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中 文 摘 要 ： 頻譜 Nevanlinna-Pick(SNP)插值理論是為了提供強健控制器

設計之「合成理論」確切的數學理論而 發展，其目的在求

從單位圓盤到單位頻球的解析(矩陣)函數，並滿足特定的函

數值插值條件。利用矩 陣的特徵多項式的性質，可將這類問

題轉會成在對稱雙盤上的 NP 插值問題來求解。所謂的頻譜 

Caratheodory-Fejer(SCF) 插值問題便是在 SNP 的插值條件

中加入導數的要求而得。因此在求解 SCF 問題，必須解決在

對稱雙盤上的 CF 插值問題才行。本研究計畫之目的便是探

討這類問題的解之存在 性與解的算法，著重在如何將已有的

兩點對稱雙盤上的 SCF 插值問題的解法擴大為可求解對稱雙

盤 上的 CF 插值問題。本計畫為延續以往計畫而提出的後續

研究，基於已完成的研究成果為基礎，結合 SNP 插值理論，

探討 3x3 矩陣 SCF 問題的解所形成之空間(稱為插值體)，

刻畫出插值體條件以推導 更確切的判斷方法。以探討 2 階

導數問題對應的插值體與解為主。同時，對 mu 合成設計的數

學理論進行回顧整理。 

中文關鍵詞： Nevanlinna-Pick 插值，Caratheodory-Fejer 插值，對稱雙

盤，單位頻譜球。 

英 文 摘 要 ： The aim of this two years project is to find the 

Caratheodory-Fejer matricial interpolating function 

which is analytic from the open unit disc into the 

open spectral unit ball such that satisfies certain 

interpolation conditions on its values and its 

derivatives. It is obvious that this problem is 

called the spectral Caratheodory-Fejer (SCF) problem. 

Our approach is to transfer the SCF problem into a 

classical Caratheodory-Fejer (CF) problem such that a 

more efficient condition based on the given 

interpolation data is obtained for the existence of 

the SCF solution. Based on the result of our previous 

year＇s research project together with the known SNP 

and SCF theory, direct solvability condition of 3x3 

SCF problems can be characterized as an interpolation 

body. The properties of the interpolation body 

corresponding to the SCF problem up to second 

derivatives is analyzed in the first year of this 

two-year project. Furthermore, the construction of 

interpolating function is also considered. Extension 

to higher derivatives problem will be studies in the 

consecutive year. Meanwhile, a solvable instances of 



mu-synthesis is totally reviewed for the present 

mathematical conclusion. 

英文關鍵詞： Nevanlinna-Pick interpolation, Caratheodory-Fejer 

interpolation, symmetrized polydisc, spectral unit 

ball. 
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中文摘要

關鍵詞：Nevanlinna-Pick插值，Caratheodory-Fejer插值，對稱雙盤，單位頻譜球。

頻譜 Nevanlinna-Pick(SNP)插值理論是為了提供強健控制器設計之「�合成理論」確切的數
學理論而 發展，其目的在求從單位圓盤到單位頻球的解析(矩陣)函數，並滿足特定的函數值插值
條件。利用矩 陣的特徵多項式的性質，可將這類問題轉會成在對稱雙盤上的 NP 插值問題來求
解。所謂的頻譜 Caratheodory-Fejer(SCF) 插值問題便是在 SNP 的插值條件中加入導數的要求
而得。因此在求解 SCF 問題，必須解決在對稱雙盤上的 CF 插值問題才行。本研究計畫之目的便
是探討這類問題的解之存在 性與解的算法，著重在如何將已有的兩點對稱雙盤上的 SCF 插值問
題的解法擴大為可求解對稱雙盤 上的 CF 插值問題。本計畫為延續以往計畫而提出的後續研究，
基於已完成的研究成果為基礎，結合 SNP 插值理論，探討 3x3 矩陣 SCF 問題的解所形成之空間
(稱為插值體)，刻畫出插值體條件以推導 更確切的判斷方法。以探討 2 階導數問題對應的插值體
與解為主。同時，對µ合成設計的數學理論進行回顧整理。

英文摘要

Keywords: Nevanlinna-Pick interpolation, Caratheodory-Fejer interpolation, symmetrized
polydisc, spectral unit ball.

