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The aim of this two years project is to find the
Caratheodory-Fejer matricial interpolating function
which is analytic from the open unit disc into the
open spectral unit ball such that satisfies certain
interpolation conditions on its values and its
derivatives. It is obvious that this problem is
called the spectral Caratheodory-Fejer (SCF) problem.
Our approach is to transfer the SCF problem into a
classical Caratheodory-Fejer (CF) problem such that a
more efficient condition based on the given
interpolation data is obtained for the existence of
the SCF solution. Based on the result of our previous
year s research project together with the known SNP
and SCF theory, direct solvability condition of 3x3
SCF problems can be characterized as an interpolation
body. The properties of the interpolation body
corresponding to the SCF problem up to second
derivatives is analyzed in the first year of this
two-year project. Furthermore, the construction of
interpolating function is also considered. Extension
to higher derivatives problem will be studies in the
consecutive year. Meanwhile, a solvable instances of



mu-synthesis i1s totally reviewed for the present
mathematical conclusion.

#~ M4t ¢ Nevanlinna-Pick interpolation, Caratheodory-Fejer

interpolation, symmetrized polydisc, spectral unit
ball.
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The aim of this two years project is to find the Caratheodory-Fejer matricial interpolat-
ing function which is analytic from the open unit disc into the open spectral unit ball such
that satisfies certain interpolation conditions on its values and its derivatives. It is obvious
that this problem is called the spectral Caratheodory-Fejer (SCF) problem. Our approach
is to transfer the SCF problem into a classical Caratheodory-Fejer (CF) problem such that
a more efficient condition based on the given interpolation data is obtained for the existence
of the SCF solution. Based on the result of our previous year ’ s research project together
with the known SNP and SCF theory, direct solvability condition of 3x3 SCF problems can
be characterized as an interpolation body. The properties of the interpolation body corre-
sponding to the SCF problem up to second derivatives is analyzed in the first year of this
two-year project. Furthermore, the construction of interpolating function is also considered.
Extension to higher derivatives problem will be studies in the consecutive year. Meanwhile,
a solvable instances of mu-synthesis is totally reviewed for the present mathematical conclu-
sion.
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3.1 Volume of the Symmetrized Polydisc

Let D denote the unit disk, and T denote the unit circle. The space G2, which is the interior
of I's, i.e., I'y = (5, can be characterized by the following theorem:

Proposition 5.1 Let s, p € C. The following statements are equivalent:

1. (S,p) € GQ,

(a) |s—sp| <1—|p|%,
(b) 2[s — sp| + |s* — 4p| < 4 — |s[*,
(c)

)

(d) |p| < 2, and there is a 3 € D such that s = 3p + 3, where § = =&

1—|p*”

|s| <2,and |22| < 1for z €D,

Since I'y is a subspace of C? and suppose (s,p) € 'y then its volume can be computed by

Vol(Ty) = / dry — / dsdsdpdp (1)
o Ty

where s and p must satisfy the condition 2 in Proposition B.1, i.e.,
_ 2
s —3pl < 1—p|”. (2)

We can't integrate equation (fl)) directly, thus it must be tranferred it into other form for

integration. Consider an equivalent definition for the space of I's:
Ty = { (AL 4 A2, A - A2) € C*| Ay, Az € D} (3)
with A\; and Ay are two independent variables, i.e.,
(5,p) €Ty = s = A+ do,p= My, Mand), € D. (4)

The only draw back is the relationship between (s, p) and (A1, A2) are not one-one. Since the
quadratic equation z? — sz +p = (z — A\;)(z — \3) = 0 remains the same when two roots, A
and )y, are switched (this is why I'; is called the symmetrized bidisc) this concludes that ([l])
can be expressed by

1
/dsdsdpdp:—//
Ty 2o Jo

One can compute the associated Jacobin of coordinate transformation as

O(s,5,p,p)
)\17 )\17 )\27 )\2)

dM\dh; dXad)s (5)

det
e§<

8 s 85 os
det il 7p7p7 _ (98);)1 %);)1 %)\pQ %)\pz
8()\17)\17)\27)\2) (9_)\71 @ 3_)9 3_5\2
Y 9p 9p 0P
OA1 OA1 OXa O)g
1 0 1 0 10 1 0
~lo 10 1] |o1 o 1
Tl 0on 0 T[00 N 0
0 X 0 X 0 0 0 AL — g
= A= N[ (6)



Hence
Vol(I'y) = //|)\2 /\| dX1d)\y dDod )y (7)

1 \y = r9e'® the above integral becomes

1 2m 1 o 1 '
VOI(FQ) = 5 /O /O /O /0 ‘7.2 —r 61(91+92) ‘2 T'ld?”ldel r2dr2d92
1 [20 1 2 pl
= = / / / / [T% + 72 — 2r175 cos(f; — 92)] ridrdO; rodrodfs
2 0 0 0 0

= /2.

By using the polar coordinate, i.e., Ay = rie

Hence we arrive at our conclusion:

2

™
'y = — 8
= ®

which is the same as the volume of unit ball in R*. Due to the permulation of the zeros in
the polynomial
M —sA+p=0,

the volume should be half of the direct integral of (s,p) in the domain I';. The following
relationship holds

—]D)x}DcBC (2]1)) x D,
i.e. the volume of I'y must satisfy

71.2

SVol(D x D) = = < Vol(Ts) < £ Vol((2D) x B) = 2

Define the following symmetrized mapping;:
Ty EXE—)FQCCQ : (/\1,/\2>|—> (S,p):<)\1+)\2,)\1)\2) (9)

then the volume of the space is the measure on the range of the mapping m,. It is obvious

true that if (s,p) = ma(A1, A2) for two numbers in D, the for these two numbers the relation
ship ma(A2, A1) = (s, p) is also holds.
We extend this relationship by the following recursive relation

T A1, A2y o s An—1, An) = (M1 (A, Aoy o s Anz1),0) + (1, mm 1 (A, Agy - o+, A1) A (10)
withn = 3,4,.... When n = 3,

3(A1, A2, Ag) = (m2(A1, A2), 0) + (1, mo (A1, A2)) Az = (A1 + A2+ Az, M Ao+ A1 As + Aads, AiAeAs),
ie.,
5 0 D = Ty C €% (Ary Ay Ag) = (51,82, 83) = (A1 + Ao+ Agy Ada + Mg + Aadg, iAo As)
where I'3 is the coefficient space of the polynomial

A — 5 A2 F 59— 53 =0

with all its zeros lies within the unit disk . And then

Sla 517 S2, '§27 53, '§3)

dA\d\y dhadNg dAsd)
)\17)\17)\27)\27)\37)\3) ' ' ? ? ’ ’

(11)

/ d81d81d82d82d83d83
I's

3|



where the assoicated Jacobian is computed as follows:

8(}\1,)\1,)\2,)\2,)\3,)\3) 8_§\21 6_§\21 8_;22 8_§z 8_2 8_§\§,
o281 2281 OAg o2 O3 O3
2281 1281 OAg 0o O3 O3
1 0 1 0 1 0
0 1 0 1 0 1
o et 0 A+ s 0 AL+ Ao 0
- 0 Ao+ As 0 A+ A 0 A+ Ao
/\2/\3 0 /\1/\3 0 )\1/\2 0
0 a3 0 M3 0 Ao
10 1 0 1 0
0 1 0 1 0 1
o 0 0 )\1—)\2 0 )\1—)\3 0
— 100 0 A — o 0 A+ Ao
0 0 ()\1—)\2>/\3 0 ()\1—)\3))\2 0
0 0 0 (A1 — Xo2) A3 0 (A1 — A3) Ay
10 1 0 1 0
0 1 0 1 0 1
100 A= 0 A — A3 0
“ 100 0 A — o 0 A — A3
00 0 0 (A1 = A3) (Mg — As) 0
0 0 0 0 0 (AL = A3) (X2 — As)
= A2 — M A = M)A — Al
Hence

1 _ _ _
Vol(T3) = 3 / / /]AQ — A% A3 = AP A3 — Ao ?dAid) dAadAg dAsd)s (13)
cJD JD JD

By using the polar coordinate, i.e., \; = rjewi, 7 =1,2,3, the above integral becomes

1 2w 1 2w 1 27 1 ] 9 ) 9 ) 9
ST e e e
*JO 0 0 0 0 0

Tld’f’ld'gl T’QdT’Qd@Q T3d7”3d93

1 2m 1 o 1 o 1
= §/ / / / / / [r% + 175 — 2ry79 cos(f; — 82)} ridrydfy rodrodds
0 0 0 0 0 0

= 7°/3.

Vol(I'3) =

Hence we arrive at our conclusion:

2
/ dl'y = W—,
Iy 3!

which is the same as the volume of the unit ball in R%.
In general, I conject on the following results:

Proposition 5.2: The volume of polydisk I',, is equal to the volume of the unit ball in R?".

By using the Computor Algebra System - Maple 11, we have verified the above proposi-
tion upto n = 7 which means the conjecture is true, however the analytical way to construct
the proof is still under development.

(12)



3.2 Surface Area of the Symmetrized Polydisc

In mathematics, the Minkowski-Steiner formula is a formula relating the surface area and
volume of compact subsets of Euclidean space. More precisely, it defines the surface area as
the "derivative" of enclosed volume in an appropriate sense.

The Minkowski-Steiner formula can be states as follow:

Let n > 2, and let A C R" be a compact set. Let p(A) denote the Lebesgue measure
(volume) of A. Define the quantity A(OA) by the ** Minkowski-Steiner formula''

A+ Bs) —u(A
A(@A) 2 limin A Bo) —#(A)
6—0 )

|| ::\/:c%+-~-+x%§6}

denotes the closed ball of radius 6 > 0, andA + Bs = {a +beR” |a eAbe E} is the
Minkowski sum of A and Bs, so that A + B; = {z € R" ||z — a| < § for some a € A}.

For "sufficiently regular" sets A, the quantity A(0A) does indeed correspond with the
(n — 1)-dimensional measure (surface) of the boundary 0A of A.

The volume of the unit ball on R? is 72, by taking the derivative of r we get the arc-
3

Y

where

E:{x:(azl,...,xn)eR”

length: 277, and the volume of the unit ball on R? is —77®, we get the surface: 4mr?.

Now we can apply the Minkowski-Steiner formula to calculate surface area, we have

S(Fg) = 3’/T2
S(F3) = 27'('3

Till now we only have the gereral form to evalute the volume of I',,, we calculate V' (I'y)
and V(I'3) step by step, but still can't find a easy to solve the gereral case. Since the volume
of V(I'y) and V(I'3) happen to be the volume of the unit ball on R* and R®. The general

result is given by

n

Proposition 5.3: The surface area of polydisk I',, is given by S(I'}) = n(n + 1)7T—' which is
n!

much larger than the surface area of the unit ball in R?",

3.3 The CF interpolation function in the symmetrized bidisc

Problem: To seek an analytic function h : D — G such that h(\g) = (s, p0) = 20 € G and
R'(XNo) = (s1,p1) 2 21, i.e., find functions s(\) and p()\) such that s(\y) = so, §'(\o) = 51,
p(Ao) = po, and p'(Ag) = p1, and (s(A), p(N)) € G, for all X € D.

First of all we must check the existence of the solution by checking the infinitesimal
Carathéodory distance between these two points|[HMY 1, Theorem 1]. Suppose for this data
set we obtain

cg (20, 21) = sup s1(1 — w?pg) — wp1(2 — wsg)
0, #1) — — i .
wi=1 |w?(s0 — Sopo) — 2w(1 — |po|?) + 50 — soPo

with the extremal argument denoted by wy. When cg (20, 21) < 1, then there does exist such
an analytic function.

Qon —
The derivatives of magic function ®,(s,p) = ;p % are computed as below:
— ws
aq)w(svp) _ _(2 — (,US) — (2wp - S)(—W) -9 1— w2p
Js B (2 — ws)? (2 —ws)?’
0®,(s,p) 2w
ap  2—ws



Let f : D — D which maps A\ — f(\) = @, o h()), then the interpolation problem from
the unit disk to the symmetrized bidisc, i.e., h : D — G, is then transformed by the magic
function ®,,, and becomes an interpolation problem becomes from the unit disk to unit disk
with the interpolation conditions imposed on f as:

fo) = Py 0 (o)
2wop(Ao) — s(Ao)
2— WOS()\())

2wWopo — So A
A 15
2 — WopSo “o; ( )

Fo) = | Z200) B2(00) |1 ()

1—wip(No) , 2wy
= 2 s ) T T O]
1 — wipo 2wop1
(2 — wosp)? Yo s
wop1 (2 — wose) — s1(1 — wipo) Iy
(2 — woso)?

P (o)

= -2

2 - (16)

Let B denote the Blaschke product

and its derivative is )
1 —|af

(1—ar)?
We know that f must be a Blaschke product of degree less than 2. When cg(20,21) = 1, f

is unique up to Mobius transforms, but when cg(29, 21) < 1, it is not. To find the unique or
any function f , let

B,(A) =

Bey(f(N) _ f(N) —co 1= oA

A pr— pr—
1) Bn(N) 1—afON) A=
then
T f(/\)—Col—j\o)\_ f'(Xo) 2N C1 2\ A
Q()‘O) - ,\151,\10 1— EOf()\) \ — )\0 - 1 — |CO|2(1 |/\0| ) - 1— |CO|2(1 |)‘0| ) =v.
Since
1 s1(1— w%po) — wop1(2 — woso)
= = cg(20,21) < 1,
me2 (50 — 50p0) — 2(1 = [pol?) + Go(50 — supw)| OO

i.e., the value of v is less than or equal to 1 and the function ¢(\) is solvable. Since f()) is
unique up to Mdobius transform, we choose ¢(\) = v and then

By,(Nv+cg (v = Aoco) A+ (co — Aov)

AN =B_. (By(Av) = = —. 17
Solving the equation ®,, o h = f for s(\) gives us
wop(A) — f(A)
s(\) =2——+~——~ 18
2 1 —wof(A) (18)
In order to guarantee the analyticity of s(\) we must compute the pole of s(\) by solving
f(A) = &,

8



here we denoted by A\, = B_,(B.,(@o)/v). When A, is outside the unit disc, then the function
p to satisfy the interpolation condition p(\g) = pp and p’(Ag) = p1 is given by

P(A) = Bopy (B (M) B [Bag(Mp2(M)]) ;. pa € RH™.

where

. 1 _ 2

For simplicity choose py(A\) = 0 and then we obtain

By,(NC+po (€= Xopo) A + (po — AoC)

P = Boan (BN = T B IE ™ 1= om0 + (it —x
and s(A) is then given by
S()\) _ QWOB_IJO (B)\O()\)C) — B, (B/\O ()‘)U) (21)

1 —woB—¢, (B, (A\)v)

Alternative, when A, inside the unit disc (when cg(zo, 21) = 1, this always happens) then one
more interpolation condition for p, i.e.,

p(Xo) =po, P(No)=p1, p\) =&, A= By (Bey(@o)/v).

The simplest one is given by

and associated s()\) is also determined by (L§) with f(\) from ([[7) and p(\) from (R2).

3.3.1 Domain extension

When cg(z29,21) < 1, the associated f(\) satisfying the interpolation conditions ([[J) and
(L6) is not unique up to Mébius tranforms. We now extend the domain for finding extremal
value of ¢g(20, z1) from the unit disk to a large disk with radius r, denoted by D, such that
the extremal value is cg (29, 21) = r. And then determine the unique f in this new domain.
Suppose (s1,p1) # (0,0), the value of r should satisfy the condition

s1(1 — w?pg) — wp1(2 — wsg)

w?(s0 — Sopo) — 2w(1 — [po]?) + S0 — soPo
s1(1 = wipo) — wop1(2 — woso)

wg(so — Sopo) — 2wo(1 — |po|?) + 50 — soPo

cg(20,21) = sup
|w|=r

:T,

which gives us c¢g (29, 21) = r with corresponding extremal argument wy. The interpolation
condition for the new f is

2wopo — So
fho) = @uy0h() = 52 =0,
/ wo wo / 2 - — 1—wg
Fon) = [ Z000) S n0w) ] - 10w) =2 2REZ g =S

We seek for a Mébius transform M (\) such that

M) = Mlc) = do, 12

M(f(N) =1, M(rD)=rD.

