saving energy consumption on servers are the two issues particularly

worthy of study. In this section, we first build a cloud platform based on the in-

frastructure software OpenStack and then use the platform to implement a system

with the proposed algorithms to solve these two issues. In addition, the system

also provides a user interface.

3.1 System Architecture

This section introduces the architecture of the proposed cloud platform based on

the infrastructure software OpenStack. Figure 3.1 shows the architecture. The

architecture consists of a controller node and two computing nodes. Several major

OpenStack services are running on the Controller node, such as Identity service,

Image service, Networking service, Nova service, and Dashboard. To perform live

migration on the VMs between the two computing nodes, we use Network File

System (NFS) as shared storage and install the NFS server on the controller node.

27

Chapter 3 System Design and Implementation 28

The two computing nodes are only utilized to run the Nova service and NFS client

and connected to the PDU for monitoring and recording their energy consumption.

Figure 3.1: The overall system architecture

3.2 Design Flow

To achieve efficient dynamic allocation of resources and energy saving, two algo-

rithms are designed based on the proposed cloud platform. The algorithmic design

flow for DRA and the algorithmic design flow for energy saving are introduced in

subsection 3.2.1 and subsection 3.2.2, respectively.

3.2.1 Design Flow of DRA method

First we calculate resource utilization of each VM. By calculating resource utiliza-

tion of each VM, we can determine whether its allocated resources are excessive

or inadequate. If there are excessive resources on a VM, we will reduce its re-

sources. If there are inadequate resources on a VM, we will check whether there

are enough resources on the host that the VM is located. If enough, we will in-

crease the resources of the VM directly from the host. If not enough, we will check

whether there is another available host; if not, we will turn on a shut-down host

with enough resources to be allocated to the VM. We then perform live migration

of the VM to the host with enough resources, and after that, increase the resources

Chapter 3 System Design and Implementation 29

of the VM. If the resources of a VM are not excessive or inadequate, we will not

increase or decrease the resources of it, and then continue checking resources of

the next VM. The flowchart of the proposed DRA method is shown in Figure 3.2.

Figure 3.2: DRA method flow chart

3.2.2 Design Flow of Energy Saving method

For the proposed energy saving method shown in Figure 3.3, we first calculate idle

resources of a host. If there are excessive idle resources, we will first check whether

the idle resources are more than that of all VMs on the other host. If yes, we will

move VMs from the host with fewer VMs to the other host with more VMs, and

then shut down the host with VMs removed.

Chapter 3 System Design and Implementation 30

Figure 3.3: Energy Saving method flow chart

3.3 System Implementation

In this section, we describe how the proposed system including the improved DRA

method, improved energy saving method, user interface, and status monitoring

is implemented. Python language and PHP are adopted to develop programs,

including the state monitoring program which monitors states of the VMs and

the physical machines, the energy consumption record program which monitors

the power consumption, the DRA method program which resizes VMs, and the

energy saving method program which merges VMs to some host. The following

provides a detailed description of the four programs.

Chapter 3 System Design and Implementation 31

3.3.1 Status Monitoring

We monitored the states, i.e., CPU utilization and memory utilization, of physical

machines and VMs via status monitoring program. Based on monitoring data,

we can observe whether the resources on each VM are excessive or inadequate.

We used python system and process utilities (psutil). which is a cross-platform

library for retrieving information on running processes and system utilization of

CPU, memory, disks, and networking in Python. It is useful mainly for system

monitoring, profiling and limiting process resources and management of running

processes. The status monitoring function was developed with the Python pro-

gramming language to capture status and post data to receiving program. We

then used the receiving program which was developed with the PHP language to

receive all monitoring data and insert these monitoring data into database. The

flow of status monitoring is shown in Figure 3.4.

Figure 3.4: The Circuit of status monitoring

3.3.2 Energy Consumption Recording

We captured the energy consumption of compute nodes via a PDU, and used

Simple Network Management Protocol (SNMP) to acquire energy consumption

data of the PDU. The energy consumption recording function, developed by PHP

language, is an automatic recording program. The flow of energy consumption

recording is shown in Figure 3.5.

Chapter 3 System Design and Implementation 32

Figure 3.5: The Circuit of Energy Consumption Recording

Through the energy consumption recording program, we can automatically collect

the energy consumption data of compute nodes from a PDU. Figure 3.6 is the web

interface provided by the PDU used in this work. Figure 3.7 shows the detailed

information from its outlet.

Figure 3.6: PDU’s web interface

Chapter 3 System Design and Implementation 33

Figure 3.7: The detailed information of the outlet

3.3.3 DRA method

The main purpose of the DRA method, as shown in Algorithm 3.3.1, is to reduce

the idle resources on VM. It can also increase the resources to the VM with inad-

equate resources. By the DRA method, we set the upper limit and lower limit of

resource utilization for VMs. When the resource utilization of a VM exceeds the

upper limit, we will increase the resources of the VM so that more resources can

be used. When the resource utilization of a VM is less than the lower limit, we will

reduce the resources of the VM to release its idle resources. If the resource utiliza-

tion is between the upper limit and lower limit, we do not change the resources of

Chapter 3 System Design and Implementation 34

the VM.

Algorithm 3.3.1: DRA method()

if (VM resource utilization) > upper limit

then



chech the resource of host

if (host resource enough)

then resize VM bigger

else

then


turn on another host

Live migration VM to another host

then resize VM bigger

else if (VM resource utilization) < lower limit

then
{
resize V M smaller

else undo

When the resource utilization of a VM exceeds the upper limit, the performance

of the VM will significantly decrease. We used CPU Limit and HPL to decide the

percentage of CPU utilization will cause performance of VM obviously decrease.

We respectively tested the limit of CPU utilization of 100%,90%,80%,70%,60%,

50%,40%,30%,20% and 10%, and then executed the HPL. The larger the score

generated by HPL is, the better the performance is. The limit of CPU utilization

can be seen as the remaining CPU utilization. For example, if the limit of CPU

utilization is set to 100%, there is remaining 100% CPU utilization to execute

HPL. If the limit CPU utilization is set to 60%, there is remaining 60% CPU

utilization to execute HPL. HPL is used to quantify CPU performance. So, the

score generated by HPL can be seen as the performance of a service. The difference

between the two HPL scores indicates how the performance alters between two

CPU utilizations. We will resize a VM’s resource to prevent performance of the

VM from dropping.

Chapter 3 System Design and Implementation 35

When a VM’s average resource utilization is low, the VM’s CPU resource is resized

to a half. After resizing, the VM’s average CPU utilization cannot exceed the

upper limit, or the performance will be obviously dropped. We set the lower CPU

utilization limit, of which the HPL score is smaller than the half of the HPL score

of the upper CPU utilization limit. The average CPU utilization of a VM should

not exceed the lower limit and cause performance dropped after resizing.

3.3.4 Energy Saving method

The energy saving method is mainly to save energy consumption by turning off

physical machines. If the resources utilization is too high, we can merge the VMs

to the other host via live migration and then shut down the host with no VMs to

save energy. We define the parameters in the energy saving method as follows:

Uc is defined as number of used vCPU on all Host

Um is defined as number of used memory on all Host

NAvm is defined as number of instance on HostA

NBvm is defined as number of instance on HostB

In this method, we will first check whether the number of used vCPU and the

number of used memory on all hosts exceed the limit resources of one compute

node (32 vCPU and 62 GB). If the limit resources of one compute node have not

been exceeded, we will check the number of instances on Host A and Host B. If

the number of instances of Host B is smaller than that of Host A, we will perform

live migration to migrate all VMs on Host B to Host A, and then shut down Host

B. Likewise, if the number of instances of Host A is smaller than that of Host B,

we will perform live migration to migrate all VMs on Host A to Host B, and then

shut down Host A. If the number of used vCPU and the number of used memory

on all Host exceed the limit resources of one compute node (32 vCPU and 62 GB),

we cannot merge all VMs to the same compute node, since the resources of one

Chapter 3 System Design and Implementation 36

compute node is not enough to allocate to all VMs. Consequently, nothing will be

done.

Algorithm 3.3.2: Energy Saving method()

if Uc <= 32 and Um <= 62 GB

then



if NBvm <= NAvm and NBvm ! = 0

then

Live migration all V M on HostB to HostA

shutdown HostB

else NAvm <= NBvm and NAvm ! = 0

then

Live migration all V M on HostA to HostB

shutdown HostA

else undo

3.4 User Interface

In the beginning of the cloud system login screen, as shown in Figure 3.8, it asks

the user to enter the user name and password provided by the cloud infrastructure

manager.

Chapter 3 System Design and Implementation 37

Figure 3.8: Login screen

After login, a window shows project and admin in the left column. Only the

account with administrative privileges can use the admin function. We can see all

instances in admin, as shown in Figure 3.9. There are many functions such as:

instances’ project name (the name of the host in which the instances are located),

image name, IP address, the specification of instances, status, and uptime.

Chapter 3 System Design and Implementation 38

Figure 3.9: Detail of Instances

We can see various information of the host from the hypervisor in admin, as shown

in Figure 3.10, including total vCPUs, used vCPUs, total memory, used memory,

total storage, used storage, and the number of instances.

