
東海大學

資訊工程研究所

碩士論文

指導教授: 楊朝棟博士

在 Xeon Phi 上使用平行迴圈自我排程改善工作負載
平衡

Improvement of Workload Balancing Using Parallel Loop

Self-Scheduling on Xeon Phi

研究生: 黃昭為

中華民國一零四年

1

摘 要

在本論文中，我們將研究如何改善計算機群的工作負載平衡，透過平行迴圈自

我排程方法，我們使用混合 MPI 和 OpenMP 的 C 語言平行編程。根據計算節

點性能權重為基礎分割迴圈的區塊。這個研究是使用 Xeon Phi 實施平行迴圈自

我排程，藉由平行迴圈自我排程的特性改善異質節點之間的工作負載均衡。平

行迴圈自我排程是由靜態排程和動態排程兩個部分所組成，在靜態的部分我們

依照權重分配工作量的演算法，在動態的部分我們使用幾個知名的排程方法。

Intel 近年來推出它們的新產品 Xeon Phi，它是類似 x86 架構的輔助處理器，它

擁有大約 60 個核心且可以被當作單個計算節點，且擁有的計算能力不能忽視。

在我們的實驗中我們將會使用多個計算節點。我們實驗四個應用，包括矩陣相

乘、稀疏矩陣相乘、曼德博集合、電路滿足。結果將會列出使用平行迴圈自我

排程，如何分配權重及排程方案能夠達到最好的性能。

關鍵字: Xeon Phi、Many-core、OpenMP、MPI、平行迴圈、自我排程

I

Abstract

In this paper, we will examine how to improve workload balancing on a computing

cluster by a parallel loop self-scheduling scheme. We use hybrid MPI and OpenMP

parallel programming in C language. The block partition loop is according to the

performance weighting of compute nodes. This study implements parallel loop

self-scheduling use Xeon Phi, with its characteristics to improve workload balanc-

ing between heterogeneous nodes. The parallel loop self-scheduling is composed of

the static and dynamic allocation. A weighting algorithm is adopted in the static

part while the well-known loop self-scheduling scheme is adopted in the dynamic

part. In recent years, Intel promotes its new product Xeon Phi coprocessor, which

is similar to the x86 architecture coprocessor. It has about 60 cores and can be

regarded as a single computing node, with the computing power that cannot be

ignored. In our experiment, we will use a plurality of computing nodes. We com-

pute four applications, i.e., matrix multiplication, sparse matrix multiplication,

Mandelbrot set computation, and the circuit satisfiability problem. Our results

will show how to do the weight allocation and how to choose a scheduling scheme

to achieve the best performance in the parallel loop self-scheduling.

Keyword: Xeon Phi, Many-core, OpenMP, MPI, Parallel Loop, Self-Scheduling

II

致謝詞

首先誠摯的感謝指導教授楊朝棟博士及劉榮春博士以及各位口試委員，兩位老

師悉心的教導使我得以一窺高效能運算領域的深奧，不時的討論並指點我正確

的方向，使我在這些年中獲益匪淺。老師對學問的嚴謹更是我輩學習的典範。

本論文的完成另外亦得感謝的大力協助。因為有你的體諒及幫忙，使得本論

文能夠更完整而嚴謹。

兩年裡的日子，實驗室里共同的生活點滴，學術上的討論、言不及義的閒

扯、讓人又愛又怕的宵夜、趕作業的革命情感、因為睡太晚而遮遮掩掩閃進實

驗室...，感謝眾位學長姐、同學、學弟的共同砥礪，你們的陪伴讓兩年的研究

生活變得絢麗多彩。

感謝不厭其煩的指出我研究中的缺失，且總能在我迷惘時為我解惑，也感謝

同學的幫忙，恭喜我們順利走過這兩年。實驗室的當然也不能忘記，的幫忙及

搞笑我銘感在心。

最後，謹以此文獻給我摯愛的雙親。

東海大學資訊工程學系 高效能實驗室 黃昭為 104 年 07 月

III

Table of Contents

摘要 I

Abstract II

致謝詞 III

Table of Contents IV

List of Figures VI

List of Tables VII

1 Introduction 1
1.1 Motivation . 1
1.2 Thesis Goal and Contributions . 2
1.3 Thesis Organization . 3

2 Background Review and Related Work 4
2.1 Background Review . 4

2.1.1 Xeon Phi coprocessor . 4
2.1.2 HPL (High Performance Linpack) 8
2.1.3 OpenMP (Open Multi-Processing) 11
2.1.4 MPI (Message Passing Interface) 13
2.1.5 Parallel Loop Self-Scheduling 15

2.2 Related Work . 17

3 System Design and Implementation 19
3.1 System Design . 19

3.1.1 Weight Algorithm . 19
3.1.2 System Flow . 20

3.2 System Implementation . 21
3.2.1 OpenMP and MPI Programming Model 21
3.2.2 Intel Many-core Platform Software Stack 23
3.2.3 Intel Parallel Studio XE . 25
3.2.4 CPU Clock Measuring . 26
3.2.5 HPL Measuring . 27

IV

TABLE OF CONTENTS V

3.2.6 Bandwidth Measuring . 28

4 Experiments 29
4.1 Experimental Environment . 29

4.1.1 Experimental Hardware . 29
4.1.2 Experimental Software . 30
4.1.3 Experimental Design . 32

4.2 Experimental Results . 32
4.2.1 Application 1: Matrix Multiplication 33
4.2.2 Application 2: Sparse Matrix Multiplication 35
4.2.3 Application 3: Mandelbrot Set Computation 36
4.2.4 Application 4: Circuit Satisfiability 38

4.3 Discussion . 40

5 Conclusions and Future Work 42
5.1 Conclusions . 42
5.2 Future Work . 43

References 44
Bibliography . 44

Appendix 48

A MPSS 3.4.4 Installation and Setup 48

B Intel Parallel Studio XE Installation and Setup 53

C HPL Installation and Setup 54

List of Figures

2.1 Xeon Phi Product . 5
2.2 Xeon Phi Architecture . 6
2.3 Xeon Phi execution model . 8
2.4 TOP 10 Sites for November 2014 10
2.5 OpenMP Abstraction Architecture 12
2.6 Threads Fork and Join . 13
2.7 MPI Abstraction Architecture . 14
2.8 MPI Hybrid OpenMP Model . 15
2.9 Hierarchical Architecture . 18

3.1 System Flow . 21
3.2 OpenMP Example . 22
3.3 MPI Example . 23
3.4 MPSS Installation Toolkit . 24
3.5 MPSS System Information . 24
3.6 Xeon Phi Platform Control Panel 25
3.7 Intel Parallel Studio XE Installation Toolkit 26
3.8 Source compilervars.sh and mpivars.sh 26
3.9 CPU Clock Measuring . 26
3.10 MIC Clock Measuring . 27

4.1 Matrix Multiplication adaptive α scheduling 33
4.2 Improvement of Workload Balancing, Matrix Multiplication adap-

tive α scheduling . 34
4.3 Sparse Matrix Multiplication adaptive α scheduling 35
4.4 Improvement of Workload Balancing, Sparse Matrix Multiplication

adaptive α scheduling . 36
4.5 Mandelbrot Set Computation adaptive α scheduling 37
4.6 Improvement of Workload Balancing, Mandelbrot Set Computation

adaptive α scheduling . 38
4.7 Circuit Satisfiability adaptive α scheduling 39
4.8 Improvement of Workload Balancing, Circuit Satisfiability adaptive

α scheduling . 40

VI

List of Tables

2.1 Xeon Phi Specifications . 7
2.2 Examples of self-scheduling scheme 16

3.1 HPL Measuring . 28
3.2 Bandwidth Measuring . 28

4.1 Hardware Specification . 30
4.2 Software Specification . 31
4.3 Matrix Multiplication execution time 34
4.4 Improvement of Workload Balancing, Matrix Multiplication execu-

tion time . 34
4.5 Sparse Matrix Multiplication execution time 35
4.6 Improvement of Workload Balancing, Sparse Matrix Multiplication

execution time . 36
4.7 Mandelbrot Set Computation execution time 37
4.8 Improvement of Workload Balancing, Mandelbrot Set Computation

execution time . 38
4.9 Circuit Satisfiability execution time 39
4.10 Improvement of Workload Balancing, Circuit Satisfiability execu-

tion time . 40

VII

Chapter 1

Introduction

1.1 Motivation

In the past few years, the CPU computing power keeps increasing. However, with

more and more applications of scientific computing, improvement of CPU comput-

ing power alone appears inadequate. Recently, it is very common for people to use

GPU as computing accelerator. To use GPU, one needs to know CUDA language;

nevertheless, it is not easy to learn CUDA and algorithms written in CUDA are

difficult to reuse [22]. Nowadays Intel launches Xeon Phi coprocessor families with

x86-based core architecture. Each core of Xeon Phi supports 4 hardware threads.

The feature is the usage of C or C ++ programming language. It can be performed

on the Many Integrated Core (MIC) once the user adds a simple parameter using

the compiler. In addition, it also supports for Open Multi-Processing (OpenMP),

POSIX Threads (PThread), Message Passing Interface (MPI) and other parallel

programming languages [21]. Compared to GPU, it only needs to pay a small

amount of operation overhead to achieve the same performance.

Cluster computing is a computer system composed of numerous processors.

When a processor in the cluster executes some application, it can communicate

with other processors through message passing or memory sharing. Combining

1

Chapter 1 Introduction 2

cluster computing with other technologies, especially cloud technology, creates

a high-performance platform. In this fashion, the scalable computing cluster is

becoming a high-performance and large-scale cloud computing platform [29].