The aim of this two years project is to find the Caratheodory-Fejer matricial interpolat-
ing function which is analytic from the open unit disc into the open spectral unit ball such
that satisfies certain interpolation conditions on its values and its derivatives. It is obvious
that this problem is called the spectral Caratheodory-Fejer (SCF) problem. Our approach
is to transfer the SCF problem into a classical Caratheodory-Fejer (CF) problem such that
a more efficient condition based on the given interpolation data is obtained for the existence
of the SCF solution. Based on the result of our previous year’s research project together
with the known SNP and SCF theory, direct solvability condition of 3x3 SCF problems can
be characterized as an interpolation body. The properties of the interpolation body corre-
sponding to the SCF problem up to second derivatives is analyzed in the first year of this
two-year project. Furthermore, the construction of interpolating function is also considered.
Extension to higher derivatives problem will be studies in the consecutive year. Meanwhile,
a solvable instances of mu-synthesis is totally reviewed for the present mathematical conclu-
sion.
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1 前言

考慮下列廣義的控制系統
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其轉移函數可表成 [
z
y

]
= G

[
w
u

]
=

[
G11 G12

G21 G22

] [
w
u

]
這裡 w 稱為外部輸入，y 為量測輸出， u 為控制輸入， z 為控制輸出，且 K 為控制器，以對系
統進行回授控制，即

u = Ky.

故全系統從到之轉移函數則變成是

z = Gzww

=
[
G11 +G12K(I −G22K)−1G21

]
w

H∞ 控制的目的便是在給定的控制誤差 γ，針對所有可能的外部輸入 w ，設計控制器 K，以儘量
抑制控制量 z，即使轉移含數滿足條件

∥Gzw∥ < γ.

此問題自 1980 年代研究至今，並已廣泛應用在實際問題的控制器設計。對應的數學理論可由
Navanlinna-Pick (NP) 插值理論等做一完全的解決，並導出所有控制器存在之條件與解的形式。
雖然 N H∞控制也可以處理當系統 G 內具有下列之非結構化不確定性。

σ̄(∆m(jω)) < |wm(jω)| , σ̄(∆a(jω)) < |wa(jω)| , ∀ω

即 G 之長相分別為
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其中 σ̄ 表最大奇異值， P 表實際受控體。此種設計的缺點是設計出的 K 過於保守，往往使性能
表現受阻。

為了分析具有結構化擾動的系統，提升設計性能則導入結構化特徵值 µ 之控制器合成。設 ∆
表 構化的擾動，在擾動的作用下，廣義控制系統為
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對於擾動 ∆ ，定義複數矩陣 M ∈ Cn×n 之結構化特徵值 µ∆(M) 為

µ∆(M) =
1

min {σ̄(δ) : δ ∈ ∆, det(I −Mδ) = 0}
.

如此一來，上述系統為內部穩定且從 d 到 e 之 H∞ 範數在 1 以下的充要條件為
µ∆(Gzw(jω)) < 1, ∀ω

此一設計，自 1990 年後即廣泛應用在飛機、光碟機、汽車等控制器設計。唯一的缺點是雖有
許多數值方法如 D–K 疊代法[M] 可用於估算 µ 之值，但缺乏確切之數學理論，以致於諸如所有
控制器存在 的條件至今尚未建立。

為了建立 µ合成設計提供確切的數學理論, Newcastle大學的 Prof. N. J. Young 自 1985 年起
便開始進行研究, 至一直到 1999 年左右才與加州大學 San Diego 分校數學系的 Prof. J. Alger 提
出以由 spectral Nevanlinna-Pick (SNP) 插值問題來下手解決。此一 SNP 插值問題與 µ 控制器
合成之相關性，可參見Bercovici, Foias 及Tannenbaum等學者之論文[BFT1, BFT2, BFT3]。
Alger 及 Young 兩人並一起合作進行SNP插值問題的求解[AY1, AY2, AY3, AY4, AY5, AY6],
至於解的實現 (realization) 則由本系葉芳柏教授和他們兩位一起合作完成[AYY]。到目前為止,
研究結果只限於 2×2 矩陣的二點插值問題, 個人目前也在研究一般的情形的解。此外, Costara
[Cost1, Cost2, Cost3] 以及其他學者 等也都開始研究與此相關的有關代數與幾何問題，但離真正
解出這一問題尚遠。