Figure 3.10: Detail of Hypervisors

Chapter 4

Experimental Results

In this chapter, we show the experimental environment and the experimental re-

sults. In section 4.1, we describe our experimental environment including hardware

specification and software specification. And we will show our experimental re-

sults in section 4.2. We first test the performance of VM and then carry out the

proposed algorithms for improving both present DRA and energy saving methods.

Finally, we test the two algorithms implemented in the same system and show the

experimental results.

4.1 Experimental Environment

The experimental environment consists of three computers and their hardware

specifications are listed in Table 4.1. The state monitoring of the VM and the

physical machine program, the energy consumption recording program, the DRA

method program, the energy saving method program, the shared storage – NFS

server and the user interface are built on the controller node, which consists of

12-core CPU, 30 GB memory, 2 TB disk and with Ubuntu 14.04 as the operating

system. The hardware specification of each computing node is the same: 32-core

CPU, 64 GB memory, 2 TB disk and with Ubuntu 14.04 as the operating system.

39

Chapter 4 Experimental Results 40

Table 4.1: Hardware specification

Host Name CPU RAM HDD OS

Controller node Intel(R) Core(TM) i7 CPU X 990 30GB 2TB Ubuntu14.04

Computing node1 AMD Opteron(TM) Processor 6274 64GB 2TB Ubuntu14.04

Computing node2 AMD Opteron(TM) Processor 6274 64GB 2TB Ubuntu14.04

Software specifications are listed in Table 4.2. The OpenStack version is Icehouse

released on 17 April 2014. The Docker version is 1.3.2. The PHP version is 6.3.10.

The SNMP version is 5.4.3.

Table 4.2: Software specification

Software OpenStack Python PHP SNMP NFS

Version Icehouse 2.7.6 5.5.9 5.7.2 4

4.2 Experimental Results and Discussion

4.2.1 Experiment of VM Performance

In the VM performance experiment, we tried to find at what setting of the VM’s

vCPU utilization, the system performance is obviously lowest. In this experiment,

we used the CPULimit kit to limit the utilization of CPU, and then executed

the High-Performance Linpack (HPL). HPL has characteristic of a distribution

system and use MPI to compute some data and finally it will produce a score.

We can compare the performance of systems according to the score. HPL is used

to quantify CPU performance. So, the score generated by HPL can be viewed

as the performance of a service. The larger the score is generated by HPL, the

better the performance is. We respectively tested the limit of CPU utilization

of 100%、90%、80%、70%、60%、50%、40%、30%、20% and 10%, and then

executed the HPL program.

Chapter 4 Experimental Results 41

In this experiment we tested the VM with 1 virtual CPU, 4 GB memory and 40

GB hard disk space. The experimental result of VM performance is shown in

Figure 4.1. When we limited the utilization of CPU to 100%, i.e., no limit is set

of the CPU utilization, and then executed HPL, we got a score of 15.56 Gflops,

meaning 15.56 billion floating-point operations per second. When we limited the

utilization of CPU to 90%, i.e., 90% of CPU utilization is used to execute HPL,

We got a score of 13.74 Gflops, meaning 13.74 billion floating-point operations per

second.

Figure 4.1: CPU utilization and HPL score plot

In the other words, the limit of CPU utilization can be seen as the remaining

CPU utilization. For example, while the limit of CPU utilization is set to 100%,

it means remaining 100% CPU utilization to execute HPL. If the limit of CPU

utilization is set to 60%, it means remaining 60% CPU utilization to execute HPL.

The difference between two HPL scores increases, the performance increases faster.

When the CPU utilization is 10%, the performance is 1.953 Gflops. The perfor-

mance is obviously dropped. We set the upper limit for Algorithm 3.3.1 to 80%.

When the VM’s average CPU utilization reaches 80%, we will allocate more re-

sources to the VM.

Chapter 4 Experimental Results 42

If a VM’s average resource utilization is not high, and we will reduce resource

allocated to the VM to release the idle resources. We observed that VM’s per-

formance will be optimal when the CPU utilization is about 80% with a HPL

score of 12.18 Gflops. If we want to release the resource of a VM, we may reduce

that VM’s CPU resource to half. The half of HPL score of 80% CPU utilization

is 6.09. When the limit of CPU utilization is 30%, its HPL score is 5.34, so we

have to make sure that the average VM’s CPU utilization is less than or equal to

30% before reducing the size. Then the CPU utilization will not exceed 80% by

reducing resource of the VM. Based on results of this experiment, we will set the

lower limit for Algorithm 3.3.1 to 30%. When the VM’s average CPU utilization

is less than or equal to 30%, we will resize VM’s CPU resource to half.

4.2.2 Experiment of DRA method

The purpose of the DRA method is to release some idle resource of VMs. In this

work, we created 7 VMs, and used different size of resources. VMs are created at

computeA and computeB. The details of VMs are shown in Table 4.3.

Table 4.3: Details of VMs before the DRA method

Host Name IP Address Size of Resource

ComputeA Ubuntu1 10.0.1.2 8GB RAM | 8 VCPU | 40.0GB Disk

ComputeB Ubuntu2 10.0.1.3 1GB RAM | 1 VCPU | 40.0GB Disk

ComputeA Ubuntu3 10.0.1.4 8GB RAM | 8 VCPU | 40.0GB Disk

ComputeA Ubuntu4 10.0.1.5 4GB RAM | 4 VCPU | 40.0GB Disk

ComputeB Ubuntu5 10.0.1.6 1GB RAM | 1 VCPU | 40.0GB Disk

ComputeA Ubuntu6 10.0.1.7 4GB RAM | 4 VCPU | 40.0GB Disk

ComputeA Ubuntu7 10.0.1.8 8GB RAM | 8 VCPU | 40.0GB Disk

Chapter 4 Experimental Results 43

There are four resource sizes as listed in Table 4.4.

Table 4.4: Detail of resource size

Name VCPUs RAM DISK

1C1M 1 1024MB 40GB

2C2M 2 2048MB 40GB

4C4M 4 4096MB 40GB

8C8M 8 8192MB 40GB

We monitored CPU utilization and power consumption of computeA and com-

puteB, and also monitored CPU utilization of all VMs in an hour before apply-

ing the DRA method and an hour after applying it. Before executing the DRA

method, there are 5 VMs running on computeA and 2 VMs on computeB. All

VMs are running an infinite loop program to increase their CPU utilization. From

the experimental results of VM performance, performance of a VM increases when

the VM’s CPU utilization is close to 80%; whereas almost half of resources are

idle when VM’s CPU utilization is smaller than 30%. By applying the DRA

method, the average of monitoring data during an hour is computed to determine

whether VM CPU utilization is exceed 80% or less than 30%. We will assign more

resources to a VM if its CPU utilization exceeds 80% and reduce resources to a

VM if its CPU utilization is less than 30%.

We calculate the one hour average CPU utilization of VMs after applying the

DRA method and compare it with the one hour average CPU utilization of VMs

before applying the DRA method, as shown in Figure 4.2. Before executing the

DRA method, the CPU utilization of Ubuntu1, Ubuntu3, Ubuntu4, Ubuntu6 and

Ubuntu7 are less than 30%, so we reduce their resources; and the CPU utilization

of Ubuntu2 and Ubuntu5 are more than 80%, so we increase their resources. Before

applying the DRA method, 34 VCPUs and 34 GB memory are used in the VMs.

After executing the DRA method, Ubuntu1, Ubuntu3, Ubuntu4, Ubuntu6 and

Ubuntu7 release the idle resources. We resize Ubuntu1, Ubuntu3 and Ubuntu7

from 8 VCPUs and 8 GB memory to 2 VCPUs and 2 GB memory; Ubuntu4 and

Chapter 4 Experimental Results 44

Ubuntu6 from 4 VCPUs and 4 GB memory to 2 VCPUs and 2 GB memory. And

after executing the DRA method, Ubuntu2 and Ubuntu5 have more resource: we

resize Ubuntu2 and Ubuntu5 from 1 VCPU and 1 GB memory to 2 VCPUs and

2 GB memory. After applying the DRA method, 14 VCPUs and 14 GB memory

are used in the VMs. Thus, 20 VCPUs and 20 GB memory in total are released.

Figure 4.2: VM’s CPU utilization before DRA method and after DRA method

The average monitoring data of power consumption and CPU utilization at com-

pute nodes are shown in Figure 4.3 and Figure 4.4, respectively. Before applying

the DRA method, the VMs need to resize smaller are all created on ComputeA,

and VM need to resize bigger on ComputeB. After executing the DRA method,

power consumption and CPU utilization of ComputeA and ComputeB slightly in-

crease. However, ComputeA and ComputeB release 20 VCPUs and 20 GB memory

in total.

Chapter 4 Experimental Results 45

Figure 4.3: Compute node power consumption before DRA method and after
DRA method

Figure 4.4: Compute node CPU utilization before DRA method and after
DRA method

4.2.3 Experiment of Energy Saving method

The purpose of the energy saving method is to find which compute node has

fewer VMs, and use live migration to merge VMs of this compute node to another

compute node, and then shut down the compute node with VMs removed to

save the power consumption. In the experiment of the energy saving method we

Chapter 4 Experimental Results 46

created 7 VMs, and used different resource sizes. VMs were created at computeA

and computeB. The details of VM are shown in Table 4.3.