The heterogeneous computer cluster consists of different kinds of CPUs for

computing. If the assigned work is the same for each CPU in a heterogeneous

computer cluster, the high performance CPUs usually complete the assigned work

early and need to wait for low performance CPUs. Consequently, this situation

results in a waste of waiting time. Therefore, CPU planning in a heterogeneous

computer cluster is an important issue [23].

1.2 Thesis Goal and Contributions

The task loop self-scheduling is an important part in parallel and distributed

systems [18] [19] [20]. Many Loop self-scheduling methods have been proposed,

including static scheduling and dynamic scheduling [4] [9]. The former is not suit-

able for a dynamic environment and the latter is difficult to　 maintain workload

balance. Therefore, the implementation of the parallel loop self-scheduling in the

cluster environment is a challenge [12] [13] [15]. This work studies the weight of the

parallel loop self-scheduling in the cluster environment to address the challenge.

In our previous work, we have improved the workload balancing of a system [8].

Now Intel introduces a new accelerator Xeon Phi with x86-based architecture. It

has about 60 cores with independent streamlined Linux operating system; each

can be set with an IP and regarded as a single computing node. Accordingly, we

study the case of many-core in this work, and use a parallel loop self-scheduling

scheme to achieve workload balancing.

Chapter 1 Introduction 3

1.3 Thesis Organization

The rest of the paper is as follows. In Section 2, we introduce Xeon Phi, HPL,

OpenMP, MPI, parallel loop self-scheduling and Related Work. In Section 3, we

introduce our system design, system implementation and experimental design.

Section 4 lists our experimental environment, experimental results and discussion.

In Section 5, some conclusions are given and future work is discussed.

Chapter 2

Background Review and Related

Work

In this chapter, we will introduce the background related to our work. Section

2.1 introduces the Xeon Phi coprocessor. Section 2.2 introduces the HPL. Section

2.3 describes the OpenMP programming model. Section 2.4 describes the MPI

programming model. Section 2.5 describes the parallel loop self-scheduling scheme.

Section 2.6 describes the related work.

2.1 Background Review

2.1.1 Xeon Phi coprocessor

In the SC12 conference, Intel officially released the Xeon Phi using x86-based

Intel Many Integrated Core (MIC). Intel MIC architecture uses a number of Intel-

based central processing unit (CPU) cores onto a single chip. These cores can

run standard C, C ++ and FORTRAN source code, and program source code

designed for Intel MIC products can be compiled and executed on a standard Intel

Xeon processors. The familiar programming model can eliminate learning barriers,

allowing developers to focus on how to solve problems, rather than on software

4

Chapter 2 Background Review and Related Work 5

design. Intel MIC architecture products aim for highly parallel processing fields

and applications in high-performance computing, workstations, and data centers.

It supports multiple parallel models such as OpenMP, pThread, MPI and other

parallel programming languages [30], as shown in FIG 2.1.

Figure 2.1: Xeon Phi Product

The Xeon Phi core boasts of more than 5 billion transistors using the 22nm

tri-gate process. The Xeon Phi coprocessor consists of processing cores, cache,

memory controller, PCI-E client logic, a very high bandwidth, and bi-directional

ring bus components. Each core uses x86 instruction set architecture, and comes

complete with a private L2 cache that is kept fully coherent by a global-distributed

tag directory. The memory controller and PCI-E client logic separately provide

direct interface to GDDR5 memory. All cores are connected to each other via a

bidirectional ring bus, as shown in FIG 2.2.

Chapter 2 Background Review and Related Work 6

Figure 2.2: Xeon Phi Architecture

The Xeon Phi model is divided into 3100 series, 5100 series, and 7100 series,

and with 57, 60, and 61 x86-based cores, respectively. Each core supporting 4

threads, containing a local L1 cache and a global L2 cache, with 32 512bit vec-

tor bandwidth registers to support 12 to 16 pairs of channel GDDR5 memory

controller, and with memory capacity of 6GB to 16GB, supporting more than 2

Teraflops single precision floating-point operations and approaching 1 Teraflops

double precision floating-point operations. The specifications of each version of

Xeon Phi are listed in TABLE 2.1.

Chapter 2 Background Review and Related Work 7

Table 2.1: Xeon Phi Specifications

3100 Series 5100 Series 7100 Series

Cores 57 60 61

Processor Frequency 1.1 GHz 1.053 GHz 1.238 GHz

L2 Cache 28.5 MB 30 MB 30.5 MB

Memory Capacity 6 GB 8 GB 16 GB

Memory Channels 12 16 16

Memory Bandwidth 240 GB/s 320 GB/s 352 GB/s

Thermal Design Power 300 W 225 W 300 W

Turbo Boost Technology No No Yes

In addition Xeon Phi also has many features listed below:

• MIC with the host via PCI-E connectivity, support for PCI-E X8 or X16

width configurations.

• Each MIC core can execute different instructions and supports up to four

hardware threads, thus to hide the access latency.

• MIC has a stripped down Linux operating system, and can be set with an

independent IP and treated as an independent node, but it cannot operate

independently without a HOST.

• MIC has a 512-bit vector bandwidth registers, can handle 16 32-bit floating-

point or 8 64-bit floating-point operations at the same time.

• MIC includes a local 32KB L1 instruction cache and a 32KB L1 data cache,

and each core has a global 512KB L2 cache.

Programming between the MIC and the HOST is very flexible; HOST or MIC,

or HOST and MIC can simultaneously launch the main function. HOST and MIC

collaborative computing has several modes, as shown in FIG 2.3.

Chapter 2 Background Review and Related Work 8

• Native Mode: A program can be complied by using -mmic compiler option

to be compiled into an MIC executable program; the compiled program can

only be executed on the MIC.

• Offload modes: HOST launches the main function and executes the program

until the core computation part, which is transferred to be computed on the

MIC and the computation results are transmitted back to the HOST later.

• Symmetric mode: HOST and MIC individually launch a main function,

using the compiler options -mmic to get MIC executable programs and HOST

executable programs, which is commonly achieved by the MPI programming

model.

Figure 2.3: Xeon Phi execution model

2.1.2 HPL (High Performance Linpack)

Constantly upgrading computer hardware is accompanied by continuous improve-

ment of the performance of the system processing capability. The main goal of

performance testing is to make right judgments of the platform performance. A

variety of benchmarks are used in the industry. Some are based on the actual

types of applications, such as TPC-C. Some test performance of a part of systems,

such as“IOmeter”that tests performance of hardware, and“stream”that tests

performance of bandwidth of memory. Linpack has become the most popular

Chapter 2 Background Review and Related Work 9

benchmark for testing high-performance floating-point performance of a computer

system in the world. To evaluate floating-point performance of high-performance

computers, the Gaussian elimination method is used for solving a dense n by n

system of linear equations in high-performance computers [34].

The Linpack test includes three types, i.e., Linpack100, Linpack1000 and HPL.

Linpack100 has a solution scale of 100 order dense linear algebraic equations; the

code cannot be changed, it only allows using compiler optimization options to

optimize the code. Linpack1000 has a solution scale of 1000 order linear algebraic

equations; to achieve the specified accuracy requirements, the algorithms and code

can be optimized under the premise of without changing the number of operations.

HPL, also called highly parallel computing benchmark, does not has constraint on

the array size N, i.e., N can be changed for solving the problems; besides, except

the basic algorithm that cannot be changed, any optimization methods can be

used. The scale of the first two tests is too small to be suitable for testing modern

computers, so nowadays HPL test standard is used mostly, and parameter N, the

order of linpack test, must be specified to do the test.

HPL is the test method proposed for testing modern parallel computers. Users

cannot modify any part of the test program; but they can adjust or choose the

problem size N (i.e., the matrix size), the number of used CPUs, and a variety

of optimization methods to execute the test procedures to obtain the best perfor-

mance. The measured peak floating-point value refers to the Linpack test value,

i.e., the best test results obtained by the various optimizing methods of the Lin-

pack test program running on the machine. In the actual running of the program,

it is almost impossible to reach the theoretic peak floating-point value [33].

The TOP500 project provides a ranking and detailed list of the most power-

ful computer systems in the world. This program began in 1993 and publishes a

latest ranking list of supercomputers twice a year. Every year, the annual ranking

published for the first time is always in the International Supercomputing Confer-

ence in June, while the second ranking is published in supercomputing conference

in November. The spirit of this program is to provide a reliable basis to track

Chapter 2 Background Review and Related Work 10

and detect trends of high-performance computing. The website of TOP500 ranks

the 500 fastest supercomputers in the world based on the HPL benchmark. In

recent years, the trend of accelerators used in supercomputers has changed from

the NVidia CUDA card into the Intel Xeon Phi coprocessor [37]. As shown in FIG

2.4.

Figure 2.4: TOP 10 Sites for November 2014

Chapter 2 Background Review and Related Work 11

2.1.3 OpenMP (Open Multi-Processing)

OpenMP is an API that supports multi-platform shared memory multiprocessing

programming in C, C++, and it can run on most processor architectures and op-

erating systems, including Solaris, AIX, HP-UX, GNU / Linux, Mac OS X, and

Microsoft Windows. It includes compiler directives, library, and some environ-

mental variables that can affect the runtime behavior. OpenMP uses a portable,

scalable model to provide for the programmer a simple and flexible interface to de-

velop parallel applications for platforms ranging from standard desktop computers

to supercomputers [38].

OpenMP is proposed by the OpenMP Architecture Review Board, and has

been widely accepted a multi-threaded programming paradigm for shared mem-

ory parallel system. OpenMP supports programming in C language, C ++ and

FORTRAN. Many compilers support OpenMP, including Sun Studio compilers

and Intel Compiler, open-source GCC compiler, and Open64. OpenMP provides

high-level abstract description for parallel algorithms. Programmers can add ded-

icated pragmas to the source program to indicate their intentions. Whereby the

compiler can automatically parallelize the program, adding synchronous mutex

and communications when is necessary. When these pragmas are ignored as se-

lected, or the compiler does not support OpenMP, the program can degenerate

to the usual procedure and the code can still work properly, but cannot take

advantage of multi-threading to speed up program execution. As shown in FIG

2.5.