A=Xo



Assume the function M ()) is of the form

A c
M(X) =7B_s 0 Ba(Z9(N). @ =g(co)
and select an analytic function g(\) such that &M (f ()\))| rex, = L holds. Direct differenti-
ation on M (f(X)) gives us

HMUW)| = M) )
= 1Bl <Bi (M)) B (f()\O)gﬁf()\o))) f(Ao)g'(f()\OZ) —|—g(f()\0))f/()\0)
= B, (Ba Cogﬁco)) B, (0097500)) COQI(CO)T—F 9(60)61
[

- (1) e st
el
— 1_—|a|2[00g (co) + g(co)]cr

= 1,
and we want to find the function ¢ to satisfy the differential equation
1—|af? 1
/
cog (o) +glcg) = —————.
o) o) = TS

Simplest solution is a constant function for g, i.e.,
L1—lja* 7 1—]af
c1— |2 er2— A

g\) =k =

1—|af?
r2—[Ao|?

then o must satisfy o = 7% 1—|af”

3 7, is a real number which is
c1r —|)\0|

i.e., the quantity E—(l)a =7

2 2
the solution of |£ (%a) + w (%a) —1 = 0. We obtain the parameter « as following
Leo e ]? 2 — | Xo|? 2 D2\ 2
o = tafal” [ =l (&) A
2¢1 | T T C1

2
Co

le 2 Aol 2 — o)
_ la _ﬁ#(&) e
2 ¢o T T

1

o
= 32 4ﬁ—wmi¢W—wmu4ﬂ@
C

2 Co

and the parameter k can also be expressed as k = éa. Thus

M(\) = rB o Ba(k)\) — 1B s 0 Ba(2N)

v r T Co

N« A—c
co

(Mo — ra)cy + (ra — \glaf?
r — —

(r — Xoa)co + (Ao — 7|a|?
10

)A
A



To double check, we see

M(f(N)) = M(co) = Ao,
d

FMUO)| = M

ol = Dol?)(1 = laf?)
[(r = Xoar)co + (Ao — ) A2 |,
_ o a(r? = [A?) (1 — |of?)
R
Loy (% = nf)
reo (1—laf?)

= ra

C1

Also, since M(A) = rB_x, © Bo(%)), the function B,(£A) maps rD into D and the function

B (A) maps D to D, thus M(X) maps rD into rD. Hence M(A) is the Mobius tranform
what we want.
To solve for h(\), i.e., s(A) and p(N), we let M(f(N)) = A to compute the unique f(t) as

following
f) = @y 0h(N) =M~ (N)
T A Co )\—)\0
= —B | Bx(—)])=—B4|r———
K iﬂ<r>) a (Tﬂ—AOA)
B @B’\TO(%)—i_a @T()\—/\D)—l—a(?“Z—;\o)\)
- Ozl—}—dBm(%) N (0% T2—5\0>\+O_ﬂ‘(}\—/\0>
_ @(T—Xia))\+r2_a —_7“)\0‘ (23)
ar?—rakg+ (ra— )\
Note that (7 — Dof?)
co a(r® — Ao
A = ————
1) a 12— |N\? 0
and
o r(r?2—=|X>)(1 - |al? co (12 =12 (1 = |af? co 1—laf?
N 11 e T B 1 L 1
a [r2—rad+ (ra— M)A [y, © (1% — [ Xol?) a 12— Ao

Once the function f(A) is constructed then we can express s(A) as a function of f(\) and
p(A), i.e.,
wop(A) — f(A)
s(\) =2———"F—F——
=2 )
To ensure that s(\) is analytic, p()) satifies the original interpolation condition but also for
those \, inside rD such that f(\,) = 1/wg = @ /r?. Tt follows that

1 —
A = B s 0Ba(—)=7B_ <aﬂ)

r WoCo r WoCy — |C¥|2
e A
- a(ﬁdo_co) + Jrl _ 7“01(1 — WOCO) + )\0(_(4)00() — |O./|2) '
1+ %Ba(ﬁ) r(woco — |a]?) + aXo(1 — woco)

Hence p(\) is construct to satify
p(Ao) =po, P'(Xo) =p1, p(\) = — =~
0

11



which is given below:

< (o[B8 (L))

where

p1 2
P ).
C 1_|p0|2< | 0|)

3.3.2 Example

An example is presented for illustrative purpose.
To find an analytic function h : D — G such that h(0) = 2o = (1, 1) and //(0) =
(0,—1), i.e., find functions s(\) and p()) such that s(0) = 1, §(0) = 0, p(0) = 1, and
p'(0) = —1, and (s(\),p(N)) € G, for all A € D.

Here \g = 0, 59 = 1,51 = 0, py = 1, and p/(0) = —
A(Y) = (L 3(1 - )

First of all we need to compute cg(z1, 22):

=

%‘. One of the solution is given by

sup 51(1 — w?py) — wp1(2 — wso)
wj=1 | w?(s0 = S0po) — 2w (1 — [pol?) + 50 — s0Po
wi(2—w)
= sup
wet |wi(l—3) —2w(l—)+1—1
wi(2—w) 5 w(2 —w)
= su su
ME (1+w?)3 - 2w ME 6 — 15w + 6w?
2 ‘ w(2 —w) 2 ’ w
= SUp ;|55 5| = SUp 5
w|=1 312 —bw+ 2w |w|=1 311 —2w
2| w 2 ‘ w 2
= sup - |——|=sup - |—| == <1,
w=13 |2 —w w=13 |2 —w 3

hence there exists an analytic function which satisfy interpolation conditions corresponding
to the given data set. The argument for this extremun is given by wy = 1.

Three different methods, direct method, domain extension method, and Schur method,
are presented here for comparison.

Direct method: Let f(\) = ®,, o A(\), then the interpolation condition on f is given by
2wpy — 8 2wi —1 1

pO 0 — 4 =_—_ (25)
2 — wsg 2—w 2
14w 2w 2w 1 w

f/ (0) — _9 Po

=—c— 2
b1 b1 299 —w (26)

(2—w30)1 2 — wsy :2—wso

Atw=wy=1,¢0= f(0) = -1 and ¢; = f/(0) = —3, and then v = ¢; (1 — [A[*) /(1 = |o|*) =
—2and ¢ = pi(1 — |Xo|*)/(1 — |po|*) = —7%. Substituting those values into (I7) leeds to

13A+1 143 +3

\) = —— == . 27
TN ==317% I 2342 (27)
Solving f(A) = 1 gives us A\, = —% which is outside the unit disc. Then the function p to
satisfy the interpolation condition p(0) = }l and p'(0) = —1 is given by (B0)
116X —15
PA="3 50
and from the equation ®,, o h = f we obtain
A2 — 27T\ —4
s(\) = 8 7 5 .
—45 — 27T\ 4 2)\?

12



By consider the extremal value of the function

s(A) — s()p() ‘ _
1= VP

sup |3 = sup
e

we know the function

MY = (V) p(N)) = <

8A2 — 27\ —45 116)A—15
—45 —2TA +2X27 4 —15+ )
is the required interpolation function into G.

Domain extension method: Since c¢g (21, 22) < 1, we extend the domain from D to denoted
by rDsuch that the extremal value is equal to r, i.e.,ld satisfy the condition

2 T
T?
\w\ 3|2—w|

s1(1 — w?pg) — wp1(2 — wso) B
sup | — - I —| = sup -
wl=r |@W?(s0 — Sopo) — 2w(1 — |po|?) + 50 — sopo

jwl=r 3

2—w

Q'w

which gives us r = % with corresponding wy = r. The interpolation condition for the new f
is

2ot -1 1
—f0) = a2~
2wop1 —QWOl
= (0 = cIp—
“ f() 2-&]080 2—(,00'1
And then v = ¢1(1 = [A[*)/(1 = [o]?) = =3, ¢ = pr(1 = [Xo[?)/(1 = |po[*) = — 15, and
161 Co 4 5 1
- + ) = s k2= 3
a 260(7‘ 7”+|Cl|) st =373
1-— 20 15
AN = rBa(-X)=ra——H00 _ =0
WoCo woCo — |a|? 21729

Here we choose o = 1/3 and A\, = —20/21 (inside the disk of rD). The function f is computed

by (23), i.e.,
A, 3 (3)__3§A+§__19A+4
T T T T e BT 2N
0) =1, p'(0)=—3,and p(-3}) =

21 21 9 21\2 — 43\ + 39
AN =B 1 (ABs (—=AB 4 (—2Bi(— =4 .
() —i< ‘%( 20 —f%( 20 1(16)))) 624 — 64X + 2102

Thus the associated s()\) is then given by

wop(A) — f(A)  BIN? — 641 4 624
1—wof(A) 624 — 64\ +21)2°

and the function p to satisfy the interpolation condition p

EIS

—~

s(A) =s(A\) =

Hence the requested interpolation function is

5INZ — 64\ + 624 21A% — 43\ + 39
624 — 64X\ + 21727 624 — 64\ + 21)\2

BN = (50 p(A)) = (

Schur method [Schui|: Let ¢o = f(0) and ¢; = f@(0),j > 1. Now ¢g = —1, ¢ = -1

22—w?’
and we can choose ¢o = ¢3 = --- = 0. The corresponding Schur number is glven by
1 c —%ﬁ 2 w
= Cn = -, = = = - -
PEOT Ty MTEI P T 1-3F 0 32-w
o = 1— |Wo\2 +'70'71 _ 2—%
1—|m? T 2w+w)’

13



BCF_s_1.]jpg

(a) direct method

BCF_s_2.jpg

(b) domain extension method

BCF_s_3.jpg

(¢) Schur method

Figure 1: The plot of s(\) with the height denoting the real part and the HSV color describing
the image part.

We need check || < 1, |71| < 1, |92 <1, ... <1,.... Unless there exists some m such
that v,,41 = Yma2 = -+ = 0, it is not easy to apply. On the other hand, the analytic function
f satisfy above interpolation condition iff the matrix

_ | G a
C - |: 0 Co :|
is contractive. This condition is equivalent to
1= Jeof? > 0 o] < 1,
1= lao? = e — {92 > 0 [m| < 1.

Since (so, po) = (1, 1) is located inside G then |yo| < 11is always true. And the condition from
Theorem 1 in Ref. [?] is equivalent to the one |y;| < 1. The power series is given by:
12—w+wh  2w5(1=X) =1  2wp()) —s(})

1 1 w
\) = D A
JA =a+ar=5-55— 2 2w 2w 2 — ws(\)

thus .
s(A) =1, p\) = 4_1(1 —A).

Therefore the desired function is then defined by

1
AN = (1, 5(1 - ).
Remarks: If we can choose other parameters c,, cs, . .. such that the associated matrix C'
is contractive, then we can find another function f, e.g. if we select ¢, = (—1)"3(3)"™", then
another function f is given by

1 1 1 1 1 1142\
A = —(14+X— 22+ N )= —Z(1+)\ S
JA) =50+ A=A+ 5 ) = —o(1+ 1+§>\) 21+ 1)

which is the same as the function f()) from the direct method given in (27).

The funcitons s(\) and p(A) are plotted in the following figures. From the comparision
between direct and domain extension method, it dipicts the domain extension prove a more
smooth function.

3.4 On the Graph of Interpolating Functions

Given two 2 x 2 matrices W, and W5, compute an analytic function such that F'(\) = W7,
F(X\y) =Wsyandr(F(N) < 1,VA € D. Since ¥ is a 4-dimensional space which is nonconvex,

14



BCF_p_1.]jpg

(a) direct method

BCF_p_2.]jpg

(b) domain extension method

BCF_p_3.jpg

(¢) Schur method

Figure 2: The plot of p(\) with the height denoting the real part and the HSV color describing
the image part.

NP-6.png

Figure 3: Transformation diagram from >, into I';.

nosmooth and unbounded set, thus we transfer the domain from > into I'y which is also
nonconvex and nonsmooth, but a compact set. Therefore we construct the interpolating
function defined in I'; first and then transfer it into the original domain 35 whose relationship
is shown in FigB:

In this section, we find the first type of the analytic function f : D — I'y such that

f(0) =(0,0), f(Ao) = (s0,P0);

and then consider the second type of the analytic function f : D — I'y satisfying

f) = (s1,p1),  f(A2) = (52,2).

Once the function f is obtained, the original interpolating function F' : I — X is then
computerd.,

3.4.1 First type of interpolating funcitons

Example 3.4.1: To find an analytic function f : D — I'; such that

2p

70 = 00) ana 1 5) = (22

0),56(0,1).

Since f (A) = (s(A),p(A)), and f (0) = (0,0), f(B) = (%,O), one obtains

{sanzu {p«n:a

s(8) = 25, p(B) =0.
By using Mobius property, we then arrive at
2A(1 - B) A(A—B)
A= ——-+ A= ———.
sov=222 =22
That is, f (\) = (”S;f ) Afig@) whose graph is shown below:

15



u myComplexPlot
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flz)=(s(z) prz))
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iw

u m
s(2)-plan piz)-pla
Figure 4: The graph of f(z) when g = 0.
n myComplexPlot g £l
DEHL AR NOEL- 2|08 | a1 .
S B E N e
f(z)=(3(2) p(z)) e i 0 N )|
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1 2
0 1
0 =0
05 =1
1 ) . .
- i 2 1 i 1
X u
z-plane s(2)-plan

Figure 5: The graph of f(z) when g = 0.3.
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(u myComplexPlot g O W
Ddde | | RRMBDEL- S0 el »
H8 L 3% 18 o 3L B e
B
f(Z)=(=(Z) pzN ®
1_1=(22(1-B)M(1 -BI); 1_2=(Z(Z-BNA1-BZ) [v] O=a
1 1 .
05 05
0 = 0
as a5
- Kl . .
- -1 05 0
u m
s(2)-plan p2)-pla

Figure 6: The graph of f(z) when g = 1.

Example 3.4.2: Given A\; = 0, A» = 8 € (0,1) and Vo € C, F'(0) = Wi (o) = { 8 g }

1
and F () = Wy = [ 8 28 ],to find F' () such that r (F(\)) <1,V € D.
1+
. 0 « 0 1 : . .
Since W1 (o) = 00 and Wy = o 28 |are scalar matrices, there exists a nonsin-
1+8
gular matric P (\) such that
PFNP 0= 0 Ly | (29
—p(A) s(A) ]
And it follows directly that f (0) = (0,0)+ f(8) = (5,0), that is
2p
$(0)=0.p(0)=0; s(f) =15 P(B) =0
which gives us
0 o 01
0 1 0 1
PO g 5 | =], = PO (30)
1+ 1+

Suppose let P (0) = [ 0 } in (R9) and P () = [ 0 1 } in (BO), thenby interpolation

P(\) = {(1) a+%?1—a)} Witha+%(1—a)7é0.

Substituting this P (\) into (R8) leads to the following analytic function

0 a+2(1—-a)
F/\: P p
. [‘% 4e ]

Alternatively by Example 3.4.1, we set f (\) = (2’}(55/\5 ) Afig?) which gives us the ana-

lytic function

0 a+2(1-a)
F (A= [ (B s :
(1-BX)(af+A—al) 1-8A

17



3.4.2 Second type of interpolating funcitons

Given F (0) = W, = { _1§ _21 } and F (3) = Wa = { _Ol 1 },to find an analytic function
1 1
F (\) € C**% such that
4
F0)=W,. F <5> — Wy and  (F (V) < 1,¥\ € D.

It follows that

1 2

=0 wi= |y 2] 60000 = ) = (0.3) =
4
1

Check the existence of the solution.
Theorem: For any Wi, W, € C*>*2 and W, is nonderagotory , there exists an unique
analytic funciton F (\) such that

F()\l) =W~ F()\Q) =W, andr(F()\)) < 1,V)\ eD
if and only if

(Sap1 — s1p2) w? 4+ 2 (P2 — p1) w + 51 — 59

(51 —Fap1)w? —2(1 —p1P2) w + 52 — 5172

Cg (21, 29) = sup
weT

< d (A1, A2)

where
21 = (517291)7 Zo = (827p2) and s; = trW;, p; =detW;,i =1,2
de
G = {(p1+ p2pip2) T |l < 1,lpa] <1} € C2
Since A
4 0— = 4
d{0,-)= ==
5 1—%-0 5
and

2 2
_ 1.9 4
SW 7w—|—1

A | ‘

Cg (21, z2) = sup
weT

then Cg (21, 20) = % =d (O, %) whose value is shwon in Figure [J. When wy = 1, the equality
holds and thus the unique solution F' () exists for the given daa set.

18
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Figure 7: Cg (20, 21) = 3

Suppose there exist functions s () and p () such that

and

that is, f (0) = (0, 3) « f (3
2
Step 1: From @, (s,p) = i

1 2wp - 3 — 1 1 2wy - 1 —1 1
o, (0=)=—2—==, &, (1,-)]=—"2L—=—_.
0(’2) 2 w0 2 °< 4) 2 w1 2

Step 2: Solve

For the condition

we have

and then

Letting



i.e.,

and
p(1)=1
gives us the requirement
¢ (1) =1
For simplicity, we select
¢2 (Oé) =1
then
pla)=M_o (M% () M_s o (M (a)))
i.e.,
(@) 1202 + 5o + 2
o) =
b 202 + ba + 12
and )
s (Oé) _ (Wop (Oé) B a)
1 — awy
which leads to
402 — 10 + 4
s(a) = :
202 + Ha + 12

Step 3: Solve

By A
()
we have
P () = Myo (M ()i (V)
and

which gives us

By letting

and choose

we arrive at

- 6\ (@) — o ()\))_20)\2—27>\+10
T l0a—27at 20 P\Y TP T A0N Zo7a 20

s(a) =s5(p(N)

T0NT—27A+20 10A2—27A+20 10A—27A+20 10A°—27A+20
The graph of f()) is shown as below:

and hence s (\) = —5%—— and p (\) = 22.=20410) 5 equivalently f (\) = ( 6A 20’\2—27’\“0),

20
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Figure 8: The graph of f(\) = (10,\2_27)\+20> 10,\2_2”120))

By the condition s (A\) = trF' (A) and p (\) = det F' (\), the characteristic polynomial of
the matrix F' () is

f(z,A) =22 —s(\)z +p(N)

which must satisfy

1 4 1
f(Z70):Z2+§a f(Z,g)ZZQ—Z—f—Z
Using L-shift's invariance to compute F' ()).
Define

F(20) = 22f (%) = s\ z4p(N) 22

and

F(0,0) =1.