2 研究方法

本計畫的主要目的便是以先前計畫有關頻譜 Nevanlinna-Pick (SNP) 插值問題的成果為基礎，進
行頻譜 Carathéodory-Fejér (SCF)插值問題的求解計算，以期將來能建立 µ 控制器合成之基礎
理論。

設 D = {λ ∈ C : |λ| < 1} 為複數平面上的單位圓盤，Mm(C) 為 m×m 複數矩陣所形成之集
合， SNP 插值問題可敘述如下：

(SNP) 已知 λ1, λ2, . . . , λn ∈ D 且 W1,W2, . . . ,Wn ∈ Mm(C)，求正則函數 F : D → Mm(C) 滿
足

F (λj) = Wj, 1 ≤ j ≤ n

且
r(F (λ)) ≤ 1, ∀λ ∈ D.

式中 r(A) 表任意方陣 A 之頻譜半徑。

而SCF插值問題可敘述如下：

(SCF) 已知 λ0 ̸= 0 且 V0, V1, . . . , Vn ∈ Mm(C)，求正則函數 F : D → Mm(C) 滿足

F (λ0) = V0, F (j)(λ0) = Vj, 1 ≤ j ≤ n

且
r(F (λ)) ≤ 1, ∀λ ∈ D.

在不失其一般性下，我們可以假設 λ0 = 0 。此一問題的存在性已經由計畫主持人與兩位外
國學者共同完成[HMY1], 但對給定的數據資料 V0, V1, . . . , Vn，如何驗證正則函數 F 仍是相當困
難。同時，此函數之計算也需建立在特徵多項式的插值問題的解上。因此本計畫嘗試運用在求解
SNP 插值問題所發展的出的 magic function 來將 SCF 插值問題轉換成傳統 CF 插值問題來求
解。

SCF 插值問題所針對的是一般的矩陣大小，相當困難；為了能掌握這類問題解的技巧，本計
畫先針對 (2×2矩陣)來討論，首先考慮 的特殊情形來討論。如此一來，此問題可改敘如下：
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(Simplest SCF)設 V0 =

[
0 −p0
1 s0

]
, V1 ∈ Mm(C)為 2×2之複數矩陣，求正則函數 F : D →

Mm(C) 滿足
F (λ0) = V0, F ′(λ0) = V1

且
r(F (λ)) ≤ 1, ∀λ ∈ D.

此一問題有兩個子問題要先處理：

1. 函數 F 存在之充要條件為何？

2. 若函數 F 確實存在，試問如何計算此 F？

針對一般 SCF 插值問題, 由於矩陣 F (λ) 的特徵方程式可表為

f(z, λ) = det(zI − F (λ))

= zm − c1(F (λ))zm−1 + c2(F (λ))zm−2 + · · ·+ (−1)mcm(F (λ))

= zm − h1(λ)z
m−1 + h2(λ)z

m−2 + · · ·+ (−1)mhm(λ)

且令
h(λ) = (h1(λ), h2(λ), . . . , hm(λ)) = c ◦ F (λ)

其中 c = (c1, c2, . . . , cm) 以及
In(0;Gm) =

{
(h(0), h′(0), . . . , h(n)(0)) : h : D → Gm is analytic

}
,

函數 h(λ) 以及其導數和矩陣 V0, V1, . . . , Vn 之關係, 可利用[HMY2]的方法來計算，即將其導數視
為函數與 F 的合成函數之導數：

h(k)(λ) = ∆kc(V0, V1, . . . , Vk), 0 6 k 6 n

其中

∆0c(F (λ)) = c(F (λ))

