
東海大學

資訊工程研究所

碩士論文

指導教授: 楊朝棟博士

雲端城市交通狀態評估系統應用巨量資料的架構

Cloud City Traffic State Assessment System using a Novel

Architecture of Big Data

研究生: 顏尹臻

中華民國一零四年六月

1

摘 要

巨量資料的應用蓬勃發展，本論文透過政府的 Open Data 公車動態資訊，取得

公車的即時定位，透過公車的定位資訊評估道路交通狀態。本論文建置了一個

雲端城市交通狀態評估系統，透過了 Big Data 架構來實作系統，其中運用高可

用性的雲端套件 Apache Hadoop 及 Apache Spark，提出一個有效的架構用於處

理巨量資料，套用於台灣大道的公車定位資訊，並且透過即時計算公車的即時

平均速度與歷史的平均速度做比較，在找尋塞車點的部分應用 Fuzzy C-Means,

K-Means, DBSCAN 找出交通堵塞及繁忙的集中點，藉此評估道路的交通狀態。

在實作上，本論文透過實驗比較 Hadoop 與 Spark 的差異後選擇 Spark 作為本

論文系統之運算架構。數據儲存的部分經由實驗比較 HDFS 中不同 replication

數量的讀寫速度找出最適合設定套用於系統。找尋塞車點部份經由實驗找尋最

佳的分群方法，並經由實驗結果選擇最適合本系統之分群方法 K-Means 做為評

估方式。在即時評估的實作本系統透過移動平均的概念實作即時交通狀態的評

估，在介面部分使用了網頁前端技術呈現雲端城市交通狀態評估系統，本論文

系統實際應用於台灣大道並能成功達成交通狀態的評估。

關鍵字: 雲端運算，巨量資料，Spark，HBase，Fuzzy C-Means.

I

Abstract

Recently, big data are widely applied to different field. This work presents a cloud

city traffic state assessment system using a novel architecture of big data. The pro-

posed system provides the real-time busses location and real-time traffic situation,

especially the real-time traffic situation nearby, through open data, GPS, GPRS

and cloud technologies. With the high-scalability cloud technologies, Hadoop and

Spark, the proposed system architecture is first implemented successfully and effi-

ciently. Next, we utilize three clustering methods, DBSCAN, K-Means, and Fuzzy

C-Means to find the area of traffic jam in Taichung city and moving average to find

the area of traffic jam in Taiwan Boulevard which is the main road in Taichung

city. Finally, several experiments are test. The first experiment indicates that the

computing ability of Spark is better than that of Hadoop. The second experiment

compares the HDFS processing speed under different number of replication. In the

last experiment, we compare the clustering performance of DBSCAN, K-Means,

and Fuzzy C-Means so that K-Means is adopted in the proposed system. Based

on these experiments, the provided services are present via an advanced web tech-

nology.

Keywords: Cloud Computing, Big Data, Spark, HBase, Fuzzy C-Means.

II

致謝詞

研究所兩年的生活讓我收穫很多，透過研究所課程的學習以及在論文研究中

的精進，讓我對雲端運算及巨量資料的處理技術有深入的了解，並能實際的將

這些技術應用到生活中，讓我能實作出一個系統。

完成這篇論文要感謝的人有很多，首先，謝謝我的指導老師楊朝棟教授帶領

我進入雲端與巨量資料處理的領域，教導我完成這篇論文，謝謝老師研究所兩

年的指導，在學習的過程中不時的督促、討論及指點我正確的方向，讓我獲益

匪淺。除了學習外，也讓我能做自己想做的論文題目，雖然過程中遭遇到相當

多的困難與挑戰，但是老師總能在我遇到困難時給予意見及指導，如果不是楊

老師的提拔及給予的挑戰，我想我可能無法完成這篇論文。也感謝老師讓我能

夠在畢業前去北海道參加研討會發表論文成果，學習新事務，拓展國際視野。

再來，要感謝陳碩聰老師指導我論文中的數學部分，並在評估方式給予我很多

知識與建議，如果沒有碩聰老師我的論文可能無法這麼嚴謹。

另外，感謝抽空前來參加論文口試的委員們，謝謝系上呂芳懌老師對我的研

究提供了很多的意見、指導和鼓勵。謝謝林迺衛老師、黃國展老師及時文中老

師，給了我很多專業上的想法與建議，因為有您們的意見讓本來較不明確的內

容，在重整之後，讓我的論文能更加完整及嚴謹。也感謝兩年來在實驗室遇見

的學長姊、同學、學弟、不同實驗室的同學，讓我在這兩年的研究生涯過的很

充實。

最後要感謝我的父母，如果沒有他們的支持我沒辦法完研究所的學業，感謝

他們從小到大的栽培，讓不是很會讀書的我能走到今天，也謝謝我的姊姊在這

之中給予我很多的鼓勵，因為有妳幫忙負擔家計讓我能安心的讀完研究所。

東海大學資訊工程學系 高效能實驗室 顏尹臻 104 年 07 月

III

Table of Contents

摘要 I

Abstract II

致謝詞 III

Table of Contents IV

List of Figures VI

List of Tables VIII

1 Introduction 1
1.1 Motivation . 2
1.2 Contributions . 5
1.3 Thesis Organization . 5

2 Backgroud and Related Works 6
2.1 Cloud Computing and Big Data . 6

2.1.1 Cloud Computing . 6
2.1.2 Big Data . 9
2.1.3 NoSQL . 10

2.2 Hadoop Ecosystem . 11
2.2.1 Hadoop . 11
2.2.2 HDFS . 11
2.2.3 HBase . 13
2.2.4 HBase Master and Region Servers 14
2.2.5 HBase Data Model . 14
2.2.6 HBase Row Keys . 15
2.2.7 HBase Column Family . 16
2.2.8 Cloudera CDH . 17
2.2.9 Apache Spark . 18
2.2.10 Spark Application . 18

2.3 Mathematical Model and Algorithms 20
2.3.1 Moving Average . 20
2.3.2 Fuzzy C-Means . 20

IV

TABLE OF CONTENTS V

2.3.3 DBSCAN . 21
2.3.4 K-Means Clustering . 22

2.4 Related Works . 22

3 System Design and Implementation 24
3.1 Cloud System Architecture . 24
3.2 Provided Services . 25

3.2.1 City Traffic State Assessment System Service Design 27
3.2.2 Data Collection Service . 28
3.2.3 Real Time Process Service 30
3.2.4 Data Analysis Service . 31
3.2.5 Web Application Service . 32

3.3 System Implementation . 33
3.3.1 Cluster Deployment . 34

4 Experimental Results 39
4.1 Experimental Environment . 39
4.2 Spark and Hadoop MapReduce Performance Comparison 40
4.3 Experiment for HDFS read and write speed under various replication 41
4.4 Using Spark to process bus location data under different number of

executors . 46
4.5 Comparison of different clustering ways to find traffic jams grouping 51

4.5.1 DBSCAN . 51
4.5.2 K-Means . 52
4.5.3 Fuzzy-C-Means . 54
4.5.4 Results Compared . 55

4.6 Cloud City Traffic State Assessment System 56

5 Conclusions and Future Work 61
5.1 Concluding Remarks . 61
5.2 Future Work . 62

References 63

A Hadoop Installation 68

B HBase Installation 72

C Cloudera Manager Installation 74

D Experimental-Spark and Hadoop MapReduce Performance Com-
parison Source Code 75

E Experiment-HDFS read and write speed under various replication
Data 78

List of Figures

1.1 Bus positioning and data transmission schematic 2
1.2 The dawn of big data from IDC . 3
1.3 Taichung City bus Dynamic Positioning 4

2.1 Cloud computing service model . 8
2.2 Big data-4V . 9
2.3 HDFS architecture . 12
2.4 The components of HBase . 13
2.5 HBase service architecture . 15
2.6 Row of data based on key alphabetically sorted 16
2.7 The rows and columns in HBase . 17
2.8 Cloudera Manage Interface . 17
2.9 Spark Applicatione . 19

3.1 Bus positioning and data transmission schematic 25
3.2 Block division schematic . 26
3.3 XML Format . 27
3.4 Block division schematic apply to Taiwan Boulevard 27
3.5 City Traffic State Assessment System Service 28
3.6 Real Time Data collection service 29
3.7 History Data Collection Service . 29
3.8 Real Time Process Service . 30
3.9 Data Analysis Service . 31
3.10 Web applications service . 32
3.11 System Deployment Architecture Diagram 34
3.12 Cloudera manager status . 35
3.13 Cloudera manager hosts . 35
3.14 Hadoop NameNode information . 36
3.15 MapReduce JobTracker . 37
3.16 HBase region server status . 37
3.17 Spark History Server . 38
3.18 Spark Job . 38

4.1 Spark and Hadoop Computing cluster 41
4.2 Spark and Hadoop MapReduce Performance Comparison 41
4.3 The flow chart of HDFS read and write test 42

VI

LIST OF FIGURES VII

4.4 Read and write time duration for MAP=12,24,36,48,60 in various
replication number under the case 12GB 43

4.5 Read and write time duration for MAP=12,24,36,48,60 in various
replication number under the case 60GB 44

4.6 Read and write time duration for MAP=12,24,36,48,60 in various
replication number under the case 120GB 45

4.7 All sizes in 12 map read and write speed 46
4.8 All sizes in 12 map read and write average speed of 1GB 46
4.9 The flow chart of convBus . 47
4.10 The flow chart of comBus . 48
4.11 Using convBus and comBus processing 1-days of Bus data 49
4.12 Using convBus and comBus processing 2-days of Bus data 49
4.13 Using convBus and comBus processing 3-days of Bus data 50
4.14 DBSCAN in epsilon=0.001 Clustering results 51
4.15 DBSCAN in epsilon=0.002 Clustering results 52
4.16 K-MEANS in Iterations=100 Clustering results 53
4.17 K-MEANS in Iterations=1000 Clustering results 53
4.18 Fuzzy-C-Means in Iterations=50 Clustering results 54
4.19 Fuzzy-C-Means in Iterations=100 Clustering results 55
4.20 Comparison of DBSCAN,K-Means,Fuzzy-C-Means 56
4.21 Cloud City Traffic State Assessment System functions 57
4.22 Web UI Function Menu . 57
4.23 History Bus Travel each block of time use waveform display 58
4.24 History Bus Travel each block of time use Use long bar graph display 58
4.25 Real-time assessment traffic in Taiwan Boulevard using WEB pre-

sentation . 59
4.26 Real-time assessment traffic in Taiwan Boulevard using WEB pre-

sentation . 59
4.27 Use DBSCAN clustering on web views 60
4.28 Use K-Means clustering on web views 60

List of Tables

3.1 Software Specification . 33

4.1 Experimental environment . 40

E.1 Write 12G in HDFS [Map-Size-Replication-R/W] 78
E.2 Read 12G in HDFS [Map-Size-Replication-R/W] 80
E.3 Write 60G in HDFS [Map-Size-Replication-R/W] 83
E.4 Read 60G in HDFS [Map-Size-Replication-R/W] 85
E.5 Write 120G in HDFS [Map-Size-Replication-R/W] 87
E.6 Read 120G in HDFS [Map-Size-Replication-R/W] 90

VIII

Chapter 1

Introduction

To conform the growth of Big Data[1] application, almost all major industries and

companies of the world invested the area of Big Data analysis. With the technol-

ogy of Big Data processing, the companies can analyze and classify the massive

data they have, finally come out the valuable information.For analyzing the condi-

tion of transport, the government through GPS positioning to record the relevant

map location of most urban public transport systems, coupled with the back-end

processing of data transmission via GPRS or 3G to tracking the status of trans-

port. This service provides users the information of location and waiting time, the

most commonly utilized for bus service, many cities offer similar services.[2]This

research collects the open source of transportation data the government provided

to proceed the processing of Big Data and then analyzing instantly via Cloud

Computing[3] architecture. Through the calculation of GPS coordinates bus, the

research can assess the extent of road congestion and provide the information

of passers-road conditions.Figure 1.1shows bus positioning and data transmission

schematic.[4]

1

Chapter 1 Introduction 2

Figure 1.1: Bus positioning and data transmission schematic

1.1 Motivation

To reflect the booming of big data application, nowadays many industries such

as healthcare, manufacturing, telecommunications, retail, energy, transportation,

automotive, security and other applications market imports the technology of Big

Data analysis. Through Big Data processing technology, those industries can

filter out the useless data that is hardly to perform in the past, then gain the

advantage of valuable information.IDC’s Digital Universe Study[5] analysis that

global data amount continue to grow rapidly. It is expected the data amount

would breakthrough 40000Exabyte (EB, 1EB = 1 Million Terabyte) in the year

of 2020.shown in Figure 1.2. Data analysis is a quite common concept in life that

performed by collecting all the information and data, analyze then come out the

result as the basis of future action and decision.

In recent years, processing and analysis of data has become more complex,

the amount of data is getting bigger, and more and more diverse species. It is

more harder to gather useful information from the data. Hence, to analyze trans-

portation data and gain the valuable information for providing passengers or even

Chapter 1 Introduction 3

Figure 1.2: The dawn of big data from IDC

government transportation planning department the information becomes a im-

portant issue.Many countries now have many city public transportation methods,

such as subway, light rail tram, bus ... and so on. The highest density of road net-

work is bus. Bus goes through most of the city’s routes, and most of city bus has

been imported intelligent transportation solutions that through GPS positioning

technology to locate buses in the city. With the positioning of the bus, user can

access the bus arrive time and immediate location update. This research collects

open data from public bus information then analyzes the data to know the traf-

fic condition in the bus routes, includes information of the extent of congestion,

average speed, estimated time for exercise, etc.

