
東海大學

資訊工程研究所

碩士論文

指導教授: 楊朝棟博士

利用異質物件儲存技術實作軟體定義儲存服務

Implementation of Software-Defined Storage Service with

Heterogeneous Object Storage Technologies

研究生: 沈宇權

中華民國一零四年六月

1

摘 要

在資訊時代的迅速發展下，不只是個人電腦的普及化，現在更讓這些資訊的使

用方式轉變成雲端運算以及雲端服務。雲端服務是一種概念，使用者以手邊的

端點設備將需求透過網路丟到雲端環境上，並透過雲端環境上的運算處理後給

予使用者一個回覆。其中一個最為方便的例子就是雲端儲存。軟體定義儲存是

一種虛擬化的技術，透過軟體做資源的整合將提高易用性和可用性，SDS 是

一項逐漸流行的技術，在網路上有著許多不同的開放原始碼專案。希望能夠

使用這樣的技術來幫助我們更有效的利用硬體和軟體上資源。本文將實現一

個結合不同儲存技術並符合 SDS 概念的雲端服務。在系統架構中，我們採用

OpenStack Swift 和 Ceph 這兩項開源軟體，使系統有更好的兼容性設計，因為

包含了這兩項技術，系統的架構設計上也繼承了該儲存系統的擴充性。實現一

套自動分配機制是本文的重要目標以及貢獻，這讓使用者上傳檔案之後能自動

分配至較適合此檔案的軟體儲存技術，而在管理者方面透過參數設定此分配機

制，能夠讓此系統有更靈活的操作也使得本系統更為智能。最後提供一個有善

的使用者介面，更符合雲端服務何時何地任何設備都可以使用的概念。

關鍵字: 雲端服務，儲存服務，軟體定義儲存，物件儲存，自動分配機制，整合

儲存

I

Abstract

With the rapid development of information, personal computers are not only pop-

ular but also provide cloud services. Cloud Service is a concept that users can

upload their requirement via internet to cloud environment and then receive a

response by post-processing of the cloud environment, for example cloud storage.

Software-defined storage (SDS) is a kind of virtualization technology for cloud

storage. It uses the software to integrate the resources so as to improve acces-

sibility and usability. There are many different open source projects for SDS in

the Internet. This work aims to utilize these open source projects of SDS to im-

prove the integration of the hardware and software resources effectively. In other

words, we integrate various SDS open source projects or technologies to implement

a cloud system. In the system architecture, we use some open-source softwares

to make the proposed system more compatible and automatically assign a file to

an appropriate storage location after users upload files. In addition, a manager

can set some parameters to make this system more flexible. We also provide a

high usability user interface. The user interface is designed as a web application.

According to the concept of cloud services, this interface can be used anywhere

and anytime.

Keywords: Cloud service, Storage service, Software-Defined Storage, Object stor-

age, Automatic distribution, Integrated storage

II

致謝詞

首先誠摯的感謝指導教授楊朝棟博士，老師悉心的教導使我得以一窺資訊工程

領域的深奧，不時的討論並指點我正確的方向，使我在這些年中獲益匪淺。老

師對學問的嚴謹更是我輩學習的典範。

本論文的完成另外亦得感謝每一個口試委員的熱心指導，感謝林迺衛老師、

朱正忠老師、賴冠州老師、時文忠老師，不辭辛勞撥空擔任我的口試委員，提

供給了我許多的建議。因為有你們的體諒及幫忙，使得本論文能夠更完整而嚴

謹。

兩年裡的日子，實驗室裡共同的生活點滴，學術上的討論、言不及義的閒

扯、讓人又愛又怕的宵夜、趕作業的革命情感、因為睡太晚而遲到的實驗室會

議........，感謝眾位學長姐、同學、學弟妹的共同砥礪，你/妳們的陪伴讓兩年的

研究生活變得絢麗多彩。

感謝實驗室的夥伴們在計畫上互相幫忙，大家共同做事一起努力的感覺真的

很棒。不僅是計畫上，當然課程、研究還有論文，這些都不得不好好的跟大家

說聲謝謝，我在大家身上學習到很多事物。

那些在背後默默支持我的家人以及女朋友更是我前進的動力，沒有你們的體

諒、包容，相信這兩年的生活將是很不一樣的光景。

最後，謹以此文獻給我摯愛的雙親。

III

Table of Contents

摘要 I

Abstract II

致謝詞 III

Table of Contents IV

List of Figures VI

List of Tables VII

1 Introduction 1
1.1 Motivation . 1
1.2 Thesis Goal and Contributions . 2
1.3 Thesis Organization . 2

2 Background Review and Related Work 3
2.1 Background Review . 3

2.1.1 Software-Defined Storage 3
2.1.2 Swift . 4
2.1.3 Ceph . 6
2.1.4 OpenStack . 8
2.1.5 COSBench . 10
2.1.6 EMC ViPR . 11
2.1.7 Cubic Spline . 14

2.2 Related Works . 15

3 System Design and Implementation 18
3.1 System Architecture . 19
3.2 Design Flow . 19
3.3 System Implementation . 20

3.3.1 Storage Service Deployment 20
3.3.2 User Service . 23
3.3.3 File Distribution Mechanism 26

IV

TABLE OF CONTENTS V

4 Experiments and Results 30
4.1 Experimental Environment . 30
4.2 Performance . 31
4.3 User Interface . 36

5 Conclusions and Future Work 42
5.1 Concluding Remark . 42
5.2 Future Works . 43

References 44

Appendix 48

A OpenStack Installation 48

B Swift Installation 57

C Ceph Installation 64

List of Figures

2.1 Swift architecture . 5
2.2 Ceph architecture . 6
2.3 Ceph object storage architecture 7
2.4 Openstack Juno arch . 10
2.5 COSBench Architecture . 11
2.6 ViPR System Architecture . 12
2.7 ViPR Cluster . 13
2.8 Cubic Spline Schematic Diagram 15

3.1 System Architecture . 19
3.2 Controller Architecture . 20
3.3 OpenStack Overview . 21
3.4 OpenStack instances . 21
3.5 Swift enviroment . 22
3.6 Ceph enviroment . 22
3.7 Responsive Web Design . 24
3.8 Asynchronous JavaScript and XML 26
3.9 File transfer speeds . 27
3.10 File transfer speeds using Cubic Spline 27
3.11 All file transfer speeds using Cubic Spline 28

4.1 Network infrastructure speed . 32
4.2 Disk infrastructure write speed . 33
4.3 Disk infrastructure read speed . 33
4.4 Measure the upload speed . 34
4.5 Measure the download speed . 35
4.6 User interface overview . 36
4.7 Overviwe page . 37
4.8 My storage page view . 37
4.9 Upload the files . 38
4.10 File details . 39
4.11 Account page view . 40
4.12 Responsive Web Design . 41

VI

List of Tables

3.1 Software & language Specification 23

4.1 Hardware Specification . 31
4.2 Storage Environment Specification 31
4.3 Software Specification . 31

VII

Chapter 1

Introduction

In the rapid development of the information age, personal computers have been

very popular, and nowadays cloud computing [1–4] is becoming the trend. Many

large enterprises such as Google, Amazon, and Yahoo provide a variety of cloud

services. Not only these enterprises but also government and academic institutions

have entered this area to build their own cloud. Building cloud servers are very

relatively expensive, including the equipment purchase, technical maintenance,

and equipment maintenance costs.

1.1 Motivation

Cloud service is a concept. The users upload their requirements via the Internet

to the cloud environment, and obtain replies of processing results from the cloud

environment. One of the most convenient examples is cloud storage [5–8]. More

and more users use this convenient way to upload and store data, and enterprises

are also attracted to join the cloud service delivery. If a company wants to build

its own cloud storage, how to choose the hardware device or technical resources

are important issues. The software-defined storage (SDS) is a kind of virtualiza-

tion technology. SDS uses the software to integrate the resource and improve

accessibility and usability, and it has become an increasingly popular technology.

1

Chapter 1 Introduction 2

Besides, in the Internet there are many different open source projects; these tech-

nologies can be adopted to help us more effectively use the hardware and software

resources.

1.2 Thesis Goal and Contributions

This thesis will implement an integration of the cloud service with SDS technology.

In the system architecture, we will use some open-source software, making the

system more compatible. And implement a mechanism to automatically assign

files, uploaded by users, to an appropriate storage system. In addition, system

managers can set parameters to customize the mechanism, making this service

has a flexible configuration and makes it more intelligent. We also provide a

high usability user interface. The user interface is designed as a web application.

According to the concept of cloud services, this interface can be used anywhere

and anytime.

1.3 Thesis Organization

Chapter 2 will describe some background information, including cloud service,

SDS, OpenStack, Swift, Ceph and COSBench. Chapter 3 will introduce our ex-

perimental environment and methods, and the overall architecture. Chapter 4

presents and analyses experimental results. Finally, Chapter 5 summarizes this

thesis by pointing out its major contributions and directions for the future work.

Chapter 2

Background Review and Related

Work

2.1 Background Review

2.1.1 Software-Defined Storage

Software-Defined Storage (SDS) [9–11] is a concept for the computer data stor-

age technology which separates storage hardware from the software that manages

the storage infrastructure. The software enabling SDS environments can provide

policy management for feature options such as deduplication, replication, thin pro-

visioning, snapshots and backup. Characteristics of SDS could include any or all

of the following features:

• Abstraction of logical storage services and capabilities from the underlying

physical storage systems, and in some cases, pooling across multiple different

implementations. Since data movement is relatively expensive and slow com-

pared to compute and services (the ”data gravity” problem in infonomics),

pooling approaches sometimes suggest leaving it in place and creating a

mapping layer to it that spans arrays. Examples include

3

Chapter 2 Background Review and Related Work 4

• Automation with policy-driven storage provisioning with service-level agree-

ments replacing technology details. This requires management interfaces

that span traditional storage array products, as a particular definition of

separating the ”control plane” from ”data plane,” in the spirit of OpenFlow.