} is the base of the space of second order polynomial P,, hence

{u}c,A) up(-\)
FEN TN

Letting u (2, \) = { Zl EZ N } then

! lli(z’ N _wON gy iz (31)
2LAEA) F(0N F(z)
N FEN _ oy
u(z,A\) —u(0,X) oo 2F (AN u(z,\)

Since f(2,0) =1, )
w(z,N) —u(0,N) f(z,N) = 2F (N u(z,N)
which leads to .

w(z,\) = [1 _LF ()\)T] w(0,0) F(2,0) .

21



When A =0, »
w(z,0) = [1 LR <o>T] F(2,0)u(0,0)

choose u (0,0) = { %l } and it becomes
1
1 _3
o0 =G
133741
Bi 201 — By <

_3
det [ oo _4?1 } 0% anfy £ 0.

Therefore, select a; = 1 and 8 = 0 to give

where

w(z,0) = { 1;2]

When A = ¢ |

() -

D)

Ba |’

Setting u (O é) = [

75

where

det |: a2 —(0524‘%&2) :| #Oiag#—%ﬁg.

52 (6%

Select iy = 1. (35 = 0 which gives us

and u (z,0) = [ 1;;2} u(z i) = { 1;2’ ],thenu(z,)\) is computed by linear interpo-
[ 1+Ez=3A] 1 1-2X01
u(z7/\)—{ 2z — 32Xz }_{0 2— 2\ z

1 1—3)\ 5 /8
2 — _ | =
det[o 2_3)\}—4( A)%O,‘v’/\ED.

lation, i.e.,

where

5
Substituting u (z, A) back into (B1l)

RS M U Y1

22



that is

(1= +s() —p) ][ 1—3A]‘1
—2A 0 |10 2=2A
i ‘1 _1—3,\
_[1-3s) e
- 25\ 0 0o L
Tl 2-2)
s _ (=[] oy
- 1 2/“23(/\) 2-3@ ,det(Q—ZA)%O,VAGD
| 2-0 - (1=
—IX+s(N) 2—-2)
F(\= (L=3N[1=2x+sWN)] +p(N) L5y
- — ~(1-3)

Direct substituting the data point into above formulat for verification:

F(O):[

()|

1+s(0) 2 }:{ 1 2
_ 1+8(0;+p(0) 1 _% 1
—1+4s(2) 1 } _ { 0 1
“1+s(5) -p(3) 1 i
trF (\) = s (N,
det F(A\) =p(N).
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Some analysable instances of mu-synthesis

Abstract. I describe a verifiable criterion for the solvability of the 2 x 2
spectral Nevanlinna-Pick problem with two interpolation points, and
likewise for three other special cases of the u-synthesis problem. The
problem is to construct an analytic 2 X 2 matrix function F' on the
unit disc subject to a finite number of interpolation constraints and a
bound on the cost function sup,cp, p1(F(A)), where p is an instance of
the structured singular value.

Mathematics Subject Classification (2010). Primary 93D21, 93B36; Sec-
ondary 32F45, 30E05, 93B50, 47A57.

Keywords. Robust control, stabilization, analytic interpolation, sym-
metrized bidisc, tetrablock, Carathéodory distance, Lempert function.

1. Introduction

It is a pleasure to be able to speak at a meeting in San Diego in honour
of Bill Helton, through whose early papers (especially [31]) T first became
interested in applications of operator theory to engineering. I shall discuss
a problem of Heltonian character: a hard problem in pure analysis, with
immediate applications in control engineering, which can be addressed by
operator-theoretic methods. Furthermore, the main advances I shall describe
are based on some highly original ideas of Jim Agler, so that San Diego is
the ideal place for my talk.

The p-synthesis problem is an interpolation problem for analytic ma-
trix functions, a generalization of the classical problems of Nevanlinna-Pick,
Carathéodory-Fejér and Nehari. The symbol p denotes a type of cost function
that generalizes the operator and H* norms, and the p-synthesis problem is
to construct an analytic matrix function F on the unit disc satisfying a finite
number of interpolation conditions and such that u(F (X)) < 1 for [\ < 1.
The precise definition of 4 is in Section 4 below, but for most of the paper we
need only a familiar special case of i — the spectral radius of a square matrix
A, which we denote by r(A).



The purpose of this lecture is to present some cases of the p-synthesis
problem that are amenable to analysis. I shall summarize some results that
are scattered through a number of papers, mainly by Jim Agler and me but
also several others of my collaborators, without attempting to survey all the
literature on the topic. I shall also say a little about recent results of some
specialists in several complex variables which bear on the matter and may
lead to progress on other instances of p-synthesis.

Although the cases to be described here are too special to have sig-
nificant practical applications, they do throw some light on the p-synthesis
problem. More concretely, the results below could be used to provide test data
for existing numerical methods and to illuminate the phenomenon (known to
engineers) of the numerical instability of some u-synthesis problems.

We are interested in citeria for p-synthesis problems to be solvable. Here
is an example. We denote by D and T the open unit disc and the unit circle
respectively in the complex plane C.

Theorem 1.1. Let A1, Ao € D be distinct points, let W1, Wo be nonscalar 2 x 2
matrices of spectral radius less than 1 and let s; = tr W;, p; = det W; for
j=1,2. The following three statements are equivalent:

(1) there exists an analytic function F : D — C**2 such that
F(\) =Wy, F(A) =W,

and
r(F(\) <1 forall X € D
(2)
(s2p1 — s1p2)w” + 2(p2 — p)w + 51— 52 ' A —Xo |
max — 3 — — — | < — ;
weT | (51 — 52p1)w? — 2(1 — p1p2)w + 52 — 81P2 1— 22\
(3) ,
(2 — wsi) (2 — ws;) — (2wpi — 5:)(2wp; — 55) >0
1= T
1,7=1
for allw e T.

The paper is organised as follows. Section 2 contains the definition of
the spectral Nevanlinna-Pick problem, sketches the ideas that led to Theo-
rem 1.1 — reduction to the complex geommetry of the symmetrized bidisc G,
the associated “magic functions” ®,, and the calculation of the Carathéodory
distance on G — and fills in the final details of the proof of Theorem 1.1 us-
ing the results of [11]. It also discusses ill-conditioning and the possibility of
generalization of Theorem 1.1. In Section 3 there is an analogous solvability
criterion for a variant of the spectral Nevanlinna-Pick problem in which the
two interpolation points coalesce (Theorem 3.1). In Section 4, besides the def-
inition of p and p-synthesis, there is some motivation and history. Important
work by H. Bercovici, C. Foiag and A. Tannenbaum is briefly described, as is
Bill Helton’s alternative approach to robust stabilization problems. In Sec-
tion 5 we consider an instance of pu-synthesis other than the spectral radius.
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Here we can only obtain a solvability criterion in two very special circum-
stances (Theorems 5.1 and 5.2). The paper concludes with some speculations
in Section 6.

We shall denote the closed unit disc in the complex plane by A.

2. The spectral Nevanlinna-Pick problem

A particularly appealing special case of the u-synthesis problem is the spec-
tral Nevanlinna-Pick problem:

Problem SNP Given distinct points Ai,..., A, € D and k x k matrices

Wi, ..., Wy, construct an analytic k X k matriz function F on D such that
F()\j)ZWj forj:l,...,n (21)
and
r(F(A\) <1 forall A €D. (2.2)

When k& = 1 this is just the classical Nevanlinna-Pick problem, and it
is well known that a suitable F' exists if and only if a certain n X n matrix
formed from the A\; and W; is positive (this is Pick’s Theorem). We should
very much like to have a similarly elegant solvability criterion for the case
that £ > 1, but strenuous efforts by numerous mathematicians over three
decades have failed to find one.

About 15 years ago Jim Agler and I devised a new approach to the
problem in the case k = 2 based on operator theory and a dash of several
complex variables [5] to [13]. Since interpolation of the eigenvalues fails, how
about interpolation of the coefficients of the characteristic polynomials of the
W;, or in other words of the elementary symmetric functions of the eigen-
values? This thought brought us to the study of the complex geometry of
a certain set I' C C?, defined below. By this route we were able to analyse
quite fully the simplest then-unsolved case of the spectral Nevanlinna-Pick
problem: the case n = k = 2. For the purpose of engineering application this
is a modest achievement, but it nevertheless constituted progress. It had the
merit of revealing some unsuspected intricacies of the problem, and may yet
lead to further discoveries.

2.1. The symmetrized bidisc I’
We introduce the notation

F={(z+w,zw): z,w € A}, (2.3)
G={(z4+w,zw) : z,w € D}.



I" and G are called the closed and open symmetrized bidiscs respectively. Their
importance lies in their relation to the sets

D AeC? r(4) <1},
50 A e p(A) < 1)

3 and its interior 3° are sometines called “spectral unit balls”, though the
terminology is misleading since they are not remotely ball-like, being un-
bounded and non-convex. Observe that, for a 2 x 2 matrix A,

A €Y < the zeros of the polynomial A% — tr A\ + det A lie in A
S trA=z+w, det A =zw for some z, w € A.
We thus have the following simple assertion.
Proposition 2.1. For any A € C?*2
A€ X if and only if (tr A,det A) € T,
A € X if and only if (tr A,det A) € G.

Consequently, if F': D — ¥ is analytic and satisfies the equations (2.1)

above, where k = 2, then h def (tr F',det F') is an analytic map from D to T’
satisfying the interpolation conditions

h(A;) = (tr W;,det W;) for j =1,...,n. (2.4)

Let us assume that none of the target matrices W; is a scalar multiple of the
identity. On this hypothesis it is simple to show the converse [16] by similarity
transformation of the W; to companion form.

Proposition 2.2. Let \i,..., )\, be distinct points in D and let W1, ..., W, be
nonscalar 2 x 2 matrices. There exists an analytic map F : D — C?*? such
that equations (2.1) and (2.2) hold if and only if there exists an analytic map
h:D — T that satisfies the conditions (2.4).

We have therefore (in the case k = 2) reduced the given analytic inter-
polation problem for Y-valued functions to one for I'-valued functions (the
assumption on the WW; is harmless, since any constraint for which W is scalar
may be removed by the standard process of Schur reduction).

Why is it an advance to replace ¥ by I'? For one thing, of the two sets,
the geometry of I' is considerably the less rebarbative. ¥ is an unbounded,
non-smooth 4-complex-dimensional set with spikes shooting off to infinity in
many directions. I' is somewhat better: it is compact and only 2-complex-
dimensional, though T" too is non-convex and not smoothly bounded. But
the true reason that I' is amenable to analysis is that there is a 1-parameter
family of linear fractional functions, analytic on G, that has special properties
vis-a-vis I'. For w in the unit circle T we define

2wp — s
(I)w(svp) =5

We use the variables s and p to suggest “sum” and “product”. The ®,, de-
termine G in the following sense.

S (2.5)
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Proposition 2.3. For everyw € T, ®,, maps G analytically into D. Conversely,
if (s,p) € C? is such that |®,(s,p)| <1 for allw € T, then (s,p) € G.

Both statements can be derived from the identity
12—z —w]®—2zw— 2z —w|* =2(1 — |2]?)|1 —w|* + 2(1 — |w|?)|1 — 2%

See [11, Theorem 2.1] for details.
There is an analogous statement for I', but there are some subtleties.
For one thing ®,, is undefined at (2, @?) € T’ when w € T.

Proposition 2.4. For every w € T, ®,, maps I\ {(20,0?)} analytically into
A. Conversely, if (s,p) € C? is such that |®,(rs,r?p)| <1 for allw € T and
0<r<1then (s,p) €T.

In the second statement of the proposition the parameter r is needed:
it does not suffice that |®,(s,p)| <1 for all w € T (in the case that p = 1 the
last statement is true if and only if s € R, whereas for (s,p) € T, of course
ls| < 2).

We found the functions ®,, by applying Agler’s theory of families of
operator tuples [5, 6]. We studied the family F of commuting pairs of op-
erators for which I' is a spectral set, and its dual cone F* (that is, the
collection of hereditary polynomials that are positive on F). Agler had pre-
viously done the analogous analysis for the bidisc, and shown that the dual
cone was generated by just two hereditary polynomials; this led to his cele-
brated realization theorem for bounded analytic functions on the bidisc. On
incorporating symmetry into the analysis we found that the cone F* had
the 1-parameter family of generators 1 — ®Y®,,, w € T. From this fact many
conclusions follow: see [13] for more on these ideas.

Operator theory played an essential role in our discovery of the functions
®,,. Once they are known, however, the geometry of G and I" can be developed
without the use of operator theory.

2.2. A necessary condition

Suppose that F' is a solution of the spectral Nevanlinna-Pick problem (2.1),
(2.2) with k = 2. For any w € T and 0 < ¢ < 1 the composition

D 1E o (099 @ 2w

is an analytic self-map of I for which

2wt? det W; — ttr W

)\j+—><I>w(tter,t2deth): 5wt
- J

foryj=1,...,n.

Thus, by Pick’s Theorem,
L — &, (ttr Wy, 2 det W)@y, (t tr W;, 12 det W;) 1"
DY

> 0. (2.6)
i,j=1

On conjugating this matrix inequality by diag{2 — wt tr W;} and letting oo =
tw, we obtain the following necessary condition for the solvability of a 2 x 2
spectral Nevanlinna-Pick condition [5, Theorem 5.2].



Theorem 2.5. If there exists an analytic map F : D — X satisfying the
equations (2.1) and (2.2) then, for every a € A,

(2 — @5i)(2 — as;) — |af*(2ap; — si)(20p; — )
DSy

>0 (2.7)
i,j=1
where

s; =tr Wj, pj =detW; forj=1,...,n.

This condition is less simple than the classical Pick condition in that it
comprises an infinite collection of algebraic inequalities, but it is nevertheless
checkable in practice with the aid of standard numerical packages. Its ma-
jor drawback is that it is not sufficient for solvability of the 2 x 2 spectral
Nevanlinna-Pick problem.

Example 2.6. Let 0 <r < 1 and let
A2 AN+ r))

¢Q>:<ﬂ1_”1+rv’1+rv

Pick any three distinct points pq, po, us € D and let ¢(u;) = (s;,p;) for
j = 1,2,3. There exists ¢ > 1 such that the inequality (2.7) holds for all
a € A with n =3 and A\; = tu; but that there is no analytic map A : D — T’
such that h();) = (s;,p;) for j =1,2,3.

Hence, if we choose nonscalar 2 x 2 matrices Wy, Wy, W3 such that
(tr Wj,det W;) = (sj,p;), then the spectral Nevanlinna-Pick problem with
data \; — W; satisfies the necessary condition of Theorem 2.5 and yet has
no solution.

The statement in the example will be proved in a future paper [3]; see
also [22].

2.3. Two points and two-by-two matrices

When n = k = 2 the condition in Theorem 2.5 is sufficient for the solvability
of the spectral Nevanlinna-Pick problem.

We shall now prove the main theorem from Section 1. Recall the state-
ment:
Theorem 1.1. Let A\, Ao € D be distinct points, let Wy, Wo be nonscalar 2 x 2
matrices of spectral radius less than 1 and let s; = tr W;, p; = det W; for
j =1,2. The following three statements are equivalent:

(1) there exists an analytic function F : D — C**2 such that

FOW) =Wi,  F) = Wa

and
r(F(A\) <1 for all A € Dy
(2)
_ 249 — _ —
A (522?1_ 81p22)w + 2(p2 _pl)w 4:81 52| - ’ A - A2 ; (2.8)
weT | (s1 — 52p1)w? — 2(1 — p1Pp2)w + 52 — $1P2 1— 2o\
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(3)

l(2—wsl)(2 —wsj) — m(%pj - SJ)} i >0 (2.9)
1— i) B

ij=1

forallw e T.
The proof depends on some elementary notions from the theory of invariant
distances. A good source for the general theory is [35], but here we only need
the following rudiments.