This research considers the bus runs density for keeping update the traffic

condition within specific route, and through real-time motion analysis for passers-

by to access the traffic condition of the section they select immediately. With

this analysis, the passers-by can evaluate the traveling time. Also, this research

through the data collection and analysis of long-term route positioning to assess

Chapter 1 Introduction 4

Figure 1.3: Taichung City bus Dynamic Positioning

the long-term road traffic conditions, provides benefit for the Ministry of Trans-

portation to improve the traffic situation. Because location-based information is

continuously updated and bus lines in the city is quite complicated, it requires a

good architecture to perform the processing of big data immediately and analyzes

the long-term collection data. Therefore, this research is based on cloud com-

puting platform, through the big data analysis technology to deal with real-time

information and massive data collected . This research through Big Data process-

ing platform on cloud to handle the open data of bus information and distributed

Apache Hbase cloud architecture to dispersed data storage on several hosts, which

is able to balance the massive data stored. The platform in this research contains a

algorithm design to calculate bus runs speed via movement of bus positioning. The

result can be used to evaluate the traffic situation whereby sections. Furthermore,

this research through Apache Spark[6, 7] architecture to Implementing algorithms.

With distributed processing framework, it’s able to deal with a massive real-time

information effectively and handle big data Statistics and Analysis.

Chapter 1 Introduction 5

1.2 Contributions

In this article we build a cloud system to processing and analysis of a huge amount

of Bus Dynamic data. We implement a distributed computing and analysis system

based on cloud computing architecture to processing big data. In this work, we

present a cloud city traffic state assessment system using a novel architecture of

big data. With the high-scalability cloud technologies, Hadoop and Spark, the

proposed system architecture for big data and services is implemented . Based

on the comparison between real-time buses average velocity and the past average

velocity,Fuzzy C-Means , K-Means, DBSCAN is applied to find out the heavy

traffic area or traffic jam in each block of Taiwan Boulevard.

1.3 Thesis Organization

In Chapter 2, we will describe some background information, including Cloud

Computing, Big Data, NoSQL,Apache Hadoop, HDFS,Apache HBase ,Apache

Spark and Cloudera CDH. In Chapter 3, we will introduce our experimental en-

vironment and system architecture, experimental methods and the overall imple-

ment of system. Chapter 4 shows the experimental results and analyses. Chapter

5 provides conclusions and future work of this thesis.

Chapter 2

Backgroud and Related Works

2.1 Cloud Computing and Big Data

2.1.1 Cloud Computing

Cloud computing is an Internet-based computing which provides services of com-

puters and other devices on demand via computer networks hardware and software.

Cloud computing describes a new Internet-based IT service model, usually involves

with Internet to provide dynamic extended and virtualized resources. Users no

longer need to know the details of the C̈loudör have the appropriate expertise,

but also have no direct control. A good starting point for a definition of cloud

computing is the definition issued by the U.S. National Institute of Standards and

Technology (NIST) September, 2011. It starts with: Cloud computing is a model

for enabling ubiquitous, convenient, on-demand network access to a shared pool

of configurable computing resources (e.g., networks, servers, storage, applications,

and services) that can be rapidly provisioned and released with minimal manage-

ment effort or service provider interaction. This cloud model is composed of five

essential characteristics, three service models, and four deployment models.

Five essential characteristics:

• Provide services according to the needs.

6

Chapter 2 Backgroud and Related Works 7

• Anytime, anywhere access by any network device.

• Users share resource pool.

• Quick redeployment.

• Can be monitored and measured.

Three service models as shown in Figure 2.1:

• Software as a Service (SaaS): Consumers use software deployed in the cloud

or data stored in the cloud, without managing cloud infrastructure and pro-

gramming execution environment. Consumers no longer need to install soft-

ware on their computer, therefore reducing maintenance and software sup-

port issues.

• Platform as a Service (PaaS): PaaS provides a computing platform typically

includes the operating system, database, programming language execution

environment and web server. Application developers can develop and run

their software solutions on a cloud platform without the cost and complexity

of buying and managing the underlying hardware and software layers.

• Infrastructure as a Service (IaaS): As the most basic cloud service model,

IaaS provides physical machines, virtual machines or other resources; con-

sumers can fully control the allocated resources, but cannot control the cloud

infrastructure. [3].

Four deployment models:

• Public Cloud: Third-party cloud infrastructure for use in general public or

a large industry group. The organization has to sell its cloud services and

system services, allowing consumers to rent for deployment and use of cloud

services.

Chapter 2 Backgroud and Related Works 8

Figure 2.1: Cloud computing service model

• Private Cloud: The cloud infrastructure and software resources are built

within the firewall, for all departments within an organization or enterprise

to share resources in the data center. Private cloud infrastructure is fully

operational for a specific organization; its managers may be in the organi-

zation itself, or a third party; it may be controlled within the organization,

but may also outside the organization.

• Community Cloud: Community cloud shared by several organizations to

support a particular community with common concerns, such as security

requirements, policy, and compliance considerations. Managers may be in

the organization itself, but also a third party; it may be managed within the

organization, but may also outside the organization.

• Hybrid Cloud: A cloud may consist of two or more cloud infrastructure,

which includes a private cloud, community cloud, public cloud and so on.

These systems keep their own independence, but combine standardized or

enclosed proprietary technologies with each other to ensure portability of

data and applications.

Chapter 2 Backgroud and Related Works 9

2.1.2 Big Data

Big data is a broad term for data sets so large or complex that traditional data

processing applications are inadequate. The development of big data has four di-

rections:

• Volume: Production, processing, preservation for large amounts of data.

• Velocity: Generation speed of data and processing speed of computer.

• Variety: Data type including structural data or non-structural data, text,

video, web pages, streaming.

• Veracity: Data reliability and data quality.

Big data is a large and complicate problem so that we face many challenges in-

cluding analysis, capture, curation, search, sharing, storage, transfer, visualiza-

tion, and information privacy. Analysis of big data collected from small data sets

can find new correlations, to ”spot business trends, increase income, enhance the

competitive power, adjust research results, prevent diseases, combat crime, report

real-time traffic and so on. as shown in Figure 2.2[1]:

Figure 2.2: Big data-4V

Chapter 2 Backgroud and Related Works 10

2.1.3 NoSQL

NoSQL is next generation database. Carlo Strozzi used the term NoSQL in 1998

to name his lightweight, open-source relational database that did not expose the

standard SQL interface. NoSQL mostly addressing some of the points: being

non-relational, distributed, open-source and horizontally scalable. It provides a

mechanism for storage and retrieval of data that is modeled in means other than

the tabular relations used in relational databases. Motivations for this approach

include simplicity of design, horizontal scaling, and finer control over availability.

The data structures used by NoSQL databases (e.g. key-value, graph, or docu-

ment) differ from those used in relational databases, making some operations faster

in NoSQL and others faster in relational databases. The particular suitability of

a given NoSQL database depends on the problem it must solve.

NoSQL databases are increasingly used in big data and real-time web appli-

cations. NoSQL systems also support SQL-like query languages. Many NoSQL

stores compromise consistency (in the sense of the CAP theorem) in favor of avail-

ability and partition tolerance. Barriers to the greater adoption of NoSQL stores

include the use of low-level query languages, the lack of standardized interfaces,

and huge investments in existing SQL. Most NoSQL stores lack true Atomicity,

Consistency, Isolation, Durability (ACID) transactions.

Strozzi suggests that, as the current NoSQL movement d̈eparts from the rela-

tional model altogether; it should therefore have been called more appropriately

’NoREL’ ,̈ referring to ’No Relational’. Eric Evans reintroduced the term NoSQL

in early 2009 when Johan Oskarsson of Last.fm organized an event to discuss

open-source distributed databases. The name attempted to label the emergence

of an increasing number of non-relational, distributed data stores. Most of the

early NoSQL systems did not attempt to provide atomicity, consistency, isolation

and durability guarantees, contrary to the prevailing practice among relational

database systems. [8].

Chapter 2 Backgroud and Related Works 11

2.2 Hadoop Ecosystem

2.2.1 Hadoop

The Apache™ Hadoop® project develops open-source software for reliable, scal-

able, distributed computing. The Apache Hadoop software library is a frame-

work that allows for the distributed processing of large data sets across clusters

of computers using simple programming models. It is designed to scale up from

single servers to thousands of machines, each offering local computation and stor-

age. Rather than rely on hardware to deliver high-availability, the library itself

is designed to detect and handle failures at the application layer, so delivering a

highly-available service on top of a cluster of computers, each of which may be

prone to failures. [9, 10].

The project includes these modules:

• Hadoop Common: The common utilities that support the other Hadoop

modules.

• Hadoop Distributed File System (HDFS): A distributed file system that

provides high-throughput access to application data.

• Hadoop YARN: A framework for job scheduling and cluster resource man-

agement.

• Hadoop MapReduce: A YARN-based system programming model for mas-

sive data processing of large data.

2.2.2 HDFS

The Hadoop Distributed File System (HDFS) is a distributed file system designed

to run on commodity hardware. It has many similarities with existing distributed

file systems. However, the differences from other distributed file systems are sig-

nificant. HDFS is highly fault-tolerant and is designed to be deployed on low-cost

Chapter 2 Backgroud and Related Works 12

hardware. HDFS provides high throughput access to application data and is suit-

able for applications that have large data sets. HDFS relaxes a few POSIX require-

ments to enable streaming access to file system data. HDFS was originally built

as infrastructure for the Apache Nutch web search engine project. HDFS is now

an Apache Hadoop subproject. HDFS has a master/slave architecture. An HDFS

cluster consists of a single NameNode, a master server that manages the file system

namespace and regulates access to files by clients. In addition, there are a number

of DataNodes, usually one per node in the cluster, which manage storage attached

to the nodes that they run on. HDFS exposes a file system namespace and allows

user data to be stored in files. Internally, a file is split into one or more blocks

and these blocks are stored in a set of DataNodes. The NameNode executes file

system namespace operations like opening, closing, and renaming files and directo-

ries. It also determines the mapping of blocks to DataNodes. The DataNodes are

responsible for serving read and write requests from the file system’s clients. The

DataNodes also perform block creation, deletion, and replication upon instruction

from the NameNode. Figure 2.3 shows the architecture of HDFS[11].

Figure 2.3: HDFS architecture

Chapter 2 Backgroud and Related Works 13

2.2.3 HBase

HBase, is an open source, high reliability, high performance, scalable, and not

based on the relational model based on distributed repository for storing large

scale unstructured data. [12, 13, 14, 15, 16]. HBase is a dstributed, versioned,

non-relational database (i.e., NoSQL) modeled after Google’s Bigtable: A Dis-

tributed Storage System for Structured Data. Just as Bigtable leverages the dis-

tributed data storage provided by the Google File System, Apache HBase provides

Bigtable-like capabilities on top of Hadoop and HDFS. HBase data actually stored

in HDFS.Figure 2.4 shows the different components of HBase, and how it can work

with existing systems.

Figure 2.4: The components of HBase

Features[17, 18]:

• Strongly consistent reads/writes: HBase is not eventual consistent data stor-

age; thus, it is ideal for the task of gathering, such as for high-speed counter.

• Automatic sharding: HBase tables are distributed over the cluster through

regions that can be automatic separated and allocated as data grow.

• Hadoop/HDFS Integration: HBase is in support of HDFS as its distributed

file system.

Chapter 2 Backgroud and Related Works 14

• MapReduce: HBase supports massively parallel processing through MapRe-

duce by using HBase as sources and sinks.

• Java Client API: HBase supports easy-to-use Java APIs for programming.

• Thrift/REST API: HBase supports REST and Thrift as non-Java front ends.

• Block Cache and Bloom Filters: HBase supports block caches and Bloom

filters for high-capacity query optimization.

• Operational Management: HBase provides insight into the operation and

JMX metrics by the built-in web page.

2.2.4 HBase Master and Region Servers

Master server (master) region is also responsible for the entire region server load

balancing, unloading the busy servers, and moving a busy region to the region was

less occupied by the server. Primary server is not part of the actual data storage

or retrieval path, which is responsible for coordinating and maintaining load bal-

ancing cluster state, but does not provide any services to the region information

server or client, therefore, can actually reduce its load. In addition, it is to deal

with the changes and outline other metadata operations, such as: data tables and

establishment of column family. Responsibility of region server is to serve their

region, responsible for all requests to read and write, and is divided over the size

threshold setting range of quality regional client to communicate directly with

them to deal with all the work related to information. . Figure 2.5 shows the

architecture of HBase service[19].

2.2.5 HBase Data Model

Column (row) is the basic unit of data model. One or more rows form a (row),

each row is identified through a unique row key. Several columns (rows) will form

a data table (table) or a lot of data sheets. There may be many versions of each

Chapter 2 Backgroud and Related Works 15

Figure 2.5: HBase service architecture

row, each with a unique value will be stored on a separate storage unit which

looks like a description of a traditional database, but added an extra dimension

(dimension) to allow each storage unit has multiple versions. Data access mode is

as follows: Table, RowKey, Family, Column, Timestamp → Value.[19].

2.2.6 HBase Row Keys

Row key is an array of bytes from HBase is considered, but it must be a string.

In alphabetical order, each key will use binary code to do more, from left to right

verbatim yuan for comparison, the length of the short string sorting in front, as *

because row0 ... less than row1 ..., so both What followed, it will be sorted to the

top. Data will be sorted according to row key. It acts like a connected database

management system type master Kam and is also unique. Each row key is unique,

otherwise it will be updated to the same data row. Row key can consist of any

characters. As shown in Figure2.6[19].

Chapter 2 Backgroud and Related Works 16

Figure 2.6: Row of data based on key alphabetically sorted

2.2.7 HBase Column Family

Row is composed by columns, which can be classified into the respective column

family. This helps to establish the scope of the semantic or partial information

between certain functions and give them (example: compression) or just that they

remain in the memory. All columns in a column family are stored on the same low-

level files called HFile. One needs to define column family when establishing data

table and should be to reduce the modifier and should not define too many column

family. Column family name must consist of the characters can be displayed,

and use other names or values, there are significantly different. * It can be seen

in Figure, row data library in general, with respect to the difference in HBase

column-oriented design. . In Figure 2.7 we can see the difference of design of rows

in the general database as opposed to that of column-oriented HBase[19].