Prior industry standards efforts include the Storage Management Initiative

– Specification (SMI-S) which began in 2000.

• Commodity hardware with storage logic abstracted into a software layer.

This is also described as a clustered file system for converged storage.

• Scale-out storage architecture.

2.1.2 Swift

OpenStack Object Storage (Swift) [12] is a scalable redundant storage system.

Objects and files are written to multiple disk drives spread throughout servers

in the data center, with the OpenStack software responsible for ensuring data

replication and integrity across the cluster. Storage clusters scale horizontally

simply by adding new servers. Should a server or hard drive fail, OpenStack

replicates its content from other active nodes to new locations in the cluster.

Because OpenStack uses software logic to ensure data replication and distribution

across different devices, inexpensive commodity hard drives and servers can be

used.

Chapter 2 Background Review and Related Work 5

Figure 2.1: Swift architecture

As the figure 2.1 shows that the icons with colors are the main components of this

design. All of them is independent with the current object-replicator. The origin

logic of object-replicator was split into four parts with different colors. the com-

ponents with the color of cyan are in charge of calculating hash in real-time; the

components with the color of pink are in charge of indexing the hash of suffix and

partition directories, receiving and sending requests to compare the hash of par-

tition or suffix, generating jobs of replicating suffix directories to the replication-

queue; The partition-monitor is in charge of checking the partition whether to

move at interval; The suffix-transporter is in charge of monitoring the replication-

queue and invoking the rsync to sync suffix directories.

• Proxy Server: It is responsible for tying together the rest of the Swift ar-

chitecture. For each request, it will look up the location of the account,

container, or object in the ring and route the request accordingly. For Era-

sure Code type policies, the Proxy Server is also responsible for encoding

and decoding object data.

• Object Server: It is a very simple storage server that can store, retrieve and

delete objects stored on local devices. Objects are stored as binary files on

the filesystem with metadata stored in the file’s extended attributes (xattrs).

Chapter 2 Background Review and Related Work 6

This requires that the underlying filesystem choice for object servers support

xattrs on files. Some filesystems, like ext3, have xattrs turned off by default.

• Container Server: The Server’s primary job is to handle listings of objects.

It doesn’t know where those object’s are, just what objects are in a specific

container. The listings are stored as sqlite database files, and replicated

across the cluster similar to how objects are. Statistics are also tracked

that include the total number of objects, and total storage usage for that

container.

• Account Server: It is very similar to the Container Server, excepting that it

is responsible for listings of containers rather than objects.

2.1.3 Ceph

Ceph [13] is a software storage platform designed to present object, block, and file

storage from a single distributed computer cluster. Ceph is a distributed storage

designed to provide excellent performance, reliability and scalability.The Ceph file

system has three main components: the client, each instance of which exposes a

near-POSIX file system interface to a host or process; a cluster of OSDs, which

collectively stores all data and metadata; and a metadata server cluster, which

manages the namespace (file names and directories) while coordinating security,

consistency and coherence. The system is designed to be both self-healing and

self-managing and strives to cut both administrator and budget costs.

Figure 2.2: Ceph architecture

• Object Storage: Ceph is a distributed object storage and file system designed

to provide excellent performance, reliability and scalability. Its software

Chapter 2 Background Review and Related Work 7

libraries offer client applications with direct access to the reliable autonomic

distributed object store (RADOS) object-based storage system, and also

provide a basis for some of Ceph’s advanced features, including RADOS

Block Device (RBD), RADOS Gateway, and the Ceph File System.

The librados software libraries enable applications written in C, C++, Java,

Python and PHP. The RADOS Gateway also exposes the object store as a

RESTful interface which can present as both native Amazon S3 and Open-

Stack Swift APIs. The librados libraries provide advanced features, includ-

ing:

– Partial or complete reads and writes

– Snapshots

– Atomic transactions with features like append, truncate and clone range

– Object level key-value mappings

Figure 2.3: Ceph object storage architecture

• Block Storage: Ceph’s object storage system allows users to mount Ceph

as a thinly provisioned block device. Ceph’s RADOS Block Device (RBD)

provides access to block device images that are striped and replicated across

the entire storage cluster. When an application writes data to Ceph using a

block device, Ceph automatically stripes and replicates the data across the

cluster. Ceph’s RADOS Block Device (RBD) also integrates with KVMs,

bringing Ceph’s virtually unconstrained storage to KVMs running on user’s

Ceph clients.

Chapter 2 Background Review and Related Work 8

Ceph RBD interfaces with the same Ceph object storage system that pro-

vides the librados interface and the CephFS file system, and it stores block

device images as objects. Since RBD is built on top of librados, RBD inherits

librados’s capabilities, including read-only snapshots and revert to snapshot.

Ceph’s object storage system is not bounded to native binding or RESTful

APIs. User can mount Ceph as a thinly provisioned block device. When

write data to Ceph using a block device, Ceph automatically stripes and

replicates the data across the cluster. By striping images across the cluster,

Ceph increases read access performance for large block device images.

• File System: Ceph’s file system (CephFS) runs on top of the same object stor-

age system that provides object storage and block device interfaces. Ceph

provides a POSIX-compliant network file system that aims for high perfor-

mance, large data storage, and maximum compatibility with legacy appli-

cations. Compared to many object storage systems available today Ceph’s

object storage system offers a significant feature: a traditional file system

interface with POSIX semantics. Object storage systems are a significant

innovation, but they supplement rather than replace traditional file systems.

The Ceph metadata server cluster provides a service that maps the direc-

tories and file names of the file system to objects stored within RADOS

clusters. The metadata server cluster can expand, contract, and dynami-

cally rebalance the file system to distribute data evenly among cluster hosts.

As storage requirements grow for legacy applications, organizations can con-

figure their legacy applications to use the Ceph file system. This means user

can run one storage cluster for object, block and file-based data storage.

This ensures high performance and prevents heavy loads on specific hosts

within the cluster.

2.1.4 OpenStack

OpenStack [14] is an IaaS cloud computing project for public and private clouds.

It is free open source software released under the terms of the Apache License.

Chapter 2 Background Review and Related Work 9

The project aims to deliver solutions for all types of clouds by being simple to

implement, massively scalable, and features rich. The technology consists of a

series of interrelated projects delivering various components for a cloud infrastruc-

ture solution. Founded by Rackspace Hosting and NASA, OpenStack has grown

to be a global software community of developers collaborating on a standard and

massively scalable open source cloud operating system. Its mission is to enable

any organization to create and offer cloud computing services running on standard

hardware.

The project is managed by the OpenStack Foundation, a non-profit corporate

entity established in September 2012 to promote, protect and empower OpenStack

software and its community.

OpenStack offers flexibility and choice through a highly engaged community of

over 6,000 individuals and over 190 companies including Rackspace, such as Intel,

AMD, Canonical, SUSE Linux, Inktank, Red Hat, Groupe Bull, Cisco, Dell, HP,

IBM, NEC, VMware and Yahoo. It is portable software, but is mostly developed

and used on operating systems running Linux.

The technology consists of a series of interrelated projects that control large

pools of processing, storage, and networking resources through-out a datacenter,

all managed through a dashboard that gives administrators control while empow-

ering its users to provision resources through a web interface.

Chapter 2 Background Review and Related Work 10

Figure 2.4: Openstack Juno arch

In this work, we use version Juno. The architecture is as shown in Figure 2.4,

in which Horizon provides GUI, Neutron provides networking, Nova is virtual

machine provisions, Glance provides virtual machine images, Keystone controls

all authentication in OpenStack, Swift backups virtual machine images, Cinder

provides volumes for virtual machines, and Ceilometer monitors Cinder, Neutron,

Nova and Glance. We just use Horizon, Neutron, Nova, Glance and Keystone in

our model.

2.1.5 COSBench

Cloud Object Storage Benchmark (COSBench) [15] is a benchmarking tool to

measure the performance of Cloud Object Storage services. COSBench has two

components, namely controller and driver, and can operate in two different modes,

either independent or managed.The architecture is as shown in Figure 2.5. In

independent mode, only driver is used. At runtime, it loads configurations and

Chapter 2 Background Review and Related Work 11

spawns agent threads which stress the target service in a way consistent with

the user-defined usage pattern. Under managed mode, on the other hand, both

components are required in that the controller is added to supervise multiple

drivers so that they can work collaboratively in a distributed environment. In

this case, each driver will spawn an additional daemon thread for receiving and

responding controller commands.

Figure 2.5: COSBench Architecture

2.1.6 EMC ViPR

EMC Virtualization Platform Reinvented (ViPR) is a logical storage system, not

a physical storage. It can integrate EMC storage and third-party storage in a

storage pool, and manage it as a single system, but still save the worth of original

storage. ViPR can replicate data across several different place and data center

with different store product, and it provides a unified block store, object store and

file system and other services. At the same time, ViPR provides a unified metadata

service and self-service deployment, measurement and monitoring services.

ViPR run on three to five virtual server machines. It consists of the control

plane and data plane; the first part realizes automatic store, and the second part

Chapter 2 Background Review and Related Work 12

provides data service by building on the first part. ViPR provides some APIs to

let users to use services and manage storage, as shown in Figure 2.6.

One part of ViPR is the control plane. It can manage all applications of storage

array, such as data mining, storage resource searching, and capacity counting and

reporting. The controller controls the application of virtual storage array, and

manages the storage resource. In order to achieve the goal, ViPR virtualizes the

control path of physical storage, and runs the function with it. By the virtual

plane, people can manage the storage pool and split it to different virtual storage

arrays with policies, just like virtualization of the server.