We denote by d the pseudohyperbolic distance on the unit disc D:

A1 — A
d(M,Ae) = | ——=—— for A1, Ao € D.
(A1, A2) 1— dol O A1, A2
For any domain 2 € C" we define the Lempert function dq : Q x Q@ — R by
(5(2(21, 22) = inf d()\lv )\2) (210)

over all A1, Ay € D such that there exists an analytic map h : D — Q such
that h(\;) = 21 and h(\2) = z2. We define! the Carathéodory distance Cq :
QxQ— R by
Calz1,22) = supd(f(z1), f(22)) (2.11)
over all analytic maps f : Q0 — D. If Q is bounded then Cq is a metric on Q.
It is not hard to see (by the Schwarz-Pick Lemma) that Cq < dq for
any domain ). The two quantities Cgq, dq are not always equal — the punc-
tured disc provides an example of inequality. The question of determining
the domains € for which Cq = dq is one of the concerns of invariant distance
theory.

Proof. Let z; = (s;,p;) € G.
(1)<(2) In view of Proposition 2.2 we must show that the inequality (2.8)
is equivalent to the existence of an analytic h : D — IT" such that h(\;) = z;
for j = 1,2. By definition of the Lempert function dg, such an h exists if and
only if

5([;,(2’1, Zg) S d(zl, 2’2).
By [11, Corollary 5.7] we have ég = Cg, and by [11, Theorem 1.1 and Corol-
lary 3.4],

Ci(z1,22) = max d(P,(21), P, (22)) (2.12)

weT
e | (8291 = s102)w? + 2(p2 —pr)w + 81— 85 |
weT | (81— S2p1)w? — 2(1 — p1p2)w + 82 — s1P2
Thus the desired function h exists if and only if the inequality (2.8) holds.

(2)<(3) By equation (2.12), the inequality (2.8) is equivalent to
d(Py(21), Pu(22)) < d(M,N2) foralweT.

LConventionally the definition of the Carathéodory distance contains a tanh ™! on the right
hand side of (2.11). For present purposes it is convenient to omit the tanh~1.



By the Schwarz-Pick Lemma, this inequality holds if and only if, for allw € T,
there exists a function f,, in the Schur class such that f,()\;) = ®,(z;) for
j =1,2. By Pick’s Theorem this in turn is equivalent to the relation

= 2

1- (I)w(z_i)q)w(zj) >0
1— )\l>\j . -

1,j=1

Conjugate by diag{2 — ws1,2 — wss} to obtain (2)<(3). O

Remark 2.7. If one removes the hypothesis that Wi, W5 be nonscalar from
Theorem 1.1 one can still give a solvability criterion. If both of the W;
are scalar matrices then the problem reduces to a scalar Nevanlinna-Pick
problem. If W7 = ¢l and W5 is nonscalar then the corresponding spectral
Nevanlinna-Pick problem is solvable if and only if

r(Wy —cI)(I — eW) ™) < d(A, A2)

(see [7, Theorem 2.4]). This inequality can also be expressed as a somewhat
cumbersome algebraic inequality in ¢, s9, p2 and d(A1, A2) [7, Theorem 2.5(2)].

2.4. Ill-conditioned problems

The results of the preceding subsection suggest that solvability of spectral
Nevanlinna-Pick problems depends on the derogatory structure of the target
matrices — that is, in the case of 2 x 2 matrices, on whether or not they
are scalar matrices. It is indeed so, and in consequence problems in which a
target matrix is close to scalar can be very ill-conditioned.

Example 2.8. [7, Example 2.3] Let § € D\ {0} and, for o € C let

0w 03
vio- 3], we- 4]
Consider the spectral Nevanlinna-Pick problem with data 0 — Wy (), 8 —
Ws. If @ = 0 then the problem is not solvable. If & # 0, however, by Proposi-
tion 2.2 the problem is solvable if and only if there exists an analytic function
f:ID — T such that

0) = (0.0) and 7(8) = 2.

It may be checked [8] that

(201 =B)A AA—B)
f(A)—( -3\’ 1—6/\>

is such a function. Thus the problem has a solution F, for any a # 0. Consider
a sequence (ay,) of nonzero complex numbers tending to zero: the functions
F,, cannot be locally bounded, else they would have a cluster point, which
would solve the problem for a = 0. If « is, say, 1071%° then any numeri-
cal method for the spectral Nevanlinna-Pick problem is liable to run into
difficulty in this example.
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2.5. Uniqueness and the construction of interpolating functions

Problem SNP never has a unique solution. If F' is a solution of Problem
SNP then so is P"'FP for any analytic function P : D — C*** such that
P()) is nonsingular for every A € D and P(J;) is a scalar matrix for each
interpolation point ;. There are always many such P that do not commute
with F, save in the trivial case that F' is scalar. Nevertheless, the solution of
the corresponding interpolation problem for I' can be unique. Consider again
the case n = k = 2 with Wi, W5 nonscalar. By Theorem 1.1, the problem
is solvable if and only if inequality (2.8) holds. In fact it is solvable uniquely
if and only if inequality (2.8) holds with equality. This amounts to saying
that each pair of distinct points of G lies on a unique complex geodesic of
G, which is true by [12, Theorem 0.3]. (An analytic function h : D — G is
a complex geodesic of G if h has an analytic left-inverse). Moreover, in this
case the unique analytic function h : D — G such that h();) = (s;,p;) for
j = 1,2 can be calculated explicitly as follows [11, Theorem 5.6].

Choose an wy € T such that the maximum on the left hand side of (2.8)
is attained at wy. Since equality holds in (2.8), we have

d(q)wo (Z1)7 (I)wo (22)) = d()‘h A2)7

where z; = (s;,p;). Thus @, is a Carathéodory extremal function for the
pair of points 21, 25 in G. It is easy (for example, by Schur reduction) to find
the unique Blaschke product p of degree at most 2 such that

p(M) =p1, p(A2) =p2 and p(@o) = @p).

Define s by
wop(A) — A
A)=2——-"—— for A € D.
s(N) T won or \ €

Then h & (s,p) is the required complex geodesic.

Note that h is a rational function of degree at most 2. It can also be
expressed in the form of a realization: h(\) = (tr H(X\), det H(\)) where H is
a 2 x 2 function in the Schur class given by

HA) =D+CXN1—-AN'B

for a suitable unitary 3 x 3 or 4 x 4 matrix {A

c D] given by explicit formulae
(see [4], [12, Theorem 1.7]).

2.6. More points and bigger matrices

Our hope in addressing the case n = k = 2 of the spectral Nevanlinna-Pick
problem was of course that we could progress to the general case. Alas, we
have not so far managed to do so. We have some hope of giving a good
solvability criterion for the case k = 2, n = 3, but even the case n = 4
appears to be too complicated for our present methods.

The case of two points and k x k matrices, for any k, looks at first
sight more promising. There is an obvious way to generalize the symmetrized
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bidisc: we define the open symmetrized polydisc Gy to be the domain
G ={(01(2),...,01(2)) : z € ]Dk} c Ck

where o, denotes the elementary symmetric polynomial in z = (2!,..., 2%)
for 1 < m < k. Similarly one defines the closed symmetrized polydisc I'y,. As
in the case k = 2, one can reduce Problem SNP to an interpolation problem
for functions from ID to I';, under mild hypotheses on the target matrices W
(specifically, that they be nonderogatory). However, the connection between
Problem SNP and the corresponding interpolation problems for I'y, are more
complicated for k > 2, because there are more possibilities for the rational
canonical forms of the target matrices [37]. The analogues for T';, of the ®,,
were described by D. J. Ogle [39] and subsequently other authors, e.g. [23,
29]. Ogle generalized to higher dimensions the operator-theoretic method of
[6] and thereby obtained a necessary condition for solvability analogous to
Theorem 2.5.

The solvability of Problem SNP when n = 2 is generically equivalent to
the inequality

5Gk (Zl, ZQ) S d(Al, )\2)

where z; is the ktuple of coefficients in the characteristic polynomial of W;.
All we need is an effective formula for dg, . It turns out that this is a much
harder problem for k > 2. In particular, it is false that g, = Cg, when
k > 2. This discovery [38] was disappointing, but not altogether surprising.

There is another type of solvability criterion for the 2 x 2 spectral
Nevanlinna-Pick problem with general n [10, 14], but it involves a search
over a nonconvex set, and so does not count for the purpose of this paper as
an analytic solution of the problem. Another paper on the topic is [24].

It is heartening that the study of the complex geometry and analysis
of the symmetrized polydisc has been taken up by a number of specialists
in several complex variables, including G. Bharali, C. Costara, A. Edigarian,
M. Jarnicki, L. Kosinski, N. Nikolov, P. Pflug, P. Thomas and W. Zwonek.
Between them they have made many interesting discoveries about these and
related domains. There is every hope that some of their results will throw
further light on the spectral Nevanlinna-Pick problem.

3. The spectral Carathéodory-Fejér problem

This is the problem that arises from the spectral Nevanlinna-Pick problem
when the interpolation points coalesce at 0.

Problem SCF Given k x k matrices Vo, Vi, ..., Vy, find an analytic function
F : D — CF¥F such that

FOWO) =V, forj=1,....n (3.1)

and
r(F(A\) <1 forall A €D. (3.2)
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This problem also can be converted to an interpolation problem for ana-
lytic functions from D into I'y, [34, Theorem 2.1], [37]. However, the resulting
problem is again hard when £ > 2, and the only truly explicit solution we
have is in the case k = 2,n = 1 [34, Theorem 1.1].

Theorem 3.1. Let
Vin = [”Z’l]?,j:l form =0,1
and suppose that Vy is nonscalar. There exists an analytic function F : D —
C%%2 such that
F0)=Vy, F(0)=V, and r(F(\)<1foralXeD (3.3)
if and only if

(s1p0 — sop1)w? + 2wp1 — 1
max

= - —| <1, 3.4
lwl=1 |w?(s0 — Sopo) — 2w(1 — |po|?) + 50 — s0Po (3:4)

where

So = tI'Vo, Po = det Vo,

0,1 1.0
—trV, _ | V11 Y12 V11 V12
S1 =1V, P1=1]0 ,1 1.0 |-
U321 V22 V21 V32

The proof of this theorem in [34] again depends on the calculation in
[11] of the Carathéodory metric on G, but this time on the infinitesimal
version c¢g of the metric: the left hand side of inequality (3.4) is the value
of cg at (sp,po) in the direction (s1,p1). This fact is [11, Corollary 4.4], but
unfortunately there is an w missing in the statement of Corollary 4.4. The
proof shows that the correct formula is as in (3.4). An important step is
the proof that the infinitesimal Carathéodory and Kobayashi metrics on G
coincide.

The ideas behind Theorem 3.1 can be used to find solutions of Problem
SCF: see [34, Section 6]. The ideas can also be used to derive a necessary
condition for the spectral Carathéodory-Fejér problem (3.1), (3.2) in the case
that n = 1 and k > 2 [34, Theorem 4.1], but there is no reason to expect this
condition to be sufficient.

4. The structured singular value

The structured singular value of a matrix relative to a space of matrices was
introduced by J. C. Doyle and G. Stein in the early 1980s [25, 26] and was
denoted by p. It is a refinement of the usual operator norm of a matrix
and is motivated by the problem of the robust stabilization of a plant that is
subject to structured uncertainty. Initially, in the H° approach to robustness,
the uncertainty of a plant was modelled by a meromorphic matrix function
(on a disc or half plane) that is subject to an L> bound but is otherwise
completely unknown. The problem of the simultaneous stabilization of the
resulting collection of plant models could then be reduced to some classical
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analysis and operator theory, notably to the far-reaching results of Adamyan,
Arov and Krein from the 1970s [30].

In practice one may have some structural information about the uncer-
tainty in a plant — for example, that certain entries are zero. By incorporating
such structural information one should be able to achieve a less conservative
stabilizing controller. The structured singular value was devised for this pur-
pose. A good account of these notions is in [27, Chapter 8]. Unfortunately,
the behaviour of y differs radically from that of the operator norm — for one
thing, © is not in general a norm at all, and none of the relevant classical
theorems (such as Pick’s theorem) or methods appear to extend to the cor-
responding questions for p. This provides a challenge for mathematicians:
we should help out our colleagues in engineering by creating an AAK-type
theory for p.

For any A € C**¢ and any subspace E of C*** we define the structured
singular value pg(A) by

L
pE(A)

with the understanding that pp(A4) =0 if 1 — AX is always nonsingular.

Two instances of the structured singular value are the operator norm
||l.I (relative to the Euclidean norms on C* and C?) and the spectral radius
r. If we take F' = C**¥ then we find that yug(A) = ||A]|. On the other hand,
if K = ¢ and we choose E to be the space of scalar multiples of the identity
matrix, then pg(A) = r(A). These two special us are in a sense extremal: it
is always the case, for any E, that ug(A) < ||A]|. If Kk = ¢ and E contains
the identity matrix, then pg(A4) > r(A). A comprehensive discussion of the
properties of u can be found in [40].

Here is a formulation of the u-synthesis problem [26, 27].

Given positive integers k, £, a subspace E of C*** and analytic functions
A, B,C on'D of types k x £,k x k and £ x £ respectively, construct an analytic
function F : D — CF** of the form

F = A+ BQC for some analytic ~Q:D — CF** (4.2)

=inf{||X||: X € E, 1 — AX is singular} (4.1)

such that
up(F(A) <1 forall XeD. (4.3)

The condition (4.2), that F' be expressible in the form A + BQC' for
some analytic @), can be regarded as an interpolation condition on F. In the
event that & = ¢, B is the scalar polynomial

B\ =A=A1)... (A=)

with distinct zeros A; € D and C' is constant and equal to the identity, then
F'is expressible in the form A + BQC' if and only if
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With this choice of B and C, if we take E to be the space of scalar matrices,
we obtain precisely the spectral Nevanlinna-Pick problem. If we now replace
B by the polynomial \", we get the spectral Carathéodory-Fejér problem.

In engineering applications p-synthesis problems arise after some anal-
ysis is carried out on the plant model to produce the A, B and C in condition
(4.2), and the resulting B and C will not usually be scalar functions. Never-
theless, explicit pointwise interpolation conditions provide a class of easily-
formulated test cases, and it is arguable that such problems are the hardest
cases of u-synthesis.

Conditions of the form (4.2) are said to be of model matching type [30].

The most sustained attempt to develop an AAK-type theory for the
structured singular value in full generality is due to H. Bercovici, C. Foiag and
A. Tannenbaum ([15] to[21]). They have a far-reaching theory: inter alia they
have constructed many illuminating examples, found properties of extremal
solutions and obtained a type of solvability criterion for p-synthesis problems.
The criterion results from a combination of the Commutant Lifting Theorem
with the application of similarity transformations. To apply the criterion to
a concrete spectral Nevanlinna-Pick problem one must solve an optimization
problem over a high-dimensional unbounded and non-convex set. We can
certainly hope that this is not the last word on the subject of solvability.
Despite the achievements of Bercovici, Foiag and Tannenbaum, there is still
plenty of room for further study of u-synthesis.

One of their examples [18, Section 7, Example 5] exhibits an important
fact about the spectral Nevanlinna-Pick problem: diagonalization does not
work. It shows that diagonalization of the target matrices W; in Problem
SNP by similarity transformations, even when possible, does not help solve
the problem. One could hope that if the W} were diagonal one might be able
to decouple the problem into a series of scalar interpolation problems, but
they show that such a hope is vain.

Bill Helton himself, along with collaborators, has developed an alter-
native approach to the refinement of H* control; his viewpoint is set out
in [32]. His part in the introduction of the results of Adamyan, Arov, Krein
and other operator-theorists into robust control theory in the early 1980s
is well known. He subsequently worked extensively (with Orlando Merino,
Trent Walker and others) during the 1990s on the more delicate optimization
problems that arise from refinements of the basic H* picture of modelling
uncertainty. As in the p approach, the aim is to incorporate more subtle
specifications and robustness conditions into methods for controller design.
He developed a very flexible formulation of such problems as optimization
problems over spaces of vector-valued analytic functions on the disc, and de-
vised an algorithm for their numerical solution — see [33] and several other
papers. The authors proved convergence results and described numerical tri-
als. However, the spectral Nevanlinna-Pick problem cannot be satisfactorily
treated by the Helton scheme. Although it can be cast in the basic problem
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formulation [32, Chapter 2], solution algorithms require smoothness proper-
ties (of the function “I'”) which the spectral radius does not possess.

5. The next case of p

After the two extremes u = ||.|g~ and p = r the next natural case to
consider is the one in which, in (4.1), K = ¢ and E is the space Diag(k) of
diagonal matrices. For the rest of this section p will denote ppjag(2) and we
shall study the following problem:

Given distinct points \1,..., A\, € D and 2 X 2 matrices Wy,..., W,
construct an analytic function F : D — C?*2 such that

F\)=W; forj=1,....n (5.1)

and
w(FN) <1 forall X €D. (5.2)

For the 2 x 2 spectral Nevanlinna-Pick problem we had some modest
success through reduction to an interpolation problem for I'-valued functions.
In the present case we tried an analogous approach, with still more modest
success [1, 2, 41]. The following result is [2, Theorem 9.4 and Remark 9.5(iii)].