Chapter 2 Backgroud and Related Works 17

Figure 2.7: The rows and columns in HBase

2.2.8 Cloudera CDH

CDH is the world’s most complete, tested, and popular distribution of Apache

Hadoop and related projects. CDH is 100% Apache-licensed open source and is

the only Hadoop solution to offer unified batch processing, interactive SQL, and

interactive search, and role-based access controls. More enterprises have down-

loaded CDH than all other such distributions combined[20, 21].As shown in Figure

2.8.

Figure 2.8: Cloudera Manage Interface

Chapter 2 Backgroud and Related Works 18

2.2.9 Apache Spark

Apache Spark is an open-source cluster computing framework originally developed

in the AMPLab at UC Berkeley. In contrast to Hadoop’s two-stage disk-based

MapReduce paradigm, Spark’s in-memory primitives provide performance up to

100 times faster for certain applications. By allowing user programs to load data

into a cluster’s memory and query it repeatedly, Spark is well suited to machine

learning algorithms. Spark requires a cluster manager and a distributed stor-

age system. For cluster management, Spark supports standalone (native Spark

cluster), Hadoop YARN, or Apache Mesos. For distributed storage, Spark can

interface with a wide variety, including Hadoop Distributed File System (HDFS),

Cassandra, OpenStack Swift, and Amazon S3. Spark also supports a pseudo-

distributed local mode, usually used only for development or testing purposes,

where distributed storage is not required and the local file system can be used

instead; in this scenario, Spark is running on a single machine with one executor

per CPU core. Spark has over 465 contributors in 2014, making it the most ac-

tive project in the Apache Software Foundation and among Big Data open source

projects[7].

2.2.10 Spark Application

Spark Application is the applications executed on a computing architecture of

Spark. The architecture of Spark Application consists of two main components:

driver program (SparkContext) and executor. Spark can be performed in the ma-

chine as well as clusters, but most of all operations are in the cluster. Application

can be performed by Spark in three modes: Spark Standalone, YARN, and mesos.

These three clustering models can provide computing resources for Spark and be

able to manage these resources, which are available to the executor and the driver

program to use. Based on the execution of the driver program in Spark Applica-

tion is focused on the cluster, Spark Application can be divided into Cluster mode

Chapter 2 Backgroud and Related Works 19

and Client mode.As shown in Figure2.9

Spark terms:

Figure 2.9: Spark Applicatione

• Application: Operations on the user program on the Spark, which contains

a driver program and operate in a centralized cluster executor.

• Driver Program: Driver program is the application execution of main ()

function which produces SparkContext.

• Executor: Executor is the Application Process executed on each worker

node, and this is responsible for the implementation of Process task, and

is responsible for the data stored in the memory and hard drive. Each one

will have a executors Application.

• Cluster Manager: Cluster manager is the requirement of external service

resources on each cluster (for example: Standalone, Mesos, Yarn)

• Worker Node: The nodes that can perform application.

• Task: The unit work performed on the executor.

• Job: Composition comprising a plurality of parallel computing in Task.

• Stage: Each Job is divided into a lot of task and each group task is called

Stage, also called TaskSet.

• RDD: Basic computational unit of Spark

Chapter 2 Backgroud and Related Works 20

2.3 Mathematical Model and Algorithms

2.3.1 Moving Average

Suppose

S =
{
xi, xi+1, xi+2, ..., xN+(i−1)

}
is a subset of sample values and the size of the subset is set to N. Then, a new

series of

{A1, A2, ..., Ai, ...}

is called the moving average of S which is obtained by the following calculation:

Ai =
xi + xi+1 + xi+2 + ...+ xN+(i−1)

N

2.3.2 Fuzzy C-Means

The Fuzzy C-Means (FCM)[22] attempts to partition a finite collection of n ele-

ments

X = {x1, · · ·, xn}

into a collection of c fuzzy clusters with respect to some given criterion. Given a

finite set of data, the algorithm returns a list of p cluster centres

C = {c1, · · ·, cp}

and a partition matrix

U = [uij]p×n

where each elementuijtells the degree to which element xj belongs to cluster ci

Then FCM aims to minimize an objective function J:

J(U, c1, c2, · · ·, cp) =
p∑

i=1

n∑
j=1

(uij)
mdist(ci, xj)

2

Chapter 2 Backgroud and Related Works 21

where

m ∈ [1,∞)

represent weighting;

dist(ci, xj)

denotes the distance between ci and xj. By introducing Lagrange multiplier λithe

above objective function is rewritten as

Jnew(U, c1, c2, · · ·, cp, λ1, · · ·, λn)

= J(U, c1, c2, · · ·, cp) +
n∑

j=1

λj(

p∑
i=1

uij − 1)

=

p∑
i=1

n∑
j=1

(uij)
mdist(ci, xj)

2 +
n∑

j=1

λj(

p∑
i=1

uij − 1)

and the optimal cluster is

ci =

n∑
j=1

(uij)
mxj

n∑
j=1

(uij)m

2.3.3 DBSCAN

Density-based spatial clustering of applications with noise (DBSCAN) is a density-

based data clustering algorithm. DBSCAN requires two parameters: � (eps) and

the minimum number of points required to form a dense region (minPts). It

starts with an arbitrary starting point that has not been visited. This point’s

�-neighborhood is retrieved, and if it contains sufficiently many points, a cluster

is started. Otherwise, the point is labeled as noise. Note that this point might

later be found in a sufficiently sized �-environment of a different point and hence

be made part of a cluster. If a point is found to be a dense part of a cluster, its

�-neighborhood is also part of that cluster. Hence, all points that are found within

the �-neighborhood are added, as is their own �-neighborhood when they are also

dense. This process continues until the density-connected cluster is completely

Chapter 2 Backgroud and Related Works 22

found. Then, a new unvisited point is retrieved and processed, leading to the

discovery of a further cluster or noise.[23, 24]

2.3.4 K-Means Clustering

k-Means clustering is a method of cluster analysis which aims to partition n ob-

servations into k clusters in which each observation belongs to the cluster with the

nearest mean. Given a set of observations(x1, x2, · · ·, xn)where each observation is

a d-dimensional real vector, k-means clustering aims to partition the n observa-

tions into k (k 6 n) sets {s1, s2, · · ·, sk} so as to minimize the within-cluster sum

of squares

arg min
k∑

i=1

∑
xj∈si

∥xj − µi∥2,

where µi is the mean of points in si.[25, 26]

2.4 Related Works

In recent years, the road traffic flow are rapidly increasing and city’s traffic

situation is worsening so that the traffic congestion has become a common problem

in the world. To solve this problem, many researches are proposed. Lee et al.

2006[27] proposed and test the new method of calculating the optimal link speed for

the collected traffic information from probe cars. Zeng et al. 2014[28] developed a

multisensor traffic state assessment system providing a novel and robust algorithms

to solve the problem that the sensors usually acquire incomplete data of traffic

data. The traffic state assessment based on the fusion decision model of rough

sets and cloud is applied to the actual road traffic condition, and the evaluation

accuracy is above 98%.

In this work, we apply big data to provide the service of real-time traffic sit-

uation and then solve the traffic congestion. Since the big data are large and

Chapter 2 Backgroud and Related Works 23

complex, challenges of traditional data processing include analysis, capture, cu-

ration, searching, sharing, storage, transfer, visualization, and so on. To solve

these challenges, it is necessary to introduce technologies of big data including

high-volume, high-velocity and high-variety technologies.

Barbierato et al, 2014[29]. Adopted NoSQL to store big data since NoSQL

provides a mechanism for storage and retrieval of data that is better than the

tabular relations used in relational databases. Zhang et al, 2013[30] used HBase

to store big data since HBase provides the distributed data storage cluster through

HDFS in Hadoop. Their experiments indicate a good performance. Thus, both

NoSQL and HBase have advantages in storing big data.

Gu et al, 2014[31] applied Hadoop MapReduse to process big data success-

fully. However, for processing real-time big data, Hadoop MapReduse is unable

to show superiority due to the fact that Hadoop MapReduse needs more time on

starting JOB and then distribute JOB to each node. To improve this drawback,

the authors adopted the IN memory of Spark to achieve high-speed computa-

tion since Spark’s in-memory primitives provide performance up to 100 times

faster for certain applications. In addition, Spark requires a cluster manager and

a distributed storage system. For cluster management, Spark supports standalone

(native Spark cluster), Hadoop YARN, or Apache Mesos. For distributed storage,

Spark can interface with a wide variety, including Hadoop Distributed File System

(HDFS), Cassandra, OpenStack Swift, and Amazon S3. Thus, our proposed archi-

tecture will combine Spark with the distribution computation of Hadoop YARN

to enhance performance.[32]

Chapter 3

System Design and

Implementation

This thesis develops a cloud city traffic state assessment system to provide drivers

real-time traffic situation and traffic assessment. The proposed system provides

drivers the real-time information of location and real-time traffic situation, espe-

cially the real-time traffic situation nearby, through open data, GPS, GPRS and

cloud evaluated bus state. Furthermore, the proposed system also provide the

traffic assessment and push traffic improvement ahead through these real-time in-

formation collected in advance. Because the real-time data collected is huge and

from different attributes, this thesis utilizes a novel cloud architecture of big data

to store, process, and analyze a huge amount of real-time data and thus provides

useful information.

3.1 Cloud System Architecture

Based on the high-scalability cloud technologies, Hadoop and Spark, the proposed

system architecture is shown in Figure 3.1. The architecture can be mainly divide

into two parts: data storage and data analysis and computation. In data storage,

we used Hadoop HDFS to be a cloud storage basis and then a NoSQL database

24

Chapter 3 System Design and Implementation 25

for big data, namely HBase, is utilized to establish the cluster of distributed data

storage including structured and unstructured data based on the Hadoop HDFS.

In data analysis and computation, we adopted Spark to meet the requirement of

the high-speed real-time computation since Spark can quickly assess and analyze

the data stored in HBase.

Figure 3.1: Bus positioning and data transmission schematic

3.2 Provided Services

In Taichung City Bus Dynamic System, there are 245 bus routes and over 1000

bus drive in these route at rush hour. Taichung City Bus Dynamic System pro-

vides each bus information in XML format including bus position, bus number,

bus route, bus velocity, and so on. In addition,XML format is shown in Figure

3.3 the Taichung City Bus Dynamic System updates each bus position every 20

seconds. For an instance, this thesis implement the proposed Cloud City Traffic

State Assessment System in Taiwan Boulevard Taichung, Taiwan. First of all, the

proposed system used python programming to captures the bus position updating

data per second into our storage basis in Hadoop HBase. In this step, the host

Chapter 3 System Design and Implementation 26

road is randomly divide into several blocks according to the intersection with other

roads is shown in Figure 3.2 and Figure 3.4. We apply moving average in sub-

section 2.3.1 to evaluate the real-time traffic state in three levels, Jam、Normal、

Smooth, within a block. Suppose xn denotes the duration of nth bus within ith

block with size N and

At+k =
1

n

∑
n

xt+k
n (3.1)

is the average of n durations within ith block at time t+k Then, a new series

of

St
i = {At, At+1, ..., At+k} (3.2)

is called the moving average within ith block and at time t. If St
i is an increasing

set and the historical data also show the bad traffic state, the traffic state of the

block is Jam. If St
i is a decreasing set and the historical data also show the smooth

traffic state, the traffic state of the block is Smooth.

To precisely determine the area with traffic congestion in Taichung city, we

then cluster the buses using fuzzy c-means in subsection 2.3.2 as follow:

ci =

n∑
j=1

(uij)
mxj

n∑
j=1

(uij)m
(3.3)

where m ∈ [1,∞) represent weighting;dist(ci, xj) denotes the distance between

cluster center ci and bus xj ; uij tells the degree to which bus xj belongs to cluster

ci .

Figure 3.2: Block division schematic

Chapter 3 System Design and Implementation 27

Figure 3.3: XML Format

Figure 3.4: Block division schematic apply to Taiwan Boulevard

3.2.1 City Traffic State Assessment System Service Design

The proposed system architecture is introduced in this section. First of all, we

develop Python Program to capture open data including real-time data and non

real-time data from government server and then store these data in Big Data

Distributed DB for Real Time Process Service through a data transmission service,

namely Data Collection Service. To use cloud computing, the data in Big Data

Distributed DB is transferred to Cloud Storage and then processed on cloud to

provide the real-time traffic situation. In the processing, Data Analysis Service

is introduced to analysis the data. Finally, these results of analying real-time

traffic situation is friendly present by web application service through several web

technologies, java scritp, html5, and css3 combined with d3.js、jquery.shown in

Figure 3.5.

Chapter 3 System Design and Implementation 28

Figure 3.5: City Traffic State Assessment System Service

3.2.2 Data Collection Service

Data Collection Service in the proposed system is responsible for collecting open

data including real-time data and historical data. This service utilize Python

Program to capture these open data. The processing detail of these two open data

is as follows:

Real Time Data Collection Service

The collection of real-time data is important for traffic situation evaluation, espe-

cially bus dynamic location and weather information. We utilize Python Program

to capture these real-time data from government server and then store these data

in a file system HDFS managed by Big Data Distributed Database, Hbase, through

a tool Hbase API. Figure 3.6 show the Real Time Data Collection Service.

History Data Collection Service

Generally, historical data including bus GPS data is huge and with different for-

mat. To solve these two problems, we first utilize Python Program to capture

these data respectively and then process the different format of these data by

Chapter 3 System Design and Implementation 29

Figure 3.6: Real Time Data collection service

Apache Spark. Finally, the processed data are stored in HDFS or Hbase. Figure

3.7 shows the History Data Collection Service.