Figure 2.6: ViPR System Architecture

In addition to the controller and data service, ViPR provides the open RESTful

API. The developers can develop new services without the limit of the hardware.

Through these APIs, people can access data, and add, delete, modify, monitor and

measure the logical storage resources.

ViPR is built by the scale-out architecture; if it is built with at least three

clusters, the architecture will provide the ability of high availability, load balance

and system upgrade and so on. It provides RESTfulAPI, GUI(console), CLI and

SDK to let user control it with high flexibility as shown in Figure 2.7. And ViPR

can provide the automatic of disaster recovery. Through the continuous remote

replication technology, it can provide the ability of data replication continuously

to successfully achieve the goal of disaster recovery.

Chapter 2 Background Review and Related Work 13

Figure 2.7: ViPR Cluster

The data service of ViPR has some features:

• Unified Storage: ViPR offers the traditional layer on top of cloud storage

data type, with the following advantages: tradition by allowing local access

to the underlying storage, improved compatibility with existing applications;

while allowing manipulation of data at the right time through different meth-

ods to improve the efficiency of the work; and it can convert existing data

to the cloud easily.

• Heterogeneous Storage: ViPR provides an engine for a variety of storage

devices, for a given environment or use case can select the appropriate storage

capacity and hardware, and the user can reuse the existing storage hardware

investments, but also applies to mixed ViPR additional scenarios, such as

across different devices tiered storage and replication.

• Enterprise-grade Storage: cloud storage platforms often lack some of the

features needed in enterprise scenarios, such as snapshots and compliance.

The ability to leverage and extend ViPR data services to the underlying

storage devices to provide enterprise-class cloud storage, such as ViPR can

provide incremental real-time snapshot of the object store.

• Flexible Storage: ViPR data services are implemented by software, which

makes ViPR data service can be deployed on any server in the data center,

Chapter 2 Background Review and Related Work 14

in simple, reliable, lightweight and scalable design; And while all of these

functions underlying storage devices, IP is not locked in any storage array.

• Extensible Storage: ViPR data services provides a rich API, third-party

services can use it to develop their own systems. In addition, ViPR will also

expose the raw building blocks, these modules can provide the core IP cloud-

scale services, including distributed B + tree, metadata; third party can use

these to develop services that modules can be placed inside or outside ViPR

to extend a platform.

• Object Storage: object storage services like Amazon S3 ViPR provided the

model for the image. ViPR APIs support AmazonS3, OpenStackSwift and

EMC’s Atmos, vNextAPI support EMCCentera CAS. The ViPR also pro-

vides some extensions, including Byte range updates, atomic increase, rich

ACL snapshots, metering and billing, and so on. In addition, ViPR provides

such functions as file can be accessed directly on the same underlying file

storage device object storage, and the performance of the local file system

consistency.

2.1.7 Cubic Spline

In mathematics, a spline is a numeric function that is piecewise-defined by poly-

nomial functions, and which possesses a sufficiently high degree of smoothness at

the places where the polynomial pieces connect.

In interpolating problems, spline interpolation is often preferred to polynomial

interpolation because it yields similar results to interpolating with higher degree

polynomials while avoiding instability due to Runge’s phenomenon. In computer

graphics, parametric curves whose coordinates are given by splines are popular

because of the simplicity of their construction, their ease and accuracy of evalua-

tion, and their capacity to approximate complex shapes through curve fitting and

interactive curve design.

Chapter 2 Background Review and Related Work 15

Figure 2.8: Cubic Spline Schematic Diagram

A cubic spline is a spline constructed of piecewise third-order polynomials which

pass through a set of m control points. The second derivative of each polynomial

is commonly set to zero at the endpoints, since this provides a boundary condition

that completes the system of m-2 equations. This produces a so-called ”natural”

cubic spline and leads to a simple tridiagonal system which can be solved easily to

give the coefficients of the polynomials. However, this choice is not the only one

possible, and other boundary conditions can be used instead.

2.2 Related Works

In the early development of cloud services, the exact meaning of Software-Defined

is still inconclusive. The concept of ”Software-defined data center” is first proposed

by VMware due to the fact that software becomes more important. With the

concept of virtualization in building all the hardware resources as a resource pool,

users apply software to control the arrangement of hardware resources.

When using programmable software to control the arrangement of hardware

resources, there is no need to think about how to manipulate server, security guard

and allocate resources. In other words, all the resources are functioning perfectly.

Chapter 2 Background Review and Related Work 16

Cloud computing brought more possibilities so that software-Defined may be

different concepts in hardware and software architecture. These concepts become

the custom functions and automation of operations. Many software-defined storage

research papers and products are proposed.

Yang et al. [16] proposed an integrated storage service. They use the Open

Stack to build and manage the cloud services, and use software to integrate storage

resources including Hadoop HDFS, Ceph and Swift on Open Stack to achieve the

concept of SDS. The software used can integrate different storage devices to provide

an integrated storage array and build a virtual storage pool, so that users do not

feel restrained by the storage devices.

My thesis is based on Yang’s paper. We refer the infrastructure environment

and improve the architecture. Then, we propose the mechanism to store data. In

addition, we design the new use interface. These are the main difference between

two papers.

EMC Virtualization Platform Reinvented (ViPR) [17] is a logical storage sys-

tem, not a physical storage. It can integrate EMC storage and third-party storage

in a storage pool, and manage it as a single system, but still save the worth of

original storage. ViPR can replicate data across several different place and data

center with different store product, and it provides a unified block store, object

store and file system and other services. At the same time, ViPR provides a uni-

fied metadata service and self-service deployment, measurement and monitoring

services.

A file system architecture for organization of data and metadata that will

efficiently organize and enable sharing besides exploiting the power of storage

virtualization and maintaining simplicity in such a highly complex and virtualized

environment proposed by Ankur Agrrawal et al. [18].

Dejun Wang proposed an efficient cloud storage mode for heterogeneous cloud

infrastructures [19]. And by extensive tests he verified the model with numerical

examples. He thought that cloud storage system with traditional storage type

Chapter 2 Background Review and Related Work 17

has some differences; such as the demand from the performance point of view,

data security, reliability, efficiency and other indicators need to be considered for

cloud storage services, which are services in a wide range of complex network

environment for the demands of large-scale users.

here

Chapter 3

System Design and

Implementation

Building a cloud system to integrate multiple storage technologies is the main goal

of this work. This section introduces the system architecture and implementation

which adopt the open-source software to have better development and maintenance

in the future. The integrated heterogeneous storage technologies in the system are

useful and complete object storage. Moreover, a graphics user interface is provided

so that a manager can set some parameters to make the system more flexible.

18

Chapter 3 System Design and Implementation 19

3.1 System Architecture

Figure 3.1: System Architecture

The proposed system architecture is shown in Figure 3.1. We use OpenStack as

our infrastructure management, which is more efficient than hardware resources.

We create virtual machines using the OpenStack to deploy our services including

storage service and control service. The storage service is the basis of storage

function in our system, such as Swift, Ceph and other storage functions. The

control service is built on the Controller to manage the storage services. In other

words, the Controller control the storage devices and resources indirectly. In

addition, the Controller has its own distribution mechanism. The mechanism can

automatically assign files to an appropriate storage functions after users upload

files. The Controller also provide graphical user interface on web browser so that

users can enjoy the proposed cloud system by web browser anytime and anywhere.

3.2 Design Flow

Our design consists of the storage service and user service. As shown in Figure

3.2. These service build on Controller. The basic of system is built by OpenStack,

and OpenStack is combined with several components which are computing side,

network side and storage side. We will integrate some different storage to be the

Chapter 3 System Design and Implementation 20

storage side in the OpenStack cloud. And the storage controller was integrated

them by the API which these storage have. The concept is shown in Figure 3.2.

Figure 3.2: Controller Architecture

3.3 System Implementation

The implementation of the proposed system consists of three parts, the storage

service deployment, user services and file distribution mechanism.

3.3.1 Storage Service Deployment

By using Ubuntu OS to create virtual machines, open source software OpenStack

is applied to build and manage the proposed cloud system. The OpenStack archi-

tecture overview is shown in Figure. Some virtual machines are created to form a

storage cluster. The overview of the system is shown in Figure 3.3 and Figure 3.4.

Chapter 3 System Design and Implementation 21

Figure 3.3: OpenStack Overview

Figure 3.4: OpenStack instances

Swift deploy

Swift is an object storage service provided by OpenStack. Not all services of

Swift are necessary for us. Swift services include proxy server, account server,

container server and object server. The proxy server relies on an authentication

and authorization mechanism such as the identity service, but proxy server also

offers an internal mechanism that allows it to operate without any other OpenStack

services. According to Swift deploy requirements, we need to install the following

components: identity service, proxy server, account server, container server and

object server. The Swift environment in our system is shown in Figure 3.5.

Chapter 3 System Design and Implementation 22

Figure 3.5: Swift enviroment

We use 4 virtual machines to deploy the Swift. There are one Controller node

and four Storage nodes. Swift01 includes the Controller node and the Storage

node. Another virtual machines only include Storage node.

Ceph deploy

Ceph is a storage service, which provides object, block, and file system storage

in a single unified storage cluster. Ceph’s object storage runs on the file system

storage. Ceph has three main softwares: OSD, Monitors and Metadata Server.

According to Object storage deploy requirements, as shown in Figure 2.3, we

only need to install OSDs and Monitors. Ceph environment in our system is shown

in Figure3.6. Because our environment is not large-scale, it is enough for us to

deploy one monitor on this service.

Figure 3.6: Ceph enviroment

Chapter 3 System Design and Implementation 23

3.3.2 User Service

Without loss of generality, we adopt web service as the user interface of our system.

Because the web service is compatible with a variety of platforms such as PC,

mobile and tablet so our client and server used JQuery and PHP language. Also,

we use several techniques as shown in Table 3.1.