Chapter 2 Background Review and Related Work 12

Figure 2.5: OpenMP Abstraction Architecture

OpenMP is a cross-platform, multi-threaded achieve. The Master thread gen-

erates a series of sub-threads and tasks allocated to these sub-threads for execu-

tion. These sub-threads run in parallel, and by the runtime environment these

sub-threads are assigned to different processors for execution. To carry out the

parallel execution of the code fragment, it needs to be labeled accordingly. With

pre-compiled instructions the code fragment generates threads before being exe-

cuted. Each thread is assigned with an id, which can be obtained by function

omp_get_thread_num. Each id is an integer, and the id of the master thread is

0. At the end of parallel execution of the code, sub-threads join the master thread

and only the master thread continues execution. By default, each independent

execution threads to execute code in parallel region. Work-sharing constructs can

be used to divide the tasks, so that each thread has its allocated portion of code

execution. In this way, the parallel task and parallel data can be achieved using

OpenMP. Run-time environment assigns the number of threads to each processor

according to the usage, machine load, and other factors. The number of threads

can be specified through the environment variable or function code. In C / C +

Chapter 2 Background Review and Related Work 13

+, OpenMP functions are declared in the header file omp.h [35]. As shown in FIG

2.6.

Figure 2.6: Threads Fork and Join

OpenMP provides a high level of abstraction in parallel description reduces

the difficulty and complexity of parallel programming, so programmers can put

more energy into the parallel algorithm itself, rather than specific details of imple-

mentation. Also, OpenMP also provides greater flexibility to more easily adapt

to different parallel system configurations. Thread granularity and load balancing

are traditional multi-threaded programming problems.

2.1.4 MPI (Message Passing Interface)

MPI initially was the standardized message delivery system in various parallel

computers used by a group of researchers from academia and industry. MPI is

a messaging application program interface, as well as agreements and semantic

specification to achieve its function. It can be written in Fortran, C, C ++ and

other languages. MPI aims to have high-performance, scalability, and portability.

Most MPI implementations directly call a specific set of code, i.e. API, from C, C

++, FORTRAN, C #, Java, and Python. The popular open source MPI imple-

mentations include open-source software Open MPI, open-source based MPICH2

from Intel, and Intel MPI by MVAPICH2 [39].

MPI is a cross-language communications protocol for composing parallel com-

puters. It supports point to point communications and broadcast. MPI is an infor-

mation delivery API, including protocol and semantics to indicate how to realize its

properties in a variety of implementations. MPI aims to have high-performance,

large-scale and portability. MPI is still the main model for high-performance

Chapter 2 Background Review and Related Work 14

computing today. The main MPI-1 model does not include the concept of shared

memory, and MPI-2 only has a limited concept of distributed shared memory.

MPI programs are frequently performed on a shared memory machine. The MPI

model design is better than the NUMA architecture. Most MPI implementations

use specified APIs in C, C ++, FORTRAN, or languages with libraries in this

category, such as C #, Java or Python. MPI is better than the old information

delivery library because of his portability and speed.

MPI belongs to distributed memory architecture. The program in a node will

be copied into the nodes of multiple memory blocks at the same time. Different

nodes will be connected through the Internet and different procedures are used to

exchange messages by MPI. Advantages of MPI are that all the machines can be

easily connected together using the Internet and memory can be accessed fast in

it. Drawbacks are that programmers spend more time in exchanging information

among the programs and additional memory consumed in the multiple copies of

programs [36]. As shown in FIG 2.7.

Figure 2.7: MPI Abstraction Architecture

Applications built by the hybrid parallel programming model by integrating

MPI and OpenMP, can have advantages offered by MPI or OpenMP, or more

Chapter 2 Background Review and Related Work 15

transparently use the computer cluster running on the unshared memory system

via OpenMP extensions [26] [24] [25] [27]. As shown in FIG 2.8.

Figure 2.8: MPI Hybrid OpenMP Model

2.1.5 Parallel Loop Self-Scheduling

Self-scheduling schemes are mainly used to deal with load balancing and they can

be divided into static and dynamic. The Static scheduling scheme determines how

many loop iterations are assigned to each core before running. The advantage of

these schemes is scheduled to run when there is no scheduling overhead. However,

it is difficult to estimate the computing power of each core, resulting in load im-

balance. In contrast, the dynamic scheduling is more suitable for load balancing,

because its scheduling scheme is determined at running. It does not require es-

timation and projection. Initially part of the loop iterations are scheduled to all

cores. To complete the work assigned, it will require repeated schedule. However,

the runtime overhead must be considered and designed to use the dynamically

self-scheduling scheme, because of the excessive runtime overhead may result in

poor system performance [4] [5] [6] [7] [8] [9].

We introduce several loop self-scheduling scheme. Assume loop iterations N

= 1000, the number of cores C = 4. As shown in TABLE 2.2.

Chapter 2 Background Review and Related Work 16

• Chunk self-scheduling (CSS). The schedule for each iteration loop will assign

tasks to each core, and each core will be assigned with the same amount of

work. Assignment will repeat after the assigned work is completed and the

workload in next round is assigned in the same way until the assignment is

finished.

• Factoring self-scheduling (FSS). This schedule for each iteration loop will

assign tasks to each core, and each core will be assigned with the same

amount of work. Assignment will repeat after the assigned work is completed

and the workload in next round is halved until the assignment is finished.

• Guide self-scheduling (GSS). This schedule for each iteration loop will assign

tasks to each core, and the workload assigned to a core is equal to the amount

of workload assigned to the core before it times N-1/N (N: the total number

of cores). Assignment will repeat after the assigned work is completed and

the workload in next round is halved until the assignment is finished.

• Trapezoid self-scheduling (TSS). The schedule for each iteration loop will

assign tasks to each core, and the workload assigned to a core is equal to

amount of workload assigned to the core before it deducted by an arithmetic

difference. Assignment will repeat after the assigned work is completed and

the workload in next round is halved until the assignment is finished.

Table 2.2: Examples of self-scheduling scheme

Scheme Partition size

CSS 125,125,125,125,125,125,125,125

FSS 125,125,125,125,63,63,63,63,31, …

GSS 250,188,141,106,79,59,45,33,25, …

TSS 125,117,109,101,93,85,77,69,61, …

Chapter 2 Background Review and Related Work 17

2.2 Related Work

In the method proposed by Wu et. al. [20], parallel loop of self-scheduling scheme

is applied to the grid system. In the static scheduling part, the formula W = CS/

CL (CS: CPU clock speed, CL: CPU loading) is calculated for each core utiliza-

tion, and the authors used this formula as a basis for allocation. In the dynamic

scheduling part, the comparison of scheduling methods PSS, CSS, FSS, GSS and

TSS is discussed to decide which application is suitable for a dynamic scheduling

scheme.

W is the assigned weight of each core in static scheduling

CS is the CPU clock

CL is the CPU loading

i is the node i

Wi = (CSi/CLi)/(
∑

CS/
∑

CL) (2.1)

SWR is the static workload ratio

MIN is the minimum execution time of all sampled iterations

MAX is the maximum execution time of all sampled iterations

SWR = MIN/MAX (2.2)

In the method proposed by Yang et. al. [8], the parallel loop of self-scheduling

scheme is applied to SMP (symmetric multiprocessor) cluster. In the static schedul-

ing part, CPU clock speed and HPL are utilized as the basis of their scheme. In

the dynamic scheduling part, comparison of scheduling methods FSS, GSS and

TSS are discussed. In their experiments, four applications are adopted to observe

the effects of different types of applications on the proportion of static scheduling

and dynamic scheduling. The results show that proportional allocation of static

scheduling formula CPU clock speed and HPL obtained better performance.

Chapter 2 Background Review and Related Work 18

T is the total number of loop iterations

α is the proportion of static scheduling to dynamic scheduling

T = α× Static Scheduling + (100− α)×Dynamic Scheduling (2.3)

W is the assigned weight of each core in static scheduling

β is the proportion of the CPU clock to the HPL between for static scheduling

W = β × (CPU clock/
∑

CPU clock) + (1− β)× (HPL/
∑

HPL) (2.4)

In the method proposed by Han and Chronopoulos [10], the parallel loop of

self-scheduling scheme is applied to Large-Scale cluster. They used Hierarchical

Architecture in stead of general self-scheduling method. The Hierarchical Archi-

tecture contains three models: Supermaster, Master, and Worker. In the experi-

ments, three scheduling schemes FSS, GSS and TSS are compared and applied to

two applications so as to realize the impact of number of master on performance.

Figure 2.9: Hierarchical Architecture

Chapter 3

System Design and

Implementation

In this section, we introduce the proposed system design and implementation.

Section 3.1 describes the system design. Section 3.2 implements the system.

3.1 System Design

For the proposed system design, we first introduce the weighting algorithm and

then describe the system flow.

3.1.1 Weight Algorithm

Without loss of generality, we can divide loop self-scheduling into static and dy-

namic parts. In the static part, the program assigns tasks to each core by our

weighting formula before execution. In the dynamic part, the program assigns

tasks in accordance with the results of the self-scheduling algorithm after execu-

tion. The formula for our loop self-scheduling is as follows:

T is the total number of loop iterations

α is the proportion of static scheduling to dynamic scheduling

19

Chapter 3 System Design and Implementation 20

T = α× Static Scheduling + (100− α)×Dynamic Scheduling (3.1)

The method proposed by C.-T. Yang et al. [8] has a poor performance of loop

self-scheduling when the proportion of static scheduling is high. To solve this

drawback, the estimation of weights should be improved. Therefore, we modify

the formula by replacing the HPL with the Performance of small Size (PS for

short) in each compute node to increase the accuracy of the weight estimation.