Figure 3.7: History Data Collection Service

Chapter 3 System Design and Implementation 30

3.2.3 Real Time Process Service

Real Time Process Service is responsible for real-time processing of data. Based

on the open data collected by Data Collection Service, the proposed system real-

time process, analyze, and assess them using Apache Spark. In addition, Apache

Spark transmits the results to front-end and stores these results in Hbase at the

same time . Figure 3.8 shows the Real Time Process Service.

Figure 3.8: Real Time Process Service

Chapter 3 System Design and Implementation 31

3.2.4 Data Analysis Service

Data Analysis Services are mainly responsible for analyzing the data stored in the

system. In order to quickly analyze data, this service uses Apache Spark as an

analytical tool. In addition, Apache Spark transmits the results to front-end and

stores these results in Hbase at the same time. Figure 3.9 shows the Data Analysis

Services.

Figure 3.9: Data Analysis Service

Chapter 3 System Design and Implementation 32

3.2.5 Web Application Service

The last service in the proposed system is the Web Applications Service. Web

Applications Service call back the results from Real Time Process Service and

Data Analysis Service to front-end through HTTP GET/POST. For exchange of

information, we adopt JSON format in Web Applications Service. Figure 3.10

show the Web applications service.

Figure 3.10: Web applications service

Chapter 3 System Design and Implementation 33

3.3 System Implementation

Fourteen nodes were used to build a cloud cluster platform by using Cloudera Man-

ager,Two nodes as master,Twelve node as the computing node to set up Apache

ZooKeeper, Apache Hadoop HDFS,Apache Hadoop YARN,Apache HBase,and

Apache Spark. Table 3.1 shows the software specification.

Table 3.1: Software Specification

Version

Cloudera CDH 5.3.3

ZooKeeper 3.4.5

Hadoop 2.5.0

HDFS 2.5.0

YARN 2.5.0

HBase 0.98.6

Spark 1.2.0

Chapter 3 System Design and Implementation 34

3.3.1 Cluster Deployment

On the deployment,platform environment using two servers as master, and using

10 Gigabit Ethernet connection. computing nodes using 1 Gigabit Ethernet, each

node as DataNode, NodeManage, and RegionServer, where three computing nodes

as ZooKeeper, as shown in Figure 3.11.

Figure 3.11: System Deployment Architecture Diagram

Cloudera Manager is used to monitor service states and system loading,in ser-

vice states such as Spark,HBase, HDFS, YARN and ZooKeeper service status,or

in system loading such as CPU usage,Memory usage,Disk I/O,network and Disk

usage. Figure 3.12shows the Cloudera Manager monitor interface. Cloudera Man-

ager can also monitor the status of each node, confirming normal connections of

each host. Cloudera Manager checks at regular intervals, and it will warn if con-

nections are abnormal or the connection quality is poor. Cloudera Manager can

Chapter 3 System Design and Implementation 35

Figure 3.12: Cloudera manager status

remove nodes at any time, adding or removing nodes into or out of the cluster.

Figure 3.13 shows the states of Fourteen hosts.

Figure 3.13: Cloudera manager hosts

Through the Fourteen hosts, i.e., the two NameNode and Twelve DataNodes,

the Hadoop HDFS NameNode Web Interface shows that the cluster provides 10.47

TB of big data storage space. This information also shows how many live DataN-

odes are functioning shown in Figure 3.14. Cloudera Manager can also link to

YARN ResourceManager Web Interface All Applications page to query nodes

Chapter 3 System Design and Implementation 36

Figure 3.14: Hadoop NameNode information

state. Figure 3.15 shows thirteen nodes are currently in operation and the Appli-

cations running status or history. Figure 3.16 provides working states of HBase

Region Server, e.g., from Requests per Second of hadoop-00 ˜ hadoop-11 of, one

can check whether the Region Servers are busy ,also shows how many live Region

Server are functioning.

Figure 3.17 provides Spark History Server Web Interface, e.g., Spark Applica-

tion running status and time.also provides Spark Jobs details of the implementa-

tion period,as shown in Figure 3.18.

Chapter 3 System Design and Implementation 37

Figure 3.15: MapReduce JobTracker

Figure 3.16: HBase region server status

Chapter 3 System Design and Implementation 38

Figure 3.17: Spark History Server

Figure 3.18: Spark Job

Chapter 4

Experimental Results

In this section, experimental environment and results with respect to the proposed

Cloud City Traffic State Assessment System are present. In subsection 4.1, we first

introduce the proposed novel architecture for the system and then implement the

architecture respectively. Subsections 4.2-4.5 give some performance tests to verify

the efficiency of the system

4.1 Experimental Environment

This subsection introduces our environmental environment including hardware and

software. To implement the proposed system, we use 12 physical servers connected

by Gigabit Ethernet to establish a cluster. In hardware, each physical server is

Intel Core i7 CPU with 16GB Memory and 1TB HD. In software, Ubuntu 14.04 is

adopted as our operating systems. Also, Cloudera Express 5.2.0、Hadoop 2.5.0、

HBase 0.98.6、Spark 1.1.0、Zookeeper 3.4.5 are installed, as shown in Table 4.1

and Figure 4.1.

39

Chapter 4 Experimental Results 40

Table 4.1: Experimental environment

ID CPU RAM HDD NIC

1 Intel® Core™ i7-4770@3.40GHz 16GB DDR3 1TB 1Gb Ethernet

2 Intel® Core™ i7-4770@3.40GHz 16GB DDR3 1TB 1Gb Ethernet

3 Intel® Core™ i7-4770@3.40GHz 16GB DDR3 1TB 1Gb Ethernet

4 Intel® Core™ i7-4770@3.40GHz 16GB DDR3 1TB 1Gb Ethernet

5 Intel® Core™ i7-4770@3.40GHz 16GB DDR3 1TB 1Gb Ethernet

6 Intel® Core™ i7-4770@3.40GHz 16GB DDR3 1TB 1Gb Ethernet

7 Intel® Core™ i7-4770@3.40GHz 16GB DDR3 1TB 1Gb Ethernet

8 Intel® Core™ i7-4770@3.40GHz 16GB DDR3 1TB 1Gb Ethernet

9 Intel® Core™ i7-4790@3.60GHz 16GB DDR3 1TB 1Gb Ethernet

10 Intel® Core™ i7-4790@3.60GHz 16GB DDR3 1TB 1Gb Ethernet

11 Intel® Core™ i7-4790@3.60GHz 16GB DDR3 1TB 1Gb Ethernet

12 Intel® Core™ i7-4790@3.60GHz 16GB DDR3 1TB 1Gb Ethernet

13 Intel® Xeon® E5-2630v3@2.40GHz*2 64GB DDR4 2TB 10Gb Ethernet

14 Intel® Xeon® E5-2630v3@2.40GHz*1 8GB DDR4 2TB 10Gb Ethernet

4.2 Spark and Hadoop MapReduce Performance

Comparison

To verify that Spark adopted in our system has better performance than Hadoop

MapReduce, this subsection gives a comparison test for Spark and Hadoop using

WordCount programming. First, ten test files of size 1GB 10GB are randomly

generated and then put these files into HDFS. Next, the ten files in HDFS are

executed by Spark and Hadoop individually. As shown in Figure 4.2, Spark cost

less time regardless of file size. It is worth mentioning that the difference between

them increases when the test file size increases.

Chapter 4 Experimental Results 41

Figure 4.1: Spark and Hadoop Computing cluster

Figure 4.2: Spark and Hadoop MapReduce Performance Comparison

4.3 Experiment for HDFS read and write speed

under various replication

Data processing and analysis are important to the proposed system. Before data

analysis, the proposed system needs to read and write data. In other words, data

read and data write are two important parts in data processing. Since the proposed

system store data in HDFS, we adopt Hadoop TESTDFSIO to test the read and

Chapter 4 Experimental Results 42

write performance by changing replication number and MAP number in different

data size to obtain the best solution. The detail is as follows. First of all, we test

data read speed and data write speed in three data sizes, 12G, 60G, and 120G.

In each data size, we increase the replication number from 1 to 12 to observe the

data read speed and data write speed. At the same time, we adjust TESTDFSIO

arguments to observe the data read speed and data write speed under various

MAP number which is a multiple of number of cluster nodes, especially (1 5) ＊

number of nodes. Since TESTDFSIO is a MapReduce program, the test procedure

is given as follows.As shown in Figure4.3:

- Step 1. Input user parameters in beginning.

- Step 2. Arrange the number of MAP and the data size for each MAP when

reading and writing data

- Step 3. Read and write data into node by MAP.

- Step 4. Estimate MAP execution time and collect corresponding results.

- Step 5. Output the results.

Figure 4.3: The flow chart of HDFS read and write test

Experimental Results

In the results.Figure 4.4 Read and write time duration for MAP=12,24,36,48,60

in various replication number under the case 12GB.

Chapter 4 Experimental Results 43

(a) map=12

(b) map=24 (c) map=36

(d) map=48 (e) map=60

Figure 4.4: Read and write time duration for MAP=12,24,36,48,60 in various
replication number under the case 12GB

Figure 4.5 Read and write time duration for MAP=12,24,36,48,60 in various

replication number under the case 60GB.

Chapter 4 Experimental Results 44

(a) map=12 (b) map=24

(c) map=36 (d) map=48

(e) map=60

Figure 4.5: Read and write time duration for MAP=12,24,36,48,60 in various
replication number under the case 60GB

Figure 4.6 Read and write time duration for MAP=12,24,36,48,60 in various

replication number under the case 120GB.

Chapter 4 Experimental Results 45

(a) map=12 (b) map=24

(c) map=36 (d) map=48

(e) map=60

Figure 4.6: Read and write time duration for MAP=12,24,36,48,60 in various
replication number under the case 120GB

From above figures, one can observe that more replication number more writ-

ing time under various data size and various MAP but reading time slightly de-

creases when replication number increases,as shown in Figure4.7. In conclusion,

replication 2 has the best result. In the point of view on different test size, writing

time increases stably but reading time decreases unstably, as shown in Figure 4.8.

In addition, one can observe that both reading time and writing time are short for

bigger data file. It means once reading or writing a big data file is efficient.

Chapter 4 Experimental Results 46

(a) Read (b) Write

Figure 4.7: All sizes in 12 map read and write speed

(a) Read (b) Write

Figure 4.8: All sizes in 12 map read and write average speed of 1GB

4.4 Using Spark to process bus location data un-

der different number of executors

Most input data of the proposed system is obtained through the Government

OPEN DATA. These input data collected every two seconds from open data are

about 5GB one day. They will be a big historical data. Accordingly, the processing

and calculation of these big data are achieved through Spark Application. To

process and analyze the big data efficiently, two Spark Applications is test. Twelve

executors are set to each Spark Application to test one-day, two-day, four-day data

and six memory size.

The first Spark Application, namely convBus, is mainly to remove unwanted

data in BUS GPS information and duplicate data in accordance with the update

Chapter 4 Experimental Results 47

time so as to find the Block of the given latitude and longitude coordinates. The

detail procedure is summarized as follows.As shown in Figure4.9:

- Step 1. Read BUS record data file.

- Step 2. Filter necessary BUS information and remove XML format data.

- Step 3. Use MAP to group Update Time and cluster coordinate into proper

Block.

- Step 4. Remove duplicate data.

- Step 5. Output data to HDFS.

Figure 4.9: The flow chart of convBus

The second Spark Application, namely comBus, has almost the same pro-

cedures with the first Spark Application. The difference between them is that

comBus has a permutation for Block in last two steps. The detail procedure is

summarized as follows.As shown in Figure4.10:

- Step 1. Read BUS record data file.

- Step 2. Filter necessary BUS information and remove XML format data.

- Step 3. Use MAP to group Update Time and cluster coordinate into proper

Block.

- Step 4. Remove duplicate data.

- Step 5. Sort by Block.

- Step 6. Output data to HDFS.

Chapter 4 Experimental Results 48

Figure 4.10: The flow chart of comBus

Experimental Results

Figures 4.11,4.12,4.13 show the execution time of using both convBus and com-

Bus to process one-day, two-day and three-day data under different number of

executors and different memory. One can observe that processing time decreases

when executors increase under fixed memory. However, processing time is similar

when memory increases, especially when executors are greater than three. We also

observe that the execution time of comBus is greater than the execution time of

convBus. To reduce their processing time, increase of the number of executors is

a consideration.