As shown in Figure 4.5, before executing the energy saving method, there were

5 VMs on computeA and 2 VMs on comptueB. The energy saving method works

by first checking whether all used resource of VMs are located at more than one

compute node. It found that the resources of VMs are located at more than one

compute node, so it would not merge VMs to the same compute node. After

the energy saving method, there were still 5 VMs on computeA and 2 VMs on

comptueB.

Figure 4.5: Number of instance before ES method and after ES method

We monitored CPU utilization and power consumption of computeA and com-

puteB for an hour before applying the energy saving method and an hour after

applying it. The average of monitoring data of power consumption and CPU uti-

lization are shown in Figure 4.6 and Figure 4.7, respectively. The CPU utilization

and power consumption of ComputeA and ComputeB are almost not changed.

After executing the energy saving method, no live migration was performed on

VMs, because the maximum resource of either compute node is fewer than all

used resource of VMs.

Chapter 4 Experimental Results 47

Figure 4.6: Compute node power consumption before ES method and after
ES method

Figure 4.7: Compute node CPU utilization before ES method and after ES
method

4.2.4 Experiment of DRA and Energy Saving method

In this experiment the DRA method is used to release idle resource of VMs; after

that, the compute node will have more available resources to use the energy saving

method to merge VMs to a compute node and shut down the compute node

Chapter 4 Experimental Results 48

without VMs. After applying the DRA and energy saving methods, the details of

VMs are shown in Table 4.5.

Table 4.5: Details of VMs after applying the DRA and energy saving method

Host Name IP Address Size of Resource

ComputeA Ubuntu1 10.0.1.2 2GB RAM | 2 VCPU | 40.0GB Disk

ComputeA Ubuntu2 10.0.1.3 2GB RAM | 2 VCPU | 40.0GB Disk

ComputeA Ubuntu3 10.0.1.4 2GB RAM | 2 VCPU | 40.0GB Disk

ComputeA Ubuntu4 10.0.1.5 2GB RAM | 2 VCPU | 40.0GB Disk

ComputeA Ubuntu5 10.0.1.6 2GB RAM | 2 VCPU | 40.0GB Disk

ComputeA Ubuntu6 10.0.1.7 2GB RAM | 2 VCPU | 40.0GB Disk

ComputeA Ubuntu7 10.0.1.8 2GB RAM | 2 VCPU | 40.0GB Disk

By the DRA method, Ubuntu1, Ubuntu3, Ubuntu4, Ubuntu6 and Ubuntu 7 re-

leased the idle resources: Ubuntu1, Ubuntu3 and Ubuntu7 were resized from 8

VCPUs and 8 GB memory to 2VCPUs and 2GB memory; Ubuntu4 and Ubuntu6

were resized from 4 VCPUs and 4 GB memory to 2VCPUs and 2GB memory. Be-

sides, Ubuntu2 and Ubuntu5 were allocated with more resources to use: Ubuntu2

and Ubuntu 5 were resized from 1VCPU and 1GB memory to 2VCPUs and 2GM

memory. In total, 14 VCPUs and 14 GB memory were used in the VMs; in other

words, 20 VCPUs and 20 GB memory were released. The CPU utilization of VMs

are shown in Figure 4.8.

Chapter 4 Experimental Results 49

Figure 4.8: VM CPU utilization compare graph

As shown in Figure 4.9, after applying the DRA and energy saving methods, all

VMs on compute were moved to computeA by live migration. After performing

live migration, we turned off the comptueB with VMs removed.

Figure 4.9: Number of instance compare graph

Before applying the DRA and energy saving methods, there were VCPUs and 32

GB memory used on conputeA, 2 VCPUs and 2 GB memory used on computeB.

After executing the DRA and energy saving methods, only 14 VCPUs and 14 GB

memory were used on computeA. The DRA and energy saving methods increased

Chapter 4 Experimental Results 50

the CPU utilization of compute, but it also decreased CPU utilization of computeB

to zero, as shown in Figure 4.10.

Figure 4.10: Compute node CPU utilization compare graph

As shown in Figure 4.11, before applying the DRA and energy saving methods, the

total power consumption of the system was 363.5517 watts. The power consump-

tion of computeA increased from 204.3103 watts to 218.5 watts, but the power

consumption if comptueB decreased from 159.2414 watts to zero. Even though

the power consumption of computeA increased, the system saved 145.0517 Watts

overall. In other words, a total of 39.89% power consumption was saved.

Chapter 4 Experimental Results 51

Figure 4.11: Compute node power consumption compare graph

Through executing the DRA and energy saving methods, it not only saved 39.89%

power consumption in total, but also released 20 VCPUs and 20 GB memory.

4.2.5 Discussion

The authors in [6] showed that live migration of VMs does not cause significant

additional electricity costs and their power-saving method is effective, achieving

from 7% to 14% in their design. The authors in [30] showed how to use conditions

to choose the migrating VMs: when the host meets with the high condition, it will

start load-balance. Their method chooses the VMs conforming to the condition

that less memory and more CPU resource are used, and then do the load balance

on the selected VMs; less time will be spent and less host resources will be used.

They showed that about 15% of accumulated power consumption are saved by

using their power saving method. In both papers KVM and libvirt are used to

build the cloud cluster.

Different from above two papers, we used the cloud software OpenStack to build

a cloud system with the energy saving method and the DRA Method on VMs.

Through our energy saving method, we first determined which PM has fewer

Chapter 4 Experimental Results 52

VMs, and then perform live migration to remove all VMs on this PM to other

PM. Because the live migration will cause power consumption, so we choose the

PM with fewer VMs to merge to other PM. In our system with the DRA method

and the energy saving method, we not only saved about 39% power consumption,

but also released the idle resources of VMs. Before executing the energy saving

method, we must execute the DRA method to adjust resources on VMs by either

releasing idle resources of VMs or allocating more resource to some VMs. The

utilization of VMs fluctuates and will not always keep high or low. Therefore,

we repeatedly execute the DRA and energy saving methods at a regular period

of time to ensure that all VMs do not have too much idle resources or too few

resource.

Chapter 5

Conclusions and Future Work

In this thesis, we built an energy saving cloud system which implements VM DRA

to achieve our goal: reduce the idled resources on the VMs and reduce the energy

consumption of the entire cloud cluster. We will describe our conclusion in section

5.1 and future work in section 5.2.

5.1 Concluding Remarks

In this work, we implement an infrastructure platform base on cloud software

– OpenStack. We achieve our goal by using a DRA method to reduce the idled

resources on the VM and an energy saving method to save the energy consumption

of servers. The DRA method not only can reduce the waste of the idled resources

on VMs, but also can increase allocation of resources to any VM with inadequate

resources. The energy saving method works mainly through shutting idle physical

machines to save energy consumption.

Through the DRA method we can find the most suitable resource capacity for the

VMs. After running a period of time, we will use the average CPU utilization

of this period of time to alter allocation of the resources of VMs to achieve the

suitable resource capacity. After applying the DRA method, we execute the energy

saving method. The energy saving method can merge the VMs to some compute

53

Chapter 5 Conclusions and Future Work 54

node and shut down the compute node with all VMs moved to achieve the energy

saving purpose. In this thesis, we achieve our goal to release the idled resources

on the VMs and allocate more resource to the VMs in need of resources. The

experimental results show that 39.89% of power is saved and 20 VCPUs and 20

GB memory are released by the DRA combined with the energy saving method.

5.2 Future work

The DRA method and the energy saving method still have some work to do. For

the DRA method, we plan to combine OpenStack with Docker to achieve less

down time when resizing VMs. For the energy saving method, we will consider

a few more factors, such as power consumption in resizing VMs. In the future

work, we will not only continue studying the DRA method and the energy saving

method to improve our system, but also apply our system to a larger environment

to verify its performance.

References

[1] Gartner identifies the top 10 strategic technology trends for 2015, 2014. http:

//www.gartner.com/newsroom/id/2867917.

[2] Andreas Wolke, Boldbaatar Tsend-Ayush, Carl Pfeiffer, and Martin Bichler.

More than bin packing: Dynamic resource allocation strategies in cloud data

centers. Information Systems, pages 83 – 95, 2015.

[3] Lucas W. Krakow, Louis Rabiet, Yun Zou, Guillaume Iooss, and Sanjay Ra-

jopadhye Edwin K.P. Chong. Optimizing dynamic resource allocation. Pro-

cedia Computer Science, pages 1277 – 1288, 2014.

[4] M.B. Nagpure, P. Dahiwale, and P Marbate. An efficient dynamic resource al-

location strategy for vm environment in cloud. Pervasive Computing (ICPC),

2015 International Conference on, pages 1 – 5, 2015.

[5] Anton Beloglazov, Jemal Abawajy, and Rajkumar Buyya. Energy-aware re-

source allocation heuristics for efficient management of data centers for cloud

computing. Future Generation Computer Systems, 28:755 – 768, 2012.