The modified formula is as follows:

W is the assigned weight of each core in static scheduling

β is the proportion of the CPU clock to the PS between for static scheduling

PS is the performance of the small SIZE

W = β × (CPU clock/
∑

CPU clock) + (1− β)× (PS/
∑

PS) (3.2)

3.1.2 System Flow

Figure 3.1 shows the proposed system. In the first step, the information related to

each node is collected and stored in that node. In the second step, the alpha value

is set to find the best ratio of static scheduling over dynamic scheduling; and at

the same time, the beta value is set to find the best performance. The second step

is repeated until an optimal result is found. This above system flow is repeated

for different scheduling methods and applications.

Chapter 3 System Design and Implementation 21

Figure 3.1: System Flow

3.2 System Implementation

3.2.1 OpenMP and MPI Programming Model

Generally, program parallelization can be implemented by OpenMP or MPI. The

effectiveness of OpenMP parallel architecture is better than that of MPI parallel

architecture. The loop parallelization can be achieved in OpenMP by just adding

some simple syntax. Moreover, in OpenMP one can set the number of execution

threads merely by modifying some variables. MPI is relatively complicated. In

addition to use a function to start and end the parallel program, in MPI the paral-

lelization of loop and messages transmitted between different procedures also need

to be assigned by programmers themselves. However, OpenMP does not support

Chapter 3 System Design and Implementation 22

cross-node so that it is necessary to apply MPI to use multiple processors. Most

programmers today use MPI mixed with OpenMPI to develop parallel programs.

OpenMP and MPI programs are introduced in the following:

The program of OpenMP starts with a header file #include <omp.h> and

then declares parallel blocks by “#pragma omp parallel”and parallel loops by

“#pragma omp parallel for”, and finally completes with some directives and

clauses. As shown in FIG 3.2.

Figure 3.2: OpenMP Example

The beginning of an MPI program is a header file #include ”mpi.h”. One

needs to start an MPI program after initializing it by MPI_Init (& argc, &

argv); and to end an MPI program by MPI_Finalize (). MPI_Comm_size

(MPI_COMM_WORLD, & numtask) and MPI_Comm_rank (MPI_COMM_WORLD,

& rank) are utilized to get the number of parallel and program thread ID, respec-

tively. These two pieces of information are helpful to split blocks and transmit

messages to other threads. As shown in FIG 3.3.

Chapter 3 System Design and Implementation 23

Figure 3.3: MPI Example

3.2.2 Intel Many-core Platform Software Stack

To speed up calculations using Intel Xeon Phi, a specified operating system and

the installation of Intel Many-core Platform Software Stack (MPSS) are necessary.

Since Xeon Phi executes program by the supported compiler, we adopt Intel Par-

allel Studio XE toolkit with Intel Parallel Studio XE source files compilervars.sh

and mpivars.sh. Intel Parallel Studio XE provides C language compiler, MPI

compiler, and Xeon Phi variety. Most importantly, it also provides VTune Am-

plifier XE performance profiler that can analyze the cost of parallel programs and

help programmers develop optimized programs. The two files, compilervars.sh and

mpivars.sh, can be used to setup the Intel compiler and Intel MPI environment

variables. As shown in FIG 3.4.

Chapter 3 System Design and Implementation 24

Figure 3.4: MPSS Installation Toolkit

The Intel Many-core Platform Software Stack installation kit is installed by

Administrator RPM packages. After the installation, by the micinfo instruction

one can see the system information, including the HOST operating system, oper-

ating system version, driver version, MPSS version, and HOST physical memory

capacity. As shown in FIG 3.5.

Figure 3.5: MPSS System Information

This observation tool for Intel Many-core Platform Software Stack installment

lets the user control the use of Intel Xeon Phi, and it provides various visual data,

including core utilization rate, the temperature of the card, memory usage, and

power usage. As shown in FIG 3.6.

Chapter 3 System Design and Implementation 25

Figure 3.6: Xeon Phi Platform Control Panel

3.2.3 Intel Parallel Studio XE

For the Intel Parallel Studio XE installation kit, Intel provides automated scripts

so that the user just needs to complete the installation using C / C ++ com-

piler by step-by-step confirmations, otherwise it will not execute the script. After

completing the installation, Intel Parallel Studio XE will automatically set the en-

vironmental parameters needed using the source instructions compilervars.sh and

mpivars.sh. In addition, one can use the commands, icc, mpiicc, mpirun to verify

the path connection. As shown in FIG 3.7 3.8.

Chapter 3 System Design and Implementation 26

Figure 3.7: Intel Parallel Studio XE Installation Toolkit

Figure 3.8: Source compilervars.sh and mpivars.sh

3.2.4 CPU Clock Measuring

The CPU clock speed value is obtained by checking the /proc/cpuinfo file, as

shown in FIG 3.9. To obtain the MIC clock speed value, one needs to install Intel

Many-core Platform Software Stack and uses the micsmc instruction, as shown in

FIG 3.10.

Figure 3.9: CPU Clock Measuring

Chapter 3 System Design and Implementation 27

Figure 3.10: MIC Clock Measuring

3.2.5 HPL Measuring

The HPL value can be obtained by a formula, but it is a theoretical value and does

not necessarily represent the actual performance. To measure the actual value of

HPL, we use Intel Math Kernel Library-LINPACK. It is an optimized version by

Intel. We measure HPL of CPU by using the runme_xeon64 file. We also measure

HPL of MIC by the using runme_mic file, as listed in TABLE 3.1.

Chapter 3 System Design and Implementation 28

Table 3.1: HPL Measuring

Node HPL

phi1 277.2789 GFlops

phi1-mic0 547.2142 GFlops

phi1-mic1 874.6949 GFlops

phi1-mic2 551.0072 GFlops

3.2.6 Bandwidth Measuring

We measure the bandwidth speed of message transmission between cores, as shown

in TABLE 3.2.

Table 3.2: Bandwidth Measuring

phi1 phi1-mic0 phi1-mic1 phi1-mic2

phi1 34294 Mbps

phi1-mic0 897 Mbps 13767 Mbps

phi1-mic1 992 Mbps 577 Mbps 14905 Mbps

phi1-mic2 1050 Mbps 609 Mbps 625 Mbps 13791 Mbps

Chapter 4

Experiments

In this section, we will describe the experimental environment and results. Section

4.1 introduces the experimental environment, including hardware and software en-

vironments. Section 4.2 shows the experimental results, including the performance

comparison of matrix multiplication, Sparse Matrix Multiplication, Mandelbrot set

computation, and the circuit satisfiability problem in static and dynamic ways.

4.1 Experimental Environment

Our experimental hardware and software environments are listed in Table 4.1 and

Table 4.2, respectively. The experimental hardware includes one server and three

Xeon Phi coprocessors, a total of four nodes. Messages are transmitted over nodes

via the PCI-E bus. The computing power of these nodes is varied as to compose

a heterogeneous environment as listed in Table 4.1. Table 4.2 lists the software

version and functions used in the experiment.

4.1.1 Experimental Hardware

We list each node hardware details. As shown in the table 4.1.

29

Chapter 4 Experiments 30

Table 4.1: Hardware Specification

phi1 phi1-mic0,

phi1-mic2

phi1-mic1

CPU Intel Xeon E5-

2650 * 2

Intel Xeon

Phi 5110P

Intel Xeon

Phi 7120P

CPU Clock 2 GHz 1.05 GHz 1.24 GHz

CPU Core 16 60 61

RAM 132 GB 8 GB 16 GB

Disk 1 TB NONE NONE

OS CentOS 6.6 Intel uOS Intel uOS

Linux kernel 2.6.32-

504.el6.x86_64

2.6.38.8 2.6.38.8

4.1.2 Experimental Software

We list the software version used in the experiment, and describe its function. As

shown in the table 4.2.

Chapter 4 Experiments 31

Table 4.2: Software Specification

Name Version Description

Intel Com-

poser XE

2015.2.164 Includes compilers, performance li-

braries, and parallel models opti-

mized to build fast parallel code.

Intel Advisor

XE

2015.1.10.380555 Intel Advisor XE is a threading pro-

totyping tool for C, C++, C# and

Fortran software architects.

Intel Inspec-

tor XE

2015.1.2.379161 Intel Inspector XE is an easy to use

memory and threading error debug-

ger for C, C++, C# and Fortran ap-

plications that run.

Intel VTune

Amplifier

2015.2.0.393444 Intel VTune Amplifier provides a

rich set of performance insight into

hotspots, threading, locks & waits,

OpenCL, bandwidth and more.

Intel MPI 5.0.3 MPI library, along with MPI error

checking and tuning to design, build,

debug and tune fast parallel code that

includes MPI.

Intel MPSS 3.4.3 Is necessary to run the Intel Xeon Phi

Coprocessor.

Chapter 4 Experiments 32

4.1.3 Experimental Design

In order to validate our approach, illustrate our environment, and describe the

terms of our application, we achieved with the MPI / OpenMP program exe-

cution in our test platform. We then compare the performances of the matrix

multiplication, Sparse Matrix Multiplication, Mandelbrot set computation, and

circuit satisfaction in static and dynamic ways.

We implemented four applications, matrix multiplication, Sparse Matrix Mul-

tiplication, Mandelbrot set computation, and circuit satisfaction in C language.