Table 3.1: Software & language Specification

Software & language Version

PHP 5.5.9

JQuery 1.11.2

Bootstrap 3.3.4

D3.js 3.5.5

Python 2.7.6

As mentioned above, we must consider the compatibility problems. Web design

in the past, the web server prepared two web pages. One is for wide screen, the

other is for mobile. The index page would detect user’s screen size and redirect to

suitable page. Probably, there are other different screen sizes, such as tablet and

many kinds of mobile. So this solution need to design more than two web pages.

Therefore, our web interface use the Responsive Web Design. Responsive Web

Design (RWD) is an approach for web design. The feature is providing an optimal

viewing and interaction experience. There are some concepts in the responsive

web design:

• Mobile first: Developer create a basic web site and enhance it for smart

phone, rather than make a complex and image-heavy site work on mobile.

• The fluid grid concept: This concept calls for all element size and position

to be relative units like percentages, rather than absolute units like pixels or

points.

Chapter 3 System Design and Implementation 24

• Flexible images: Images need to size in relative units, so as to prevent them

from displaying outside their containing element.

• Media queries: This is CSS3 module. It allow the page to use different CSS

style rules based on device.

We use Bootstrap develop framework. Bootstrap is the HTML, CSS, and

Javascript framework for developing responsive and mobile first projects on the

web.

From the personal computer shown in Figure 3.7(a) and from the mobile shown

in Figure 3.7(b). There is only one php page on server. This page will reformat

the page layout according to user’s screen.

(a) PC (b) Mobile

Figure 3.7: Responsive Web Design

The user experience is an important contribution to the development Graph-

ical User Interface (GUI). We use PHP to build web server. After the PHP is

interpreted and executed, the web server sends resulting output to its client. PHP

can generate a web page’s HTML code, an image, or some other data. Also the

client need better interaction. JavaScript is most commonly used as part of web

browsers, whose implementations allow client-side scripts to interact with the user,

Chapter 3 System Design and Implementation 25

control the browser, communicate asynchronously, and alter the document con-

tent that is displayed. Server-side use the PHP and client-side use the JavaScript.

These makes the html page more dynamic. But PHP process when the http re-

quest. Some sql request and other contents needed update by refresh the web

page. This situation is not a good interaction experience.

Making a good interaction experience not only use PHP and JavaScript, but

also use the AJAX will be better. Asynchronous JavaScript and XML (AJAX)

is an interrelated Web development technique used on the client-side to create

asynchronous Web applications. Web applications can send data and retrieve

from a server in the background without interfering with the display and behavior

of the existing page. The biggest advantage of using Ajax is that we can maintain

the information without updating the whole page. This makes the Web application

more rapid to respond to user actions, and to avoid the transmission of information

that did not change on the internet. There are some benefits in the AJAX:

• Callbacks: AJAX makes a quick process to and from the server to retrieve

and save data without posting the page back to the server.

• Asynchronous: AJAX makes the web page asynchronous. The client browser

to avoid waiting for all data to arrive before allowing the user to act once

more.

• User friendly: Because update the web page contents is not using postback.

Ajax enabled applications will always be more responsive, faster and more

user friendly.

Chapter 3 System Design and Implementation 26

Figure 3.8: Asynchronous JavaScript and XML

We use a lot of AJAX technique in our system. As shown in Figure 3.8. There

are four area need to display in this example, including total usage, swift usage,

ceph usage and user list. We want the display is asynchronous when user open this

page. Because these are from different techniques. Each techniques response time

are also different. If use general solution, web server is waiting these responses

then display. In figure, if the request is not retrieve the result, the web page is

showing the loading bar/circle.

3.3.3 File Distribution Mechanism

We make advance storage environment measurement, measuring the size of a file

transfer speeds using COSBench. The results of our tests marked on the coordi-

nate diagram, as shown in Figure 3.9. User’s file size is not fixed. Files are not

the same as our measuring points. Therefore, we need a mechanism to coordi-

nate interpolation drawing into a linear equation. We chose to use a cubic spline

interpolation method.

Chapter 3 System Design and Implementation 27

Figure 3.9: File transfer speeds

Figure 3.10: File transfer speeds using Cubic Spline

Therefore, we’ll get a new linear coordinates diagram, as shown in Figure.

Then we stacked linear plot Swift and Ceph, as shown in Figure. It can be used

as decision criteria when processing files. Certainly, this will not be the only

determined way in our mechanism. We also consider the use of storage capacity

Chapter 3 System Design and Implementation 28

for storage of the environmental effect. Like the previous measurement of the way,

we do measurements at different capacity status of the storage environment.

Figure 3.11: All file transfer speeds using Cubic Spline

We propose a function to determine which storage technologies is better, as

shown in the following function 3.1.

fK(S) = αft(S) + βfc(S) (3.1)

• ft(S) is the result of the transfer speed experiment. We substitute the file

size S into the function, then the transfer speed can be obtained.

• fc(S)is the result of the storage capacity experiment. We substitute the file

size S into the function, then the transfer speed can be obtained.

• α and β are the weights, by default 0.5. α and β must be the sum of one.

We can tune the determine mechanism by these parameter.

• fK(S) is the final result. We can use the function to calculate every storage

technologies. Then compare the values.

Chapter 3 System Design and Implementation 29

As above, we do transfer speed experiments on Swift and Ceph, then we obtained

two functions, fts(S) and ftc(S). Other experiments are storage capacity on Swift

and Ceph, then we obtained two functions, fcs(S) and fcc(S). ThefSwift(S) and

fCeph(S) as shows in Equation 3.2.

fSwift(S) = αfts(S) + βfcs(S)

fCeph(S) = αftc(S) + βfcc(S)
(3.2)



fSwift(S), if (fSwift(S) > fCeph(S)) or

(fSwift(S) = fCeph(S) & UsageSwift > UsageCeph)

fCeph(S), if (fSwift(S) < fCeph(S)) or

(fSwift(S) = fCeph(S) & UsageSwift < UsageCeph)

(3.3)

After calculating, we obtain two values from fSwift(S) and fCeph(S). Our mech-

anism will compare two values and determine the storage technology. There is a

special case, the two values are equal. As this case, we add the other condition

depend on storage usage. The mechanism will choose a lower usage as a decision.

The compare cases as shown in Equation 3.3.

Our mechanism is scalable. We can add any condition that may affect the

transfer speed. As shown in Equation 3.4. The fn(S) is an other experiment.

The experiment about the transfer speed. There is a control variable making the

storage has a different transfer speed. The result of the experiment obtained fn(S).

Like Function 3.1 , we give a weight γ. α, β and γ must be the sum of one.

fK(S) = αft(S) + βfc(S) + γfn(S) (3.4)

Chapter 4

Experiments and Results

In this chapter, we present the experiments and system implementation results.

First, we test performance of the proposed system infrastructure to know the

system well. Next, we measure speeds of storage systems, and this measurement

provides the basis of the file distribution mechanism. Finally, we show the user

interface used in the system.

4.1 Experimental Environment

We used OpenStack to build our cloud platform, which then was used to create

and manage the distributed storage system. In the system we integrated two

heterogeneous storage technologies. And we built the storage system by some

VMs, in which Ceph was constructed by four VMs with specifications of 2-core

CPU, 4 GB memory, and a total of 160 GB storage space. Ceph01 was MON

and OSD, the others was OSD. These were components in the Ceph cluster. And

the Swift part was constructed by four VMs including one proxy server and four

storage nodes with specifications of 2-core CPU, 4 GB memory, and total of 160

GB storage space.

30

Chapter 4 Experiments and Results 31

Table 4.1: Hardware Specification

Host name CPU Memory Disk OS

Openstack_Controller 16 cores CPU 48GB 100GB Ubuntu 14.04

Openstack_compute01 24 cores CPU 48GB 800GB Ubuntu 14.04

Openstack_compute02 24 cores CPU 48GB 800GB Ubuntu 14.04

Table 4.2: Storage Environment Specification

Host name CPU Memory Disk OS

Controller 4 cores vCPU 8GB 40GB Ubuntu 14.04

ceph01 2 cores vCPU 8GB 40GB Ubuntu 14.04

ceph02 2 cores vCPU 4GB 40GB Ubuntu 14.04

ceph03 2 cores vCPU 4GB 40GB Ubuntu 14.04

ceph04 2 cores vCPU 4GB 40GB Ubuntu 14.04

swift01 2 cores vCPU 4GB 40GB Ubuntu 14.04

swift02 2 cores vCPU 4GB 40GB Ubuntu 14.04

swift03 2 cores vCPU 4GB 40GB Ubuntu 14.04

swift04 2 cores vCPU 4GB 40GB Ubuntu 14.04

Table 4.3: Software Specification

Software Version

OpenStack Juno

Ceph Hammer v0.94

Swift 2.1.0

4.2 Performance

We need to obtain baseline performance statistics for the two main components

of our infrastructure: network and disks. We chose four VMs as the experimental

nodes on OpenStack. The four VMs were swift01, swift02, swift03 and swift04.

Chapter 4 Experiments and Results 32

First, network throughput is a key factor affecting the cluster performance. A

good tool for this is iperf, which uses a client-server connection to measure TCP

and UDP bandwidths. The results are shown in Figure 4.1. In the histogram, the

x-axis is the number of tests, and the y-axis is the transmission bandwidth. The

results are divided into two groups: group A consisting of Swift01 and Swift03, and

group B consisting of Swift02 and Swift04. The bandwidth of Group A is almost

about 7,000 Mbits/s, and the bandwidth of Group B is almost about 900 Mbits/

s. After analysis, we think the reason of the results is due to different physical

hosts used by the two groups. Swift01 and Swift03 are on Openstack_compute01.