[6] Chao-Tung Yang, Kuan-Lung Huang, Jung-Chun Liu, Yi-Wei Su, and Chu

W.C.-C. Implementation of a power saving method for virtual machine man-

agement in cloud. Cloud Computing and Big Data (CloudCom-Asia), 2013

International Conference on, pages 283 – 290, 2013.

[7] Ningling Wang, Peng Fu, Yongping Yang, Longfei Zhu, and Dianfa Wu.

Spatial-temporal energy-saving effect for the diagnosis of energy-consumption

55

http://www.gartner.com/newsroom/id/2867917
http://www.gartner.com/newsroom/id/2867917

References 56

benchmark state of thermal power units. Energy Procedia, pages 1848 – 1851,

2014.

[8] G. Thomas, K. Chandrasekar, B. Akesson, and B. Juurlink. A predictor-

based power-saving policy for dram memories. Digital System Design (DSD),

2012 15th Euromicro Conference on, pages 882 – 889, 2012.

[9] Rajkumar Buyya, Christian Vecchiola, and S. Thamarai Selvi. Mastering

Cloud Computing: Chapter 3 – Virtualization. MORGAN KAUFMANN,

2013.

[10] Xiaofei Liao, Hai Jin, Shizhan Yu, and Yu Zhang. A novel memory allocation

scheme for memory energy reduction in virtualization environment. Journal

of Computer and System Sciences, 81:3 – 15, 2015.

[11] Yaozu Dong, Xiantao Zhang, Jinquan Dai, and Haibing Guan. Hyvi: A hybrid

virtualization solution balancing performance and manageability. Parallel and

Distributed Systems, 25:2332 – 2341, 2014.

[12] S.A. Babu, M.J. Hareesh, J.P. Martin, S. Cherian, and Y. Sastri. System per-

formance evaluation of para virtualization, container virtualization, and full

virtualization using xen, openvz, and xenserver. In Advances in Computing

and Communications (ICACC), 2014 Fourth International Conference on,

pages 247–250, Aug 2014.

[13] Inhyuk Kim, Taehyoung Kim, and Young Ik Eom. Nhvm: Design and imple-

mentation of linux server virtual machine using hybrid virtualization technol-

ogy. In Computational Science and Its Applications (ICCSA), 2010 Interna-

tional Conference on, pages 171–175, March 2010.

[14] Hypervisor, 2015. http://en.wikipedia.org/wiki/Hypervisor.

[15] Openstack open source cloud computing software, 2015. http://www.

openstack.org/.

[16] What is openstack?, 2015. http://opensource.com/resources/

what-is-openstack.

http://en.wikipedia.org/wiki/Hypervisor
http://www.openstack.org/
http://www.openstack.org/
http://opensource.com/resources/what-is-openstack
http://opensource.com/resources/what-is-openstack

References 57

[17] Openstack, 2015. http://en.wikipedia.org/wiki/OpenStack.

[18] Zhaojun Li, Haijiang Li, Xicheng Wang, and Keqiu Li. A generic cloud

platform for engineering optimization based on openstack. Advances in En-

gineering Software, 75:42 – 57, 2014.

[19] Openstack architecture, 2014. http://docs.openstack.org/

icehouse/install-guide/install/apt/content/ch_overview.html#

architecture_overview.

[20] Hai Jin, Li Deng, Song Wua, Xuanhua Shia, Hanhua Chena, and Xiaodong

Panc. Mecom: Live migration of virtual machines by adaptively compressing

memory pages. Future Generation Computer Systems, 38:23 – 25, 2014.

[21] Mattias Forsman, Andreas Glad, Lars Lundberg, and Dragos Ilie. Algorithms

for automated live migration of virtual machines. Journal of Systems and

Software, 101:110 – 126, 2015.

[22] Muhammad Atif and Peter Strazdins. Adaptive parallel application resource

remapping through the live migration of virtual machines. Future Generation

Computer Systems, 37:148 – 161, 2014.

[23] Hai Jin, Wei Gao, Song Wu, Xuanhua Shi, Xiaoxin Wu, and Fan Zhou. Op-

timizing the live migration of virtual machine by cpu scheduling. Journal of

Network and Computer Applications, 34:1088 – 1096, 2011.

[24] Kejiang Ye, Xiaohong Jiang, Ran Ma, and Fengxi Yan. Vc-migration: Live

migration of virtual clusters in the cloud. In Grid Computing (GRID), 2012

ACM/IEEE 13th International Conference on, pages 209–218, Sept 2012.

[25] Shaoming Guo, Wang Yang, and Guojun Wang. Nfs protocol performance

analysis and improvement for mobile transparent computing. High Perfor-

mance Computing and Communications 2013 IEEE International Conference

on, pages 1878 – 1883, 2013.

[26] Network file system, 2015. http://en.wikipedia.org/wiki/Network_

File_System.

http://en.wikipedia.org/wiki/OpenStack
http://docs.openstack.org/icehouse/install-guide/install/apt/content/ch_overview.html#architecture_overview
http://docs.openstack.org/icehouse/install-guide/install/apt/content/ch_overview.html#architecture_overview
http://docs.openstack.org/icehouse/install-guide/install/apt/content/ch_overview.html#architecture_overview
http://en.wikipedia.org/wiki/Network_File_System
http://en.wikipedia.org/wiki/Network_File_System

References 58

[27] Alex Osadzinski. The Network File System (NFS). Computer Standards and

Interfaces, 1988–1989.

[28] Power distribution unit, 2015. http://en.wikipedia.org/wiki/Power_

distribution_unit.

[29] What is power distribution unit?, 2013. http://searchdatacenter.

techtarget.com/definition/power-distribution-unit-PDU.

[30] Chao-Tung Yang, Chih-Liang Chuang, Jung-Chung Liu, Chien-Chih Chen,

and W.C. Chu. Implementation of cloud infrastructure monitor platform with

power saving method. In Advanced Information Networking and Applications

Workshops (WAINA), 2015 IEEE 29th International Conference on, pages

223–228, March 2015.

[31] Cloud computing, 2015. http://en.wikipedia.org/wiki/Cloud_

computing.

[32] What is cloud computing?, 2015. http://www.ibm.com/cloud-computing/

us/en/what-is-cloud-computing.html.

[33] Cloud open lab, 2012. http://www.cloudopenlab.org.tw/ccipo_

industryDefinition.do.

[34] Rajkumar Buyya, Christian Vecchiola, and S. Thamarai Selvi. Mastering

Cloud Computing: Chapter 4 – Cloud Computing Architecture. MORGAN

KAUFMANN, 2013.

http://en.wikipedia.org/wiki/Power_distribution_unit
http://en.wikipedia.org/wiki/Power_distribution_unit
http://searchdatacenter.techtarget.com/definition/power-distribution-unit-PDU
http://searchdatacenter.techtarget.com/definition/power-distribution-unit-PDU
http://en.wikipedia.org/wiki/Cloud_computing
http://en.wikipedia.org/wiki/Cloud_computing
http://www.ibm.com/cloud-computing/us/en/what-is-cloud-computing.html
http://www.ibm.com/cloud-computing/us/en/what-is-cloud-computing.html
http://www.cloudopenlab.org.tw/ccipo_industryDefinition.do
http://www.cloudopenlab.org.tw/ccipo_industryDefinition.do

Appendix A

OpenStack Installation

I. Network Time Protocol (NTP)

$ apt-get install ntp

II. Database (Controller node setup)

$ apt-get install python-mysqldb mysql-server

#===== MySQL configure =====

[mysqld]

...

bind-address = Your_IP

[mysqld]

...

default-storage-engine = innodb

innodb_file_per_table

collation-server = utf8_general_ci

init-connect = 'SET NAMES utf8'

character-set-server = utf8

$ service mysql restart

$ mysql_secure_installation

Set root password? [Y/n] Y

Remove anonymous users? [Y/n] Y

Disallow root login remotely? [Y/n] Y

Remove test database and access to it? [Y/n] Y

Reload privilege tables now? [Y/n] Y

59

Appendix 60

III. Database (Compute node setup)

$ apt-get install python-mysqldb

IV. MySQL Setting

$ mysql -u root -p

CREATE DATABASE keystone;

GRANT ALL PRIVILEGES ON keystone.* TO 'keystone'@'localhost' \

IDENTIFIED BY 'KEYSTONE_DBPASS ';

GRANT ALL PRIVILEGES ON keystone.* TO 'keystone'@'%' \

IDENTIFIED BY 'KEYSTONE_DBPASS ';

exit

$ mysql -u root -p

CREATE DATABASE glance;

GRANT ALL PRIVILEGES ON glance.* TO 'glance'@'localhost' \

IDENTIFIED BY 'GLANCE_DBPASS ';

GRANT ALL PRIVILEGES ON glance.* TO 'glance'@'%' \

IDENTIFIED BY 'GLANCE_DBPASS ';

exit

$ mysql -u root -p

CREATE DATABASE nova;

GRANT ALL PRIVILEGES ON nova.* TO 'nova'@'localhost' \

IDENTIFIED BY 'NOVA_DBPASS ';

GRANT ALL PRIVILEGES ON nova.* TO 'nova'@'%' \

IDENTIFIED BY 'NOVA_DBPASS ';

exit

V. Messaging Server

$ apt-get install rabbitmq-server

$ rabbitmqctl change_password guest YOUR_RABBIT_PASS

VI. Identity Service Install and Configure

$ apt-get install keystone

$ openssl rand -hex 10

#===== KeyStone configure =====

#Edit /etc/keystone/keystone.conf

[DEFAULT]

...