Chapter 4 Experimental Results 49

Figure 4.11: Using convBus and comBus processing 1-days of Bus data

Figure 4.12: Using convBus and comBus processing 2-days of Bus data

Chapter 4 Experimental Results 50

Figure 4.13: Using convBus and comBus processing 3-days of Bus data

Chapter 4 Experimental Results 51

4.5 Comparison of different clustering ways to

find traffic jams grouping

This section finds traffic jams by three popular cluster methods: DBSCAN、K-

means、Fuzzy-C-Means. Apache Spark is utilized to compute the cluster methods

efficiently. The results are summarized in the following:

4.5.1 DBSCAN

DBSCAN clustering applies two parameters, epsilon and minPts, to control search-

ing area and minimum cluster components. We utilize two epsilons and three

minPts to test the performance of DBSCAN clustering. Figure 4.14 (a)-(d) show

the results in cases original, PTS=3, PTS=4, PTS=5 under epsilon=0.001. Fig-

ure 4.15 (a)-(d) show the results in cases original, PTS=3, PTS=4, PTS=5 under

epsilon=0.002. One can observe that the cluster decreases when PTS increases

and the searching area enlarges when epsilon increases.[40]

(a) Original Data (b) EPS=0.001/PTS=3

(c) EPS=0.001/PTS=4 (d) EPS=0.001/PTS=5

Figure 4.14: DBSCAN in epsilon=0.001 Clustering results

Chapter 4 Experimental Results 52

(a) Original Data (b) EPS=0.002/PTS=3

(c) EPS=0.002/PTS=4 (d) EPS=0.002/PTS=5

Figure 4.15: DBSCAN in epsilon=0.002 Clustering results

4.5.2 K-Means

K-Means clustering applies two parameters, k-value and iteration, to control clus-

ter and iteration number. We utilize three k-values and two iterations to test

the performance of K-MEANS clustering. Figure 4.16 (a)-(d) show the results

in cases original, k=10, k=50, k=100 under iteration=100. Figure 4.17 (a)-(d)

show the results in cases original, k=10, k=50, k=100 under iteration=1000. One

can observe that the clustering fails when k is very small and works when k is

sufficient.[41]

Chapter 4 Experimental Results 53

(a) Original Data (b) Clusters=10/Iterations=100

(c) Clusters=50/Iterations=100 (d) Clusters=100/Iterations=100

Figure 4.16: K-MEANS in Iterations=100 Clustering results

(a) Original Data (b) Clusters=10/Iterations=1000

(c) Clusters=50/Iterations=1000 (d) Clusters=100/Iterations=1000

Figure 4.17: K-MEANS in Iterations=1000 Clustering results

Chapter 4 Experimental Results 54

4.5.3 Fuzzy-C-Means

Fuzzy-C-Means clustering applies two parameters, k-value and iteration, to control

cluster and iteration number. We utilize three k-values and two iterations to test

the performance of K-MEANS clustering. Figure 4.18 (a)-(d) show the results

in cases original, k=10, k=50, k=100 under iteration=50. Figure 4.19 (a)-(d)

show the results in cases original, k=10, k=50, k=100 under iteration=100. One

can observe that the clustering fails when k is very small and works when k is

sufficient.[42]

(a) Original Data (b) Clusters=10/Iterations=50

(c) Clusters=50/Iterations=50 (d) Clusters=100/Iterations=50

Figure 4.18: Fuzzy-C-Means in Iterations=50 Clustering results

Chapter 4 Experimental Results 55

(a) Original Data (b) Clusters=10/Iterations=100

(c) Clusters=50/Iterations=100 (d) Clusters=100/Iterations=100

Figure 4.19: Fuzzy-C-Means in Iterations=100 Clustering results

4.5.4 Results Compared

Figure 4.20 (a)-(d) show the clustering results in cases original, DBSCAN with

EPS=0.001/PTS=5, K-means with k-value=100/Iteration=100, Fuzzy-C-Means

with k-value =100/Iterations=50. From the results in Figure 5, we know that

Fuzzy-C-Means has the best clustering but k-means and DBSCAN use less time.

Chapter 4 Experimental Results 56

(a) Original Data (b) DBSCAN EPS=0.001/PTS=5

(c) K-means Clusters=100/Iterations=100 (d) Fuzzy-C-Means Clusters =100/ Itera-

tions=50

Figure 4.20: Comparison of DBSCAN,K-Means,Fuzzy-C-Means

4.6 Cloud City Traffic State Assessment System

In this thesis, the system Cloud City Traffic State Assessment System, offers the

user to understand the Traffic State through a Web presentation in the User-

friendly interface.The Web using Html5, CSS3, JavaScript, and JQuery with se-

mantic Front End, the proposed Cloud City Traffic State Assessment System pro-

vides a web-based user-friendly interface to offer many features, as shown in Figure

4.21 and the left side of Figure 4.22.

- Historical data: provide the average speed of a bus and the area of traffic

jam in the past by a line chart, as shown in Figures 4.23,4.24.

- Real-time evaluation: provide real-time traffic state, bus speed, and distri-

bution of busses, as shown in Figures 4.26,4.26.

- Clustering results: provide the clustering results of DBSCAN and K-Means,

as shown in Figures 4.27,4.28.

Chapter 4 Experimental Results 57

Moreover, we use AJAX and Openstreetmap to update web-page information and

Map information.

Figure 4.21: Cloud City Traffic State Assessment System functions

Figure 4.22: Web UI Function Menu

Chapter 4 Experimental Results 58

Figure 4.23: History Bus Travel each block of time use waveform display

Figure 4.24: History Bus Travel each block of time use Use long bar graph
display

Chapter 4 Experimental Results 59

Figure 4.25: Real-time assessment traffic in Taiwan Boulevard using WEB
presentation

Figure 4.26: Real-time assessment traffic in Taiwan Boulevard using WEB
presentation

Chapter 4 Experimental Results 60

Figure 4.27: Use DBSCAN clustering on web views

Figure 4.28: Use K-Means clustering on web views

Chapter 5

Conclusions and Future Work

5.1 Concluding Remarks

In this work, we present a cloud city traffic state assessment system using a novel

architecture of big data. With the high-scalability cloud technologies, Hadoop and

Spark, the proposed system architecture for big data and services is implemented

in Taiwan Boulevard efficiently. In addition, experimental results show that Spark

adopted in our system has better performance than Hadoop MapReduce. Based

on the comparison between real-time buses average velocity and the past average

velocity, Fuzzy C-Means , K-Means, DBSCAN is applied to find out the heavy

traffic area or traffic jam in each block of Taiwan Boulevard. In the system in-

terface, this work has designed a front-end web interface, providing users to view

traffic status in Taiwan Boulevard, the user can know the real-time traffic state,

and view the history of traffic status.

61

Chapter 5 Conclusions and Future Work 62

5.2 Future Work

In this study,Cloud City Traffic State Assessment System has successfully collected

the result through the traffic state of big data to assess the road, and applied to

Taichung, Taiwan Boulevard. In the future , we hope to applied this system to

all roads in Taichung, as well as other dynamic system bus. Concept in assessing

the state of road traffic, the paper can be assessed by reference to historical data

processing and real-time data. In the future, we hope to join on machine learning

and constantly optimize the accuracy of estimates Also, to improve the existing

algorithms through data mining approach.

References

[1] Big data, 2014. http://en.wikipedia.org/wiki/Big_data.

[2] C. Dobre and F. Xhafa. Intelligent services for big data science. Future

Generation Computer Systems, 37(0):267 – 281, 2014. Special Section: In-

novative Methods and Algorithms for Advanced Data-Intensive Computing

Special Section: Semantics, Intelligent processing and services for big data

Special Section: Advances in Data-Intensive Modelling and Simulation Spe-

cial Section: Hybrid Intelligence for Growing Internet and its Applications.

[3] Cloud computing, 2014.

http://en.wikipedia.org/wiki/Cloud_computing.

[4] Jianting Zhang, S. You, and L. Gruenwald. High-performance spatial query

processing on big taxi trip data using gpgpus. In Big Data (BigData

Congress), 2014 IEEE International Congress on, pages 72–79, June 2014.

[5] The digital universe in 2020: Big data, bigger digital shadows, and

biggest growth in the far east, 2012. http://www.emc.com/collateral/

analyst-reports/idc-the-digital-universe-in-2020.pdf.

[6] Apache spark, 2015. https://spark.apache.org/.

[7] Apache spark, 2015. http://en.wikipedia.org/w/index.php?title=

Spark&oldid=654641608.

[8] Nosql, 2014. http://en.wikipedia.org/wiki/NoSQL.

[9] Hadoop, 2014. http://en.wikipedia.org/wiki/Apache_Hadoop.

63

http://en.wikipedia.org/wiki/Big_data
http://en.wikipedia.org/wiki/Cloud_computing
http://www.emc.com/collateral/analyst-reports/idc-the-digital-universe-in-2020.pdf
http://www.emc.com/collateral/analyst-reports/idc-the-digital-universe-in-2020.pdf
https://spark.apache.org/
http://en.wikipedia.org/w/index.php?title=Spark&oldid=654641608
http://en.wikipedia.org/w/index.php?title=Spark&oldid=654641608
http://en.wikipedia.org/wiki/NoSQL
http://en.wikipedia.org/wiki/Apache_Hadoop

References 64

[10] Apache hadoop, 2014. http://hadoop.apache.org/.

[11] Dhruba Borthakur. The hadoop distributed file system: Architecture and de-

sign, 2007. http://hadoop.apache.org/docs/r0.18.0/hdfs_design.pdf.

[12] Yang Jin, Tang Deyu, and Zhou Yi. A distributed storage model for ehr

based on hbase. In Information Management, Innovation Management and

Industrial Engineering (ICIII), 2011 International Conference on, volume 2,

pages 369–372, Nov 2011.

[13] Haijie Ding, Yuehui Jin, Yidong Cui, and Tan Yang. Distributed storage of

network measurement data on hbase. In Cloud Computing and Intelligent

Systems (CCIS), 2012 IEEE 2nd International Conference on, volume 02,

pages 716–720, Oct 2012.

[14] Jun Bai. Feasibility analysis of big log data real time search based on hbase

and elasticsearch. In Natural Computation (ICNC), 2013 Ninth International

Conference on, pages 1166–1170, July 2013.

[15] M.N. Vora. Hadoop-hbase for large-scale data. In Computer Science and

Network Technology (ICCSNT), 2011 International Conference on, volume 1,

pages 601–605, Dec 2011.

[16] Lizhi Cai, Shidong Huang, Leilei Chen, and Yang Zheng. Performance anal-

ysis and testing of hbase based on its architecture. In Computer and Infor-

mation Science (ICIS), 2013 IEEE/ACIS 12th International Conference on,

pages 353–358, June 2013.

[17] Hbase, 2014. http://wiki.apache.org/hadoop/Hbase.

[18] Apache hbase, 2014. https://hbase.apache.org/.

[19] Lars George. HBase: The Definitive Guide. O’REILLY, 2012.

[20] Cloudera recommendations on hadoop/hbase cluster capacity planning, 2014.

http://www.cloudera.com/blog/2010/08/hadoophbase-capacity-planning/.

http://hadoop.apache.org/
http://hadoop.apache.org/docs/r0.18.0/hdfs_design.pdf
http://wiki.apache.org/hadoop/Hbase
https://hbase.apache.org/

References 65

[21] Cloudera cdh, 2015. http:// www.cloudera.com/ content/ cloudera/ en/

products-and-services/cdh.html.

[22] Fuzzy clustering, 2015. http://en.wikipedia.org/wiki/Fuzzy_

clustering.

[23] Martin Ester, Hans peter Kriegel, Jörg S, and Xiaowei Xu. A density-based

algorithm for discovering clusters in large spatial databases with noise. pages

226–231. AAAI Press, 1996.

[24] RicardoJ.G.B. Campello, Davoud Moulavi, and Joerg Sander. Density-based

clustering based on hierarchical density estimates. In Jian Pei, VincentS.

Tseng, Longbing Cao, Hiroshi Motoda, and Guandong Xu, editors, Advances

in Knowledge Discovery and Data Mining, volume 7819 of Lecture Notes in

Computer Science, pages 160–172. Springer Berlin Heidelberg, 2013.

[25] J. MacQueen. Some methods for classification and analysis of multivariate

observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical

Statistics and Probability, Volume 1: Statistics, pages 281–297, Berkeley,

Calif., 1967. University of California Press.

[26] Gereon Frahling and Christian Sohler. A fast k-means implementation using

coresets. In Proceedings of the 22nd ACM Symposium on Computational

Geometry, Sedona, Arizona, USA, June 5-7, 2006, pages 135–143, 2006.

[27] Seung-Heon Lee, Byung-Wook Lee, and Young-Kyu Yang. Estimation of

link speed using pattern classification of gps probe car data. In MarinaL.

Gavrilova, Osvaldo Gervasi, Vipin Kumar, C.J.Kenneth Tan, David Taniar,

Antonio Laganá, Youngsong Mun, and Hyunseung Choo, editors, Computa-

tional Science and Its Applications - ICCSA 2006, volume 3981 of Lecture

Notes in Computer Science, pages 495–504. Springer Berlin Heidelberg, 2006.

[28] Yiliang Zeng, Jinhui Lan, Bin Ran, and Yaoliang Jiang. A novel multisensor

traffic state assessment system based on incomplete data. The Scientific World

Journal, 2014:1–13, 2014.

http://en.wikipedia.org/wiki/Fuzzy_clustering
http://en.wikipedia.org/wiki/Fuzzy_clustering

References 66

[29] Enrico Barbierato, Marco Gribaudo, and Mauro Iacono. Performance eval-

uation of nosql big-data applications using multi-formalism models. Future

Generation Computer Systems, 37(0):345 – 353, 2014. Special Section: In-

novative Methods and Algorithms for Advanced Data-Intensive Computing

Special Section: Semantics, Intelligent processing and services for big data

Special Section: Advances in Data-Intensive Modelling and Simulation Spe-

cial Section: Hybrid Intelligence for Growing Internet and its Applications.

[30] Chen Zhang and Xue Liu. Hbasemq: A distributed message queuing system

on clouds with hbase. In INFOCOM, 2013 Proceedings IEEE, pages 40–44,

April 2013.

[31] Lei Gu and Huan Li. Memory or time: Performance evaluation for iterative

operation on hadoop and spark. In High Performance Computing and Com-

munications 2013 IEEE International Conference on Embedded and Ubiqui-

tous Computing (HPCC_EUC), 2013 IEEE 10th International Conference

on, pages 721–727, Nov 2013.

[32] J. Urbani, A. Margara, C. Jacobs, S. Voulgaris, and H. Bal. Ajira: A

lightweight distributed middleware for mapreduce and stream processing. In

Distributed Computing Systems (ICDCS), 2014 IEEE 34th International Con-

ference on, pages 545–554, June 2014.

[33] Mapreduce, 2014. http://en.wikipedia.org/wiki/MapReduce.

[34] Apache zookeeper, 2014. http://zookeeper.apache.org/.

[35] Paolo Atzeni, Francesca Bugiotti, and Luca Rossi. Uniform access to nosql

systems. volume 43, pages 117 – 133, 2014.