Swift02 and Swift04 are on Openstack_compute02. VMs use the physical network

to communicate between two physical hosts; whereas, VMs use the virtual network

to communicate within the internal of a host. This experiment clearly shows that

various network scenarios can be used for the distribution of VMs on OpenStack.

Figure 4.1: Network infrastructure speed

Chapter 4 Experiments and Results 33

Another key factor that affects the system performance is disks. The simple

way to measure the performance of a disk is with linux command dd, which is

used to convert and copy files. The results of disk read and disk write are shown

in Figure 4.3 and 4.2, respectively.

Figure 4.2: Disk infrastructure write speed

Figure 4.3: Disk infrastructure read speed

Chapter 4 Experiments and Results 34

According to the network experiments, for experiment settings with VMs on

the same host, the results are similar. Consequently, the experiment was designed

to measurement swift01, swift02, Openstack_compute01 and Openstack_compute02.

The write and read results show that the VM cannot use the full speed of the host.

This analysis provides the basis for us to deploy the storage system. In the later

section of debugging and improving bottlenecks these I/O tests are needed to

clarify the problems.

At above two experiments, we have decided the number of VMs on the host

and how to deploy the storage cluster. And next, we measure Ceph and Swift

storage clusters.

The results of upload speeds are marked on the diagram. The blue circle is

Swift, and red one is Ceph. Then the cubic spline is used to get the linear curve, as

shown in Figure 4.4. The speed of Swift is stabilized at 20-30MB/s, but its speed

increases when the file size is more than 800MB. The overall curve of speed of

Ceph is stabilized at 15MB. The two curves intersect at one point, located about

50MB. The speed of Ceph is faster than that of Swift when the file size is less than

50MB. On the other hand, the speed of Swift is faster than that of Ceph when the

file size is more 50MB.

Figure 4.4: Measure the upload speed

Chapter 4 Experiments and Results 35

The other experiment is download measurement. As for the upload measure-

ment, we draw the results in a diagram, as shown in Figure 4.5. We observe that

the download speed of Ceph is faster than that of Swift. The average difference

between them is about 10MB.

Figure 4.5: Measure the download speed

In this work, we measure the storage cluster. And these results as the mech-

anism to allocate the file store. That mechanism bring each storage advantage in

our system.

Chapter 4 Experiments and Results 36

4.3 User Interface

We used a user interface in our system. First, we overview the website map,

as shown in Figure 4.6. There are three parts in this interface. Overview,

My storage and Account each is a main page with several functions. Overview

provides the summary of the user status. Users can view their storage usage and

account list. For the user, My storage is the major part in this system, and it in-

cludes following basic operations: upload, download, remove, and modify. Account

shows the user information, in which the user can also edit the user account, such

as username, password and E-mail.

Figure 4.6: User interface overview

As shown in Figure 4.7(a), there are two panels in Overview. These two panels

are the storage usage and account list, respectively. In the current supported

storage technology, we have three liquid fill gauges. These liquid fill gauges display

usage percentages, including total usage, Swift usage and Ceph usage. The storage

usage will change from the liquid fill gauge to usage details when moving the mouse

over the liquid fill gauge, as shown in Figure 4.7(b). This use of javascript is to

achieve Web2.0. The table at the bottom of the webpage is the account list, which

lists all account information. It is shown when the user logs in as an administrator.

Chapter 4 Experiments and Results 37

(a) (b)

Figure 4.7: Overviwe page

The My storage page is the major operating page in our system. Upon enter-

ing this page, there is a file list in the middle. The drop down menu is shown when

the user right clicks the file, as shown in Figure 4.8. The drop down menu has

four functions: download, delete, rename, and detail. These four functions plus

the upload function compose of all the storage operating functions in this page.

Figure 4.8: My storage page view

Chapter 4 Experiments and Results 38

Figure 4.9: Upload the files

We use the AJAX, JQuery and Bootstrap to implement the upload function.

The web page popups a window when the upload button is clicked, as shown in

Figure 4.9. This design does not redirect the page to the upload function page and

the upload process works like a background process. There are four files shown

in the list. One is ready to upload, the other two are being uploaded, and the

last one is under processing. The upload function allows multiple files uploaded at

the same time. They are shown in individual progress bars and the total progress

bar. The total progress bar shows the upload details, including the transfer speed,

remaining time and completed percentage to let user monitor and control the

upload progress. The processing state is entered when the upload is finished and

the server processes files to storage. By clicking outside of the upload window, the

window will be closed and the upload job will proceed in the background. When

clickingthe upload button again, the window shows the current upload progress.

Several features of the upload function are listed as follows:

Chapter 4 Experiments and Results 39

• Friendly user interface: The upload progress is visually shown; thus, the user

can easily monitor and control the upload jobs.

• Multi-upload: The user can upload multiple files at the same time.

• Background processing: The user can upload files in background and operate

other functions at the same time in the My storage page.

The other function is Detail, which displays the file details, as shown in Figure

4.10. We use a design similar to the upload function. When clicking on the detail

button, the detail web page will pop up. It also includes download and delete

functions, so the user not only views the details but also manages files.

Figure 4.10: File details

The last part is Account, as shown in Figure 4.11. The Account page has two

main functions, i.e., viewing and editing the account details. Certainly, the design

of it also follows concepts of responsive web design, asynchronous JavaScript, and

XML.

Chapter 4 Experiments and Results 40

Figure 4.11: Account page view

About the responsive web design, all pages of this work follows this design

concept. Whatever any device is used, boot-starting the screen size to responsively

display a suitable web layout.

As shown in Figure 4.12, navigation bar at the top has been changed. The

mobile screen is in a narrow shape; however the banner navigation bar cannot be

displayed in one row. Therefore, navigation bar converts to a drop down menu,

as shown in Figure 4.12(a). That makes the navigation bar looked better on the

narrow screen. The other features are shown in Figure 4.12(c). For the same

reason that the mobile screen is narrow, some text is too long to be displayed.

The button texts, i.e., Upload and Cancel, replace symbol icons. As described

above, we not only reformat the layout also change some content to make the

narrow screen looked not too complex.

Chapter 4 Experiments and Results 41

(a) (b) (c)

Figure 4.12: Responsive Web Design

About the other technique, asynchronous JavaScript and XML used in our

system, we used the JQuery to achieve the AJAX. We applied it in many functions.

One of the applications is for information display. Massive data are obtained

through inquiry database and storage systems. The information response time is

different. When retrieving the information, we want to display it in real time.

There are several data panels. The data panel needs to finish its inquiry before it

will update the content. Consequently, every panel does not wait for each other.

In our work, other applications such as upload also use the AJAX concept.

Chapter 5

Conclusions and Future Work

This thesis builds a cloud system to achieve the SDS concept. In the cloud system,

we use distributed cloud architecture integrated several storage technologies to

provide high reliability and high scalability cloud services. Finally, we design a

high usability user interface to have a more friendly system. The following are our

concluding remark and future work.

5.1 Concluding Remark

We propose a mechanism which works according to the transfer speed of each

storage. This mechanism allows heterogeneous storage. Even different clusters

using same technology storage can be integrated in our system. For example, we

can integrate the two different Swift clusters. The mechanism can allocate files to

suitable storage spaces. And this mechanism has scalability; Besides, we can add

more factors to customize the mechanism and make it more intelligent.

We also provide a high usability user interface. The user interface is designed

as a web application. According to the concept of cloud services, this interface can

be used anywhere and anytime. We use a responsive web design to achieve features

of the web application. Consequently, it not only achieving anywhere and anytime

features but also it can be used in any device with a web browser. Whatever the

42

Chapter 5 Conclusions and Future Work 43

user’s device screen is, the responsive web design can style the page in a beautiful

and useful layout. The user interface design focuses on the user experience; thus,

the smooth operation is very important. To improve the user experience, we

use asynchronous JavaScript and XML, enabling the web application to directly

update its content without redirecting and/or refreshing the web page.

5.2 Future Works

The proposed storage is not large since we only build less than 10 VMs. So we plan

to build a larger system to test our method in the future. Similarly, it is possible to

integrate more storage technologies into the system although our current system

can integrate several heterogeneous storage technologies. The other two future

works are described as follows. First, although our system supports open source

technologies Swift and Ceph, it is necessary to support the current cloud providers,

such as Amazon S3 and Windows Azure. Second, the mechanism runs on a web

server. We want to detach the mechanism and develop a service which can be

called by other servers. Consequently, we need to develop APIs to provide other

servers to use our system.

References

[1] I. Foster, Yong Zhao, I. Raicu, and Shiyong Lu. Cloud computing and grid

computing 360-degree compared. In Grid Computing Environments Work-

shop, 2008. GCE ’08, pages 1–10, Nov 2008.

[2] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff,

and D. Zagorodnov. The eucalyptus open-source cloud-computing system.

In Cluster Computing and the Grid, 2009. CCGRID ’09. 9th IEEE/ACM

International Symposium on, pages 124–131, May 2009.

[3] Mahadev Satyanarayanan, P. Bahl, R Caceres, and N. Davies. The case for

vm-based cloudlets in mobile computing. Pervasive Computing, IEEE, 8(4):

14–23, Oct 2009.

[4] R. Buyya, Chee Shin Yeo, and S. Venugopal. Market-oriented cloud comput-

ing: Vision, hype, and reality for delivering it services as computing utilities.

In High Performance Computing and Communications, 2008. HPCC ’08. 10th

IEEE International Conference on, pages 5–13, Sept 2008.

[5] G. Vernik, A. Shulman-Peleg, S. Dippl, C. Formisano, M.C. Jaeger, E.K.

Kolodner, and M. Villari. Data on-boarding in federated storage clouds. In

Cloud Computing (CLOUD), 2013 IEEE Sixth International Conference on,

pages 244–251, June 2013.