Appendix 61

admin_token = ADMIN_TOKEN

...

log_dir = /var/log/keystone

[database]

The SQLAlchemy connection string used to connect to the database

connection = mysql://keystone:KEYSTONE_DBPASS@controller/keystone

...

$ rm /var/lib/keystone/keystone.db

$ su -s /bin/sh -c "keystone-manage db_sync" keystone

$ service keystone restart

$ export OS_SERVICE_TOKEN=ADMIN_TOKEN

$ export OS_SERVICE_ENDPOINT=http://controller:35357/v2.0

$ keystone user-create --name=admin --pass=ADMIN_PASS

+----------+----------------------------------+

| Property | Value |

+----------+----------------------------------+

| enabled | True |

| id | 4d411f2291f34941b30eef9bd797505a |

| name | admin |

| username | admin |

+----------+----------------------------------+

$ keystone role-create --name=admin

+----------+----------------------------------+

| Property | Value |

+----------+----------------------------------+

| id | cd2cb9a39e874ea69e5d4b896eb16128 |

| name | admin |

+----------+----------------------------------+

$ keystone tenant-create --name=admin --description="Admin Tenant"

+-------------+----------------------------------+

| Property | Value |

+-------------+----------------------------------+

| description | Admin Tenant |

| enabled | True |

| id | cf12a15c5ea84b019aec3dc45580896b |

| name | admin |

+-------------+----------------------------------+

$ keystone user-role-add --user=admin --tenant=admin --role=admin

$ keystone user-role-add --user=admin --role=_member_ --tenant=admin

$ keystone tenant-create --name=service --description="Service Tenant"

+-------------+----------------------------------+

| Property | Value |

+-------------+----------------------------------+

| description | service Tenant |

| enabled | True |

| id | 55cbd79c0c014c8a95534ebd16213ca1 |

Appendix 62

| name | service |

+-------------+----------------------------------+

$ keystone service-create --name=keystone --type=identity \

--description="OpenStack Identity"

+-------------+----------------------------------+

| Property | Value |

+-------------+----------------------------------+

| description | OpenStack Identity |

| enabled | True |

| id | 15c11a23667e427e91bc31335b45f4bd |

| name | keystone |

| type | identity |

+-------------+----------------------------------+

$ keystone endpoint-create \

--service-id=$(keystone service-list | awk '/ identity / {print $2}') \

--publicurl=http://IP:5000/v2.0 \

--internalurl=http://IP:5000/v2.0 \

--adminurl=http://IP:35357/v2.0

+-------------+----------------------------------+

| Property | Value |

+-------------+----------------------------------+

| adminurl | http://IP:35357/v2.0 |

| id | 11f9c625a3b94a3f8e66bf4e5de2679f |

| internalurl | http://IP:5000/v2.0 |

| publicurl | http://IP:5000/v2.0 |

| region | regionOne |

| service_id | 15c11a23667e427e91bc31335b45f4bd |

+-------------+----------------------------------+

$ unset OS_SERVICE_TOKEN OS_SERVICE_ENDPOINT

$ keystone --os-tenant-name admin --os-username admin --os-password ADMIN_PASS \

--os-auth-url http://controller:35357/v2.0 token-get

+-----------+----------------------------------+

| Property | Value |

+-----------+----------------------------------+

| expires | 2014-10-10T12:50:12Z |

| id | 8963eb5ccd864769a894ec316ef8f7d4 |

| tenant_id | cf12a15c5ea84b019aec3dc45580896b |

| user_id | 4d411f2291f34941b30eef9bd797505a |

+-----------+----------------------------------+

$ keystone --os-tenant-name admin --os-username admin --os-password ADMIN_PASS \

--os-auth-url http://controller:35357/v2.0 tenant-list

+----------------------------------+----------+---------+

| id | name | enabled |

+----------------------------------+----------+---------+

| 4d411f2291f34941b30eef9bd797505a | admin | True |

| 6b69202e1bf846a4ae50d65bc4789122 | service | True |

+----------------------------------+----------+---------+

$ keystone user-list

Appendix 63

+----------------------------------+-------+---------+

| id | name | enabled |

+----------------------------------+-------+---------+

| 4d411f2291f34941b30eef9bd797505a | admin | True |

+----------------------------------+-------+---------+

$ keystone user-role-list

+----------------------------------+----------+

| id | name |

+----------------------------------+----------+

| 9fe2ff9ee4384b1894a90878d3e92bab | _member_ |

| 5d3b60b66f1f438b80eaae41a77b5951 | admin |

+----------------------------------+----------+

#===== admin-openrc.sh =====

Create admin-openrc.sh file

export OS_USERNAME=admin

export OS_PASSWORD=ADMIN_PASS

export OS_TENANT_NAME=admin

export OS_AUTH_URL=http://IP:35357/v2.0

$ source admin-openrc.sh

$ keystone token-get

VII. Image Service Install and Configure

$ apt-get install glance python-glanceclient

#===== Glance configure =====

#Edit /etc/glance/glance-api.conf and /etc/glance/glance-registry.conf

[database]

connection = mysql://glance:GLANCE_DBPASS@controller/glance

[keystone_authtoken]

auth_uri = http://controller:5000

auth_host = controller

auth_port = 35357

auth_protocol = http

admin_tenant_name = service

admin_user = glance

admin_password = GLANCE_PASS

[paste_deploy]

...

flavor = keystone

$ rm /var/lib/glance/glance.sqlite

$ su -s /bin/sh -c "glance-manage db_sync" glance

$ keystone user-create --name=glance --pass=GLANCE_PASS \

--email=glance@example.com

+----------+----------------------------------+

Appendix 64

| Property | Value |

+----------+----------------------------------+

| enabled | True |

| id | 4dserthdf33456set2342f9bd797505a |

| name | glance |

| username | glance |

+----------+----------------------------------+

$ keystone user-role-add --user=glance --tenant=service --role=admin

$ keystone service-create --name=glance --type=image \

--description="OpenStack Image Service"

+-------------+----------------------------------+

| Property | Value |

+-------------+----------------------------------+

| description | OpenStack Image service |

| enabled | True |

| id | 178124d6081c441b80d79972614149c6 |

| name | glance |

| type | image |

+-------------+----------------------------------+

$ keystone endpoint-create \

--service-id=$(keystone service-list | awk '/ image / {print $2}') \

--publicurl=http://controller:9292 \

--internalurl=http://controller:9292 \

--adminurl=http://controller:9292

+--------------+----------------------------------+

| Property | Value |

+--------------+----------------------------------+

| adminurl | http://controller:9292 |

| id | 805b1dbc90ab47479111102bc6423313 |

| internalurl | http://controller:9292 |

| publicurl | http://controller:9292 |

| region | RegionOne |

| service_id | 178124d6081c441b80d79972614149c6 |

| service_name | glance |

| service_type | image |

+--------------+----------------------------------+

$ service glance-registry restart

$ service glance-api restart

$ mkdir /tmp/images

$ cd /tmp/images/

$ wget http://download.cirros-cloud.net/0.3.2/cirros-0.3.2-x86_64-disk.img

$ source admin-openrc.sh

$ glance image-create --name "cirros-0.3.2-x86_64" --disk-format qcow2 \

--container-format bare --is-public True --progress < cirros-0.3.2-x86_64-disk.img

+------------------+--------------------------------------+

| Property | Value |

+------------------+--------------------------------------+

Appendix 65

| checksum | 64d7c1cd2b6f60c92c14662941cb7913 |

| container_format | bare |

| created_at | 2014-04-08T18:59:18 |

| deleted | False |

| deleted_at | None |

| disk_format | qcow2 |

| id | acafc7c0 -40aa-4026-9673-b879898e1fc2 |

| is_public | True |

| min_disk | 0 |

| min_ram | 0 |

| name | cirros-0.3.2-x86_64 |

| owner | efa984b0a914450e9a47788ad330699d |

| protected | False |

| size | 13167616 |

| status | active |

| updated_at | 2014-01-08T18:59:18 |

+------------------+--------------------------------------+

$ glance image-list

+---------+---------------------+-------------+------------------+----------+--------+

| ID | Name | Disk Format | Container Format | Size | Status |

+---------+---------------------+-------------+------------------+----------+--------+

| acaf... | cirros-0.3.2-x86_64 | qcow2 | bare | 13167616 | active |

+---------+---------------------+-------------+------------------+----------+--------+

$ rm -r /tmp/images

VIII. Compute Service Install and Configure (Controller node setup)

$ apt-get install nova-api nova-cert nova-conductor nova-consoleauth \

nova-novncproxy nova-scheduler python-novaclient

#===== Nova configure =====

#Edit /etc/nova/nova.conf file

[DEFAULT]

...

rpc_backend = rabbit

rabbit_host = controller

rabbit_password = RABBIT_PASS

...

my_ip = IP

vncserver_listen = IP

vncserver_proxyclient_address = IP

...