MPI / OpenMP parallel code segments are applied to implement our testing plat-

form. Matrix multiplication has regular workload distribution and data com-

munications needs of each step in the schedule. Sparse matrix multiplication has

irregular workload distribution and data communications needs of each step in the

schedule. Mandelbrot Set Computation has irregular workload distribution and

no data communications needs of each step in the schedule. Circuit Satisfiability

has regular workload distribution and data communications needs of each step

in the schedule. The implementation of all programs is divided into four groups,

Matrix multiplication (mat-), sparse matrix multiplication (smat-), Mandelbrot

Set Computation (man-) and Circuit Satisfiability (sat-).

4.2 Experimental Results

We collect CPU clock speed and HPL values in all computing nodes, and study

the effect by adjusting parameters α and β. Parameters α and β are set by

the programmer. But it is difficult to select the appropriate α andβ during the

experiment. If parameter α is too large, the computer will not be able to complete

the work within a specific time; and if it is too small, the dynamic scheduling

overhead becomes significant.

From the experimental results, we found that when α value is too high, the

effectiveness of the implementation is poor due to the fact that HPL values do

Chapter 4 Experiments 33

not represent the actual performance. Therefore, we made changes in the formula,

i.e., we used the performance of execution in each node of a small size to do

assessments.

4.2.1 Application 1: Matrix Multiplication

The most important method of matrix multiplication is the general method used

to find the product of two matrixes. The definition of matrix multiplication is

defined under the premise that that the size of columns of the first matrix should

be equal to the size of rows of the second matrix.

In the experiment of matrix multiplication, the used size is 10240. As shown

in the figure, factoring self-scheduling (the blue curve) has the best performance

at α = 30, guide self-scheduling (the red curve) has the best performance at α =

50, and trapezoid self-scheduling (the green curve) has the best performance at α

= 50. As shown in FIG 4.1 TABLE 4.3.

Figure 4.1: Matrix Multiplication adaptive α scheduling

Chapter 4 Experiments 34

Table 4.3: Matrix Multiplication execution time

0 10 20 30 40 50 60 70 80 90 100

fss 14.34 12.57 12.99 11.34 12.85 12.27 12.79 14.06 15.93 17.50 19.78

gss 13.70 13.49 14.45 13.40 13.72 12.21 12.89 13.98 15.91 18.01 19.26

tss 15.25 14.06 14.83 12.80 13.46 12.04 13.41 13.90 15.45 17.62 19.02

We used the modified formula and repeated the experiment. We found that

when the value of α increases, the improvement of performance increases, with

a maximal speedup of 1.41 when α is 100 (the blue bar). As shown in FIG 4.2

TABLE 4.4.

Figure 4.2: Improvement of Workload Balancing, Matrix Multiplication adap-
tive α scheduling

Table 4.4: Improvement of Workload Balancing, Matrix Multiplication exe-
cution time

0 10 20 30 40 50 60 70 80 90 100

fss 14.34 12.62 11.62 12.07 12.26 12.43 12.62 13.47 13.11 12.88 14.07

gss 13.70 12.09 11.35 11.82 11.78 13.10 12.92 13.05 12.87 13.28 13.90

tss 15.25 12.68 12.60 13.10 11.73 12.07 12.68 13.48 13.12 12.69 14.08

Chapter 4 Experiments 35

4.2.2 Application 2: Sparse Matrix Multiplication

The multiplication of two matrixes is defined under the premise that the size of

columns of the first matrix and the size of rows of the second matrix are the same.

Sparse matrix multiplication is calculated only when the condition is satisfied,

and, most of the results are zeros.

In the experiment of sparse matrix multiplication, the used size is 10240. As

shown in the figure, factoring self-scheduling (the blue curve) has the best perfor-

mance at α = 50, guide self-scheduling (the red curve) has the best performance at

α = 40, and trapezoid self-scheduling (the green curve) has the best performance

at α = 40. As shown in FIG 4.3 TABLE 4.3.

Figure 4.3: Sparse Matrix Multiplication adaptive α scheduling

Table 4.5: Sparse Matrix Multiplication execution time

0 10 20 30 40 50 60 70 80 90 100

fss 7.99 6.86 6.99 6.96 6.61 6.52 6.82 7.30 7.85 8.05 7.61

gss 7.46 7.08 7.20 6.98 6.55 6.90 6.85 6.98 7.21 7.48 7.62

tss 8.86 7.50 7.40 7.18 6.57 6.78 7.02 7.34 7.47 7.73 7.40

Chapter 4 Experiments 36

We used the modified formula and repeated the experiment. We found the

performance is almost the same. Just very small differences of performances of

the two sets of experiments are found, thus the improvement of performance ob-

tained by using modified formula is ineffective for the experiment of sparse matrix

multiplication. As shown in FIG 4.4 TABLE 4.6.

Figure 4.4: Improvement of Workload Balancing, Sparse Matrix Multiplica-
tion adaptive α scheduling

Table 4.6: Improvement of Workload Balancing, Sparse Matrix Multiplication
execution time

0 10 20 30 40 50 60 70 80 90 100

fss 7.99 6.18 6.24 6.34 6.09 6.63 6.59 6.76 7.33 7.62 7.32

gss 7.46 6.79 6.98 6.51 6.10 6.34 6.58 6.93 7.04 7.81 7.32

tss 8.86 7.65 7.09 6.49 6.36 6.57 7.21 7.17 7.46 7.65 7.44

4.2.3 Application 3: Mandelbrot Set Computation

The Mandelbrot set is a collection of fractals composed of points in the complex

plane. Mandelbrot set is similar to Julia set in the use of iteration of a complex

quadratic polynomial.

Chapter 4 Experiments 37

In the experiment of Mandelbrot set, the used size is 2048. As shown in the

figure, factoring self-scheduling has the best performance at α = 10 (the blue

curve), guide self-scheduling has the best performance at α = 50 (the blue curve),

and trapezoid self-scheduling has the best performance at α = 20 (the green curve).

As shown in FIG 4.5 TABLE 4.7.

Figure 4.5: Mandelbrot Set Computation adaptive α scheduling

Table 4.7: Mandelbrot Set Computation execution time

0 10 20 30 40 50 60 70 80 90 100

fss 40.03 35.76 38.54 42.60 44.04 43.31 42.92 55.93 67.18 90.53 102.9

gss 45.93 44.87 41.90 51.33 41.92 39.72 42.93 55.95 67.18 90.58 102.9

tss 49.73 37.63 37.36 42.89 45.50 38.46 42.90 55.93 67.18 90.56 102.9

We used the modified formula and repeated the experiment. We found when

the value of α increases, the improvement of performance tends to increase, with a

maximal speedup of 1.74 when α is 90 (the red bar). As shown in FIG 4.6 TABLE

4.8.

Chapter 4 Experiments 38

Figure 4.6: Improvement of Workload Balancing, Mandelbrot Set Computa-
tion adaptive α scheduling

Table 4.8: Improvement of Workload Balancing, Mandelbrot Set Computation
execution time

0 10 20 30 40 50 60 70 80 90 100

fss 40.03 35.55 37.35 41.29 42.32 41.43 45.97 46.56 49.42 57.02 68.37

gss 45.93 43.93 46.27 43.58 39.39 40.42 46.08 46.14 48.56 52.00 72.24

tss 49.73 37.53 38.60 39.70 42.98 40.07 45.97 46.19 48.61 60.35 67.39

4.2.4 Application 4: Circuit Satisfiability

In theoretical computer science, the circuit satisfiability problem is a decision-

making problem which is to determine whether a given combinational logic circuit

has an assignment of its inputs that makes the output true.

In the experiment of circuit satisfiability problem, the used size is 20 vari-

ables. As shown in the figure, factoring self-scheduling (the blue curve) has the

best performance at α = 30, guide self-scheduling (the red curve) has the best

performance at α = 30, and trapezoid self-scheduling (the green curve) has the

best performance at α = 40. As shown in FIG 4.7 TABLE 4.9.

Chapter 4 Experiments 39

Figure 4.7: Circuit Satisfiability adaptive α scheduling

Table 4.9: Circuit Satisfiability execution time

0 10 20 30 40 50 60 70 80 90 100

fss 30.23 29.30 28.65 27.83 28.28 32.31 37.97 43.39 49.09 54.63 60.01

gss 44.81 36.09 30.26 28.40 28.65 32.27 37.89 43.28 48.92 54.10 59.76

tss 36.36 36.58 36.93 33.64 32.11 32.66 38.52 43.48 49.42 54.45 60.08

We used the modified formula and repeated the experiment. We found when

the value of α increases, the improvement of performance tends to increase, with

a maximal speedup of 1.63 when α is 100 (the green bar). As shown in FIG 4.8

TABLE 4.10.

Chapter 4 Experiments 40

Figure 4.8: Improvement of Workload Balancing, Circuit Satisfiability adap-
tive α scheduling

Table 4.10: Improvement of Workload Balancing, Circuit Satisfiability execu-
tion time

0 10 20 30 40 50 60 70 80 90 100

fss 30.23 29.08 28.25 28.06 28.03 28.38 28.13 28.72 30.89 35.84 37.61

gss 44.81 37.53 29.89 28.46 28.21 28.13 28.35 28.97 31.57 35.48 37.56

tss 36.36 37.47 34.64 33.16 31.68 31.40 31.29 31.18 31.06 35.56 36.93

4.3 Discussion

The experimental results are summarized in this section. For regular workloads,

better performances can be achieved with a low α value; whereas, for irregular

workloads, better performances can be achieved with a higher α value. However,

poor performance was found when � increased significantly high. We think the

reason for this result is inaccurate estimates of the static weights for irregular

workloads as well as the regular workloads. Therefore, we used a new formula

to estimate weights. The experimental results show that in the case of regular

workloads, performance does not degrade when �increases; besides, in the case of

Chapter 4 Experiments 41

irregular workloads, performance significantly improves when �increases, with a

maximal speedup of 1.74 times.