Theorem 5.1. Let \g € D, A # 0, let ( € C and let
_10¢ _lax
T o

Suppose that |b] < |a| and let p = det Wy. There exists an analytic function
F :D — C?*2 such that

FA\)=W1, F)=Ws and p(FN)<1 foralreD (54)
if and only if |p] <1 and
|a — bp| + |ab — p|
1—1|pl?

[Aol* = (lal? + b + 2lab — p)[Xof* + |pI* 2 0 if ¢ =0.

The stars in the formula for W5 in (5.3) denote arbitrary complex num-
bers.

What is the analog of T" for this case of u? To determine whether a 2 x 2
matrix A = [a,;] satisfies (A) < 1 one needs to know only the two numbers
tr A and det A; this fact means that the spectral Nevanlinna-Pick problem
can generically be reduced to an interpolation problem for I'. To determine
whether 1(A) <1 one needs to know the three numbers a;1, ass, det A. This
led us to introduce a domain E which we call the tetrablock:

E={recC®:1—a'2— 2w+ 232w # 0 whenever |z| < 1,|w| < 1}. (5.5)

< [ Ao ifC#0

Its closure is denoted by E. The name reflects the fact that the intersection
of E with R3 is a regular tetrahedron. The domain E is relevant because
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u(A) < 1if and only if (a11, asz,det A) € E. There exists a solution of the 2-
point p-synthesis problem (5.4) if and only if the corresponding interpolation
problem for analytic functions from I to E is solvable [2, Theorem 9.2], and
accordingly the solvability problem for this u-synthesis problem is equivalent
to the calculation of the Lempert function dg. As far as I know no one has yet
computed dg for a general pair of points of E, but we did calculate it in the
case that one of the points is the origin in C3, that is, we proved a Schwarz
lemma for E. The result is Theorem 5.1.

Observe that ill-conditioning appears in this instance of p-synthesis too
2, Remark 9.5(iv)]. If, in Theorem 5.1, a = b = p = % then there exists a
solution F¢ of the problem if and only if

2 if¢#0
[Ao| =
75 if¢=0
Thus if 2 < [\ < %, the Fi are not locally bounded as ¢ — 0, and so are

sensitive to small changes in ¢ near 0.

The complex geometry of E has also proved to be of interest to re-
searchers in several complex variables. To my surprise, it was recently shown
[28] that the Lempert function and the Carathéodory distance on E coincide.
This might be a step on the way to the derivation of a formula for dg. It
would suffice to compute dg in the case that one of the two points is of the
form (0,0, \) for some A € [0,1), since every point of E is the image of such
a point under an automorphism of E [41, Theorem 5.2].

The fourth and final special case of p-synthesis in this paper is the
p-analog of the 2 x 2 Carathéodory-Fejér problem:

Given 2 x 2 matrices Vy, ..., Vy, construct an analytic function F : D —
C2%2 such that

FOWO)=V; forj=0,....,n and p(F(\) <1 forall A cD.

Again the problem can be reduced to an interpolation problem for E,
but the resulting problem has only been solved in an exceedingly special case.

Theorem 5.2. Let Vy, Vy be 2 X 2 matrices such that
_10¢
=[5
for some ¢ € C and Vi = [v;] is nondiagonal. There exists an analytic
function F : D — C?*2 such that
F0)=Vy, F(0)=V, and u(FN)<1foralleD

if and only if
max{|v11], [vaz[} + [Cva1| < 1.

This result follows from [41, Theorem 2.1].
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6. Conclusion

Although p-analysis remains a useful tool, it is fair to say that u-synthesis,
as a major technique for robust control system design, has been something of
a disappointment up to now. The trouble is that the p-synthesis problem is
difficult. It is a highly non-convex problem. There do exist heuristic numerical
methods for addressing particular p-synthesis problems, notably a Matlab
toolbox [36] based on the “DK algorithm” [27, Section 9.3], but there is no
practical solvability criterion, no fast algorithm nor any convergence theorem
for any known algorithm. For these reasons engineers have largely turned to
other approaches to robust stabilization over the past 20 years. If, however, a
satisfactory analytic theory of the problem is developed, engineers’ attention
may well return to p-synthesis as a promising design tool. We are still far
from having such a theory, but perhaps these special cases and the interest
of the several complex variables community may yet lead to one.
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Abstract—Unlike traditional entropy in information theory,
this work uses the normalized energy instead of probability to
obtain a low-frequency amplitude transform (LAT) on
coefficients of discrete wavelet transform (DWT). The
watermark is embedded based on the properties and
characteristics of this transform. Finally, performance of the
proposed scheme is assessed by signal-to-watermark (SWR)
and bit error rate (BER). Experimental results demonstrate
that the embedded data are robust against most signal
processing and attacks, such as re-sampling, low-pass filtering,
and amplitude-scaling.

Keywords-entropy; low-frequency amplitude transform; discrete
wavelet transform

I INTRODUCTION

In recent years, many watermarking techniques have been
proposed [1-8]. For music copyright protection, audio
watermarking has the following requirements: 1) The
watermark should be imperceptible in embedded audio. 2)
The embedding technique should offer more than 20 dB
signal to watermark ratio (SWR). 3) The watermark should
prevent common attacks, including filtering, re-sampling,
and mp3 compression, etc.

Wu et al. [2] used quantization index modulation to
embed information into the low-frequency sub-band
coefficients of discrete wavelet transform (DWT). This
technique has good watermarked audio quality and strong
robustness against common signal processing and noise
corruption. However, this method is vulnerable to amplitude
and time scaling. Xiang et al. [3] proposed a DWT-based
audio watermarking algorithm robust against the DA/AD
conversions. The relative energy relation among different
groups of the DWT coefficients in the low-frequency sub-
band are utilized in embedding by adaptively controlling the
embedding strength. However, the method has low capacity

Huang-Nan Huang

Department of Mathematics,
Tunghai University,
Taichung 407, Taiwan (ROC).
nhuang @thu.edu.tw
(corresponding author)

Chun-Hua Wu
Chang Bing Show Chwan Memorial
Hospital, Lukang, Changhua County
505, Taiwan (ROC).
anis6699 @yahoo.com.tw

Chih-Yu Hsu

Department of Information and
Communication Engineering,
Chaoyang University of Technology,
Taichung County 413, Taiwan (ROC).
tccnchsu@gmail.com

Jeng-Shyang Pan
Department of Computer Science
and Technology, Harbin Institute

of Technology, Shenzhen
Graduate School, China.
jengshyangpan @gmail.com

and SNR. Chen et al. [4] proposed an optimization-based
watermarking scheme robustly against many attacks.

Unlike traditional entropy, this work uses normalized
energy instead of probability to form a novel entropy. Based
on this concept, this work presents a new technique that
embeds information by using low-frequency amplitude
transform (LAT). Some properties and characteristic curve
of LAT are analyzed and proved to investigate the
relationship between LAT and DWT coefficients. Finally,
the performance of the proposed scheme is assessed by
signal-to-watermark ratio (SWR) and bit error rate (BER).
Experimental results demonstrate that the embedded data
are robust against most signal processing and attacks.

The remainder of this paper is organized as follows.
Section II introduces DWT and LAT. Section III derives the
properties and characteristic curve of LAT to analyze the
relationship between LAT and DWT coefficients. The
proposed embedding and extraction processes are described
in Section IV. Experiments are conducted to test the
performance of our proposed method in Section V. Finally,
conclusions are summarized in Section VI.

II. DWT ANDLAT

Discrete wavelet transform (DWT) is first reviewed in
this section. Based on the low-frequency DWT coefficients
in level seven, which is also referred as the lowest-
frequency DWT coefficients, traditional entropy is redefined
as a novel low-frequency amplitude transform (LAT).

A.  Discrete-time wavelet transform (DWT)

Since the conventional fast Fourier transform (FFT)
efficiently decomposes a signal into uniform-resolution
analysis, it is suitable to analyze the wide-sense-stationary
condition but not in non-stationary signal. In this paper, the
discrete wavelet transform (DWT) is adapted to decompose
the signal into the time-frequency domain. According to the
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multi-resolution property of DWT, it leads to low-frequency
but high-temporal resolution in high frequency bands and
low-temporal but high-frequency resolution in low
frequency bands. Therefore, we let the low frequency bands
enhance the periodic property by only decomposing low-
frequency band in each level. In [9], a method to implement
DWT by using filter bank decomposition is proposed.

B. IAT

Before to introduce the proposed watermarking technique,
the LAT must be defined and discussed. If there are N non-
negative random samples that are shown
as X v ={¢,10<i< N -1}, the corresponding probabilities
are P(cy)=p,» Plc)=p, > PlCy ) =Dy -

information theory, the entropy of these samples is defined
as follows:

Based on

N-1
H (X,)=-> plog p, 0<i<N-1 M
i=0
where r is a base number of the logarithm function log .
This work adopts r =10. Unlike the traditional way, this
work uses the normalized energy instead of probability in
wavelet domain as follows.

Definition 1. Suppose that X, ={lc,10<i< N -1} is a set
of low-frequency coefficients in DWT,

amplitude transform (LAT) of X,

low-frequency

is then defined as

where |c / Z| is the normalized energy of coefficient ¢, .

From this definition,
coefficients X,

if the variation of low-frequency
is small, the corresponding LAT(X,) is

big. For an example with N =20 as shown in Figure 1,
when X, varies slowly, LAT(X,,) is 1.2998. However,

when the variation of low-frequency coefficients X, is
large,
depicts that when X,

the corresponding LAT(X,) is small
( N=20 ) varies markedly, the
corresponding LAT (X ,,) is 1.1589. In this paper, we adopt

Figure 2

N =2 to have high embedding payload. Moreover, the
standard deviations of this function for N =2 before and
after various attacks are approximately invariant. It is
expected that the proposed low-frequency amplitude
transform is robust against common attacks.

E(X20) = 1.2998

Fig. 1 When X, varies slowly, LAT(X,;) is 1.2998.

E(X20) = 1.1589

Fig. 2 When Xzo 20) is 1.1589.
Finally, the performance of our method is measured by
signal-to-watermark ratio (SWR) and Bit-error-rate (BER)
mathematically. They are defined as follows.
> (Sm)

SWR=10log,,{ 22— ° 3)
50 S (S-S ()’

varies markedly, LAT (X

where S(n) and S(n) denote the original and the modified

audio, respectively;

BER=(B )x100% » “)
denote the number of error bits and

error /Blolal

and B

Where Bermr total

the number of total bits, respectively.

III. PROPERTIES OF THE CHARACTERISTIC CURVE OF LAT

This section discusses some properties of the
characteristic curve of LAT (CCL). Based on these
properties and the characteristic curve, this work presents a
novel watermarking scheme.

A.  Properties of CCL

In the proposed watermarking scheme, the host digital
audio signal §(») is cut into segments. Then, every two low-
frequency DWT coefficients in each segment are grouped
and sorted according to their absolute value into a vector
form X, :[I ¢, e |], where |, I<I¢, | . Since the value of



LAT(X,) in (2) is a function of X, a weighting matrix W
is used to control the variation of LAT(X,) as follows:

X, =X,W )
where

0
W:[v:; chliag(wo,l) (6)
In other words, only the smallest value le,l will be

modified. Hence, the corresponding LAT(XZ) is shown as

follows.
lAT()A(Z) :—{ I |C°| 4 |C0| " |01| |01| }
wleo| Hal  wolal+Hal wola|Hal T whleo|+Hel

with the following property:
Lemma 1. LAT(Xz) has an unique critical point (CP)

Wo :|Cl|/|c()|'

B.  The Characteristic curve of CCL

Based on the previous discussion, the relation between
LAT(X,)and W, can be described as a CCL. For example,
‘c0‘=1007
on this CCL, LAT(X,) has a CP at w, =37 according to

Cl‘ =370. Their relation is shown in Fig. 3. Based

Lemma 1. In other words, the maximum of LAT(X,) should

oceur at w, =|q|/|c,| with it value given by

lAT(XZN =_{ WO‘CU‘ og "o ‘CU‘ + ‘Cl‘ It ‘Cl‘ }
wo=fal/Jel Wo‘cn“"‘ﬁ‘ W, ‘%‘*‘Q‘ WO‘CO"F‘CI‘ WO‘CO“F‘L]‘ ool
1
= _logE = LATmax (7)
Since the minimum of LAT(X ,) should be attained when
w, =0, i.e.,
MT()% T W()‘Co‘ Wo‘co‘ o ‘CI‘ og ‘Cl‘
2 b0~ t
T el Hal T wlalHal wilal+Hal T wlalHel
=0
=LAT,, —0, (3)

And we set LAT , =0.05 to sufficiently approximate the

smallest value of LAT for computational purpose. During
the watermarking process, we also set LAT  to be

LAT,, = (LAT,, +LAT,, )/2 (€
By Lemma 1, LAT(X,) has two monotone subintervals

which are called segment 1 and 2, referred to Fig. 3 as a
typical example. In this work, we adopt the range

W, € [0,05, clmcou of LAT(X,) in segment 1 to embed data.

The detail process will be introduced in the next section.

IV. THE PROPOSED WATERMARKING TECHNIQUE

In this section, the novel watermarking technique by
using segment 1 in the characteristic curve of CCL is

proposed. It contains embedding and extraction processes.
These processed are introduced as follows.

0.35

segnwﬁt 1 I segmen; 2

AT pst——————— ———1——

025} / I 1
<l / |
S |
3 e/ |
/ |
01F !
/ |

LAT S | |

, ‘ ‘ b .
o 1 2 3 P 4 5 ]

weight w,

Fig. 3 The characteristic curve of LAT for | ¢, =100l ¢, I=370.

Original audiolS(n)

Segmenting

v
DWT

'

Grouping every 2 coefficients & sorting

Key €
7 X, :{‘CO‘,‘CI }, where ‘co‘ < ‘51‘-
7'y
XZ
Embedding
> process
Watermark B |0101...7= l X,
Synchronization code IDWT
Information data Combining l
S (n)

Fig. 4 The flowchart of watermark embedding process.

A.  The embedding process

First of all, the synchronization codes and watermark are
arranged into a binary pseudo-noise (PN) sequence B, for
example, B={0,1,10,1,...} - Secondly, as shown in Figure 4,

the original audio S(n) is split into proper segments, and

DWT is applied to each segment. Then the synchronization
codes and watermark are embedded into the lowest-
frequency DWT coefficients. In this step, we group every
two consecutive coefficients into X, 2{‘% Cl‘} with

s

l¢, Il ¢, |. The proposed embedding process is described as

follows.



® [f the binary bit “l1e B” is embedded, we choose w,
such that
LAT(X,W) = LAT(X,) = (LAT,, +LAT,,)/2+¢ (10)
® [f the binary bit “0e B ” is embedded, we choose W,
such that
LAT(X,W)=LAT(X,)=(LAT, +LAT, )/2—¢ (11)
where £ [0,0.3] is a small positive number which can be

used as a secret key.

B.  The extraction process

The flowchart of watermark extraction is given in Figure
5. Every two consecutive lowest-frequency DWT
coefficients is grouped into X, ={‘Co ¢ ‘} . To extract the

>

watermark B :{ 5}, we apply (2) with N = 2 as follows.
®If LAT(X,)> LAT,,  the extracted value ﬁ’:l
®If LAT(X,) < LAT,, the extracted value 3=0.

Watermarked audio S (n)

v

Segmenting

!

DWT

v

Grouping:
X,= {|Co|’|c1 |}

Extraction :
If LAT(X,) > LAT,,, B=1
If LAT(X,) < LAT,,,, f=0

Key € —»

Watermark g — { IB}
Fig. 5 The flowchart of watermark extraction.

V. EXPERIMENTAL RESULTS

The performance of the proposed audio watermarking
technique is tested by using 16-bit mono audio signal
sampled at 44.1 kHz. The length of each audio is about 11.6
seconds. We use two kinds of music which are symphony
and popular. By setting the parameter € to be 0.05, the
synchronization code and watermark are embedded into the
low-frequency DWT  coefficients in level seven.
Accordingly, the embedding capacity is 2000bits/11.6 secs.
The SWR for the two audios are 20.8 dB (symphony) and
21.1 dB (popular). Moreover, we apply three types of attack
to test the robustness: (1) re-sampling, (2) amplitude scaling,
(3) low-pass filtering. The testing results are listed in
TABLES I-III.