auth_strategy = keystone

[keystone_authtoken]

...

auth_uri = http://controller:5000

auth_host = controller

Appendix 66

auth_port = 35357

auth_protocol = http

admin_tenant_name = service

admin_user = nova

admin_password = NOVA_PASS

[database]

connection = mysql://nova:NOVA_DBPASS@controller/nova

$ rm /var/lib/nova/nova.sqlite

$ su -s /bin/sh -c "nova-manage db sync" nova

$ keystone user-create --name=nova --pass=NOVA_PASS

+----------+----------------------------------+

| Property | Value |

+----------+----------------------------------+

| email | None |

| enabled | True |

| id | 8e0b71d732db4bfba04943a96230c8c0 |

| name | nova |

| username | nova |

+----------+----------------------------------+

$ keystone user-role-add --user=nova --tenant=service --role=admin

+----------+----------------------------------+

| Property | Value |

+----------+----------------------------------+

| id | cd2cb9a39e874ea69e5d4b896eb16128 |

| name | admin |

+-------+-------------------------------------+

$ keystone service-create --name=nova --type=compute \

--description="OpenStack Compute"

+-------------+----------------------------------+

| Property | Value |

+-------------+----------------------------------+

| description | OpenStack Compute |

| enabled | True |

| id | 060d59eac51b4594815603d75a00aba2 |

| name | nova |

| type | compute |

+-------------+----------------------------------+

$ keystone endpoint-create \

--service-id=$(keystone service-list | awk '/ compute / {print $2}') \

--publicurl=http://IP:8774/v2/%\(tenant_id\)s \

--internalurl=http://IP:8774/v2/%\(tenant_id\)s \

--adminurl=http://IP:8774/v2/%\(tenant_id\)s

+--------------+---+

| Property | Value |

+--------------+---+

| adminurl | http://IP:8774/v2/%(tenant_id)s |

| id | 4e885d4ad43f4c4fbf2287734bc58d6b |

Appendix 67

| internalurl | http://IP:8774/v2/%(tenant_id)s |

| publicurl | http://IP:8774/v2/%(tenant_id)s |

| region | RegionOne |

| service_id | 060d59eac51b4594815603d75a00aba2 |

| service_name | nova |

| service_type | compute |

+--------------+---+

$ service nova-api restart

$ service nova-cert restart

$ service nova-consoleauth restart

$ service nova-scheduler restart

$ service nova-conductor restart

$ service nova-novncproxy restart

$ nova image-list

+---------+---------------------+--------+--------+

| ID | Name | Status | Server |

+---------+---------------------+--------+--------+

| acaf... | cirros-0.3.2-x86_64 | ACTIVE | |

+---------+---------------------+--------+--------+

IX. Compute Service Install and Configure (Compute node setup)

apt-get install nova-compute-kvm

#===== Nova configure =====

#Edit /etc/nova/nova.conf file

[DEFAULT]

...

auth_strategy = keystone

...

rpc_backend = rabbit

rabbit_host = controller

rabbit_password = RABBIT_PASS

...

my_ip = Compute node IP

vnc_enabled = True

vncserver_listen = 0.0.0.0

vncserver_proxyclient_address = Compute node IP

novncproxy_base_url = http://controller:6080/vnc_auto.html

...

glance_host = controller

[database]

The SQLAlchemy connection string used to connect to the database

connection = mysql://nova:NOVA_DBPASS@controller/nova

[keystone_authtoken]

auth_uri = http://IP:5000

auth_host = controller

Appendix 68

auth_port = 35357

auth_protocol = http

admin_tenant_name = service

admin_user = nova

admin_password = NOVA_PASS

$ rm /var/lib/nova/nova.sqlite

$ service nova-compute restart

X. Legacy Networking (nova-network) (Controller node setup)

#===== Network configure (Controller node) =====

#Edit /etc/nova/nova.conf file

[DEFAULT]

...

network_api_class = nova.network.api.API

security_group_api = nova

$ service nova-api restart

$ service nova-scheduler restart

$ service nova-conductor restart

#===== Network configure (Compute node) =====

$ apt-get install nova-network nova-api-metadata

#Edit /etc/nova/nova.conf file

[DEFAULT]

...

network_api_class = nova.network.api.API

security_group_api = nova

firewall_driver = nova.virt.libvirt.firewall.IptablesFirewallDriver

network_manager = nova.network.manager.FlatDHCPManager

network_size = 254

allow_same_net_traffic = False

multi_host = True

send_arp_for_ha = True

share_dhcp_address = True

force_dhcp_release = True

flat_network_bridge = br100

flat_interface = INTERFACE_NAME

public_interface = INTERFACE_NAME

$ service nova-network restart

$ service nova-api-metadata restart

#===== Create initial network =====

$ source admin-openrc.sh

Appendix 69

$ nova network-create demo-net --bridge br100 --multi-host T \

--fixed-range-v4 NETWORK_CIDR

$ nova net-list

+---------+----------+--------------+

| ID | Label | CIDR |

+---------+----------+--------------+

| 84b3... | demo-net | 10.0.1.0/24 |

+---------+----------+--------------+

XI. Dashboard Installation

$ apt-get install apache2 memcached libapache2-mod-wsgi openstack-dashboard

$ apt-get remove --purge openstack-dashboard-ubuntu-theme

XII. Launch an Instance

$ source demo-openrc.sh

$ ssh-keygen

$ nova keypair-add --pub-key ~/.ssh/id_rsa.pub demo-key

$ nova keypair-list

+----------+---+

| Name | Fingerprint |

+----------+---+

| demo-key | 6c:74:ec:3a:08:05:4e:9e:21:22:a6:dd:b2:62:b8:28 |

+----------+---+

$ nova flavor-list

+----+-----------+-----------+------+-----------+-------+-------------+-----------+

| ID | Name | Memory_MB | Disk | Ephemeral | VCPUs | RXTX_Factor | Is_Public |

+----+-----------+-----------+------+-----------+-------+-------------+-----------+

| 1 | m1.tiny | 512 | 1 | 0 | 1 | 1.0 | True |

| 2 | m1.small | 2048 | 20 | 0 | 1 | 1.0 | True |

| 3 | m1.medium | 4096 | 40 | 0 | 2 | 1.0 | True |

| 4 | m1.large | 8192 | 80 | 0 | 4 | 1.0 | True |

| 5 | m1.xlarge | 16384 | 160 | 0 | 8 | 1.0 | True |

+----+-----------+-----------+------+-----------+-------+-------------+-----------+

$ nova image-list

+--------------------------------------+---------------------+--------+--------+

| ID | Name | Status | Server |

+--------------------------------------+---------------------+--------+--------+

| acafc7c0 -40aa-4026-9673-b879898e1fc2 | cirros-0.3.2-x86_64 | ACTIVE | |

+--------------------------------------+---------------------+--------+--------+

$ nova net-list

+--------------------------------------+----------+------------------+

| ID | Label | CIDR |

Appendix 70

+--------------------------------------+----------+------------------+

| 7f849be3 -4494-495a-95a1-0f99ccb884c4 | demo-net | 203.0.113.24/29 |

+--------------------------------------+----------+------------------+

$ nova secgroup-list

+--------------------------------------+---------+-------------+

| Id | Name | Description |

+--------------------------------------+---------+-------------+

| ad8d4ea5-3cad-4f7d-b164-ada67ec59473 | default | default |

+--------------------------------------+---------+-------------+

$ nova boot --flavor m1.tiny --image cirros-0.3.2-x86_64 --nic net-id=DEMO_NET_ID \

--security-group default --key-name demo-key demo-instance1

+--------------------------------------+---------------------------------------+

| Property | Value |

+--------------------------------------+---------------------------------------+

| OS-DCF:diskConfig | MANUAL |

| OS-EXT-AZ:availability_zone | nova |

| OS-EXT-STS:power_state | 0 |

| OS-EXT-STS:task_state | scheduling |

| OS-EXT-STS:vm_state | building |

| OS-SRV-USG:launched_at | - |

| OS-SRV-USG:terminated_at | - |

| accessIPv4 | |

| accessIPv6 | |

| adminPass | ThZqrg7ach78 |

| config_drive | |

| created | 2014-04-10T00:09:16Z |

| flavor | m1.tiny (1) |

| hostId | |

| id | 45ea195c-c469-43eb-83db-1a663bbad2fc |

| image | cirros-0.3.2-x86_64 (acaf...) |

| key_name | demo-key |

| metadata | {} |

| name | demo-instance1 |

| os-extended-volumes:volumes_attached | [] |

| progress | 0 |

| security_groups | default |

| status | BUILD |

| tenant_id | 93849608fe3d462ca9fa0e5dbfd4d040 |

| updated | 2014-04-10T00:09:16Z |

| user_id | 8397567baf4746cca7a1e608677c3b23 |

+--------------------------------------+---------------------------------------+

$ nova list

+--------+----------------+--------+------------+-------------+-----------------------+

| ID | Name | Status | Task State | Power State | Networks |

+--------+----------------+--------+------------+-------------+-----------------------+

| 45ea.. | demo-instance1 | ACTIVE | - | Running | demo-net=203.0.113.26 |

+--------+----------------+--------+------------+-------------+-----------------------+