In the four experiments, only the performance of sparse matrix multiplication

is not affected much from adopting the modified formula. We think this may

be because the originally weights of it has been accurately estimated. Although

the weights have been correctly estimated, its performance is not improved much.

Part of the reason is that it has a low proportion of static scheduling; thus the

effect of adjustment is relatively little.

Chapter 5

Conclusions and Future Work

In this work, we use a hybrid programming model with OpenMP and MPI to

implement loop self-scheduling in the Xeon Phi environment. We then compare

its performance of static and dynamic projects, such as the matrix multiplication,

Sparse Matrix Multiplication, Mandelbrot set computation, and circuit satisfiabil-

ity problems.

5.1 Conclusions

We combine the static and dynamic loop self-scheduling programs to execute on

Xeon Phi. The loop iteration is based on the performance of our adaptively weight-

ing assigned to the compute nodes. We study and compare our algorithm with four

types of applications. These four applications have different characteristics: some

applications have regular workload distributions and data communications needs

in each step of the schedule; some have irregular workload distributions and do

not need to do data communication in each step of the schedule. However, in most

cases, we obtained better performance by our method of improvement than that of

the previous schemes. Our method can be used in the case of irregular workloads;

in addition, our method provides a better workload balancing according to the

performance-based scheduling policy for the application program.

42

Chapter 5 Conclusions and Future Work 43

5.2 Future Work

Although our method can effectively workload balancing, but still some short-

comings. For example, it must be performed once at each node and the best

performance does not improve and how do we prediction best alpha and so on.

Find new ways to improve the shortcomings will be the future focus. For the fu-

ture work, we plan to include more types of applications to validate our approach.

We will also expand the experimental environment. In addition, we hope to be

able to implement the method in a dynamic environment and investigate dynamic

resource usages, such as CPU usage, memory usage, and network bandwidth.

References

[1] Benche M Grosu D Chronopoulos AT, Andonie R. A class of loop self-

scheduling for heterogeneous clusters. In Proceedings of the 2001 IEEE In-

ternational Conference on Cluster Computing, pages 282–291, 2001.

[2] Stumm M Sevcik KC Li H, Tandri S. Locality and loop scheduling on numa

multiprocessors. In Proceedings of the 1993 International Conference on Par-

allel Processing, pages 140–147, 1993.

[3] Kuck D Polychronopoulos CD. Guided self-scheduling: a practical scheduling

scheme for parallel supercomputers. In IEEE Transactions on Computers,

pages 1425–1439, 1987.

[4] Tseng S-S Shih W-C, Yang C-T. A performance-based parallel loop scheduling

on grid environments. The Journal of Supercomputing, 41(3):247–267, 2007.

[5] Li K-C Yang C-T, Cheng K-W. An enhanced parallel loop self-scheduling

scheme for cluster environments. The Journal of Supercomputing, 34(3):315–

335, 2005.

[6] Shun-Chyi Chang Yang C-T. A parallel loop self-scheduling on extremely

heterogeneous pc clusters. Journal of Information Science and Engineering,

20(2):263–273, 2004.

[7] Shih W-C Yang C-T, Cheng K-W. On development of an efficient parallel

loop self-scheduling for grid computing environments. Parallel Computing,

33(7-8):467–487, 2007.

44

References 45

[8] Chao-Tung Yang, Chao-Chin Wu, and Jen-Hsiang Chang. Performance-based

parallel loop self-scheduling using hybrid openmp and mpi programming on

multicore smp clusters. Concurrency and Computation: Practice and Expe-

rience, 23(8):721–744, 2011.

[9] Chao-Tung Yang, Wen-Chung Shih, and Lung-Hsing Cheng. Performance-

based dynamic loop scheduling in heterogeneous computing environments.

The Journal of Supercomputing, 59(1):414–442, 2012.

[10] Yiming Han and Anthony T. Chronopoulos. Scalable loop self-scheduling

schemes implemented on large-scale clusters. In IEEE International Sympo-

sium on Parallel & Distributed Processing, pages 1735–1742, 2013.

[11] Legrand A Robert Y-Yang Y Beaumont O, Casanova H. Scheduling divisi-

ble loads on star and tree networks: Results and open problems. In IEEE

Transactions on Parallel and Distributed Systems, pages 207–218, 2005.

[12] Lamont GB Bohn CA. Load balancing for heterogeneous clusters of pcs.

Future Generation Computer Systems, 18:389–400, 2002.

[13] Slimani Y Yagoubi B. Load balancing strategy in grid environment. Journal

of Information Technology and Applications, 1(4):285–296, 2007.

[14] Chao-Chin Wu, Lien-Fu Lai, Chao-Tung Yang, and Po-Hsun Chiu. Using

hybrid mpi and openmp programming to optimize communications in par-

allel loop self-scheduling schemes for multicore pc clusters. The Journal of

Supercomputing, 60(1):31–61, 2012.

[15] Fatma Omara Doaa M. Abdelkader. Dynamic task scheduling algorithm with

load balancing for heterogeneous computing system. Egyptian Informatics

Journal, 13(2):135–145, 2012.

[16] Francisco Almeida Alejandro Acosta, Vicente Blanco. Dynamic load balanc-

ing on heterogeneous multi-gpu systems. Computers & Electrical Engineering,

39(8):2591–2602, 2013.

References 46

[17] Michael Lysaght Gilles Civario. Dynamic load balancing using openmp 4.0.

High Performance Parallelism Pearls, pages 185–200, 2015.

[18] Tseng S-S Yang C-T, Shih W-C. Dynamic partitioning of loop iterations on

heterogeneous pc clusters. The Journal of Supercomputing, 44(1):1–23, 2007.

[19] Cheng L-H Yang C-T, Shih W-C. A performance-based dynamic loop schedul-

ing on heterogeneous clusters. Journal of Supercomputing, 2010.

[20] Chao-Chin Wu, Chao-Tung Yang, Kuan-Chou Lai, and Po-Hsun Chiu. De-

signing parallel loop self-scheduling schemes using the hybrid mpi and openmp

programming model for multi-core grid systems. The Journal of Supercom-

puting, 59(1):42–60, 2012.

[21] C. Rosales. Porting to the intel xeon phi: Opportunities and challenges. In

2013 Extreme Scaling Workshop, pages 1 – 7, 2013.

[22] A. Heinecke. Accelerators in scientific computing is it worth the effort? In

High Performance Computing and Simulation (HPCS), 2013 International

Conference on, page 504, 2013.

[23] Andrew Milluzzi, Justin Richardson, Alan George, and Herman Lam. A

multi-tiered optimization framework for heterogeneous computing. In High

Performance Extreme Computing Conference (HPEC), 2014 IEEE, pages 1

– 6, 2014.

[24] Piyush Mehrotra Rupak Biswas-Lei Huang Barbara Chapman Haoqiang Jin,

Dennis Jespersen. High performance computing using mpi and openmp on

multi-core parallel systems. Parallel Computing, 37(9):562–575, 2011.

[25] David W. Walker Martin J. Chorley. Performance analysis of a hybrid mpi/

openmp application on multi-core clusters. Journal of Computational Science,

1(3):168–174, 2010.

[26] Bernd Mohr Felix Wolf. Automatic performance analysis of hybrid mpi/

openmp applications. Journal of Systems Architecture, 49(10-11):421–439,

2003.

References 47

[27] Guang Lin Xiaoliang Wan. Hybrid parallel computing of minimum action

method. Parallel Computing, 39(10):638–651, 2013.

[28] Kent Milfeld Jerome Vienne, Carlos Rosales. Heterogeneous computing with

mpi. High Performance Parallelism Pearls, pages 225–238, 2015.

[29] Wen mei Hwu. What is ahead for parallel computing. Journal of Parallel and

Distributed Computing, 74(7):2574–2581, 2014.

[30] Intel xeon phi. http://www.intel.com.tw/content/www/tw/zh/processors/

xeon/xeon-phi-detail.html.

[31] Intel manycore platform software stack (mpss). https://software.intel.com/

en-us/articles/intel-manycore-platform-software-stack-mpss.

[32] Intel parallel studio xe. https:// software.intel.com/ en-us/ intel-parallel-

studio-xe.

[33] Intel ark. http://ark.intel.com.

[34] Intel math kernel library - linpack. https://software.intel.com/en-us/articles/

intel-math-kernel-library-linpack-download.

[35] Openmp. http://openmp.org/wp.

[36] Open mpi. http://www.open-mpi.org.

[37] Top500. http://www.top500.org/.

[38] Openmp wiki. http://en.wikipedia.org/wiki/OpenMP.

[39] Mpi wiki. http://en.wikipedia.org/wiki/Message_Passing_Interface.

Appendix A

MPSS 3.4.4 Installation and

Setup

1. Requirements

1) Super-user privileges are required to install the Intel(R) MPSS 3.4.4

release.

2) Valid SSH keys are required for users (including "root" user) that need

SSH access to each Intel(R) Xeon Phi(TM) coprocessor. To set SSH access,

see Section 2.5, "SSH Access and Configuration for the Intel(R) Xeon Phi(TM)

Coprocessor".

3) Supported hardware platform with at least one Intel(R) Xeon Phi(TM)

coprocessor installed.

4) Linux* host operating system (default configuration).

NOTE: On both RHEL* and SLES*, issues were encountered in configuring the

virtual network interfaces for the Intel(R) Xeon Phi(TM) coprocessors when

"NetworkManager" is used. It is

strongly recommended to use the "network daemon" instead.