[6] E.K. Kolodner, S. Tal, D. Kyriazis, D. Naor, M. Allalouf, L. Bonelli, P. Brand,

A. Eckert, E. Elmroth, S.V. Gogouvitis, D. Harnik, F. Hernandez, M.C.

Jaeger, E.B. Lakew, J.M. Lopez, M. Lorenz, A. Messina, A. Shulman-Peleg,

44

References 45

R. Talyansky, A. Voulodimos, and Y. Wolfsthal. A cloud environment for

data-intensive storage services. In Cloud Computing Technology and Science

(CloudCom), 2011 IEEE Third International Conference on, pages 357–366,

Nov 2011.

[7] S. Rhea, C. Wells, P. Eaton, D. Geels, B. Zhao, H. Weatherspoon, and J. Ku-

biatowicz. Maintenance-free global data storage. Internet Computing, IEEE,

5(5):40–49, Sep 2001.

[8] M. Mesnier, G.R. Ganger, and E. Riedel. Object-based storage. Communi-

cations Magazine, IEEE, 41(8):84–90, Aug 2003.

[9] Simon Robinson. Software-defined storage: The reality be-

neath the hype. http://www.computerweekly.com/opinion/

Software-defined-storage-The-reality-beneath-the-hype, 2013.

[10] Inc Coraid. The fundamentals of software-defined storage. http://san.

coraid.com/rs/coraid/images/SB-Coraid_SoftwareDefinedStorage.

pdf, 2013.

[11] Margaret Rouse. software-defined storage. http://searchsdn.techtarget.

com/definition/software-defined-storage, 2013.

[12] Openstack swift. https://wiki.openstack.org/wiki/Swift, 2015.

[13] Sage A Weil, Scott A Brandt, Ethan L Miller, Darrell DE Long, and Carlos

Maltzahn. Ceph: A scalable, high-performance distributed file system. In

Proceedings of the 7th symposium on Operating systems design and imple-

mentation, pages 307–320. USENIX Association, 2006.

[14] Openstack. https://www.openstack.org/, 2015.

[15] Qing Zheng, Haopeng Chen, Yaguang Wang, Jian Zhang, and Jiangang Duan.

Cosbench: Cloud object storage benchmark. In 4th ACM/SPEC International

Conference on Performance Engineering (ICPE 2013). ACM, 2013.

http://www.computerweekly.com/opinion/Software-defined-storage-The-reality-beneath-the-hype
http://www.computerweekly.com/opinion/Software-defined-storage-The-reality-beneath-the-hype
http://san.coraid.com/rs/coraid/images/SB-Coraid_SoftwareDefinedStorage.pdf
http://san.coraid.com/rs/coraid/images/SB-Coraid_SoftwareDefinedStorage.pdf
http://san.coraid.com/rs/coraid/images/SB-Coraid_SoftwareDefinedStorage.pdf
http://searchsdn.techtarget.com/definition/software-defined-storage
http://searchsdn.techtarget.com/definition/software-defined-storage
https://wiki.openstack.org/wiki/Swift
https://www.openstack.org/

References 46

[16] Chao-Tung Yang, Wei-Hsiang Lien, Yu-Chuan Shen, and Fang-Yi Leu. Im-

plementation of a software-defined storage service with heterogeneous storage

technologies. In Advanced Information Networking and Applications Work-

shops (WAINA), 2015 IEEE 29th International Conference on, pages 102–

107. IEEE, March 2015.

[17] Emc vipr. http://www.emc.com/vipr, 2015.

[18] Ankur Agrrawal, Rahul Shankar, Shagun Akarsh, and Piyush Madan. File

system aware storage virtualization management. In 2012 IEEE International

Conference on Cloud Computing in Emerging Markets (CCEM), pages 1–11.

IEEE, 2012.

[19] Dejun Wang. An efficient cloud storage model for heterogeneous cloud infras-

tructures. Procedia Engineering, 23:510–515, 2011.

[20] wikipedia. Software-defined storage. http://en.wikipedia.org/wiki/

Software-defined_storage, 2014.

[21] Mark Carlson, Alan Yoder, and Leah Schoeb. Software defined storage.

http://snia.org/sites/default/files/SNIA%20Software%20Defined%

20Storage%20White%20Paper-%20v1.0k-DRAFT.pdf/, 2014.

[22] Tahani Hussain, Paulvanna Nayaki Marimuthu, and Sami J. Habib. Managing

distributed storage system through network redesign. In Asia-Pacific Network

Operations and Management Symposium, pages 1–6, 2013.

[23] Chengzhang Peng and Zejun Jiang. Building a cloud storage service system.

Procedia Environmental Sciences, 10, Part A(0):691 – 696, 2011. 2011 3rd

International Conference on Environmental Science and Information Appli-

cation Technology {ESIAT} 2011.

[24] Patrícia Takako Endo, Glauco Estácio Gonçalves, Judith Kelner, and Djamel

Sadok. A survey on open-source cloud computing solutions. In Brazilian

Symposium on Computer Networks and Distributed Systems, 2010.

http://www.emc.com/vipr
http://en.wikipedia.org/wiki/Software-defined_storage
http://en.wikipedia.org/wiki/Software-defined_storage
http://snia.org/sites/default/files/SNIA%20Software%20Defined%20Storage%20White%20Paper-%20v1.0k-DRAFT.pdf/
http://snia.org/sites/default/files/SNIA%20Software%20Defined%20Storage%20White%20Paper-%20v1.0k-DRAFT.pdf/

References 47

[25] wikipedia. Cloud computing. http://en.wikipedia.org/wiki/Cloud_

computing, 2013.

[26] Sergi Figuerola, Mathieu Lemay, Victor Reijs, Michel Savoie, and Bill St. Ar-

naud. Converged optical network infrastructures in support of future internet

and grid services using iaas to reduce ghg emissions. J. Lightwave Technol.,

27(12):1941–1946, Jun 2009.

[27] Josef Spillner, Johannes Müller, and Alexander Schill. Creating optimal cloud

storage systems. Future Generation Comp. Syst., 29(4):1062–1072, 2013.

[28] Chao-Tung Yang, Wen-Chung Shih, and Chih-Lin Huang. Implementation

of a distributed data storage system with resource monitoring on cloud com-

puting. In GPC, pages 64–73, 2012.

[29] Chao-Tung Yang, Wen-Chung Shih, Guan-Han Chen, and Shih-Chi Yu. Im-

plementation of a cloud computing environment for hiding huge amounts of

data. In International Symposium on Parallel and Distributed Processing with

Applications, pages 1–7, 2010.

[30] Borja Sotomayor, Rubén S Montero, Ignacio M Llorente, and Ian Foster.

Virtual infrastructure management in private and hybrid clouds. Internet

Computing, IEEE, 13(5):14–22, 2009.

[31] Rafael Moreno-Vozmediano, Ruben S. Montero, and Ignacio M. Llorente.

Elastic management of cluster-based services in the cloud. In Proceedings of

the 1st workshop on Automated control for datacenters and clouds, ACDC

’09, pages 19–24, New York, NY, USA, 2009. ACM.

http://en.wikipedia.org/wiki/Cloud_computing
http://en.wikipedia.org/wiki/Cloud_computing

Appendix A

OpenStack Installation

I. OpenStack packages

apt-get install ubuntu-cloud-keyring

echo "deb http://ubuntu-cloud.archive.canonical.com/ubuntu" \

"trusty-updates/juno main" > /etc/apt/sources.list.d/cloudarchive-juno.list

apt-get update && apt-get dist-upgrade

II. Database server installation

apt-get install mariadb-server python-mysqldb

vim /etc/mysql/my.cnf

[mysqld]

...

bind-address = 10.0.0.11

default-storage-engine = innodb

innodb_file_per_table

collation-server = utf8_general_ci

init-connect = 'SET NAMES utf8'

character-set-server = utf8

service mysql restart

mysql_secure_installation

III. Messaging server installation

48

49

apt-get install rabbitmq-server

rabbitmqctl change_password guest RABBIT_PASS

service rabbitmq-server restart

IV. Add the Identity service

mysql -u root -p

$ CREATE DATABASE keystone;

$ GRANT ALL PRIVILEGES ON keystone.* TO 'keystone'@'localhost' \

IDENTIFIED BY 'KEYSTONE_DBPASS ';

$ GRANT ALL PRIVILEGES ON keystone.* TO 'keystone'@'%' \

IDENTIFIED BY 'KEYSTONE_DBPASS ';

apt-get install keystone python-keystoneclient

vim /etc/keystone/keystone.conf

[DEFAULT]

...

admin_token = ADMIN_TOKEN

[database]

...

connection = mysql://keystone:KEYSTONE_DBPASS@controller/keystone

[token]

...

provider = keystone.token.providers.uuid.Provider

driver = keystone.token.persistence.backends.sql.Token

[revoke]

...

driver = keystone.contrib.revoke.backends.sql.Revoke

[DEFAULT]

...

verbose = True

su -s /bin/sh -c "keystone-manage db_sync" keystone

service keystone restart

rm -f /var/lib/keystone/keystone.db

(crontab -l -u keystone 2>&1 | grep -q token_flush) || \

echo '@hourly /usr/bin/keystone-manage token_flush > \

/var/log/keystone/keystone-tokenflush.log 2>&1' >> /var/spool/cron/crontabs/keystone

export OS_SERVICE_TOKEN=ADMIN_TOKEN

50

export OS_SERVICE_ENDPOINT=http://controller:35357/v2.0

keystone tenant-create --name admin --description "Admin Tenant"

keystone user-create --name admin --pass ADMIN_PASS --email EMAIL_ADDRESS

keystone role-create --name admin

keystone user-role-add --user admin --tenant admin --role admin

keystone service-create --name keystone --type identity \

--description "OpenStack Identity"

keystone endpoint-create \

--service-id $(keystone service-list | awk '/ identity / {print $2}') \

--publicurl http://controller:5000/v2.0 \

--internalurl http://controller:5000/v2.0 \

--adminurl http://controller:35357/v2.0 \

--region regionOne

V. Add the Image Service

mysql -u root -p

$ CREATE DATABASE glance;