TABLE 1. BER(%) after Re-Sampling

Rate (Hz) | 22050 | 11025 | 8000
symphony 3.6 7.5 7.3
popular 9.2 12.9 14.7

TABLE II. BER(%) after Amplitude Scaling
Scaling factor | 0.2 0.8 1.1 1.2
symphony 0.5 0.4 0.4 0.4

popular 0.5 0.5 0.4 0.4
TABLE III. BER(%) after Low-Pass Filter
Cut-off frequency(kHz) 3
symphony 24.1
popular 26.8

VI. CONCLUSIONS

A novel audio watermarking technique is proposed to
embed the information by using LAT. When embedding the
watermark, an analytical formula is provided to determine
the weight on DWT coefficients. The experimental results
show that the embedded data are robust against some attacks.
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Abstract—Arterial blood pressure is one of the important
biomedical waveforms that possess lots of important clinical and
pathological information. This paper aims in designing a
technique, which is called characteristic compression method, to
perform almost lossless data compression for the continuous
arterial blood pressure waveforms. This method uses the spline
function to interpolate the original waveform at preselected
sample points first. A fourth order spline function is considered
with associated formulas in describing the coefficients of the
function. A second stage compression is accompanied by using
12-bit digital data representation to store sample points and
coefficients for each interval. Numerical simulation confirms
that the proposed technique is feasible and does provide a very
high compression rate and almost lossless reconstruction for the
continuous arterial pulse wave.

Keywords—Dblood pressure, pulse wave, spline interpolation,
sample point, jerk

I. INTRODUCTION

According to the 2008 Factsheet WHO [1] “Top ten causes
of death” divides countries into three groups: high-income,
middle-income and low-income. The death due to ischaemic
and hypertension heart diseases have already leapt into the top
ten causes of death in high-income and middle-income

countries and they occupy over 13% of the world’s population.

Thus the heart disease becomes the most mentioned disease in
the whole world and monitoring the continuous arterial pulse
waveforms becomes one of effective way for preventing this
disease.

The measurement on the continuous blood pressure of the
artery can not only provide the SBP and DBP as well as the
MBP information, but also obtain the full waveform of the
continuous blood pressure for each heart stoke. Based on the
arterial pulse waveform, physiologists can determine the
corresponding type of heart disease such as hypertension,
heart rate volatility (HRV), mitral value regurgitation, etc..
According to the analysis of Windkessel model [2-4] on the
continuous arterial pulse wave, one can compute various
cardiovascular parameters such as arterial compliance, cardio
output, blood volume, and left ventricular ejection time, etc. to
aiming for prevention or early treatment on the heart disease.

Though the continuous blood pressure monitoring can
reveal exhaustive pathologic information, but the amount of
the acquired data is much larger than the static blood pressure
obtained by using the traditional sphygmomanometer. With

978-0-7695-4738-1/12 $26.00 © 2012 IEEE
DOI 10.1109/CMCSN.2012.3

the sampled frequency at S00Hz and storage with 32-bit
representation, the blood pressure monitoring system requires
at least 168MB hard disk storage every day for round-the-
clock monitor on each individual. At the same time, some
special pathologic characteristics (such as sudden HRYV,
autonomic dysfunction, etc.) need a record of long-time
measurement in revealing their significances. For some
patients with serious disease or just after medical surgery, a
long-term continuous blood pressure monitor is required.
Therefore, it becomes important to have very high
compression rate for storing the recorded continuous blood
pressure waveform. In addition, with the rapid development
of electric devices such as hand-carrying type continuous
blood pressure instruments (for example, Portapres), novel
technology in storing and compressing the continuous blood
pressure can lighten the new measuring device and accelerate
the wirelessly signal transmission speed which make the
realization of the physiological monitoring system for home
care possible.

The blood pressure reflects the operating status of the
cardiovascular system which can assist physiologists in
diagnosing the heart disease. Thus the compression
technology should guarantee that the reconstruction of the
blood pressure waveform from the compressed data is lossless
to avoid inadequate judgments on the disease status. Under
the lossless requirement, the compression technique seeks for
the data compression ratio as higher as possible. The
mainstream in compressing the pulse pressure waveform is
mainly utilizing the method developed for the
electrocardiogram (ECG/EKG) [5-6], such as Turning Point
(TP) algorithm [7], Amplitude Zone Time Epoch Coding
(AZTEC) algorithm [8-9], Reduction Time Encoding System
(CORTES) algorithm [10], and Fan algorithm [11-13]. The
compression rate (CR) of these methods lies between 2 and 5;
the percent root-mean-square difference (PRD) around 5 to
29%. These methods do not provide high compression rate
and their compression is also not lossless. In 2004, Chen
etc.[14] classifies the continuous blood pressure signal
according to the similarity for this kind of physiological
signals, and then proposes to use Huffman coding [15], run-
length coding [16] and vector quantization [17-18] for further
data compression. Although the compression ratio of their
method lies between 14.17 and 34.40, which is apparently
higher than traditional algorithms, like TP, AZTEC, CORTES
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etc., however it is still not a lossless compression algorithm
for the continuous blood pressure data.

This paper aims in proposing a characteristic compression
method (CCM) which is an almost lossless technology to
compress the continuous blood pressure data. It consists of
two operational stages: the first one use the spline function to
interpolate the original waveform at some specified sample
points; the second stage uses 12-bit digital data representation
to store the coordinates of sample points and the associated
spline coefficients for each interval. Our proposed method
can reduce the PRD value under 0.5% and maintains good
compression efficiency.

The remaining parts of the paper are organized as follows:
Section II will introduce mathematical formula in describing
coefficients of the spline function. Due to the mismatching
between the original and reconstructed waveforms, we add
more sample points and derive the corresponding spline
function such that to reduce their mismatching. Section III
describes the digital data representation to store the selected
sample points and computed spline coefficients in each
interval. Also the length of binary representation for data
storage is determined for second stage compression. Section
IV shows our experimental results and their comparison with
the previous researches. Finally, some concluding remarks
are stated in last section.

II. SPLINE FUNCTION FOR SAMPLE POINTS

The main idea in the characteristic compression method is
to locate certain points inside the signal which possess special
characteristics such that the original waveform of the signal
can be lossless reconstructed by utilizing the designed
mathematical function passing to interpolate the wave through
these data points. Thus, we only need to store coordinates of
these characteristic points (which is referred as sample points
in our paper) together with the coefficients or parameters of
the designed mathematical function in each interval for the
signal reconstruction. That is, the original waveform of the
signal can be represented by a small amount of data which
means the original signal is compressed at all. To implement
this idea, two questions are raised in advance. The first one is
how to select the so-called sample points inside the waveform
of the signal? The other is how to design the mathematical
function for lossless reconstruction of the original waveform
based on the selected sample points?

To answer these two questions, we review the data
interpolation theory from calculus and numerical analysis.
Since the continuous waveform of the blood pressure is
continuous and almost smooth everywhere, the peak/valley
points, inflection points and jerk points are considered to
possess most important features of the waveform. Thus we
select the sample point to be the peak/valley point, inflection
point or jerk point on the waveform of the signal. In our case,
we consider the jerk point as the vanished third derivative
occurs. In order to capsulate the smoothness property of the
waveform, a nature choice is to pick the spline function, as
described typically in equation (1), as our candidate for
mathematical function for data reconstruction.

S, (b (x—x,)+c,(x—x,)’+d,(x—x Me,i=1..,n—1. (1)
For the jerk point we obtain b, =0. Although there is the
possibility for two jerk points adjacent to each other, the
computation error is too high and we neglect the point
transition in this type. As we move on the index for sample
points from P(x,y,) to O(x,,,y.,) , Six possible
relationships between coefficients are listed below:
1. From peak/valley point P to inflection point Q:
We obtain the following relationship for coefficients:

Vin =¥, = b, =) +¢,(x, —x)" +0
d,,—0=3b(x,,—x,) +2¢(x., —x,) )
0—c, =3b,(x,,, —x,)

2. From peak/valley point P to jerk point Q:
Vin =V, =a(x,—x) +b(x., —x) +c,(x,,—x,) +0
d, —0=4a,(x,, —x) +3b(x,, —x) +2c,(x,, —x,) 3)
. —¢ =6a,(x,, —x) +3b(x,, —x)
0-b, =4a,(x,, —x,)

3. From inflection point P to peak/valley point Q:
V=Y =b ()CM —X, )3 +0+d, (xH1 —xi)
0—d, =3b,(x,,—x) +0 4)
¢y —0=3b(x,, —x,)

4. From inflection point P to jerk point Q:
Vi —yi=a(x,, —)ci)4 +b.(x,, — xl.)3 +0+d,(x,, —x,)
d. —d =4a(x, —x) +3b(x,, —x) +0 )
¢,y —0=06a,(x,, —x,)" +3b,(x,,, —x,)
0-b,=4a,(x,, —x,)

5. From jerk point P to peak/valley point Q:
Vi —yi=a(x,, —)ci)4 +0+c,(x,, —)ci)2 +d.(x,,—x,)
0-d, =4a,(x,, —x) +0+2c(x,, —X,) ©)
¢y —C =6a,(x,, —x,) +0
b, —0=4a/(x,, —x,)

6. From jerk point P to inflection point Q:
Vi —yi=a(x,, —)ci)4 +0+c¢,(x,, —)ci)2 +d.(x,,—x,)
d. —d =4a,(x,, —x) +0+2c(x,, —x) @
0—c, =6a,(x,, —x,) +0
b, —0=4a/(x,, —x,)

Based on previous discuss, not only the parameters as b
and . are obtained from (2) ~ (7) for the spline in the given
interval, but also the parameters C and/or d for next interval.

Fig. 1 gives us the comparison between the original waveform
and the reconstruction wave by using the fourth order spline
function. The PRD is 0.127%, and compression ratio is
5.4515. 1t indicates that the fourth order spline function can
almost reconstruct the original waveform, i.e., the data
compression of continuous blood pressure by utilizing the



fourth order spline function together with sample points is
almost lossless. But in comparison to the previous method,
the compression ratio is not particularly remarkable. In order
to raise the compression rate, a so-called digital data
representation (DDR) is applied to compress the stored data
again, i.e., DDR is adopted to represent sample points and
interval coefficients of the fourth order spline.

b#o

CResasto
PRO-0.1270%

Pressure (mmtg)

%72 2 27 2m 28 2m 28 2m  28 29 2@

(a) (b)
Fig. 1. Comparison between the original waveform and its recon-
struction by a fourth order spline function: (a) a typical cycle,
(b) enlarged portion around the peak at time 2.8 sec.

III. DIGITAL DATA REPRESENTATION

Traditionally, the digital data with decimal point can be
stored in the binary form with two different types of
realizations: fixed-point representation system and floating-
point representation system. As shown in Fig. 2, the first one
uses 16 bits to represent the data with 8 bits for integer part
before decimal point and other 8 bits for the fraction part after
decimal point; while the second one uses 32 bits to represent a
floating point number according to ANSI standard. Since
there are only 8 bits use in Fig. 2(a) in representing the integer
part of the data value, hence only 0~255 of the data range is
allowed which may not be adequate for hypertension disease.
Although the second one given in Fig. 2(b) has the resolution
about 1/224 (=5.96x10-7) but it uses 32 bits for one numerical
data representation such that the compression rate can’t be
reduced further.

Integer Sloating point

(8 bits) (8 bits)
[fooTi[a] 1o 1]t tJoJo o ofo o
27 26 25 20 2 22 21 20 21 22 27 27 25 2627 28

sign exponent mantissa
| (1 bit) (7 bits) (24 bits)

0] [T 0 T0mmcreen]

TR e P

Fig. 2. Binary representation of a decimal number:(a) the fixed-point
representation system, (b) the floating-point representation
system according to the ANSI standard.

We conduct a survey on using how many digits to represent
the data will be sufficient to provide the required performance
for data compression. For the 32-bit float point number, we
take its log value first and then store the rounding value into
an n-bit long representation with its corresponding binary
value. The reconstruction process is the same but with reverse
order of operations to reconstruct the original waveform.

Our experiment selects 30 young people aged 25+5 years
old. Their continuous arterial blood pressures are recorded for
450 sec long at the sampling frequency S00Hz by the Millar
Instruments PCU-2000 Pressure Control Unit and SPT-301
pressure sensor. A 10Hz low-pass filter is utilized for data
preprocessing. As shown in Figs. 3 and 4, both the PDR and
the CR are decreasing as the number of bits increases. The

PDR value seems to be stable when is greater or equal to 12.
At the same time, the CR is still decreasing linearly as
increases beyond 12. In conclusion, we select 12 bits for our
numerical data representation, and the corresponding PRD is
0.1270% with standard deviation 0.0629% and the CR value
is 18.4577 with standard deviation 2.5680.

jits  9bits  10bits 11bits 12bits 13bits 14bits ISbits 16 bits

Fig. 3. The variation of PDR vs. the length » used in binary data
representation. As increasing, the PDR is reduced as well and
reaches a stable value when n=12.
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10 bits

8bits  9bils Ilbits  12bis  13bits  l4bis  ISbis  16bits

Fig. 4. The CR decreases proportionally to the length » used in
binary data representation

The effect of using DDR with 12-bit representation for data
storage is shown in Fig. 5 for the fourth order spline function.
It clearly indicates that the compression rate increases
dramatically from 5.4515 to 16.8780 and at the same time the
error between reconstruction and original waves is almost
remain the same, i.e., it changes from 0.1212% to 0.1313%.
These results confirm the usage of DDR is a good strategy for
the second stage compression of the arterial continuous pulse
waveform.

(@)

(b)

Fig. 5. Comparison between the continuous pulse waveform and its
reconstruction by a fourth order spline function and DDR
representation: (a) the typical cycle, (b) enlarged portion
around the peak at time 2.8 sec.

IV.RESULTS AND COMPARISON

Fig.6 describes the computational flow chart of our CCM
method for both the data compression with spline function and
DDR data representation and data reconstruction processes.
Table 1 shows the comparison of the experimental result of
CCM method and previous studies. Although two different
spline functions by CCM without DDR has a very small PRD
(<0.5%) than other methods, their CR’s are not so good as
VLC, VLC in DCT domain, and VQ coding. But after we use



the 12-bit DDR for further compression, the CR of 4th order
CCM increases from 5.96 to 18.46. We want to mention that
when the measured data without preprocessing by a 10Hz
low-pass filter, the CR is increased to 24.4799+2.3643 and the
associated PRD is 0.0793+£0.0238%. Therefore the proposed
technique does not have the lowest CR but have the lowest
PRD which is very small when compared with other
approaches. Based on these discussion we confirm that the
proposed CCM is a good technique to provide not only the
adequate CR but also a very small PRD.

Data Retrieve

Restore Sample Points
and Spline Coefficients

Sample Points Search

Store Location, Value, and
Category for Sample Points

. ) Rebuilt the Spline
Spline Coefficients >
Computation functions If)ztilelfte:n REE

Data Normalized with 12-bit
DDR for

Reconstruct the Continuous
Blood Pressure Pulse
Transmission and Storage Waveform

(a) Data compression (b) Data reconstruction
Fig. 6. The flow chart of the proposed algorithm

Table 1. Comparison between the proposed method and other
compression approaches
Method CR PRD (%)

TP 2 7.7
AZTEC 5 29.0
CORTES 4.6 8.4

Fan 2.5 5.9

VLC 14.17 3.90

VLC in DCT domain 26.42 7.02

VQ coding 34.40 5.99

4 order CCM 5.96+0.83 0.12+0.06
4 order CCM with12-bit DDR 18.46 £2.58  10.13 £0.06

V. CONCLUDING REMARKS

An almost lossless compression technique for continuous
blood pressure pulse waveforms is proposed in the present
study. The key idea is utilizing the spline function to
interpolate the original waveform at the preselected sample
points. At the same time, we can iteratively compute all the
coefficients for each interval instead of solving a system of
equations. This result reduces the computational complexity
in evaluating spline coefficients. Another advantage of the
proposed CCM method is that the stored data size depends
only on the shape variation of the waveform and is
independent of the sampling frequency for data acquisition.
Thus, if the data are sampled at a higher frequency, the CR of
applying CCM to this data set will also increase as well.

Our experimental result confirms that the CCM method can
provide almost lossless compression effect (PRD<1%), and
the CR will reach 18 when CCM with 12-bit DDR for data
storage. Therefore the proposed CCM with 12-bit DDR is

12

indeed a high compression technique for the lossless data
reconstruction of the continuous arterial blood pressure.
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Abstract—In this article, we use a self-synchronized watermark
technology [7], to achieve the purpose of protection of
electrocardiogram (ECG) signal. A Harr wavelet transform with 7
levels decomposition is adopted to transform the ECG signal and the
synchronization code, combined with watermark, are quantized
embedded in the low-frequency sub-band of level 7. The signal to noise
ratio (SNR) between the embedded ECG and original one is greater
than 30 such that the difference between these two ECG signals is very
small and negligible in general. To test the robustness under the
network transfer of ECG data, a white noise attack with various
strengths is simulated that the bit error rate is quite small unless the
SNR of the noise is very large. This study confirms the use of wavelet-
based quantization watermarking scheme on ECG signal for patient
protection is adequate.

Index Terms- Electrocardiogram; watermarking; wavelet; data
transmission; self-synchronization.

I. INTRODUCTION

Nowadays in the society, we pay more attention to a
variety of copyright protection and the emphasis on personal
information. Due to the change in landscape of medical
environment, the delivery and transfer of medical data
between hospitals or clinics do occur very frequently.