To switch to the network daemon:

[host}# chkconfig NetworkManager off

[host]# chkconfig network on

[host]# service NetworkManager stop

[host]# service network start

48

Appendix 49

WARNING: Host OS kernel updates beyond the "officially supported" initial

release versions specified in the table above, may prevent the pre-built

Intel(R) MPSS 3.4 driver modules from loading. Most Linux distributions

provide minor kernel updates and patches. To ensure compatibility,

disable kernel updates on your host OS.

If the host system must run with an updated kernel, use the following

steps to re-build the MPSS modules for the updated kernel version prior

to installing MPSS. If using Infiniband as an interconnect, refer to

section 9.1 of the MPSS User's guide, "Recompiling the Intel(R) MPSS

RPM specifically for OFED".

O To recompile the MPSS host kernel modules:

1) Ensure the prerequisites are installed:

a. For Red Hat* Enterprise Linux

[host]# yum install kernel-headers kernel-devel

b. For SUSE* Linux Enterprise Server

[host]# zypper install kernel-default-devel rpm

2) Regenerate the Intel(R) MPSS driver module package:

[host]$ cd <path to extracted MPSS-3.x.-Linux.tar>/src/

[host]$ rpmbuild --rebuild mpss-modules-*.rpm

3) The newly built mpss-modules and mpss-modules-dev rpms will be

located at:

a. Red Hat* Enterprise Linux

$HOME/rpmbuild/RPMS/x86_64/

b. SUSE* Linux Enterprise Server

/usr/src/packages/RPMS/x86_64/

4) Copy the re-built mpss-modules and mpss-modules-dev RPMs from the

respective directory specified in step 3 into the /modules

directory of the extracted MPSS tar file. Continue to section 2.2

to install MPSS.

2. Steps to Install Intel(R) MPSS

Note:

o In SUSE*, "/sbin" and "/usr/sbin" are by default not in the user's execution

search path. Attempts to run micctrl and various other commands discussed

in this document will fail with the "command not found" messages from

the shell.

To avoid this in the current shell session execute the following prior to

execution:

export PATH=$PATH:/usr/sbin:/sbin

Appendix 50

To prevent the Intell MPSS service from starting add that line to the user's

shell start up files.

For Example: for bash the .bashrc file.

Steps:

1) Remove any previous installations of Intel(R) MPSS. Refer to Section 2.3.

To check for previous installed version of Intel(R) MPSS package:

[host]# rpm -qa | grep -e intel-mic -e mpss

*Note: Both yum and zypper support software upgrades and downgrades.

However, it is necessary that Intel(R) MPSS upgrades and downgrades

be carried out by complete uninstallation of existing software

followed by a clean installation of the replacement software.

Section 2.3 describes uninstalls.

2) Disarm Module security policies:

a) The SUSE* Linux* Enterprise Server release requires setting the kernel

to allow non-SUSE* driver modules to be loaded. Edit the file

"/etc/modprobe.d unsupported -modules" and set the value of

"allow_unsupported_modules" to 1.

b) If SELinux is installed, disable SELinux before installing Intel(R)

MPSS software, to prevent SELinux from overriding standard Linux*

permissions settings.

3) Download the Linux tar file for this release,

then untar and install the Intel(R) MPSS package.

[host]$ tar xvf mpss-3.4.4-linux.tar

*Note: At this point a "modules" directory is created containing all

kernel specific modules.

[host]$ cd mpss-3.4.4

[host]$ cp ./modules/*`uname -r`*.rpm .

o Red Hat* Enterprise Linux*

[host]# yum install *.rpm

o SUSE* Linux* Enterprise Server

[host]# zypper install *.rpm

*Note: yum and zypper are the recommended tools for installing MPSS RPMs.

*Note: MPSS packages are not GPG signed. If local package GPG check

(localpkg_gpgcheck) is enabled in yum.conf, the --nogpgcheck option

must be used:

Appendix 51

[host]# yum install --nogpgcheck *.rpm

4) Load the mic.ko driver, and then initialize MPSS Default Settings.

[host]# modprobe mic

[host]# micctrl --initdefaults

4b) Configure MPSS Via .conf Files (optional).

o The MPSS_Users_Guide.pdf document explains in detail

how to modify Intel(R) MPSS configuration files.

5) Update Flash & SMC (see Section 2.4). Flash and SMC updates to versions

specified in this release are required.

6) Start Intel(R) MPSS by using the Linux* service command:

RHEL 6.x and SUSE

[host]# service mpss start

RHEL 7.x

[host]# systemctl start mpss

RHEL 6.x and SUSE

o To configure the Intel(R) MPSS service to start when the host OS boots:

[host]# chkconfig mpss on

o To disable the Intel(R) MPSS service from starting when the host OS

boots:

[host]# chkconfig mpss off

RHEL 7.x,

o To enable or disable service start on boot, the command is:

[host]# systemctl enable mpss

[host]# systemctl disable mpss

3. Steps to Uninstall Intel(R) MPSS

Note: The uninstall script will not uninstall rebuilt drivers. You must remove

them manually before running the uninstall.sh script.

On RedHat: [host]$yum remove <name of rebuilt package rpm>

On SUSE Linux: [host]$ zypper remove <name of rebuilt package rpm>

o To uninstall 3.x-based builds:

1) Unload the MPSS driver using:

RHEL 6.x and SUSE

[host]# service mpss unload

RHEL 7.x

[host]# systemctl disable mpss

Appendix 52

[host]# modprobe -r mic

2) Uninstall:

a. To uninstall MPSS-3.x:

[host]$ cd mpss-3.4.4

[host]$./uninstall.sh

b. To uninstall MPSS-2.x:

o Red Hat* Enterprise Linux*

[host]# yum remove intel-mic*

o SUSE* Linux* Enterprise Server

[host]# zypper remove intel-mic*

Appendix B

Intel Parallel Studio XE

Installation and Setup

I. Download `Intel Parallel Studio XE' from Intel website

II. Install `Intel Parallel Studio XE'

tar -xvf parallel_studio_xe_2015_update3.tgz

cd parallel_studio_xe_2015_update3

./install.sh

vim /.bashrc

source /opt/intel/composerxe/bin/compilervars.sh intel64

source /opt/intel/impi/4.1.1.036/bin64/mpivars.sh

source /.bashrc

53

Appendix C

HPL Installation and Setup

I. Download `Intel® Math Kernel Library – LINPACK' from website

Download it ,then move to `/home/'.

tar -xvf l_lpk_p_11.3.0.004

II. Setting `HPL'

vim /root/l_lpk_p_11.3.0.004/compilers_and_libraries_2016.0.038/ \\

linux/mkl/benchmark/mp_linpack

##**

Copyright(C) 2005-2015 Intel Corporation. All Rights Reserved.

##

The source code, information and material ("Material") contained herein is

owned by Intel Corporation or its suppliers or licensors, and title to such

Material remains with Intel Corporation or its suppliers or licensors. The

Material contains proprietary information of Intel or its suppliers and

licensors. The Material is protected by worldwide copyright laws and treaty

provisions. No part of the Material may be used, copied, reproduced,

modified, published, uploaded, posted, transmitted, distributed or disclosed

in any way without Intel's prior express written permission. No license

under any patent, copyright or other intellectual property rights in the

Material is granted to or conferred upon you, either expressly, by

implication, inducement, estoppel or otherwise. Any license under such

intellectual property rights must be express and approved by Intel in

writing.

##

*Third Party trademarks are the property of their respective owners.

##

Unless otherwise agreed by Intel in writing, you may not remove or alter

this notice or any other notice embedded in Materials by Intel or Intel's

suppliers or licensors in any way.

##

54

Appendix 55

##**

Content:

Intel(R) Math Kernel Library MP LINPACK tests creation

##

##**

#

-- High Performance Computing Linpack Benchmark (HPL)

HPL - 2.1 - October 26, 2012

Antoine P. Petitet

University of Tennessee, Knoxville

Innovative Computing Laboratory

(C) Copyright 2000-2008 All Rights Reserved

#

-- Copyright notice and Licensing terms:

#

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

#

1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.

#

2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions, and the following disclaimer in the

documentation and/or other materials provided with the distribution.

#

3. All advertising materials mentioning features or use of this

software must display the following acknowledgement:

This product includes software developed at the University of

Tennessee, Knoxville, Innovative Computing Laboratory.

#

4. The name of the University, the name of the Laboratory, or the

names of its contributors may not be used to endorse or promote

products derived from this software without specific written

permission.

#

-- Disclaimer:

#

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY

OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

DATA OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY

THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE

Appendix 56

OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

##

#

--

- shell --

--

#

SHELL = /bin/sh

#

CD = cd

CP = cp

LN_S = ln -fs

MKDIR = mkdir -p

RM = /bin/rm -f

TOUCH = touch

#

--

- Platform identifier --

--

#

ARCH = mic

#

--

- HPL Directory Structure / HPL library ------------------------------

--

#

Set TOPdir to the location of where this is being built

ifndef TOPdir

TOPdir = `pwd`

endif

INCdir = $(TOPdir)/include

BINdir = $(TOPdir)/bin/$(ARCH)

LIBdir = $(TOPdir)/lib/$(ARCH)

#

HPLlib = $(LIBdir)/libhpl.a

ifeq "$(version)" "hybrid"

HPLlibHybrid = $(TOPdir)/lib_hybrid/$(ARCH)/libhpl_hybrid.a

else

HPLlibHybrid =

endif

ifeq "$(static)" "y"

STATICFLAG=-i-static -z noexecstack -z relro -z now -static_mpi

else

STATICFLAG=-i-static -z noexecstack -z relro -z now

endif

#

--

- Message Passing library (MPI) --------------------------------------

Appendix 57

--

MPinc tells the C compiler where to find the Message Passing library

header files, MPlib is defined to be the name of the library to be

used. The variable MPdir is only used for defining MPinc and MPlib.