[36] Shoji Nishimura, Sudipto Das, Divyakant Agrawal, and Amr El Abbadi. MD-

hbase: design and implementation of an elastic data infrastructure for cloud-

scale location services. Distributed and Parallel Databases, 31(2):289–319,

2013.

http://en.wikipedia.org/wiki/MapReduce
http://zookeeper.apache.org/

References 67

[37] Aisling O’Driscoll, Jurate Daugelaite, and Roy D. Sleator. ’Big data’, hadoop

and cloud computing in genomics. Journal of Biomedical Informatics, 46(5):

774 – 781, 2013.

[38] Karthik Kambatla, Giorgos Kollias, Vipin Kumar, and Ananth Grama.

Trends in big data analytics. Journal of Parallel and Distributed Comput-

ing, 2014.

[39] Daewoo Lee, Jin-Soo Kim, and Seungryoul Maeng. Large-scale incremental

processing with mapreduce. volume 36, pages 66 – 79, 2014. Special Section:

Intelligent Big Data Processing Special Section: Behavior Data Security Is-

sues in Network Information Propagation Special Section: Energy-efficiency

in Large Distributed Computing Architectures Special Section: eScience In-

frastructure and Applications.

[40] Dbscan spark, 2015.

https://github.com/alitouka/spark_dbscan.

[41] K-means,spark mllib, 2015.

https://spark.apache.org/docs/1.1.0/mllib-clustering.html.

[42] Scala of fuzzy-c-means clustering, 2015.

https://gist.github.com/kralo/8721440.

https://github.com/alitouka/spark_dbscan
https://spark.apache.org/docs/1.1.0/mllib-clustering.html
https://gist.github.com/kralo/8721440

Appendix A

Hadoop Installation

I. Modify hosts

sudo vim /etc/hosts

II. Modify hostname

sudo vim /etc/hostname

sudo service hostname start

III. Install Java JDK

sudo apt-get -y install openjdk-7-jdk

sudo ln -s /usr/lib/jvm/java-7-openjdk-amd64 /usr/lib/jvm/jdk

IV. Add hadoop user

sudo addgroup hadoop

sudo adduser –ingroup hadoop hduser

sudo adduser hduser sudo

V. Creat SSH authentication login

ssh-keygen -t rsa -f ˜/.ssh/id_rsa -P ””

cp ˜/.ssh/id_rsa.pub /.ssh/authorized_keys

scp –r /.ssh hadoopi7-01: /

VI. Download hadoop

cd ˜

wget http://ftp.twaren.net/Unix/Web/apache/hadoop/common/hadoop-

2.2.0/hadoop-2.2.0.tar.gz

68

69

tar zxf hadoop-2.2.0.tar.gz

mv hadoop-2.2.0.tar.gz hadoop

VII. Add the environment variable

vim .bashrc

export JAVA_HOME=/usr/lib/jvm/jdk/

export HADOOP_INSTALL=/home/hduser/hadoop

export PATH=$PATH:$HADOOP_INSTALL/bin

export PATH=$PATH:$HADOOP_INSTALL/sbin

export HADOOP_MAPRED_HOME=$HADOOP_INSTALL

export HADOOP_COMMON_HOME=$HADOOP_INSTALL

export HADOOP_HDFS_HOME=$HADOOP_INSTALL

export YARN_HOME=$HADOOP_INSTALL

VIII. Set hadoop config

cd hadoop/etc/hadoop

vim hadoop-env.sh

export JAVA_HOME=/usr/lib/jvm/jdk/

vim core-site.xml

<property >

<name>fs.default.name</name>

<value>hdfs://hadoopi7 -01-master:9000</value>

</property >

vim yarn-site.xml

<property >

<name>yarn.nodemanager.aux-services </name>

<value>mapreduce_shuffle </value>

</property >

<property >

<name>yarn.resourcemanager.hostname </name>

<value>hadoopi7 -01</value>

</property >

70

cp mapred-site.xml.template mapred-site.xml

vim mapred-site.xml

<property >

<name>mapreduce.framework.name</name>

<value>yarn</value>

</property >

mkdir -p /mydata/hdfs/namenode

mkdir -p /mydata/hdfs/datanode

vim hdfs-site.xml

<property >

<name>dfs.replication </name>

<value >2</value>

</property >

<property >

<name>dfs.namenode.name.dir</name>

<value >/home/hduser/mydata/hdfs/namenode </value>

</property >

<property >

<name>dfs.datanode.data.dir</name>

<value >/home/hduser/mydata/hdfs/datanode </value>

</property >

vim slaves

hadoopi7 -01

hadoopi7 -02

hadoopi7 -03

hadoopi7 -04

IX. Copy hadoop to all nodes

scp -r /home/hduser/hadoop hadoopi7-01:/home/hduser

scp -r /home/hduser/hadoop hadoopi7-02:/home/hduser

scp -r /home/hduser/hadoop hadoopi7-03:/home/hduser

scp -r /home/hduser/hadoop hadoopi7-04:/home/hduser

X. Format HDFS

71

hdfs namenode -format

XI. Start hadoop

start-all.sh

XII. Use jps to see java running program

jps

XIII. MapReduce JobTracker monitoring website

hadoopi7-01:50030

Appendix B

HBase Installation

I. Download HBase

cd ˜

wget http://ftp.twaren.net/Unix/Web/apache/hbase/hbase-0.96.0/hbase-

0.96.0-hadoop2-bin.tar.gz

tar zxf hbase-0.96.0-hadoop2-bin.tar.gz

mv hbase-0.96.0-hadoop2 hbase

II. Set HBase config

cd hbase

vim conf/hbase-env.sh

export JAVA_HOME=/usr/lib/jvm/jdk

export HBASE_HOME=/home/hduser/hbase

hadoop fs -mkdir /hbase

vim conf/hbase-site.xml

<property >

<name>hbase.rootdir </name>

<value>hdfs://hadoopi7 -01:9000/hbase </value>

</property >

<property >

<name>hbase.cluster.distributed </name>

<value>true</value>

72

73

</property >

<property >

<name>hbase.zookeeper.quorum </name>

<value>Test-master </value>

</property >

vim conf/regionservers

hadoopi7 -01

hadoopi7 -02

hadoopi7 -03

hadoopi7 -04

III. Copy jar to hbase/lib

rm lib/hadoop-*

cd /home/hduser/hadoop/share/hadoop

cp common/hadoop-common-2.2.0.jar common/lib/hadoop-annotations-2.2.0.jar

common/lib/hadoop-auth-2.2.0.jar hdfs/hadoop-hdfs-2.2.0.jar hdfs/hadoop-hdfs-

2.2.0-tests.jar mapreduce/hadoop-mapreduce-client-app-2.2.0.jar mapreduce/hadoop-

mapreduce-client-common-2.2.0.jar mapreduce/hadoop-mapreduce-client-core-2.2.0.jar

mapreduce/hadoop-mapreduce-client-jobclient-2.2.0.jar mapreduce/hadoop-mapreduce-

client-jobclient-2.2.0-tests.jar mapreduce/hadoop-mapreduce-client-shuffle-2.2.0.jar

yarn/hadoop-yarn-api-2.2.0.jar yarn/hadoop-yarn-client-2.2.0.jar yarn/hadoop-yarn-

common-2.2.0.jar yarn/hadoop-yarn-server-common-2.2.0.jar yarn/hadoop-yarn-

server-nodemanager-2.2.0.jar /home/hduser/hbase/lib/

IV. Copy hbase to all nodes

scp -r hbase/hadoop hadoopi7-01:/home/hduser

scp -r hbase/hadoop hadoopi7-02:/home/hduser

scp -r hbase/hadoop hadoopi7-03:/home/hduser

scp -r hbase/hadoop hadoopi7-04:/home/hduser

bin/start-hbase.sh

V. HBase monitoring website

hadoopi7-01:60010

Appendix C

Cloudera Manager Installation

I. Download Cloudera

wget http://archive.cloudera.com/cm4/installer/latest/cloudera-manager-

installer.bin

II. Install Cloudera

sudo chmod +x cloudera-manager-installer.bin

sudo ./cloudera-manager-installer.bin

III. Set Hosts

sudo vim /etc/hosts

IV. Install and set NTP

sudo apt-get install ntp

ntpdate - s ntp.ubuntu.com pool.ntp.org

74

Appendix D

Experimental-Spark and Hadoop

MapReduce Performance

Comparison Source Code

Hadoop MapReduce WordCount Source Code [Java]

import java.io.IOException;

import java.util.StringTokenizer;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.Mapper;

import org.apache.hadoop.mapreduce.Reducer;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class WordCount {

public static class TokenizerMapper

extends Mapper<Object, Text, Text, IntWritable >{

private final static IntWritable one = new IntWritable(1);

private Text word = new Text();

75

76

public void map(Object key, Text value, Context context

) throws IOException , InterruptedException {

StringTokenizer itr = new StringTokenizer(value.toString());

while (itr.hasMoreTokens()) {

word.set(itr.nextToken());

context.write(word, one);

}

}

}

public static class IntSumReducer

extends Reducer <Text,IntWritable ,Text,IntWritable > {

private IntWritable result = new IntWritable();

public void reduce(Text key, Iterable <IntWritable > values,

Context context

) throws IOException , InterruptedException {

int sum = 0;

for (IntWritable val : values) {

sum += val.get();

}

result.set(sum);

context.write(key, result);

}

}

public static void main(String[] args) throws Exception {

Configuration conf = new Configuration();

Job job = Job.getInstance(conf, "word count");

job.setJarByClass(WordCount.class);

job.setMapperClass(TokenizerMapper.class);

job.setCombinerClass(IntSumReducer.class);

job.setReducerClass(IntSumReducer.class);

job.setOutputKeyClass(Text.class);

job.setOutputValueClass(IntWritable.class);

FileInputFormat.addInputPath(job, new Path(args[0]));

FileOutputFormat.setOutputPath(job, new Path(args[1]));

System.exit(job.waitForCompletion(true) ? 0 : 1);

}

}

Spark WordCount Source Code [Scala]

val textFile = spark.textFile("hdfs://...")

val counts = textFile.flatMap(line => line.split(" "))

.map(word => (word, 1))

77

.reduceByKey(_ + _)

counts.saveAsTextFile("hdfs://...")

Appendix E

Experiment-HDFS read and write

speed under various replication

Data

Experiment Parameter Setting [Number of Map-File Size-Number of Replication-

Read(R) or Write(W)]

Table E.1: Write 12G in HDFS [Map-Size-Replication-R/W]

Setting Throughput Average IO IO rate Write Time

12-1000-01-W 581.310856 624.62 162.6187698 26.68

12-1000-02-W 49.89687978 51.80 10.4422035 48.83

12-1000-03-W 30.33673779 30.41 1.554883783 59.03

12-1000-04-W 20.54326669 20.62 1.321273674 76.07

12-1000-05-W 17.17111589 17.19 0.581414858 86.15

12-1000-06-W 14.63100603 14.70 1.000010921 98.21

12-1000-07-W 12.12179984 12.14 0.420148262 110.24

12-1000-08-W 10.99109447 11.01 0.453686448 119.54

12-1000-09-W 10.03082808 10.05 0.484885475 130.04

Continued on next page
78

79

Table E.1 – Continued from previous page

Setting Throughput Average IO IO rate Write Time

12-1000-10-W 9.495481338 9.52 0.473389491 135.34

12-1000-11-W 8.709227208 8.72 0.302664947 144.71

12-1000-12-W 8.3115962 8.31 0.1456952 146.60

24-500-01-W 80.04429117 334.936554 300.2163623 43.746

24-500-02-W 35.38497377 36.31741333 6.259091493 41.808

24-500-03-W 18.60733408 18.96840477 2.787038416 54.871

24-500-04-W 13.38632832 13.53074646 1.438529511 66.899

24-500-05-W 10.5875004 10.90009975 2.089580233 79.069

24-500-06-W 8.395618327 8.426784515 0.519008839 88.54

24-500-07-W 6.871396096 6.900475025 0.461444768 103.358

24-500-08-W 6.218724996 6.255727768 0.500981892 110.803

24-500-09-W 5.600959631 5.614548206 0.279177047 118.514

24-500-10-W 4.919734531 4.937342167 0.304098938 133.557

24-500-11-W 4.056839019 4.062527657 0.154649932 154.775

24-500-12-W 3.834936656 3.838791847 0.122197337 160.758

36-333-01-W 147.513751 251.3358002 159.718463 32.182

36-333-02-W 25.24097679 26.61917877 6.28261589 41.734

36-333-03-W 14.9046268 15.57662582 3.727489718 50.809

36-333-04-W 8.702646511 9.249137878 2.244672449 75.051

36-333-05-W 7.234228983 7.388176918 1.127956821 80.121

36-333-06-W 5.844959381 5.981119156 0.983059539 91.213

36-333-07-W 5.105076076 5.150288582 0.518104991 95.252

36-333-08-W 4.35569947 4.382982254 0.369705577 107.421

36-333-09-W 3.842558937 3.85191083 0.197094668 116.48

36-333-10-W 3.342273571 3.357328892 0.232648852 130.5

36-333-11-W 3.104327466 3.106856108 0.089809885 135.605

36-333-12-W 2.868586986 2.870315552 0.071868564 146.667

48-250-01-W 75.57769702 238.582016 193.9311365 38.753

48-250-02-W 22.21054112 24.04099464 7.257185815 40.744

Continued on next page

80

Table E.1 – Continued from previous page

Setting Throughput Average IO IO rate Write Time

48-250-03-W 12.11725871 12.70887756 3.122918435 51.93

48-250-04-W 7.235322846 7.632677078 2.238084331 67.019

48-250-05-W 5.733471 5.98286581 1.406185626 78.146

48-250-06-W 4.798662133 4.8323493 0.435738345 83.155

48-250-07-W 3.992633591 4.051212788 0.512243893 96.239

48-250-08-W 3.230157613 3.242685556 0.209554647 107.328

48-250-09-W 2.882245846 2.894417763 0.196868521 118.439

48-250-10-W 2.610244208 2.630482435 0.263859065 127.449

48-250-11-W 2.351893431 2.355366468 0.091837056 136.723

48-250-12-W 2.174949296 2.178193808 0.085369838 146.652

60-200-01-W 112.8710636 186.5179901 140.4396428 33.652

60-200-02-W 18.68742632 19.31556892 3.637570241 39.762

60-200-03-W 9.245134748 9.627094269 2.158185096 52.226

60-200-04-W 6.358124544 6.545865059 1.163472977 64.107

60-200-05-W 5.053382671 5.188427448 0.887556934 73.099

60-200-06-W 4.000772149 4.105906963 0.740164075 84.07

60-200-07-W 3.121406318 3.156785727 0.36078487 97.204

60-200-08-W 2.767286431 2.781476736 0.205413745 104.297

60-200-09-W 2.446113147 2.451550961 0.118338132 114.394

60-200-10-W 2.127490959 2.136369944 0.145476291 125.491

60-200-11-W 1.980887735 1.987024188 0.116903136 131.626

60-200-12-W 1.788849564 1.79017961 0.048834133 141.575

Table E.2: Read 12G in HDFS [Map-Size-Replication-R/W]