In the past, the patient data was randomly stored inside
the hospital without any protection. However, with the
development of science and technology, it is found that the
patient data contains important private information, and
villains even can use some information. Therefore,
protection measures should be taken in the process of
storing, transmitting, or browsing the information. Thus the
protection of medical data through data hiding technique is
undoubted an important issue.

Although some data hiding algorithms can embed data
into medical data, the original information may be distorted
permanently. But in medical diagnosis, these changes are
not allowable. Thus we are only concerned on data hiding
method for which the lossless original media can be restored
from marked media.

Watermarking technology is the most widely used data
hiding technology in the field of multimedia. Digital
watermarking technology refers to directly embedding some
identification information (watermark) into the carrier
(including multimedia, documents, software, etc.). It does
not affect the usage of the original carrier and is hard to be
perceived by ordinary perception system such as visual or
auditory system. The hidden information in the carrier can
help us to confirm the content creators, buyers, carrier’s
transmission secret information to determine whether the
carrier is altered or not during its transmitting process.

978-0-7695-4738-1/12 $26.00 © 2012 IEEE
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Digital watermarking is an important research direction of
information hiding technology.

Electrocardiogram (ECG) reflects the process of the
electrical activity of our heart, which can be taken as a
reference for the study of cardiac pathology and
cardiovascular system diagnostics. With ECG signals, we
can analyze and identify various heart diseases, such as
arrhythmias, myocardial damage etc. @~ ECG has high
requirements for accuracy. Thus ECG is one of the very
important bio-information to be protected.

In 1998, application of watermarking technique in
medical image was proposed by Anand and Niranjan [1] to
embed the patient information. In 2005, Engin et al. [2]
proposed a very elementary watermarked technique for ECG
signal to resist the white noise attack. At present, the
research on the protection of ECG information with
watermarking technique is still in its infancy stage, there are
few related researches. All these works utilize wavelet-based
digital watermarking encryption technology

Nambakhsh et al. [3] proposes a novel blind
watermarking method combined with the EZW-based
wavelet coder to embed ECG signals as secret key into
medical CT and MRI images. Zheng and Qian [4] developed
a wavelet-based algorithm to watermark ECG signals in non-
QRS complex region to guarantee the restore of almost un-
distorted ECG signals. Kaur et al. [5] constructed a blind
digital watermarking to ensure the safe transmission of ECG
signals in wireless network that the embedded watermark
can be fully removed by the receiver. Ibaida [6] developed
an watermarked algorithm such that the ECG signals are
watermarked with patient biomedical information to confirm
patient/ECG linkage integrity and is suitable for a wearable
sensor-net health monitoring system.

In this paper we preliminarily study the effect of applying
wavelet-based quantization watermarking scheme on ECG
signal with self-synchronization mechanism [7]. Although
this type of watermarking technique is not a reversible
technique, but if the change in ECG signal is small, then it is
acceptable. The organization of this paper is as follows.
Section 2 describes the proposed algorithm of this paper.
Section 3 describes the experimental result of the proposed
algorithm by utilizing the MIT-BIH database. = Some
conclusions are drawn in the last section.

II.  PROPOSED ALGORITHM

Since ECG signals are one-dimensional, various
watermarked techniques for audio signals can be considered
as the candidate. Consideration on the safety transmission of
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ECG data through the network, the self-synchronized audio
watermarking technique [7] is adopted here. The embedding
and extraction process is described in Fig. 1.

Original signal H Segmenting H DWT H Embedding H IDWT ‘
Synchronization
code

Informative data

Hidden signal

Bit stream

(a) watermark embedding

Unknown Data
. Segmentin DWT .
signal 8 ing extracting
QNM found—
Extracting
bit stream
Informative Synchronization
Informative data data found Y .
. code detecting
recovering

(b) watermark extraction
Fig.1. Watermark embedding and extraction process

In this process, we use the synchronization code. It can
be used to locate hidden information, to prevent the
unpredictable attacks. Supposing A = {a;} is a source-
synchronous code and {b;} is an unknown code with the
same length of A. If the difference between {a;} and {b;} are
less than the determined threshold, then {b;} will be
identified as the synchronization code.

Fig. 2. Wavelet decomposition

Let S = {s4, Sy, ..., Sy} denote the ECG signal with total
length N sample points. Fig. 2 illustrates the DWT
decomposition process and we use 7 levels DWT on ECG
signals. The watermark together with the synchronization
code (which is called PN sequence {m;}) will be embedded
into 7" level low- frequency sub-band (denoted by {c;}), i.e.,
the coefficients A7.

The rule of embedding is as follows.

{I.Ci/QJ Q@ +3Q/4,
lc:/Q1-Q +Q/4,

where {c;} and {¢;} are the level 7 low-frequency DWT
coefficients before and after embedding, respectively, and Q
is the embedding strength. By applying the IDWT, the
corresponding watermarked ECG signal is obtained and

ifml- =1
ifml- =0

i_

~
—
~
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denoted by S= {51,55, ..., 5y} The insertion of watermark
will affect the original signal and we use the signal to noise
ratio (SNR) to measure the effect:

TGi-s)?

SNR = —10log o

2

When extracting the data, we divide the ECG signal
S* ={s{,55,...,Sy} , which have been embedded with
watermark, into several sections, of which at least includes
one synchronization code segment. Then we performed
DWT transform on each section. Suppose {c;} is the

coefficient of level 7 low-frequency sub-band, we use the
following rules extract sequence {m;} from {c; }:

* 1'
m; = {0

if ¢; =lc;/Ql-Q=0Q/2
ifc; —lc;/Ql- Q@ <Q/2

III. EXPERIMENTAL RESULTS

We selected four sets of data from the MIT-BIH
Arrhythmia Database [8], i.e., data 100-103. The sampling
rate of the ECG signal is 360Hz. In each data set, we select a
fragment of length 4096 to be tested. The PN sequence
consists of 8 bits synchronization code and 32 bits
watermark. The Haar wavelet transform is applied to the
signal down with 7 levels decomposition. Then we utilize
the quantization in (1) to embed the PN sequence into the
ECG signal with the embedding strength Q = 4096. It is
noted that the ECG signal is adjusted to have zero mean first,
and then is scaled to the resolution with 16-bit representation.

Fig. 3 shows the original and watermarked signals for
data 100 look almost distinguishable. And we enlarge the
portion in Fig. 3 around the first second and plot both on the
same graph as drawn in Fig. 4. The difference is quite small,
i.e., the PQRST complex from the watermarked ECG signal
is almost the same as the original one. Figs. 5-7 compare the
original and watermarked signals for data 101-103. Table I
gives us the SNR of the watermarked signals for data 100-
103, which are all larger than 30. And the relative error due
to watermark is around 3% under 2-norm measure.
Although this quantization technique is not a reversible
scheme, but the change due to watermark is negligible. On
the other hand, we can adjust the embedding strength to
increase the SNR and whence the relative error is reduced.
But the robustness of the watermark will be reduced.
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TABLE I
IMPACT OF WATERMARK ON ECG SIGNAL

DatalD | SNR | /(5 — s)?/557
100 [30.3960 0.0299
101 [30.6291 0.0354
102 [31.7761 0.0327
103 [32.0753 0.0269

Since the ECG data may be transferred using network,
we consider the white noise attack to test the robustness of
the watermark technique, i.e.,

si=58+a-y

where {3;} is the watermarked signal and {s;'} is the attacked
signal which is influenced by the white noise {y;} with zero
mean and standard deviation one. Here « is considered as the
strength of the white noise, i.e., {ay;} is zero-mean white
noise with standard deviation a.

The bit error rate (BER) is used to measure the
correctness of watermark after some attack is presented
which is an indication of the robustness of the watermark.

Number of error bits

BER = X 100%

Number of total bits

Table II describes the robustness of the watermarked
ECG signal under the attack of white noise with different
standard deviation. For all data set, the white noise with
less or equal to 500 does not change the watermark and only
when « is greater than 500 it will produce error bits in
watermark extraction. The corresponding SNR for @ = 500
is around 15 which means the noise is very large which will
not happen for the normal network transfer.

TABLE II.
ROBUSTNESS TEST VIA WHITE NOISE ATTACK

235

Data ID White Noise deviation @ (SNR) | Error Bits | BER(%)
100 1(72.6337) 0 0
100 500 (18.6543) 0 0
100 750 (15.1325) 4 12.5000
100 1000 (12.6337) 7 21.8750
101 1(71.8875) 0 0
101 50 (17.9081) 0 0
101 500 (14.3873) 4 12.5000
101 1000 (11.8875) 7 21.8750
102 1 (73.9786) 0 0
102 500 (19.9992) 0 0
102 500 (16.4773) 4 12.5000
102 1000 (13.9786) 7 21.8750
103 1(73.7127) 0 0
103 500 (19.7333) 0 0
103 750 (16.2115) 4 12.5000
103 1000 (13.7127) 7 21.8750

IV. CONCLUSION
In this paper, we apply the self-synchronized

quantization watermarked scheme [7] to embed watermark
into the ECG signal. After tested with four data set from
MIT-BIH arrhythmia database, the difference between the
watermarked ECG and original one is very small and
negligible. We also use the white noise with various
standard deviations to test the watermarked ECG which
shows a very strong robustness. This confirms that the
application of wavelet-based quantization scheme to ECG
signal is successful. In the future, not only more data set
should be used to verify our conclusion and the detail
influence of the watermarking technique on the features like
QPRST complex should be examined as well.
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Abstract—Electrocardiogram (ECG) as a  biological
information, it has some special feature. Different people will
have different ECG information, even one person has different
ECG when he is under different body state. In this paper we
use the Electrocardiogram (ECG) to identify disease or to
detect different person. Firstly, we collect the ECG information
form different body state of the different people. Secondly we
will preprocess the ECG data by using a method of statistical.
Thirdly we can use the support vector machine to train the
data, and then classify different people’s data into different
class. And finally when there are one new ECG data, we can
also use SVM to identify the new data. Because even one people
have several ECG signal, with our statistical method, the
classifier may gets better robust.

Keywords - ECG; human identification; SVM

I. INTRODUCTION

A lot of biological information has been widely used for
clinical application. Electrocardiogram (ECG) is one of the
very important biological signals. ECG signal is one-
dimensional data to represent the time electrical change of
the voltage variation, which is detected on the skin. Besides
of utilizing ECG to identify the human physiological status,
it has been recently adopted in human identification. As
ECG is so special than the other biological information that
the ECG signal varies from time to time, and even for the
same person different waveforms of ECG signal will be
presented at different body state. Thus the biometric
designed based on ECG signal will be dynamical which is
different from the other identification method by utilizing
the static features of fingerprint, face and iris etc.. This
dynamical property indicates that the ECG biometric is hard
to be copied than the other biometrics. Thus various
research works [1-10] reveals that ECG biometric is the
realizable and reliable.

The SVM algorithm is proposed by Boser, Guyon and
Vapnik in 1992 [11]. SVM has a good performance on
classifying. It’s base on the statistic theory of machine
learning algorithm. SVM could automatically look for those
support vector who has a good ability on distinguishing
different classes. The classifier base on SVM can maximize
the distance between different classes.

Fig. 1 is our taxonomy of related researches of using
support vector machine (SVM) to analyze ECG signals.
There are three aspects: applications, type of SVM, and
feature extraction.
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Fig. 1. Related studies of ECG analysis via SVM

ECG signals contain many important bio-information
and scientists have using ECG in many applications with
disease detection as a typical one. Moavenian and
Khorrami [12] use ECG signal for arrthythmias classification
for patients. Beat classification was introduced by Acir [13]
to classify various types of beat. Mehta and Lingayat [14,
15] proposed two SVM methods on QRS classification of
ECG signals; the SVM was applied as a classifier to
delineate QRS and non-QRS regions. Polat and Gunes [16]
developed an algorithm to find the heart disease.

Different types of SVM have been applied in ECG
analysis. Moavenian and Khorrami [12] use the kernel-
adaption algorithm to aid SVM for ECG arrhythmias
classification. The SVM is much faster than MLP (multi-
layered-perception) in training stage, and several times
higher in performance. But MLP’s mean square error is
three times less than SVM. In the paper of Acir[13], they
have used perturbation method to extract the feature the
ECG data, and then apply SVM with PCA to classify four
types of ECG beats. Polat and Gunes [16] develop an
algorithm base on PCA (principle component analysis) and
least square SVM. Zhang and Zhang [17] extract the
principle characteristic of the ECG signal by using PCA
technique and then SVM is used to classify the ECG data
into four categories of heart disease. A method combining
SVM and genetic algorithm is proposed by Nasiri and
Naghibzadeh etc [18] where twenty-two features were
extracted from the ECG signal, and then using SVM with
genetic algorithm to searching for the best value of the
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parameters, and looking for the best subset of the feature
that optimizes the classification function. Ubeyli [19]
combined the wavelet coefficients and multiclass SVM
method as a classifier for four types of the ECG beats are
obtained.

In this paper, the human identification using SVM
classifier is developed based on the rank order statistical
feature of the ECG signals. The organization of this paper is
as follows. Section 2 describes the proposed algorithm of this
paper including the frequency and rank order statistics and
support vector machine. Section 3 describes the
experimental result of applying the proposed algorithm to
classify individual by utilizing the MIT-BIH database. Some
conclusions are drawn in the last section.

II.  PROPOSED ALGORITHM

Fig. 2 shows the structure of utilizing SVM in ECG
human identification, which consists of two steps. Firstly we
transfer the input ECG signals into reduced binary pattern,
and counting and ranking the appearance of patterns, which
is regarded as features of ECG signals. Secondly, the feature
data for various persons are used to training the SVM
classifier and then for matching test to identify an unknown
input ECG signal. These steps are described in detail as
following.

Matching

Calculate features of

input ECG signals SVM Classifier

Identify the
person

Fig. 2. Structure of SVM classifier in ECG identification

1) Frequency and Rank order Statistics

Consider an ECG signal as S = {xq, X5, ..., Xj, -, X }
where real-valued x; corresponds to the i" input data.
Compare each pair of consecutive input signal and
categorize the data into one of the two cases: decrease or
increase in x;. A preliminary reduced function then maps
these two cases to 0 or 1, respectively, according to the rule:

<

(M

Vi

{0'xi+1 X;
1,x41 > %

That is, this procedure converts the ECG signal of length N
to a binary sequence Y = {y;,¥,, ..., ¥n_1} of length N — 1.
Group every m bits in Y into a reduced binary sequence of
length m, referred as an m-bit word; collect all such words
to form a reduced binary pattern B = {b4,b,, ..., by, ...,
by_m} where by, = {yk_ Viet1, = Yietm—1 } We then convert
each m-bit word b, to its decimal expansion wy,.

Next, count the occurrences of all wy and then sort them
in the order of descending frequency. Fork = 1,2,---,N —
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m, define j = wy.. It is obvious that, values of j range 0
over 2™ —1. Let p(j) be the corresponding relative

frequency of j, p(j) = —= and 3& .V

N-m j=0
Next, rank j according to its frequency n; , from the largest
to the smallest. For instance, if R(j) = 1 corresponds to a
specific j, it mean that the m-bit words b, who convert to the
same decimal expansion j are those appear the most in the
reduced binary pattern.

The relative frequency array p and the rank array R are
considered as the features of ECG signals, and will be the
input to the SVM classifier for training purpose and person
identification. The process is described in Fig. 3.

nj=N—m.

= 3

l Tra.in‘.n:z'.l'esﬁng Iﬂ ¢

[ SVM

Fig. 3. Process of ECG human identification with statistical support vector
machine

2) SVM classification

The purpose of SVM is to find a hyperplane, which can
separate the training data set and get a maximal distance
against the direct of the edge orthogonal to the hyperplane.
SVM has good performance on small number of samples.

Given a training data set {(x1,y1), (X2, V2), -, (Xp, Y)}
where x; € R and y; is either 1 or —1 indicating the class to
which the point x; belongs. Let X = [x1, X5, ..., X,,]7. The
construction of the hyperplane for a linearly separable
problem is w'x + b = 0 where w is the normal vector to the

b .
Wi determines the offset of

the hyperplane from the origin along the normal vector w.
Thus the margin between the hyperplane and the nearest
point is maximized and can be posed as following problem:

hyperplane and the parameter

minw,bg%wTW +CYL, &
subject to y;(wTx; + b) = 1 — &t =12,...n (1)
=0



where C is a user define constant as the penalty parameter of
the error term. The SVM requires the optimal solution. We
use the LIBSVM [21] to solve this optimization problem
with its user’s guide given in [22].

III.

In real application, the ECG data should be collected
from persons under various body states. For simplicity, we
select the MIT-BIH Arrhythmia Database [23]. This
database includes 48 groups, within two-lead ECG
recordings for half an hour, a total of up to 24 hours of
information. The data contains 47 individuals’ ECG
information (dataset ID 201 and 202 are duplicated); subjects
consist of 25 men aged between 32 to 89 and 22 women
aged from 23 to 89. These ECG data has a sampling rate of
360Hz and a 12-bit binary representation.