#

#MPdir = /opt/intel/mpi/3.0

#MPinc = -I$(MPdir)/include64

#MPlib = $(MPdir)/lib64/libmpi.a

#MPlib = $(MPdir)/lib64/libmpich.a

#

--

- Linear Algebra library (BLAS) --------------------------------------

--

LAinc tells the C compiler where to find the Linear Algebra library

header files, LAlib is defined to be the name of the library to be

used. The variable LAdir is only used for defining LAinc and LAlib.

#

ifndef LAdir

LAdir = $(TOPdir)/../../..

endif

ifndef LAinc

LAinc = $(LAdir)/mkl/include

endif

ifndef LAlib

ifeq "$(version)" "hybrid"

LAlib = -L$(LAdir)/mkl/lib/mic \

-Wl,--start-group \

$(LAdir)/mkl/lib/mic/libmkl_intel_lp64.a \

$(LAdir)/mkl/lib/mic/libmkl_intel_thread.a \

$(LAdir)/mkl/lib/mic/libmkl_core.a \

-Wl,--end-group \

-lpthread -ldl $(HPLlibHybrid)

else

LAlib = -L$(LAdir)/mkl/lib/mic \

-Wl,--start-group \

$(LAdir)/mkl/lib/mic/libmkl_intel_lp64.a \

$(LAdir)/mkl/lib/mic/libmkl_sequential.a \

$(LAdir)/mkl/lib/mic/libmkl_core.a \

-Wl,--end-group \

-ldl

endif

endif

#

--

- F77 / C interface --

--

You can skip this section if and only if you are not planning to use

a BLAS library featuring a Fortran 77 interface. Otherwise, it is

Appendix 58

necessary to fill out the F2CDEFS variable with the appropriate

options. **One and only one** option should be chosen in **each** of

the 3 following categories:

#

1) name space (How C calls a Fortran 77 routine)

#

-DAdd_ : all lower case and a suffixed underscore (Suns,

Intel, ...), [default]

-DNoChange : all lower case (IBM RS6000),

-DUpCase : all upper case (Cray),

-DAdd__ : the FORTRAN compiler in use is f2c.

#

2) C and Fortran 77 integer mapping

#

-DF77_INTEGER=int : Fortran 77 INTEGER is a C int, [default]

-DF77_INTEGER=long : Fortran 77 INTEGER is a C long,

-DF77_INTEGER=short : Fortran 77 INTEGER is a C short.

#

3) Fortran 77 string handling

#

-DStringSunStyle : The string address is passed at the string loca-

tion on the stack, and the string length is then

passed as an F77_INTEGER after all explicit

stack arguments, [default]

-DStringStructPtr : The address of a structure is passed by a

Fortran 77 string, and the structure is of the

form: struct {char *cp; F77_INTEGER len;},

-DStringStructVal : A structure is passed by value for each Fortran

77 string, and the structure is of the form:

struct {char *cp; F77_INTEGER len;},

-DStringCrayStyle : Special option for Cray machines, which uses

Cray fcd (fortran character descriptor) for

interoperation.

#

F2CDEFS = -DAdd__ -DF77_INTEGER=int -DStringSunStyle

#

--

- HPL includes / libraries / specifics -------------------------------

--

#

HPL_INCLUDES = -I$(INCdir) -I$(INCdir)/$(ARCH) -I$(LAinc) $(MPinc)

HPL_LIBS = $(HPLlib) $(LAlib) $(MPlib)

#

- Compile time options ---

#

-DHPL_COPY_L force the copy of the panel L before bcast;

-DHPL_CALL_CBLAS call the cblas interface;

-DHPL_DETAILED_TIMING enable detailed timers;

Appendix 59

-DASYOUGO enable timing information as you go (nonintrusive)

-DASYOUGO2 slightly intrusive timing information

-DASYOUGO2_DISPLAY display detailed DGEMM information

-DENDEARLY end the problem early

-DFASTSWAP insert to use DLASWP instead of HPL code

-DHYBRID use for Hybrid OpenMP/MPI mode

#

By default HPL will:

*) not copy L before broadcast,

*) call the BLAS Fortran 77 interface,

*) not display detailed timing information.

#

HPL_OPTS = -DHYBRID

#

ifeq "$(version)" "hybrid"

HPL_OPTS = -DHYBRID

else

HPL_OPTS =

endif

--

#

HPL_DEFS = $(F2CDEFS) $(HPL_OPTS) $(HPL_INCLUDES)

#

--

- Compilers / linkers - Optimization flags ---------------------------

--

#

Next two lines should be commented in case of using Intel Compilers:

CC = mpicc

CCFLAGS = $(HPL_DEFS) -fomit-frame-pointer -O3 -funroll-loops -W -Wall

Next nine lines should be commented in case of using GNU compilers:

CC = mpiicc

ifeq "$(version)" "hybrid"

ICCVERSION:= $(shell expr `icc -dumpversion | cut -f1 -d.` \>= 15)

ifeq "$(ICCVERSION)" "1"

OMP_DEFS = -qopenmp

else

OMP_DEFS = -openmp

endif

ifndef MKLINCDIR

MKLINCDIR = -I"$(TOPdir)/../../include"

endif

CCFLAGS = $(HPL_DEFS) $(MKLINCDIR) -O3 -mmic -w -ansi-alias -i-static \\

-z noexecstack -z relro -z now $(OMP_DEFS) -nocompchk

else

Appendix 60

CCFLAGS = $(HPL_DEFS) -O3 -mmic -w -nocompchk

endif

#

CCNOOPT = $(HPL_DEFS) -O0 -mmic -w -nocompchk

#

On some platforms, it is necessary to use the Fortran linker to find

the Fortran internals used in the BLAS library.

#

LINKER = $(CC)

ifeq "$(version)" "hybrid"

LINKFLAGS = $(CCFLAGS) $(OMP_DEFS) -mmic -mt_mpi $(STATICFLAG) -nocompchk

else

LINKFLAGS = $(CCFLAGS) -mmic -nocompchk $(STATICFLAG)

endif

#

ARCHIVER = ar

ARFLAGS = r

RANLIB = echo

#

--

MAKE = make TOPdir="$(TOPdir)" LAdir="$(LAdir)" LAinc="$(LAinc)"

LAlib="$(LAlib)" MKLINCDIR="$(MKLINCDIR)"

Basically you are ready to go to compile

cd /root/l_lpk_p_11.3.0.004/compilers_and_libraries_2016.0.038/linux/mkl/benchmark/ \\

mp_linpack

make ARCH=mic

cd /root/l_lpk_p_11.3.0.004/compilers_and_libraries_2016.0.038/linux/mkl/benchmark/ \\

mp_linpack/bin/mic

vim HPL.dat

HPLinpack benchmark input file

Innovative Computing Laboratory, University of Tennessee

HPL.out output file name (if any)

6 device out (6=stdout,7=stderr,file)

1 # of problems sizes (N)

29696 28672 24576 Ns

1 # of NBs

240 NBs

0 PMAP process mapping (0=Row-,1=Column-major)

1 # of process grids (P x Q)

1 Ps

1 Qs

Appendix 61

16.0 threshold

1 # of panel fact

1 PFACTs (0=left, 1=Crout, 2=Right)

1 # of recursive stopping criterium

5 NBMINs (>= 1)

1 # of panels in recursion

3 NDIVs

1 # of recursive panel fact.

2 RFACTs (0=left, 1=Crout, 2=Right)

1 # of broadcast

1 BCASTs (0=1rg,1=1rM,2=2rg,3=2rM,4=Lng,5=LnM)

1 # of lookahead depth

1 DEPTHs (>=0)

2 SWAP (0=bin-exch,1=long,2=mix)

64 swapping threshold

0 1 L1 in (0=transposed ,1=no-transposed) form

0 1 U in (0=transposed ,1=no-transposed) form

1 Equilibration (0=no,1=yes)

8 memory alignment in double (> 0)

--

cd /root/l_lpk_p_11.3.0.004/compilers_and_libraries_2016.0.038/linux/mkl/benchmark/ \\

mp_linpack

scp -r mp_linpack mic0:

ssh mic0

cd mp_linpack

mpirun ./xhpl

	摘要
	Abstract
	致謝詞
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Thesis Goal and Contributions
	1.3 Thesis Organization

	2 Background Review and Related Work
	2.1 Background Review
	2.1.1 Xeon Phi coprocessor
	2.1.2 HPL (High Performance Linpack)
	2.1.3 OpenMP (Open Multi-Processing)
	2.1.4 MPI (Message Passing Interface)
	2.1.5 Parallel Loop Self-Scheduling

	2.2 Related Work

	3 System Design and Implementation
	3.1 System Design
	3.1.1 Weight Algorithm
	3.1.2 System Flow

	3.2 System Implementation
	3.2.1 OpenMP and MPI Programming Model
	3.2.2 Intel Many-core Platform Software Stack
	3.2.3 Intel Parallel Studio XE
	3.2.4 CPU Clock Measuring
	3.2.5 HPL Measuring
	3.2.6 Bandwidth Measuring

	4 Experiments
	4.1 Experimental Environment
	4.1.1 Experimental Hardware
	4.1.2 Experimental Software
	4.1.3 Experimental Design

	4.2 Experimental Results
	4.2.1 Application 1: Matrix Multiplication
	4.2.2 Application 2: Sparse Matrix Multiplication
	4.2.3 Application 3: Mandelbrot Set Computation
	4.2.4 Application 4: Circuit Satisfiability

	4.3 Discussion

	5 Conclusions and Future Work
	5.1 Conclusions
	5.2 Future Work
	Bibliography

	References
	Appendix
	A MPSS 3.4.4 Installation and Setup
	B Intel Parallel Studio XE Installation and Setup
	C HPL Installation and Setup