Setting Throughput Average IO IO rate Write Time

12-1000-01-R 70.95008071 76.37 21.52427863 42.779

Continued on next page

81

Table E.2 – Continued from previous page

Setting Throughput Average IO IO rate Write Time

12-1000-02-R 53.22546306 54.80 10.40072876 47.319

12-1000-03-R 155.0948664 656.93 755.8049565 35.617

12-1000-04-R 96.91018041 272.24 437.998826 39.811

12-1000-05-R 119.8765272 187.73 159.4773912 36.766

12-1000-06-R 177.1270001 558.18 686.6947194 35.812

12-1000-07-R 152.2784666 318.91 346.9360105 35.824

12-1000-08-R 125.1616672 152.16 88.9018017 35.815

12-1000-09-R 223.9558061 266.97 125.9026513 31.992

12-1000-10-R 283.3128718 661.83 664.1442753 29.74

12-1000-11-R 239.2916966 771.92 736.7028048 32.88

12-1000-12-R 375.798572 994.89 783.590854 30.777

24-500-01-R 51.49617855 251.7518311 434.483062 41.742

24-500-02-R 37.11619534 39.50246811 11.53053896 42.796

24-500-03-R 55.85682035 105.6205826 222.1301516 36.671

24-500-04-R 72.29699606 177.8743896 308.7583854 35.641

24-500-05-R 102.3419244 338.9202576 474.1521673 32.707

24-500-06-R 112.8912387 245.1373291 330.3180795 32.834

24-500-07-R 148.0878161 470.6677246 512.6867214 31.764

24-500-08-R 99.95002499 294.8895569 436.1911771 32.723

24-500-09-R 135.0864553 491.5281067 549.5282025 32.302

24-500-10-R 169.1570341 522.6466675 541.0930128 31.213

24-500-11-R 165.3826541 643.2017212 593.137881 30.791

24-500-12-R 170.604794 625.3359985 563.9123504 31.936

36-333-01-R 39.02877347 148.0826111 313.2278793 39.15

36-333-02-R 42.09698319 125.7908554 277.3629387 36.802

36-333-03-R 41.29805705 131.9345398 287.5653931 36.648

36-333-04-R 50.21278022 116.2440338 228.235154 34.733

36-333-05-R 75.79522391 218.6917419 331.8756358 32.757

36-333-06-R 64.42909736 236.1207886 378.5815278 34.746

Continued on next page

82

Table E.2 – Continued from previous page

Setting Throughput Average IO IO rate Write Time

36-333-07-R 78.34526027 260.7580566 382.9924138 32.763

36-333-08-R 91.84869636 372.2658997 412.6304414 32.806

36-333-09-R 106.7535798 474.7655029 463.6453707 33.159

36-333-10-R 96.24122927 474.425293 470.6923599 32.832

36-333-11-R 93.35866924 425.3148499 437.2215868 30.992

36-333-12-R 96.51863064 509.6042786 470.3336693 32.04

48-250-01-R 29.6890811 88.99221039 200.6193919 39.647

48-250-02-R 34.93988883 186.5760651 351.1953206 37.69

48-250-03-R 32.03006555 101.0324707 237.5735791 37.725

48-250-04-R 31.58451622 48.22178268 77.02294267 36.741

48-250-05-R 51.96447362 166.6552429 274.6868223 35.458

48-250-06-R 55.44415388 284.349762 405.7461033 34.851

48-250-07-R 56.86314463 257.5050354 361.8522884 34.734

48-250-08-R 55.67618729 326.2840271 418.8923817 35.306

48-250-09-R 82.74321333 422.4218445 429.3871406 33.914

48-250-10-R 59.17072233 387.1660461 434.9440872 34.189

48-250-11-R 63.57784312 443.8209534 449.7665632 33.787

48-250-12-R 62.77989369 393.0908508 382.8376637 34.911

60-200-01-R 25.11038105 93.96453094 232.1722298 37.665

60-200-02-R 29.63116606 152.7574768 298.0393957 36.917

60-200-03-R 25.96626982 82.733284 202.1670503 38.834

60-200-04-R 31.37312317 99.97427368 223.271127 35.779

60-200-05-R 45.76414684 160.6618958 282.3780112 33.849

60-200-06-R 45.26713267 162.3869934 288.7264254 34.078

60-200-07-R 54.90860006 214.2892151 310.7553667 33.764

60-200-08-R 42.5862638 273.5256653 354.7136492 35.811

60-200-09-R 45.86437141 250.1865845 350.9927899 34.861

60-200-10-R 47.13960788 328.1400452 380.5812801 34.756

60-200-11-R 54.04285598 357.3202209 365.554686 35.759

Continued on next page

83

Table E.2 – Continued from previous page

Setting Throughput Average IO IO rate Write Time

60-200-12-R 38.67524398 212.3633728 273.1053358 38.021

Table E.3: Write 60G in HDFS [Map-Size-Replication-R/W]

Setting Throughput Average IO IO rate Write Time

12-5000-01-W 108.6795078 120.4581375 51.60289325 87.936

12-5000-02-W 52.77620427 53.41374588 5.813535113 135.428

12-5000-03-W 29.57836047 29.63490105 1.316167053 200.97

12-5000-04-W 20.89963161 20.9282074 0.783923315 272.457

12-5000-05-W 16.74795005 16.76549149 0.549844023 334.854

12-5000-06-W 14.35387812 14.36470509 0.397081789 382.157

12-5000-07-W 12.60618346 12.61092472 0.246668578 429.503

12-5000-08-W 10.90177879 10.90343189 0.13460847 488.861

12-5000-09-W 10.02619008 10.03025723 0.202551467 535.079

12-5000-10-W 9.112183278 9.112452507 0.049547077 577.538

12-5000-11-W 8.478975039 8.479894638 0.089173251 621.896

12-5000-12-W 7.840011499 7.840697765 0.073431234 671.128

24-2500-01-W 77.18590482 126.0204773 132.6610587 79.092

24-2500-02-W 34.25811204 34.72610092 4.37067473 105.266

24-2500-03-W 18.60905963 18.72963142 1.647153227 167.698

24-2500-04-W 13.43357467 13.46750164 0.680492094 220.925

24-2500-05-W 10.00799806 10.02917194 0.477745374 284.507

24-2500-06-W 8.386251747 8.397296906 0.31332852 332.775

24-2500-07-W 6.792268542 6.802690029 0.270810223 407.361

24-2500-08-W 6.079985862 6.086941242 0.211722815 448.617

24-2500-09-W 5.372483697 5.377141476 0.162661623 505.096

24-2500-10-W 4.39937045 4.4028759 0.125778397 608.635

Continued on next page

84

Table E.3 – Continued from previous page

Setting Throughput Average IO IO rate Write Time

24-2500-11-W 4.633160269 4.633965492 0.061364078 572.846

24-2500-12-W 4.279154342 4.279790401 0.052704277 616.755

36-1666-01-W 63.45948131 77.02295685 47.4897065 62.037

36-1666-02-W 24.28674689 25.56377983 5.505922469 130.354

36-1666-03-W 13.24784465 13.34307194 1.261572987 159.937

36-1666-04-W 8.992075261 9.081813812 0.967945063 227.184

36-1666-05-W 6.867847638 6.974319458 0.933005418 303.765

36-1666-06-W 5.930964428 5.94067955 0.247250022 315.664

36-1666-07-W 4.989083676 4.997880936 0.217419072 369.992

36-1666-08-W 4.177857647 4.181807995 0.130976709 435.695

36-1666-09-W 3.575787668 3.584031343 0.178793567 512.063

36-1666-10-W 3.321625273 3.324679136 0.103654851 540.917

36-1666-11-W 2.84006023 2.841899633 0.073525375 625.525

36-1666-12-W 2.905792836 2.906923532 0.057587769 610.977

48-1250-01-W 42.32872914 76.62815094 133.8458459 90.065

48-1250-02-W 20.41215544 20.75228691 2.755553709 96.151

48-1250-03-W 11.0141054 11.08403397 0.930636529 147.476

48-1250-04-W 7.45715677 7.489223957 0.506050444 206.096

48-1250-05-W 5.560317865 5.576531887 0.315778479 262.42

48-1250-06-W 4.568043173 4.577654362 0.219647071 311.57

48-1250-07-W 3.401669857 3.441177607 0.410499182 432.329

48-1250-08-W 3.160217164 3.173014641 0.220270284 439.361

48-1250-09-W 2.685763159 2.690415144 0.114930071 509.788

48-1250-10-W 2.566183915 2.567529917 0.059789553 526.227

48-1250-11-W 2.341117158 2.342276812 0.052908061 574.302

48-1250-12-W 2.017604677 2.018187046 0.034314243 661.624

60-1000-01-W 33.97581601 73.4743576 122.5346142 85.138

60-1000-02-W 15.05204621 15.49670315 2.73681037 105.117

60-1000-03-W 8.397047094 8.636459351 1.522077939 169.742

Continued on next page

85

Table E.3 – Continued from previous page

Setting Throughput Average IO IO rate Write Time

60-1000-04-W 5.770140121 5.836211681 0.652776523 224.742

60-1000-05-W 4.484748045 4.559632778 0.608908209 286.69

60-1000-06-W 3.719315646 3.734349728 0.250976413 309.605

60-1000-07-W 2.83354884 2.862062931 0.315688276 413.339

60-1000-08-W 2.242070944 2.267105103 0.264834321 513.707

60-1000-09-W 1.929206358 1.9465698 0.200081045 586.241

60-1000-10-W 1.825006624 1.829602361 0.097241419 594.352

60-1000-11-W 1.791470665 1.793897986 0.068532125 602.291

60-1000-12-W 1.666593198 1.667279482 0.034166441 641.613

Table E.4: Read 60G in HDFS [Map-Size-Replication-R/W]

Setting Throughput Average IO IO rate Write Time

12-5000-01-R 64.45548543 72.40193939 29.01877915 120.362

12-5000-02-R 64.79040843 67.44035339 14.1223865 117.32

12-5000-03-R 72.25555344 121.5155563 180.0672206 107.162

12-5000-04-R 68.99065522 70.00814819 8.364283431 105.21

12-5000-05-R 78.07386568 83.45985413 28.35470632 96.61

12-5000-06-R 109.2703111 333.0221863 750.0432727 84.407

12-5000-07-R 86.01164024 88.55670166 16.18616202 90.505

12-5000-08-R 106.5234991 122.2713852 64.07273823 84.148

12-5000-09-R 106.4875782 116.1943283 43.41032359 81.185

12-5000-10-R 169.2505585 174.3617554 34.22027311 60.116

12-5000-11-R 136.8057677 139.3972473 17.21376458 71.193

12-5000-12-R 147.7526817 151.606308 23.5799015 67.153

24-2500-01-R 36.71083184 41.09889603 14.65097714 132.39

24-2500-02-R 43.25901914 43.63182449 4.162791465 89.206

Continued on next page

86

Table E.4 – Continued from previous page

Setting Throughput Average IO IO rate Write Time

24-2500-03-R 47.38849881 82.95085907 135.0640426 87.572

24-2500-04-R 44.74816849 46.57197571 11.61009228 89.168

24-2500-05-R 50.15481118 54.50816345 24.25031229 82.395

24-2500-06-R 47.20436105 49.97365189 13.13708841 93.23

24-2500-07-R 54.95683141 63.91769028 29.94386941 88.223

24-2500-08-R 59.75018448 67.32119751 26.49759384 87.245

24-2500-09-R 77.11091119 94.80745697 52.25029165 80.14

24-2500-10-R 72.99456555 85.23986816 39.95552743 85.265

24-2500-11-R 91.67569418 95.447052 20.15275916 63.297

24-2500-12-R 91.39584301 95.44046783 21.42355391 62.07

36-1666-01-R 34.74172802 142.549118 437.2029337 96.089

36-1666-02-R 31.33409715 33.71170044 12.98911761 86.159

36-1666-03-R 38.69239622 54.54063416 63.19965331 79.206

36-1666-04-R 36.3262604 94.9706955 337.9667672 81.141

36-1666-05-R 31.17467977 33.28878784 9.343693171 95.374

36-1666-06-R 44.60458942 58.90699768 54.55330678 74.053

36-1666-07-R 42.19668145 57.09797668 82.87845701 83.703

36-1666-08-R 44.75844277 50.57923508 24.45288563 75.193

36-1666-09-R 45.46198767 52.28852844 25.08685359 78.157

36-1666-10-R 54.45260047 63.05774689 32.05518695 73.101

36-1666-11-R 49.99237311 54.21111298 15.74734772 80.242

36-1666-12-R 52.49655354 54.99844742 13.52594008 66.165

48-1250-01-R 23.84995516 77.04341888 243.6585708 130.585

48-1250-02-R 28.75341027 116.6693115 347.9150936 77.198

48-1250-03-R 29.01035525 64.14601135 229.9192712 78.064

48-1250-04-R 31.44024624 37.40484238 32.12495187 75.213

48-1250-05-R 31.31037031 32.70367432 7.574166729 78.365

48-1250-06-R 33.98461064 37.13421631 14.43613625 77.097

48-1250-07-R 30.20381535 37.78124237 31.90931579 95.316

Continued on next page

87

Table E.4 – Continued from previous page

Setting Throughput Average IO IO rate Write Time

48-1250-08-R 34.11312138 39.31318283 17.99134852 84.204

48-1250-09-R 32.78996714 39.1232872 22.72456006 85.163

48-1250-10-R 34.13703288 36.5867157 12.12214057 76.482

48-1250-11-R 36.07317082 37.37425232 7.332187034 71.125

48-1250-12-R 34.69463517 36.06271744 8.395726503 72.154

60-1000-01-R 23.07785507 67.84573364 228.0957759 138.842

60-1000-02-R 21.98984655 71.01034546 263.8391725 81.36

60-1000-03-R 23.16908256 52.09474564 202.9073468 86.161

60-1000-04-R 25.86554744 54.90973663 166.2872929 83.471

60-1000-05-R 27.61929926 53.10790634 183.1140448 86.378

60-1000-06-R 27.06126806 30.4484024 15.01428408 78.07

60-1000-07-R 25.90437572 30.51843452 16.83096926 86.234

60-1000-08-R 25.03442233 28.59828377 13.7070189 86.33

60-1000-09-R 23.47774232 26.27509308 10.46570508 89.266

60-1000-10-R 27.74462552 31.18267441 14.32317667 78.1

60-1000-11-R 28.06378149 29.7088604 7.319199864 76.156

60-1000-12-R 27.98525737 29.29996872 6.336384812 77.236

Table E.5: Write 120G in HDFS [Map-Size-Replication-R/W]