$ GRANT ALL PRIVILEGES ON glance.* TO 'glance'@'localhost' \

IDENTIFIED BY 'GLANCE_DBPASS ';

$ GRANT ALL PRIVILEGES ON glance.* TO 'glance'@'%' \

IDENTIFIED BY 'GLANCE_DBPASS ';

keystone user-create --name glance --pass GLANCE_PASS

keystone user-role-add --user glance --tenant service --role admin

keystone service-create --name glance --type image \

--description "OpenStack Image Service"

keystone endpoint-create \

--service-id $(keystone service-list | awk '/ image / {print $2}') \

--publicurl http://controller:9292 \

--internalurl http://controller:9292 \

--adminurl http://controller:9292 \

--region regionOne

apt-get install glance python-glanceclient

vim /etc/glance/glance-api.conf

[database]

...

connection = mysql://glance:GLANCE_DBPASS@controller/glance

[keystone_authtoken]

...

auth_uri = http://controller:5000/v2.0

identity_uri = http://controller:35357

51

admin_tenant_name = service

admin_user = glance

admin_password = GLANCE_PASS

[paste_deploy]

...

flavor = keystone

[glance_store]

...

default_store = file

filesystem_store_datadir = /var/lib/glance/images/

[DEFAULT]

...

notification_driver = noop

verbose = True

vim /etc/glance/glance-registry.conf

[database]

...

connection = mysql://glance:GLANCE_DBPASS@controller/glance

[keystone_authtoken]

...

auth_uri = http://controller:5000/v2.0

identity_uri = http://controller:35357

admin_tenant_name = service

admin_user = glance

admin_password = GLANCE_PASS

[paste_deploy]

...

flavor = keystone

[DEFAULT]

...

notification_driver = noop

verbose = True

su -s /bin/sh -c "glance-manage db_sync" glance

service glance-registry restart

service glance-api restart

rm -f /var/lib/glance/glance.sqlite

52

VI. Add the Compute service (controller node)

mysql -u root -p

$ CREATE DATABASE nova;

$ GRANT ALL PRIVILEGES ON nova.* TO 'nova'@'localhost' \

IDENTIFIED BY 'NOVA_DBPASS ';

$ GRANT ALL PRIVILEGES ON nova.* TO 'nova'@'%' \

IDENTIFIED BY 'NOVA_DBPASS ';

keystone user-create --name nova --pass NOVA_PASS

keystone user-role-add --user nova --tenant service --role admin

keystone service-create --name nova --type compute \

--description "OpenStack Compute"

keystone endpoint-create \

--service-id $(keystone service-list | awk '/ compute / {print $2}') \

--publicurl http://controller:8774/v2/%\(tenant_id\)s \

--internalurl http://controller:8774/v2/%\(tenant_id\)s \

--adminurl http://controller:8774/v2/%\(tenant_id\)s \

--region regionOne

apt-get install nova-api nova-cert nova-conductor nova-consoleauth \

nova-novncproxy nova-scheduler python-novaclient

vim /etc/nova/nova.conf

[database]

...

connection = mysql://nova:NOVA_DBPASS@controller/nova

[DEFAULT]

...

rpc_backend = rabbit

rabbit_host = controller

rabbit_password = RABBIT_PASS

auth_strategy = keystone

my_ip = 10.0.0.11

vncserver_listen = 10.0.0.11

vncserver_proxyclient_address = 10.0.0.11

verbose = True

[keystone_authtoken]

...

auth_uri = http://controller:5000/v2.0

identity_uri = http://controller:35357

admin_tenant_name = service

admin_user = nova

admin_password = NOVA_PASS

[glance]

53

...

host = controller

su -s /bin/sh -c "nova-manage db sync" nova

service nova-api restart

service nova-cert restart

service nova-consoleauth restart

service nova-scheduler restart

service nova-conductor restart

service nova-novncproxy restart

rm -f /var/lib/nova/nova.sqlite

VII. Add the Compute service (compute node)

apt-get install nova-compute sysfsutils

vim /etc/nova/nova.conf

[DEFAULT]

...

rpc_backend = rabbit

rabbit_host = controller

rabbit_password = RABBIT_PASS

auth_strategy = keystone

my_ip = MANAGEMENT_INTERFACE_IP_ADDRESS

vnc_enabled = True

vncserver_listen = 0.0.0.0

vncserver_proxyclient_address = MANAGEMENT_INTERFACE_IP_ADDRESS

novncproxy_base_url = http://controller:6080/vnc_auto.html

verbose = True

[keystone_authtoken]

...

auth_uri = http://controller:5000/v2.0

identity_uri = http://controller:35357

admin_tenant_name = service

admin_user = nova

admin_password = NOVA_PASS

[glance]

...

host = controller

service nova-compute restart

rm -f /var/lib/nova/nova.sqlite

54

VIII. Add a networking (contoller node)

vim /etc/nova/nova.conf

[DEFAULT]

...

network_api_class = nova.network.api.API

security_group_api = nova

service nova-api restart

service nova-scheduler restart

service nova-conductor restart

IX. Add a networking (compute node)

apt-get install nova-network nova-api-metadata

vim /etc/nova/nova.conf

[DEFAULT]

...

network_api_class = nova.network.api.API

security_group_api = nova

firewall_driver = nova.virt.libvirt.firewall.IptablesFirewallDriver

network_manager = nova.network.manager.FlatDHCPManager

network_size = 254

allow_same_net_traffic = False

multi_host = True

send_arp_for_ha = True

share_dhcp_address = True

force_dhcp_release = True

flat_network_bridge = br100

flat_interface = INTERFACE_NAME

public_interface = INTERFACE_NAME

service nova-network restart

service nova-api-metadata restart

X. Add the dashboard

apt-get install openstack-dashboard apache2 libapache2-mod-wsgi memcached python-memcache

vim /etc/openstack-dashboard/local_settings.py

OPENSTACK_HOST = "controller"

ALLOWED_HOSTS = ['*']

CACHES = {

'default': {

55

'BACKEND': 'django.core.cache.backends.memcached.MemcachedCache',

'LOCATION': '127.0.0.1:11211',

}

}

service apache2 restart

service memcached restart

XI. Add the Block Storage service (controller node)

mysql -u root -p

$ CREATE DATABASE cinder;

$ GRANT ALL PRIVILEGES ON cinder.* TO 'cinder'@'localhost' \

IDENTIFIED BY 'CINDER_DBPASS ';

$ GRANT ALL PRIVILEGES ON cinder.* TO 'cinder'@'%' \

IDENTIFIED BY 'CINDER_DBPASS ';

keystone user-create --name cinder --pass CINDER_PASS

keystone user-role-add --user cinder --tenant service --role admin

keystone service-create --name cinder --type volume \

--description "OpenStack Block Storage"

keystone endpoint-create \

--service-id $(keystone service-list | awk '/ volume / {print $2}') \

--publicurl http://controller:8776/v1/%\(tenant_id\)s \

--internalurl http://controller:8776/v1/%\(tenant_id\)s \

--adminurl http://controller:8776/v1/%\(tenant_id\)s \

--region regionOne

keystone endpoint-create \

--service-id $(keystone service-list | awk '/ volumev2 / {print $2}') \

--publicurl http://controller:8776/v2/%\(tenant_id\)s \

--internalurl http://controller:8776/v2/%\(tenant_id\)s \

--adminurl http://controller:8776/v2/%\(tenant_id\)s \

--region regionOne

apt-get install cinder-api cinder-scheduler python-cinderclient

vim /etc/cinder/cinder.conf

[database]

...

connection = mysql://cinder:CINDER_DBPASS@controller/cinder

[DEFAULT]

...

rpc_backend = rabbit

rabbit_host = controller

rabbit_password = RABBIT_PASS

auth_strategy = keystone

my_ip = 10.0.0.11

56

verbose = True

[keystone_authtoken]

...

auth_uri = http://controller:5000/v2.0

identity_uri = http://controller:35357

admin_tenant_name = service

admin_user = cinder

admin_password = CINDER_PASS

su -s /bin/sh -c "cinder-manage db sync" cinder

service cinder-scheduler restart

service cinder-api restart

rm -f /var/lib/cinder/cinder.sqlite

XII. Add the Block Storage service (storage node)

apt-get install cinder-volume python-mysqldb

vim /etc/cinder/cinder.conf

[database]

...

connection = mysql://cinder:CINDER_DBPASS@controller/cinder

[DEFAULT]

...

rpc_backend = rabbit

rabbit_host = controller

rabbit_password = RABBIT_PASS

auth_strategy = keystone

my_ip = MANAGEMENT_INTERFACE_IP_ADDRESS

glance_host = controller

verbose = True

[keystone_authtoken]

...

auth_uri = http://controller:5000/v2.0

identity_uri = http://controller:35357

admin_tenant_name = service

admin_user = cinder

admin_password = CINDER_PASS

service tgt restart

service cinder-volume restart

rm -f /var/lib/cinder/cinder.sqlite

Appendix B

Swift Installation

I. OpenStack packages

apt-get install ubuntu-cloud-keyring

echo "deb http://ubuntu-cloud.archive.canonical.com/ubuntu" \

"trusty-updates/juno main" > /etc/apt/sources.list.d/cloudarchive-juno.list

apt-get update && apt-get dist-upgrade

II. Database server installation

apt-get install mariadb-server python-mysqldb

vim /etc/mysql/my.cnf

[mysqld]

...