∆kc(F (λ), F ′(λ), . . . , F (k+1)(λ)) =
d

dt
∆k−1c(F (λ) + tF ′(λ), F ′(λ) + tF ′′(λ),

. . . , F (k)(λ) + tF (k+1)(λ))
∣∣
t=0

其中 k = 1, 2, . . . , n . Gm 稱為對稱多重圓盤，為 m 階多項式

(x+ z1)(x+ z2) · · · (x+ zm) = xm + cm1 (z)x
m−1 + cm2 (z)x

m−2 + · · ·+ cmm−1(z)x+ cmm(z),

係數所形成的集合：
Gm = {(cm1 (z), cm2 (z), . . . , cmm(z)) : z = (z1, z2, . . . , zm), |zj| < 1, 1 6 j 6 m}

如此 SCF 插值問題的可解性表示如下：

定理 [HMY1]. 下列敘述同意義：
(1) SCF 插值問題的正則解存在,
(2) ∆nc(V0, V1, . . . , Vn) ∈ In(0, Gm) .

同時一旦我們找到滿足

h(k)(λ) = ∆kc(V0, V1, . . . , Vk), 0 6 k 6 n,

h(λ) ∈ Gm, ∀λ ∈ D.

的函數 h(λ) 則利用[HMY1]的方法可以計算出 F (λ)，此一問題稱之為特徵函數插值問題。
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3 結果與討論

計畫主要成果，分成下面三節說明之。對µ合成數學理論的回顧，與N.J. Young的討論結果另行
放在最後作為附錄。

3.1 Volume of the Symmetrized Polydisc

Let D denote the unit disk, and T denote the unit circle. The space G2, which is the interior
of Γ2, i.e., Γ2 = G2, can be characterized by the following theorem:

Proposition 5.1 Let s, p ∈ C. The following statements are equivalent:

1. (s, p) ∈ G2,

(a) |s− s̄p| < 1− |p|2,
(b) 2 |s− s̄p|+ |s2 − 4p| < 4− |s|2,
(c) |s| < 2, and

∣∣2zp−s
2−zs

∣∣ < 1 for z ∈ D,

(d) |p| < 2, and there is a β ∈ D such that s = β p+ β̄, where β = s̄−sp̄

1−|p|2 .

Since Γ2 is a subspace of C2 and suppose (s, p) ∈ Γ2 then its volume can be computed by

Vol(Γ2) =

∫
Γ2

dΓ2 =

∫
Γ2

dsds̄dpdp̄ (1)

where s and p must satisfy the condition 2 in Proposition 3.1, i.e.,

|s− s̄p| ≤ 1− |p|2 . (2)

We can't integrate equation (1) directly, thus it must be tranferred it into other form for
integration. Consider an equivalent definition for the space of Γ2:

Γ2 =
{
(λ1 + λ2, λ1 · λ2) ∈ C2

∣∣λ1, λ2 ∈ D
}

(3)

with λ1 and λ2 are two independent variables, i.e.,

(s, p) ∈ Γ2 ⇒ s = λ1 + λ2, p = λ1λ2, λ1andλ2 ∈ D. (4)

The only draw back is the relationship between (s, p) and (λ1, λ2) are not one-one. Since the
quadratic equation z2 − sz + p = (z − λ1)(z − λ2) = 0 remains the same when two roots, λ1

and λ2, are switched (this is why Γ2 is called the symmetrized bidisc) this concludes that (1)
can be expressed by∫

Γ2

dsds̄dpdp̄ =
1

2

∫
D̄

∫
D̄

∣∣∣∣det ∂(s, s̄, p, p̄)

∂(λ1, λ̄1, λ2, λ̄2)

∣∣∣∣ dλ1dλ̄1 dλ2dλ̄2 (5)

One can compute the associated Jacobin of coordinate transformation as

det
∂(s, s̄, p, p̄)