Permit ICMP (ping):

Appendix 71

$ nova secgroup-add-rule default icmp -1 -1 0.0.0.0/0

+-------------+-----------+---------+-----------+--------------+

| IP Protocol | From Port | To Port | IP Range | Source Group |

+-------------+-----------+---------+-----------+--------------+

| icmp | -1 | -1 | 0.0.0.0/0 | |

+-------------+-----------+---------+-----------+--------------+

Permit secure shell (SSH) access:

$ nova secgroup-add-rule default tcp 22 22 0.0.0.0/0

+-------------+-----------+---------+-----------+--------------+

| IP Protocol | From Port | To Port | IP Range | Source Group |

+-------------+-----------+---------+-----------+--------------+

| tcp | 22 | 22 | 0.0.0.0/0 | |

+-------------+-----------+---------+-----------+--------------+

Appendix B

NFS Installation

I. NFS Installation and Configuration (Controller node)

$ apt-get install nfs-kernel-server

$ mkdir -p /var/openstack/nfs-storage

#Edit /etc/exports file

/var/openstack/nfs-storage *(insecure,rw,sync,no_root_squash)

$ service nfs-kernel-server restart

#Edit /etc/nova/nova.conf file

live_migration_flag=VIR_MIGRATE_UNDEFINE_SOURCE ,VIR_MIGRATE_PEER2PEER ,VIR_MIGRATE_LIVE

$ service nova-api restart

$ service nova-cert restart

$ service nova-consoleauth restart

$ service nova-scheduler restart

$ service nova-conductor restart

$ service nova-novncproxy restart

II. NFS Installation and Configuration (Compute node)

$ mkdir /var/lib/nova/instances

$ chown nova:nova instances

$ apt-get install nfs-common

$ mount Controller_IP:/var/openstack/nfs-storage /var/lib/nova/instances/

#Edit /etc/fstab file

Controller_IP:/var/openstack/nfs-storage /var/lib/nova/instances/ nfs defaults 0 0

72

Appendix 73

#Edit /etc/passwd file

nova:x:107:114::/var/lib/nova:/bin/bash

$ su nova

$ ssh-keygen

do the free password to login between compute nodes

#Edit /etc/libvirt/libvirtd.conf file

listen_tls = 0

listen_tcp = 1

auth_tcp = "none"

#Edit /etc/init/libvirt-bin.conf file

env libvirtd_opts="-d -l"

#Edit /etc/default/libvirt-bin file

libvirtd_opts=" -d -l"

$ uuidgen

through the uuidgen will get the code

#Edit /etc/libvirt/libvirtd.conf file

host_uuid=code

$ service libvirt-bin restart

#Edit /etc/nova/nova.conf file

[DEFAULT]

...

live_migration_bandwidth=0

live_migration_retry_count=30

live_migration_flag=VIR_MIGRATE_UNDEFINE_SOURCE ,VIR_MIGRATE_PEER2PEER ,VIR_MIGRATE_LIVE

$ service nova-compute restart

Appendix C

Programming Codes

I. Dynamic Resource Allocation method

#!/usr/bin/python

-*- coding: utf-8 -*-

from novaclient import client

import time

import MySQLdb

nova = client.Client(2, "admin", "password", "admin", "http://IP:5000/v2.0")

def resizebigger(instance):

rStart = time.time()

if instance.flavor['id'] == "11":

print "Need to resize",instance.name,"bigger"

instance.resize("22");

resizeconfirm(instance);

elif instance.flavor['id'] == "22":

print "Need to resize",instance.name,"bigger"

instance.resize("44");

resizeconfirm(instance);

elif instance.flavor['id'] == "44":

print "Need to resize",instance.name,"bigger"

instance.resize("88");

resizeconfirm(instance);

else:

print instance.name,"is using the biggest flavor, doesn't need to resize."

rEnd = time.time()

print "Resize",instance.name,"cost %f seconds." %(rEnd - rStart)

74

Appendix 75

def resizesmaller(instance):

rStart = time.time()

if instance.flavor['id'] == "88":

print "Need to resize",instance.name,"smaller"

instance.resize("44");

resizeconfirm(instance);

elif instance.flavor['id'] == "44":

print "Need to resize",instance.name,"smaller"

instance.resize("22");

resizeconfirm(instance);

elif instance.flavor['id'] == "22":

print "Need to resize",instance.name,"smaller"

instance.resize("11");

resizeconfirm(instance);

else:

print instance.name,"is using the smallest flavor, doesn't need to resize."

rEnd = time.time()

print "Resize",instance.name,"cost %f seconds." %(rEnd - rStart)

def resizeconfirm(instance):

print "resizing.."

name = instance.id

ninstance = nova.servers.get(name)

while ninstance.status != "VERIFY_RESIZE":

ninstance = nova.servers.get(name)

time.sleep(1)

instance.confirm_resize();

print instance.name,"resize done!"

def livemigration(instance):

lStart = time.time()

if instance.hostId == "00bfb7537d1ec2cb155d2a2bf46672fe520d03c5024176e7e6cf8ed9":

print instance.name,"is on compute1"

print "Live migration",instance.name,"to compute2"

instance.live_migrate("compute2", block_migration=False, disk_over_commit=False)

else:

print instance.name,"is on compute2"

print "Live migration",instance.name,"to compute1"

instance.live_migrate("compute1", block_migration=False, disk_over_commit=False)

name = instance.id

ninstance = nova.servers.get(name)

print "migrating.."

while ninstance.status != "ACTIVE":

ninstance = nova.servers.get(name)

time.sleep(1)

print instance.name,"Live migration done"

lEnd = time.time()

print "Live migration",instance.name,"cost %f seconds." %(lEnd - lStart)

Appendix 76

def dra(AVGIutil,i):

if AVGIutil >= 80:

print "check the resource of host"

if s[i].hostId == "00bfb7537d1ec2cb155d2a2bf46672fe520d03c5024176e7e6cf8ed9" \\

and h[0].vcpus-h[0].vcpus_used >=8 and h[0].free_ram_mb >=8192:

print s[i].name,"is on compute1 and resource is enough"

resizebigger(s[i]);

elif s[i].hostId == "80a926d1b3eca95cfaaac24ed1909cfc742d38e7a28cd77d8ed28086" \\

and h[1].vcpus-h[1].vcpus_used >=8 and h[1].free_ram_mb >=8192:

print s[i].name,"is on compute2 and resource is enough"

resizebigger(s[i]);

else:

print s[i].name,"is on the host which resource is not enough"

print "turn on another host"

livemigration(s[i]);

resizebigger(s[i]);

elif AVGIutil <= 30:

resizesmaller(s[i]);

else:

print s[i].name,"CPU utilization is good, doesn't need to resize."

tStart = time.time() #total DRA+ES start time

tdStart = time.time() #total DRA start time

while True:

dStart = time.time()

s = nova.servers.list()

h = nova.hypervisors.list()

db = MySQLdb.connect(host="localhost", user="root", passwd="password", db="ServerMonitor")

cursor = db.cursor()

cursor.execute("SELECT `IID`,AVG(`USED`) as `CPUAVG` FROM `ICPU` \\

WHERE `TIME`>'2015-06-23 11:02:00' AND `TIME`<'2015-06-23 12:02:00' GROUP BY `IID`")

result = cursor.fetchall()

for row in result:

i = 7-row[0]

AVGIutil = row[1]

print s[i].name,"CPU utilization is",row[1],"%"; #row[0]=IID

dra(AVGIutil,i);

print "";

dEnd = time.time()

time.sleep(2)

if dEnd - dStart < 2:

break

tdEnd = time.time() #total DRA end time

print "DRA method total cost %f seconds." %(tdEnd - tdStart)

print "";

import es_method

tEnd = time.time() #total DRA+ES end time

Appendix 77

print "DRA and ES method total cost %f seconds." %(tEnd - tStart)

print "program over!"