Setting Throughput Average IO IO rate Write Time

12-10000-01-W 141.3908857 160.6730499 53.97045209 128.426

12-10000-02-W 51.90598787 52.11640549 3.309536677 235.73

12-10000-03-W 29.05262302 29.09033394 1.055974055 381.933

12-10000-04-W 21.63881181 21.65653419 0.618931715 504.45

12-10000-05-W 16.94111508 16.94874954 0.360167319 630.84

12-10000-06-W 14.51457106 14.51840973 0.236264799 726.515

Continued on next page

88

Table E.5 – Continued from previous page

Setting Throughput Average IO IO rate Write Time

12-10000-07-W 12.30835633 12.31240559 0.225934157 851.759

12-10000-08-W 11.12853861 11.13055134 0.150055543 936.235

12-10000-09-W 10.07884343 10.07960796 0.087992157 1026.678

12-10000-10-W 9.336582879 9.338303566 0.128124136 1108.479

12-10000-11-W 8.661998427 8.663191795 0.102216677 1196.472

12-10000-12-W 8.086019071 8.087031364 0.090949404 1280.357

24-5000-01-W 52.0888723 72.22106934 44.49078156 209.861

24-5000-02-W 30.36176806 30.73362732 3.318878211 220.109

24-5000-03-W 18.49744627 18.55735779 1.0493455 318.792

24-5000-04-W 13.0502275 13.08236694 0.664181782 424.45

24-5000-05-W 9.774758608 9.79019165 0.390539741 561.288

24-5000-06-W 7.590583653 7.600771427 0.281829806 715.193

24-5000-07-W 7.015047979 7.019438267 0.177349771 755.356

24-5000-08-W 6.154044661 6.156385899 0.121821815 850.996

24-5000-09-W 5.298122014 5.301908493 0.145490183 989.62

24-5000-10-W 4.862730586 4.863732338 0.070292983 1070.184

24-5000-11-W 4.566310824 4.5669837 0.055755924 1133.058

24-5000-12-W 4.045486915 4.04573679 0.03177255 1271.754

36-3333-01-W 44.45738778 81.17752838 98.32321192 142.536

36-3333-02-W 22.56140842 23.15909958 3.677726821 223.876

36-3333-03-W 13.95452533 14.00731659 0.888613852 277.409

36-3333-04-W 9.443379116 9.473526955 0.552977716 399.192

36-3333-05-W 7.097152403 7.10661459 0.266735997 509.879

36-3333-06-W 5.540251645 5.549935818 0.234750646 663.743

36-3333-07-W 4.402772277 4.415668964 0.245302542 821.841

36-3333-08-W 3.968970528 3.97596693 0.172075618 898.051

36-3333-09-W 3.418864789 3.42083931 0.083335679 1024.695

36-3333-10-W 3.34184447 3.342784882 0.056613454 1041.575

36-3333-11-W 2.996859427 2.997683525 0.050944124 1150.313

Continued on next page

89

Table E.5 – Continued from previous page

Setting Throughput Average IO IO rate Write Time

36-3333-12-W 2.745504011 2.745731592 0.024964893 1257.576

48-2500-01-W 36.18235182 56.10339737 92.5058466 138.456

48-2500-02-W 19.62029497 19.84492683 2.099110627 176.775

48-2500-03-W 10.76563587 10.82552242 0.847078218 274.465

48-2500-04-W 7.477103706 7.501808643 0.448412437 379.053

48-2500-05-W 5.512850109 5.527158737 0.288878632 505.816

48-2500-06-W 4.482977462 4.489147663 0.170532549 603.384

48-2500-07-W 3.664668201 3.674994707 0.204098181 741.26

48-2500-08-W 2.984666129 3.002048492 0.247038659 919.993

48-2500-09-W 2.722244062 2.72567296 0.099480388 975.242

48-2500-10-W 2.156378754 2.159336329 0.082313756 1224.295

48-2500-11-W 1.995232525 1.996933818 0.059495357 1308.935

48-2500-12-W 1.971476805 1.971582055 0.014416835 1304.802

60-2000-01-W 29.87721213 39.67823029 35.26349413 129.432

60-2000-02-W 15.54196785 16.25720978 3.444356495 219.117

60-2000-03-W 8.975885163 9.042650223 0.811452688 276.455

60-2000-04-W 5.659760391 5.728065968 0.636060712 446.362

60-2000-05-W 4.149651367 4.227015495 0.643890655 596.193

60-2000-06-W 2.94731266 2.975856781 0.315659066 770.135

60-2000-07-W 2.505448463 2.537169933 0.305622381 913.893

60-2000-08-W 2.658427255 2.661175489 0.088489856 802.408

60-2000-09-W 2.075150216 2.082937479 0.13488318 1042.543

60-2000-10-W 1.698262318 1.70644784 0.12496641 1263.48

60-2000-11-W 1.643253387 1.645328045 0.060286997 1292.713

60-2000-12-W 1.418990707 1.419016719 0.006000704 1445.447

90

Table E.6: Read 120G in HDFS [Map-Size-Replication-R/W]

Setting Throughput Average IO IO rate Write Time

12-10000-01-R 76.46711723 83.19487 23.58723695 205.645

12-10000-02-R 71.53907375 72.87535095 11.53261006 176.828

12-10000-03-R 63.85148995 66.56378174 15.81297158 217.973

12-10000-04-R 65.34858569 65.56169891 3.75462772 192.806

12-10000-05-R 89.24793001 100.1324692 40.76054723 168.673

12-10000-06-R 80.75201661 86.68132782 29.30136624 176.816

12-10000-07-R 88.52795713 91.59468842 18.79699754 169.742

12-10000-08-R 100.3731371 107.4131546 29.78143297 150.683

12-10000-09-R 163.7197119 165.0995636 14.73089725 100.41

12-10000-10-R 127.6641921 132.2790375 24.02985599 124.581

12-10000-11-R 131.058593 135.6979065 25.43001366 124.442

12-10000-12-R 139.4340372 144.0866852 26.53987649 118.408

24-5000-01-R 31.52446811 39.69117355 20.46127069 319.695

24-5000-02-R 41.44367666 46.45299149 21.7368731 165.732

24-5000-03-R 50.79345729 81.26520538 132.381837 144.423

24-5000-04-R 43.38492041 45.41969299 12.59962154 158.587

24-5000-05-R 50.81518137 55.64311218 19.4425065 163.735

24-5000-06-R 52.70196381 58.09799194 21.84289032 154.604

24-5000-07-R 60.46945461 66.73223114 26.72769863 131.504

24-5000-08-R 63.49176115 68.47698212 21.82606335 130.399

24-5000-09-R 57.58325939 63.08963394 22.07604805 145.989

24-5000-10-R 74.7476333 78.1186142 17.48764036 114.421

24-5000-11-R 73.07933797 78.09183502 21.94332566 121.549

24-5000-12-R 73.09741144 77.81681061 20.33797783 124.604

36-3333-01-R 28.04336592 157.4050903 523.3120902 201.946

36-3333-02-R 31.89752639 35.1461525 16.37073659 160.496

36-3333-03-R 34.36893471 45.36082458 50.24114299 148.456

36-3333-04-R 36.04617977 45.64379501 37.23226602 144.475

Continued on next page

91

Table E.6 – Continued from previous page

Setting Throughput Average IO IO rate Write Time

36-3333-05-R 34.71547533 36.75190735 9.819535773 152.616

36-3333-06-R 34.97026065 37.62696838 14.09042177 150.678

36-3333-07-R 36.92056607 40.66026306 16.89315328 154.49

36-3333-08-R 41.89952328 46.88611221 20.33490594 139.13

36-3333-09-R 35.97628566 40.04883194 14.37067685 182.862

36-3333-10-R 51.19289235 53.58546829 12.53492893 121.784

36-3333-11-R 50.62703636 53.67988586 13.97608449 115.495

36-3333-12-R 49.28063611 50.57766342 8.049275244 124.542

48-2500-01-R 22.41756222 36.70800781 70.26369622 343.775

48-2500-02-R 26.12694779 77.49364471 342.9304672 140.492

48-2500-03-R 25.70036713 26.5795002 6.754480267 139.481

48-2500-04-R 28.55167353 32.49034882 20.19574407 140.678

48-2500-05-R 25.8058134 29.38248634 14.87194491 174.295

48-2500-06-R 25.58040336 27.83644867 10.15264282 153.556

48-2500-07-R 29.81347201 32.07357788 9.652018256 146.592

48-2500-08-R 32.82054873 36.89367294 17.3284022 140.629

48-2500-09-R 33.336454 34.85076523 7.930251237 133.574

48-2500-10-R 33.06368065 35.81889725 10.38378574 141.151

48-2500-11-R 34.42080118 35.66928864 6.832026032 126.581

48-2500-12-R 37.60718046 38.9940033 7.848257664 125.563

60-2000-01-R 23.64916464 86.97358704 322.8507199 198.832

60-2000-02-R 21.34626253 25.12637329 19.96977902 167.769

60-2000-03-R 24.3198153 41.52109909 117.7956233 155.666

60-2000-04-R 20.45802099 21.72548866 6.19638618 149.039

60-2000-05-R 24.28291539 27.0144577 16.95734093 158.76

60-2000-06-R 22.6294091 24.60138702 9.669112017 167.619

60-2000-07-R 22.30849413 23.78671074 7.412041817 156.655

60-2000-08-R 26.0551579 27.35909653 6.01854968 132.482

60-2000-09-R 23.65222245 25.35221672 7.76954409 143.644

Continued on next page

92

Table E.6 – Continued from previous page

Setting Throughput Average IO IO rate Write Time

60-2000-10-R 23.65399411 24.90903473 6.476827204 144.632

60-2000-11-R 26.77834426 27.8975544 5.89364612 132.065

60-2000-12-R 24.30964163 24.99217033 4.22127426 140.104

	摘要
	Abstract
	致謝詞
	Table of Contents
	Table of Contents
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Thesis Organization

	2 Backgroud and Related Works
	2.1 Cloud Computing and Big Data
	2.1.1 Cloud Computing
	2.1.2 Big Data
	2.1.3 NoSQL

	2.2 Hadoop Ecosystem
	2.2.1 Hadoop
	2.2.2 HDFS
	2.2.3 HBase
	2.2.4 HBase Master and Region Servers
	2.2.5 HBase Data Model
	2.2.6 HBase Row Keys
	2.2.7 HBase Column Family
	2.2.8 Cloudera CDH
	2.2.9 Apache Spark
	2.2.10 Spark Application

	2.3 Mathematical Model and Algorithms
	2.3.1 Moving Average
	2.3.2 Fuzzy C-Means
	2.3.3 DBSCAN
	2.3.4 K-Means Clustering

	2.4 Related Works

	3 System Design and Implementation
	3.1 Cloud System Architecture
	3.2 Provided Services
	3.2.1 City Traffic State Assessment System Service Design
	3.2.2 Data Collection Service
	3.2.3 Real Time Process Service
	3.2.4 Data Analysis Service
	3.2.5 Web Application Service

	3.3 System Implementation
	3.3.1 Cluster Deployment

	4 Experimental Results
	4.1 Experimental Environment
	4.2 Spark and Hadoop MapReduce Performance Comparison
	4.3 Experiment for HDFS read and write speed under various replication
	4.4 Using Spark to process bus location data under different number of executors
	4.5 Comparison of different clustering ways to find traffic jams grouping
	4.5.1 DBSCAN
	4.5.2 K-Means
	4.5.3 Fuzzy-C-Means
	4.5.4 Results Compared

	4.6 Cloud City Traffic State Assessment System

	5 Conclusions and Future Work
	5.1 Concluding Remarks
	5.2 Future Work

	References
	Appendix
	Appendix
	A Hadoop Installation
	B HBase Installation
	C Cloudera Manager Installation
	D Experimental-Spark and Hadoop MapReduce Performance Comparison Source Code
	E Experiment-HDFS read and write speed under various replication Data