bind-address = 10.0.0.11

default-storage-engine = innodb

innodb_file_per_table

collation-server = utf8_general_ci

init-connect = 'SET NAMES utf8'

character-set-server = utf8

service mysql restart

mysql_secure_installation

III. Messaging server installation

57

58

apt-get install rabbitmq-server

rabbitmqctl change_password guest RABBIT_PASS

service rabbitmq-server restart

IV. Add the Identity service

mysql -u root -p

$ CREATE DATABASE keystone;

$ GRANT ALL PRIVILEGES ON keystone.* TO 'keystone'@'localhost' \

IDENTIFIED BY 'KEYSTONE_DBPASS ';

$ GRANT ALL PRIVILEGES ON keystone.* TO 'keystone'@'%' \

IDENTIFIED BY 'KEYSTONE_DBPASS ';

apt-get install keystone python-keystoneclient

vim /etc/keystone/keystone.conf

[DEFAULT]

...

admin_token = ADMIN_TOKEN

[database]

...

connection = mysql://keystone:KEYSTONE_DBPASS@controller/keystone

[token]

...

provider = keystone.token.providers.uuid.Provider

driver = keystone.token.persistence.backends.sql.Token

[revoke]

...

driver = keystone.contrib.revoke.backends.sql.Revoke

[DEFAULT]

...

verbose = True

su -s /bin/sh -c "keystone-manage db_sync" keystone

service keystone restart

rm -f /var/lib/keystone/keystone.db

(crontab -l -u keystone 2>&1 | grep -q token_flush) || \

echo '@hourly /usr/bin/keystone-manage token_flush > \

/var/log/keystone/keystone-tokenflush.log 2>&1' >> /var/spool/cron/crontabs/keystone

export OS_SERVICE_TOKEN=ADMIN_TOKEN

59

export OS_SERVICE_ENDPOINT=http://controller:35357/v2.0

keystone tenant-create --name admin --description "Admin Tenant"

keystone user-create --name admin --pass ADMIN_PASS --email EMAIL_ADDRESS

keystone role-create --name admin

keystone user-role-add --user admin --tenant admin --role admin

keystone service-create --name keystone --type identity \

--description "OpenStack Identity"

keystone endpoint-create \

--service-id $(keystone service-list | awk '/ identity / {print $2}') \

--publicurl http://controller:5000/v2.0 \

--internalurl http://controller:5000/v2.0 \

--adminurl http://controller:35357/v2.0 \

--region regionOne

V. Add Object Storage (controller node)

keystone user-create --name swift --pass SWIFT_PASS

keystone user-role-add --user swift --tenant service --role admin

keystone service-create --name swift --type object-store \

--description "OpenStack Object Storage"

keystone endpoint-create \

--service-id $(keystone service-list | awk '/ object-store / {print $2}') \

--publicurl 'http://controller:8080/v1/AUTH_%(tenant_id)s' \

--internalurl 'http://controller:8080/v1/AUTH_%(tenant_id)s' \

--adminurl http://controller:8080 \

--region regionOne

apt-get install swift swift-proxy python-swiftclient python-keystoneclient \

python-keystonemiddleware memcached

curl -o /etc/swift/proxy-server.conf \

https://raw.githubusercontent.com/openstack/swift/stable/juno/etc/proxy-server.conf-sample

vim /etc/swift/proxy-server.conf

[DEFAULT]

...

bind_port = 8080

user = swift

swift_dir = /etc/swift

[pipeline:main]

pipeline = authtoken cache healthcheck keystoneauth proxy-logging proxy-server

[app:proxy-server]

...

allow_account_management = true

account_autocreate = true

60

[filter:keystoneauth]

use = egg:swift#keystoneauth

...

operator_roles = admin,_member_

[filter:authtoken]

paste.filter_factory = keystonemiddleware.auth_token:filter_factory

...

auth_uri = http://controller:5000/v2.0

identity_uri = http://controller:35357

admin_tenant_name = service

admin_user = swift

admin_password = SWIFT_PASS

delay_auth_decision = true

[filter:cache]

...

memcache_servers = 127.0.0.1:11211

VI. Add Object Storage (storage node)

apt-get install xfsprogs rsync

mkfs.xfs /dev/sdb1

mkdir -p /srv/node/sdb1

vim /etc/fstab

/dev/sdb1 /srv/node/sdb1 xfs noatime,nodiratime,nobarrier,logbufs=8 0 2

mount /srv/node/sdb1

vim /etc/rsyncd.conf

uid = swift

gid = swift

log file = /var/log/rsyncd.log

pid file = /var/run/rsyncd.pid

address = MANAGEMENT_INTERFACE_IP_ADDRESS

[account]

max connections = 2

path = /srv/node/

read only = false

lock file = /var/lock/account.lock

[container]

max connections = 2

path = /srv/node/

read only = false

61

lock file = /var/lock/container.lock

[object]

max connections = 2

path = /srv/node/

read only = false

lock file = /var/lock/object.lock

vim /etc/default/rsync

RSYNC_ENABLE=true

service rsync start

apt-get install swift swift-account swift-container swift-object

curl -o /etc/swift/account-server.conf \

https://raw.githubusercontent.com/openstack/swift/stable/juno/etc/account-server.conf-sample

curl -o /etc/swift/container-server.conf \

https://raw.githubusercontent.com/openstack/swift/stable/juno/etc/container-server.conf-sample

curl -o /etc/swift/object-server.conf \

https://raw.githubusercontent.com/openstack/swift/stable/juno/etc/object-server.conf-sample

vim /etc/swift/account-server.conf

[DEFAULT]

...

bind_ip = MANAGEMENT_INTERFACE_IP_ADDRESS

bind_port = 6002

user = swift

swift_dir = /etc/swift

devices = /srv/node

[pipeline:main]

pipeline = healthcheck recon account-server

[filter:recon]

...

recon_cache_path = /var/cache/swift

vim /etc/swift/container-server.conf

[DEFAULT]

...

bind_ip = MANAGEMENT_INTERFACE_IP_ADDRESS

bind_port = 6001

user = swift

swift_dir = /etc/swift

devices = /srv/node

[pipeline:main]

pipeline = healthcheck recon container-server

62

[filter:recon]

...

recon_cache_path = /var/cache/swift

vim /etc/swift/object-server.conf

[DEFAULT]

...

bind_ip = MANAGEMENT_INTERFACE_IP_ADDRESS

bind_port = 6000

user = swift

swift_dir = /etc/swift

devices = /srv/node

[pipeline:main]

pipeline = healthcheck recon object-server

[filter:recon]

...

recon_cache_path = /var/cache/swift

chown -R swift:swift /srv/node

mkdir -p /var/cache/swift

chown -R swift:swift /var/cache/swift

VII. Create initial rings

swift-ring-builder account.builder create 10 3 1

swift-ring-builder account.builder add r1z1-10.0.0.51:6002/sdb1 100

swift-ring-builder account.builder rebalance

swift-ring-builder container.builder create 10 3 1

swift-ring-builder container.builder add r1z1-10.0.0.51:6001/sdb1 100

swift-ring-builder container.builder rebalance

swift-ring-builder object.builder create 10 3 1

swift-ring-builder object.builder add r1z1-10.0.0.51:6000/sdb1 100

swift-ring-builder object.builder rebalance

scp account.ring.gz storagenode:/etc/swift

scp container.ring.gz storagenode:/etc/swift

scp object.ring.gz storagenode:/etc/swift

VII. Add Object Storage (storage node)

63

curl -o /etc/swift/swift.conf \

https://raw.githubusercontent.com/openstack/swift/stable/juno/etc/swift.conf-sample

vim /etc/swift/swift.conf

[swift-hash]

...

swift_hash_path_suffix = HASH_PATH_PREFIX

swift_hash_path_prefix = HASH_PATH_SUFFIX

[storage-policy:0]

...

name = Policy-0

default = yes

chown -R swift:swift /etc/swift

service memcached restart

service swift-proxy restart

swift-init all start

Appendix C

Ceph Installation

I. Ceph deploy setup

wget -q -O- 'https://ceph.com/git/?p=ceph.git;a=blob_plain;f=keys/release.asc'

sudo apt-key add -

echo deb http://ceph.com/debian-{ceph-stable-release}/ $(lsb_release -sc) main

sudo tee /etc/apt/sources.list.d/ceph.list

sudo apt-get update && sudo apt-get install ceph-deploy

II. Create a cluster

ceph-deploy new node1

ceph-deploy install admin-node node1 node2 node3

ceph-deploy mon create-initial

ssh node2

sudo mkdir /var/local/osd0

exit

ssh node3

sudo mkdir /var/local/osd1

exit

ceph-deploy osd prepare node2:/var/local/osd0 node3:/var/local/osd1

ceph-deploy osd activate node2:/var/local/osd0 node3:/var/local/osd1

ceph-deploy admin admin-node node1 node2 node3

64

65

sudo chmod +r /etc/ceph/ceph.client.admin.keyring

	摘要
	Abstract
	致謝詞
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Thesis Goal and Contributions
	1.3 Thesis Organization

	2 Background Review and Related Work
	2.1 Background Review
	2.1.1 Software-Defined Storage
	2.1.2 Swift
	2.1.3 Ceph
	2.1.4 OpenStack
	2.1.5 COSBench
	2.1.6 EMC ViPR
	2.1.7 Cubic Spline

	2.2 Related Works

	3 System Design and Implementation
	3.1 System Architecture
	3.2 Design Flow
	3.3 System Implementation
	3.3.1 Storage Service Deployment
	3.3.2 User Service
	3.3.3 File Distribution Mechanism

	4 Experiments and Results
	4.1 Experimental Environment
	4.2 Performance
	4.3 User Interface

	5 Conclusions and Future Work
	5.1 Concluding Remark
	5.2 Future Works

	References
	Appendix
	Appendix
	Appendix
	A OpenStack Installation
	B Swift Installation
	C Ceph Installation