II. Energy Saving method

#!/usr/bin/python

-*- coding: utf-8 -*-

from novaclient import client

import time

import subprocess

import sys

nova = client.Client(2, "admin", "password", "admin", "http://IP:5000/v2.0")

h = nova.hypervisors.list()

s = nova.servers.list()

def c2toc1(instance):

if instance.hostId == "80a926d1b3eca95cfaaac24ed1909cfc742d38e7a28cd77d8ed28086":

lStart = time.time()

print instance.name,"is on compute2"

print "Live migration",instance.name,"to compute1"

instance.live_migrate("compute1", block_migration=False, disk_over_commit=False)

name = instance.id

ninstance = nova.servers.get(name)

print "migrating.."

while ninstance.status != "ACTIVE":

ninstance = nova.servers.get(name)

time.sleep(1)

print instance.name,"Live migration done"

lEnd = time.time()

print "Live migration",instance.name,"cost %f seconds." %(lEnd - lStart)

else:

print instance.name,"is on compute1, doesn't need to Live migration."

def c1toc2(instance):

if instance.hostId == "00bfb7537d1ec2cb155d2a2bf46672fe520d03c5024176e7e6cf8ed9":

lStart = time.time()

print instance.name,"is on compute1"

print "Live migration",instance.name,"to compute2"

instance.live_migrate("compute2", block_migration=False, disk_over_commit=False)

name = instance.id

ninstance = nova.servers.get(name)

print "migrating.."

while ninstance.status != "ACTIVE":

Appendix 78

ninstance = nova.servers.get(name)

time.sleep(1)

print instance.name,"Live migration done"

lEnd = time.time()

print "Live migration",instance.name,"cost %f seconds." %(lEnd - lStart)

else:

print instance.name,"is on compute2, doesn't need to Live migration."

def es():

compute1 = h[0]

compute2 = h[1]

eStart = time.time()

if compute1.vcpus_used+compute2.vcpus_used <= 32 \\

and compute1.memory_mb_used+compute2.memory_mb_used <= 63488:

if compute2.running_vms <= compute1.running_vms and compute2.running_vms != 0:

print "migrate",compute2.hypervisor_hostname ,"VM to",\\

and compute1.hypervisor_hostname

for i in range(0,len(s)): #0<=i<len(s)

c2toc1(s[i]);

print "All VM are on compute1 and then shutdown compute2"

ssh = subprocess.Popen(["ssh", "%s" % "compute2", "init 0"]) #shutdown compute2

time.sleep(5)

print "";

elif compute1.running_vms <= compute2.running_vms and compute1.running_vms != 0:

print "migrate",compute1.hypervisor_hostname ,"VM to",\\

and compute2.hypervisor_hostname

for i in range(0,len(s)): #0<=i<len(s)

c1toc2(s[i]);

print "All VM are on compute2 and then shutdown compute1"

time.sleep(5)

ssh = subprocess.Popen(["ssh", "%s" % "compute1", "init 0"]) #shutdown compute1

print "";

else:

if compute1.running_vms != 0 and compute2.running_vms == 0:

print "All VM are on compute1."

elif compute2.running_vms != 0 and compute1.running_vms == 0:

print "All VM are on compute2."

else:

print "There are no VM."

print "";

else:

print "undo"

print "";

eEnd = time.time()

print "ES method total cost %f seconds." %(eEnd - eStart)

Appendix D

Monitor Codes

I. Server and Virtual Machines Information Monitor program

-*- coding: utf-8 -*-

import sys

import os

import atexit

import time

import psutil

print "Loading..."

time.sleep(3)

line_num = 1

ShowInfo="On"

def print_line(str):

if ShowInfo=='On':

print str

#function of Get CPU State

def getCPUstate(interval=1):

return (str(psutil.cpu_percent(interval)))

#function of Get Memory

def getMemorystate():

phymem = psutil.phymem_usage()

buffers = getattr(psutil, 'phymem_buffers', lambda: 0)()

cached = getattr(psutil, 'cached_phymem', lambda: 0)()

used = phymem.total - (phymem.free + buffers + cached)

line = " Memory: %5s%% %6s/%s" % (

79

Appendix 80

phymem.percent,

str(int(used / 1024 / 1024)) + "M",

str(int(phymem.total / 1024 / 1024)) + "M"

)

return line

def bytes2human(n):

"""

>>> bytes2human(10000)

'9.8 K'

>>> bytes2human(100001221)

'95.4 M'

"""

symbols = ('K', 'M', 'G', 'T', 'P', 'E', 'Z', 'Y')

prefix = {}

for i, s in enumerate(symbols):

prefix[s] = 1 << (i+1)*10

for s in reversed(symbols):

if n >= prefix[s]:

value = float(n) / prefix[s]

return '%.2f %s' % (value, s)

return '%.2f B' % (n)

def poll(interval):

"""Retrieve raw stats within an interval window."""

tot_before = psutil.network_io_counters()

pnic_before = psutil.network_io_counters(pernic=True)

diskio_before=psutil.disk_io_counters()

sleep some time

time.sleep(interval)

tot_after = psutil.network_io_counters()

pnic_after = psutil.network_io_counters(pernic=True)

diskio_after=psutil.disk_io_counters()

get cpu state

cpu_state = getCPUstate(interval)

get memory

memory_state = getMemorystate()

return (tot_before, tot_after, pnic_before, pnic_after ,\\

cpu_state,memory_state,diskio_before,diskio_after)

def refresh_window(tot_before, tot_after, pnic_before, pnic_after ,\\

cpu_state,memory_state,diskio_before,diskio_after):

os.system("cls")

"""Print stats on screen."""

print_line(time.asctime()+" | "+cpu_state+" | "+memory_state)

#CPU USED INFO

CPU_USED=cpu_state

Appendix 81

#RAM USED INFO

phymem = psutil.phymem_usage()

buffers = getattr(psutil, 'phymem_buffers', lambda: 0)()

cached = getattr(psutil, 'cached_phymem', lambda: 0)()

used = phymem.total - (phymem.free + buffers + cached)

RAM_PA=phymem.percent

RAM_USED=str(int(used / 1024 / 1024))

RAM_ALL=str(int(phymem.total / 1024 / 1024))

#DISK IO INFO

DISK_READ=str(diskio_after.read_bytes - diskio_before.read_bytes)

DISK_WRITE=str(diskio_after.write_bytes - diskio_before.write_bytes)

#SEND-TO-DB SERVER

import httplib,urllib

httpClient = None

try:

ServerID="1"

params = urllib.urlencode({'CPU_USED': CPU_USED, 'RAM_PA': RAM_PA,\\

'RAM_ALL': RAM_ALL,'RAM_USED':RAM_USED,'SID':ServerID})

headers = {"Content-type": "application/x-www-form-urlencoded", "Accept": "text/plain"}

httpClient = httplib.HTTPConnection('IP', 80, timeout=3)

httpClient.request('POST', '/power/API/ServerInfo.php',params,headers)

#response HTTPResponse

response = httpClient.getresponse()

print response.status

print response.reason

print response.read()

except Exception, e:

print e

finally:

if httpClient:

httpClient.close()

try:

interval = 0

while 1:

args = poll(interval)

refresh_window(*args)

interval = 1

except (KeyboardInterrupt, SystemExit):

pass

II. PDU Information program

<?php

Appendix 82

function get_server_info($host, $community, $objectid) {

$a = snmpget($host, $community, $objectid);

$tmp = explode(":", $a);

if (count($tmp) > 1) {

$a = trim($tmp[1]);

}

return $a;

}

$host="IP";

$community="public";

for($i=1;$i<=8;$i++){

$Power = get_server_info($host,$community ,".1.3.6.1.4.1.13742.4.1.2.2.1.7.".$i);

echo $i."-Power:".$Power."
";

$I = get_server_info($host,$community ,".1.3.6.1.4.1.13742.4.1.2.2.1.4.".$i);

echo $i."-I:".$I."
";

$V = get_server_info($host,$community ,".1.3.6.1.4.1.13742.4.1.2.2.1.6.".$i);

echo $i."-V:".$V."
";

$PF = get_server_info($host,$community ,".1.3.6.1.4.1.13742.4.1.2.2.1.9.".$i);

echo $i."-PF:".$PF."
";

$sql="INSERT INTO `ServerMonitor `.`Power` (`ID`, `TIME`, `SID`, `V`, `C`, `P`, `PF`) \\

VALUES (NULL, CURRENT_TIMESTAMP, '".$i."', '".$V."', '".$I."', '".$Power."','".$PF."');";

//echo $sql;

mysql_query($sql) or die('MySQL query error');

$sql="UPDATE `ServerMonitor `.`PowerRealTime` SET `TIME` = CURRENT_TIMESTAMP(), \\

`V` = '".$V."', `C` = '".$I."', `P` = '".$Power."',\\

`PF` = '".$PF."' WHERE `PowerRealTime `.`ID` = ".$i.";";

mysql_query($sql) or die('MySQL query error');

}

?>

	摘要
	Abstract
	致謝詞
	Table of Contents
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Thesis Goal and Contributions
	1.3 Thesis Organization

	2 Background Review and Related Work
	2.1 Background Review
	2.1.1 Cloud Computing
	2.1.2 Virtualization
	2.1.3 Hypervisor
	2.1.4 OpenStack
	2.1.5 OpenStack Conceptual Architecture
	2.1.6 Live Migration
	2.1.7 NFS (Network File System)
	2.1.8 PDU (Power Distribution Units)

	2.2 Related Work

	3 System Design and Implementation
	3.1 System Architecture
	3.2 Design Flow
	3.2.1 Design Flow of DRA method
	3.2.2 Design Flow of Energy Saving method

	3.3 System Implementation
	3.3.1 Status Monitoring
	3.3.2 Energy Consumption Recording
	3.3.3 DRA method
	3.3.4 Energy Saving method

	3.4 User Interface

	4 Experimental Results
	4.1 Experimental Environment
	4.2 Experimental Results and Discussion
	4.2.1 Experiment of VM Performance
	4.2.2 Experiment of DRA method
	4.2.3 Experiment of Energy Saving method
	4.2.4 Experiment of DRA and Energy Saving method
	4.2.5 Discussion

	5 Conclusions and Future Work
	5.1 Concluding Remarks
	5.2 Future work

	References
	Appendix
	Appendix
	Appendix
	A OpenStack Installation
	B NFS Installation
	C Programming Codes
	D Monitor Codes