For each individual, 8 segments of 10 sample periods
long are obtained from the record of its ECG signal in the
database. Thus 3600 sample points in each segment are
selected for frequency and rank order statistics. We set
m = 8, i.e., the reduced binary pattern consists of 8-bit
words and there are in total 256 different 8-bit words for
frequency and rank order calculation. Afterward, for each
individual there are 8 data sets and 256 features for each data
set to training via SVM. The input file for the LIBSVM
program consists of a matrix with 8x48 rows and 256
columns; each row stores 256 statistic features of the
corresponding person and each individual has eight rows
with the same label to represent the frequency and rank order
of each segment in his’her ECG signal. The process in
training the SVM for MIT-BIH database is shown in Fig. 4.

EXPERIMENTAL RESULT AND DISCUSSION

Acquire ECG Signals
(MIT-BIH Arrhythmia

J

Obtain 8 segments of 10
sample periods long each

J

Compute the reduced
binary pattern

L

Count and ranking the pattern
frequencies as the feature

[

Use statistic features of 48
person’s ECG to train SVM

I

SVM classifier

Fig. 4. Training SVM classifier for MIT-BIH database

After training the SVM with the statistical features of
ECG signals, we get a SVM classifier to identify individuals.
The test data for identification are also acquired from the
same MIT-BIH database. For each individual, we recapture

10 segments of 3600 sample points long. Note that these 10
segments are obtained at different location of the ECG
waveform, i.e., none of them are overlapped with previous
selected segments in training process. Each segment is pass
through SVM classifier for matching test. Thus there are 10
matching tests for each individual.

Table I shows some result of matching test. The second
row in Table I denotes that 10 segments for individual No. 1
(denoted by ID1 for simplicity) are all identified correctly,
thus it is 100% accurate. But for the third row, it indicates
that the 2™, 6™, 8", and 9™ segments of ID2 are identified as
ID6, while the last segment is identified as ID3. Thus only 4
segments of ID2 are identified correctly, i.e., the accuracy is
40%. In summary, the accuracy for some individuals are
very high but for some of others are very low. We set the
population size M to denote the first M individuals from 48
individuals and take their average as the group accuracy. Fig
5 summarizes the group accuracy of various group
population sizes. It shows that the group accuracy for
matching test lies between 60-80%, which is moderately
acceptable. The possible reason is 256 features are too large
for SVM. Even an alternative ECG signal not from MIT-
BIH database is pass through the SVM, the classifier will
identify it as one of the 48 individuals. One of the advantage
is the proposed algorithm is executed very fast and has less

computational complexity.
TABLE I
RESULT OF MATCHING TEST FOR INDIVIDUAL IDENTIFICATION

indiv.\data 1 2 3 4 5 6 7 8 9 10 | Accuracy

1 1 1 1 1 1 1 1 1 1 1 100%
2 2 6 2 2 2 6 3 6 6 3 40%
3 3 1 3 3 3 3 3 1 3 3 80%
4 4 4 4 4 4 4 4 4 4 4 100%
5 25 | 32 | 40 | 21 2 | 32 1 5 5 25 20%
6 6 6 6 6 6 6 6 6 6 6 100%
7 35 35 35 6 5 7 6 11 32 7 20%
8 8 8 8 8 8 8 37 8 8 8 90%
9 9 9 1 3 1 3 1 31 1 31 20%
10 10 | 10 [ 10 [ 10 [ 10 | 10 | 10 | 10 | 10 | 10 100%
11 11 7 11 11 7 7 11 11 11 11 70%
12 12 18 12 12 12 | 39 12 12 12 12 80%
13 11 13 13 13 13 13 13 13 13 13 90%
14 14 | 14 [ 14 [ 14 [ 41 [ 14 [ 14 [ 14 | 14 | 14 90%
15 15 15 15 15 15 15 23 15 15 15 90%
16 16 16 16 16 16 16 16 16 16 16 100%
17 17 17 17 17 17 | 22 17 17 17 17 90%
18 46 | 46 | 46 | 46 | 48 | 48 | 18 | 46 | 46 | 48 10%
19 19 [ 45 [ 19 [ 19 [ 17 [ 17 [ 19 [ 19 | 19 | 19 70%
20 20 | 15 ] 20 | 20 [ 20 | 20 | 20 | 20 [ 15 | 20 80%
21 21 21 21 21 21 21 21 21 21 9 90%
22 22 17 22 17 [ 22 17 17 | 22 | 22 | 22 60%
23 23 | 17 [ 22 | 39 | 23 [ 23 | 23 | 17 | 23 | 39 50%
24 21 | 43 | 24 | 21 [ 24 | 21 | 21 | 24 [ 24 | 24 50%
25 1 1 32 1 1 1 3 32 [ 25 1 10%
26 26 | 26 | 26 | 40 | 26 | 40 | 40 | 26 | 26 | 26 70%
27 27 | 36 | 36 | 36 | 27 [ 35 [ 30 | 10 | 27 | 10 30%
28 28 | 28 [ 28 | 28 | 28 | 28 | 28 | 28 | 28 | 28 100%
29 4 9 [36 |36 |21 [ 25| 4 | 25| 4 |36 0%

30 13 30 | 33 35 33 10 | 27 35 13 30 20%
31 31 | 46 | 43 | 43 | 31 [ 31 | 31 [ 31 | 31 | 31 70%
32 32 | 32 [ 32 | 32 |32 |32 |35 ]32]32] 32 90%
33 36 | 31 | 31 [ 36 | 43 | 43 [ 36 | 24 | 24 | 24 0%

34 34 [ 34 | 34 | 34 | 34 | 34 34 34 34 34 100%
35 13 | 35 [ 35 [ 35 [ 35 |35 [35 [ 13 |11]13 60%
36 36 | 36 | 36 | 43 | 36 [ 36 | 36 | 36 | 21 | 36 80%
37 37 | 37 | 37 | 37 | 37 | 37 | 37 | 37 | 10 | 37 90%
38 38 | 38 | 38 | 38 | 38 | 38 | 38 | 38 | 38 | 19 90%
39 22 | 22 39 | 48 | 48 18 39 39 39 39 50%
40 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 100%
41 41 | 14 | 14 | 14 | 14 | 41 | 41 | 14 | 41 | 41 50%
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42 92112 4924242492 ]18[12]18]12 50%
43 46 | 21 [ 21 | 21 |21 [ 43 |21 [ 25 | 46 | 43 20%
44 12 |17 [ 12 |12 [ 17 [ 12 | 18 | 12 | 39 | 45 0%
45 17 [ 17 [ 19 |45 [ 15 |23 [ 1520 |20 [ 15 10%
46 22 |46 [ 39 | 48 [ 48 | 22 | 46 | 48 | 46 | 48 30%
47 34 |34 |37 | 34 |34 |34 |47 |37 |47]37 20%
48 48 | 48 | 48 | 48 | 48 | 48 | 48 | 48 | 48 | 48 100%
100%
80%
60%
40%
20%
0%

In the futurel,osome s%gtisticalgglethodllﬁke PCA, ICA can
be applied to reduce the feature size and then use SVM for
identification.

Fig. 5. Group accuracy for various group population sizes

IV. CONCLUSIONS

In this paper, a statistical based support vector machine
algorithm is applied to ECG signal for human identification.
We first convert the ECG signal into reduced binary pattern
and count the frequency and rank the order. A 48 individuals
ECG data are used to training the SVM classifier, which is
utilized for matching test of the unknown input ECG signal.
The performance of the proposed method is around 60-80%,
which is moderately acceptable. Thus the proposed method
in the present stage can be used in some situations that not
require high accuracy. The main advantage of the proposed
algorithm is executed very fast and has less computational
complexity.

REFERENCES

L. Biel, O. Pettersson, L. Philipson, and P. Wide, “ECG Analysis: A
new approach in human identification,” [EEE Transactions on
Instrumentation and Measurement, Vol. 50(3), pp. 808-812, 2001.

S. A. Israel, J. M. Irvine, C. Andrew, D. W. Mark and K. W. Brenda,
“ECG to Identify Individuals,” Pattern Recognition, Vol. 38(1), pp.
133-142, 2005.

S. Saechia, J. Koseeyaporn, P. Wardkein, “Human identification
system based ECG signal,” IEEE Region 10 TENCON 2005,
Melbourne, Australia, 21-24 Nov. 2005, pp. 1-4.

A. D. C. Chan, M. M. Hamdy, A. Badre, and V. Badee, “Person
identification using electrocardiograms,” in Proceedings: 2006
Canadian Conference on Electrical and Computer Engineering
(CCECE'06), Ottawa, Canada, 7-10 May 2006, pp. 1-4.

H. Silva, H. Gamboa, and A. Fred, “One lead ECG based personal
identification with feature subspace ensembles,” in Proceeding: 5th
International Conference on Machine Learning and Data Mining in
Pattern Recognition (MLDM 2007), Leipzig, German, 18-20 July
2007, LNAI 4571, pp. 770-783.

A. D. C. Chan, M. M. Hamdy, A. Badre, and V. Badee, “Wavelet
distance measure for person identification using electrocardiograms,”

(1]

240

(7]

(8]

]

[10]

(1]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

IEEE Transactions on Instrumentation and Measurement, Vol. 57(2),
pp. 248- 253, 2008.

Y. N. Singh and P. Gupta, “ECG to Individual Identification,” in
Proceeding of the 2nd IEEE International Conference on Biometrics:
Theory, Applications and Systems (BTAS 2008), Arlington, Virginia,
USA, 29 Sept.-1 Oct. 2008, pp. 1-8.

Y. Wang, F. Agrafioti, D. Hatzinakos, and K. N. Plataniotis,
“Analysis of human electrocardiogram ECG for biometric
recognition”, EURASIP Journal on Advances in Signal Processing,
Vol. 2008, Article No. 20, 2008.

P. Sasikala and R. S. D. Wahidauanu, “Identification of individuals
using electrocardiogram,” International Journal of Computer Science
and Network Security, Vol. 10(12), pp. 147-153, 2010.

C. Ye, M. T. Coimbra, B. V. K. V. Kumar, “Investigation of human
identification using two-lead electrocardigram (ECG),” in
Proceedings on the Fourth IEEE International Conference on
Biometrics: Theory Applications and Systems (BTAS 2010),
Washington, DC, USA, 27-29 Sept. 2010, pp. 1-8.

B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm
for optimal margin classifiers,” in D. Haussler (Ed.): Proceedings of
the 5™ Annual ACM Workshop on Computational Learning Theory
(COLT 1992), Pittsburgh, PA, 27-29 July 1992, ACM Press, pp. 144-
152.

M. Moavenian and H. Khorrami, “A qualitative comparison of
artificial neural networks and support vector machines in ECG
arthythmias classification,” Expert Systems with Application, Vol.
37(4), pp. 3088-3093, 20009.

N. Acir, “A support vector machine classifier algorithm based on a
perturbation method and its application to ECG beat recognition
systems,” Expert Systems with Application, Vol. 31(1), pp. 150-158,
2006

S. S. Mehta and N. S. Lingayat, “Combined entropy based method for
detection of QRS complexes in 12-lead electrocardiogram using
SVM”, Computer Computer in Biology and Medicine, Vol. 38(1), pp
138-145, January 2008.

S. S. Mehta and N. S. Lingayat, “SVM-based algorithm for
recognition of QRS complexes in electrocardiogram,” /RBM, Vol
29(5), pp 310-317, 2008.

K. Polat and S. Gunes, “Detection of ECG arrhythmia using a
differential expert system approach based on principal component
analysis and least square support vector machine,” Applied
Mathematics and Computation, Vol. 186(1), pp. 898-906, 2007.

H. Zhang and L. Q. Zhang, “ECG analysis based on PCA and support
vector machines,” in Proceedings: 2005 International Conference on
Neural Networks and Brain (ICNN&BOS5), Beijing, China, 13-15 Oct.
2005, pp. 743-747.

J. A. Nasiri and M. Naghibzadeh, “ECG arrhythmia classification
with support vector machines and genetic algorithm,” in Proceedings
on 2009 Third UKSim European Symposium on Computer Modeling
and Simulation, Athens, Greece. 25-27 Nov. 2009, pp. 187-192.

E. D. Ubeyli, “ECG beats classification using multiclass support
vector machines with error correcting output codes,” Digital Signal
Processing, Vol. 17(3), pp.675-784, 2007.

R. Besrour and Z. Lachiri, “ECG Beat classifier using support Vector
machine,” in Proceeding: 2008 3 Information and Commutation
Technologies: From Theory to Applications ICTTA2008), 7-11 April
2008, Damascus, Syria, pp. 1-5.

C.-C. Chang and C.-J. Lin, LIBSVM - A Library for Support Vector
Machines, Version 3.12, http://www.csie.ntu.edu.tw/~cjlin/libsvm/
C.-W. Hsu, C.-C. Chang, and C.-J. Lin, 4 Practical Guide to Support
Vector Classification, 2010. http://www.csie.ntu.edu.tw/~cjlin

G. B. Moody, R. G. Mark, “The impact of the MIT-BIH arrhythmia
database,” IEEE Engineering in Medicine and Biology Magazine, vol.
20, no. 3, pp. 45-50, 2001.




PR

R e /B E 28 = %488 T £

P #:2013/01/01

R gt o &

P E LA HAE % 4 ¢ 2 ¥ Caratheodory-Fe jerd® & & fic
=
E

VRIS FE

3% % 100-2115-M-029-003- FRAE: %ok

RFE SRR T




100 F R EHFETHEAFL SR EL

PhRAFL I Fe T

33 %5 0 100-2115-M-029-003-

34 LA L ¥ 5 4 0 2 43 Caratheodory-Fejer #& & & ik

N

T P dedi Bt E
A% p REedd s | FERF | g TP TR
B (e \B(F RS o SR
fegi) | EVEK) #H e E L
%)
Hp 1 = 0 0 100%
O el W N L LY ik 0 0 100% 2
m Y EIE
it gk 0 0 100%
%3 0 0 100%
541 ¢ ;ﬁ—:‘ i+ # 0 0 100% "
© EEEEk 0 0 100%
i+ #c 0 0 100% i+
P 0 P
- #4 & 0 0 100% ~
AR 2 0 0 100%
d 3% 4 8pE ik
Fre2mHm#
g > : TR
PSRN L ! ! o Cx LA g
(FEA) B TR L %
T:"EI"F;L‘ °
#1LEFT R 0 100%
ENNE 0 0 100%
ot R I 1 100% #4i 11 IET Signal
Processing.
oy R g |0 0 100%
e & 4 & The
Seventh
International
i Conference on
H2 Fir Intelligent
i€ 1 1 100% Information
Hiding and
Multimedia
Signal
Processing
(ITH-MSP-2011)
%3 0 0 100% F/4
541 ¢ ;ﬁ—:‘ i+ # 0 0 100% "
© EEEEk 0 0 100%
oA w1 i 0 0 100% i+




100% - =

100%

9
Ny

100%

A =

-— b

N

100%

OO o o (o

100%

0
0
0
TEA) [ELEFEE
0
33

iﬁ?%ﬁﬁﬁﬁ PR R RE F NJ. Young 473 PR R L
RIS 5o fRAT Mo f o P R B h A

(@i ddz
S S S S A
WEE L L REE
TS % AR
42 Hutne g ¥
R 2 B E
WE G F A

}ljo)

’i X538 P

b
1%
%
2
=
e
I3
P
I
I

o[RS E (2 FiEE 1)

K | gAi/irce

R |gopz e k1 2

MELSE]

E
b [BPEL St

B g/ ey

BT AR e

OO O O (O O o o

Plyrdssnp s (BR) AH




R 640 %A ] 7 h S R 2

*E\

ijb

FRATNFERTEAACGAER ESTFH P RN T SR FA
T (5 & 4 Té:%bwz*%\x,&a\l% BTN E-HBFEZ T ) L F
ELFmaF LY R AR FRAEBFHEES T 5FEFTR o

Lo h 32 Ry diAn f ek ~ 3308 P B it- 5826
| EERE
(kg = p 4 (3P > 12100 3 5 12)
[ 5% % Pz
mEESERR
(J# © & 7]
EWA Fl,; :
2. F 3 Ak B g A R G % )
we e w4 Orgdz<4 BERY O
B0 kw05 BE
pogg [ B [ e
#w (12100 F 5 *2)

S. PR EF I PILIAT AL G WL G 0 FRAY S E LRI
E(ﬁﬁ&ﬁﬁ%%ﬁiiii‘%E‘%$éé*ﬁ%%i?Ei)@’

500 % % *2)




	中文摘要
	英文摘要
	前言
	研究方法
	結果與討論
	Volume of the Symmetrized Polydisc
	Surface Area of the Symmetrized Polydisc
	The CF interpolation function in the symmetrized bidisc
	Domain extension
	Example

	On the Graph of Interpolating Functions
	First type of interpolating funcitons
	Second type of interpolating funcitons