∂(λ1, λ̄1, λ2, λ̄2)
=

∣∣∣∣∣∣∣∣∣
∂s
∂λ1

∂s
∂λ̄1

∂s
∂λ2

∂s
∂λ̄2

∂s̄
∂λ1

∂s̄
∂λ̄1

∂s̄
∂λ2

∂s̄
∂λ̄2

∂p
∂λ1

∂p
∂λ̄1

∂p
∂λ2

∂p
∂λ̄2

∂p̄
∂λ1

∂p̄
∂λ̄1

∂p̄
∂λ2

∂p̄
∂λ̄2

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
1 0 1 0
0 1 0 1
λ2 0 λ1 0
0 λ̄2 0 λ̄1

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣
1 0 1 0
0 1 0 1
0 0 λ1 − λ2 0
0 0 0 λ̄1 − λ̄2

∣∣∣∣∣∣∣∣
= |λ2 − λ1|2 (6)
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Hence
Vol(Γ2) =

1

2

∫
D

∫
D
|λ2 − λ1|2 dλ1dλ̄1 dλ2dλ̄2 (7)

By using the polar coordinate, i.e., λ1 = r1e
iθ1 , λ2 = r2e

iθ2 , the above integral becomes

Vol(Γ2) =
1

2

∫ 2π

0

∫ 1

0

∫ 2π

0

∫ 1

0

∣∣r2 − r1e
i(θ1+θ2)

∣∣2 r1dr1dθ1 r2dr2dθ2
=

1

2

∫ 2π

0

∫ 1

0

∫ 2π

0

∫ 1

0

[
r21 + r22 − 2r1r2 cos(θ1 − θ2)

]
r1dr1dθ1 r2dr2dθ2

= π2/2.

Hence we arrive at our conclusion: ∫
Γ2

dΓ2 =
π2

2
(8)

which is the same as the volume of unit ball in R4. Due to the permulation of the zeros in
the polynomial

λ2 − sλ+ p = 0,

the volume should be half of the direct integral of (s, p) in the domain Γ2. The following
relationship holds

1

2
D× D ⊂ Γ2 ⊂

1

2
(2D)× D,

i.e. the volume of Γ2 must satisfy

1

2
Vol(D× D) =

π2

2
≤ Vol(Γ2) ≤

1

2
Vol((2D)× D) = 2π2.

Define the following symmetrized mapping:

π2 : D× D → Γ2 ⊂ C2 : (λ1, λ2) 7→ (s, p) = (λ1 + λ2, λ1λ2) (9)

then the volume of the space is the measure on the range of the mapping π2. It is obvious
true that if (s, p) = π2(λ1, λ2) for two numbers in D, the for these two numbers the relation
ship π2(λ2, λ1) = (s, p) is also holds.

We extend this relationship by the following recursive relation

πn(λ1, λ2, · · · , λn−1, λn) = (πn−1(λ1, λ2, · · · , λn−1), 0) + (1, πn−1(λ1, λ2, · · · , λn−1))λn (10)

with n = 3, 4, . . .. When n = 3,

π3(λ1, λ2, λ3) = (π2(λ1, λ2), 0)+(1, π2(λ1, λ2))λ3 = (λ1+λ2+λ3, λ1λ2+λ1λ3+λ2λ3, λ1λ2λ3),

i.e.,

π3 : D3 → Γ3 ⊂ C3 : (λ1, λ2, λ3) 7→ (s1, s2, s3) = (λ1 + λ2 + λ3, λ1λ2 + λ1λ3 + λ2λ3, λ1λ2λ3)

where Γ3 is the coefficient space of the polynomial

λ3 − s1λ
2 + s2λ− s3 = 0

with all its zeros lies within the unit disk D. And then∫
Γ3

ds1ds̄1ds2ds̄2ds3ds̄3 =
1

3!

∫
D̄

∫
D̄

∫
D̄

∣∣∣∣det ∂(s1, s̄1, s2, s̄2, s3, s̄3)

∂(λ1, λ̄1, λ2, λ̄2, λ3, λ̄3)

∣∣∣∣ dλ1dλ̄1 dλ2dλ̄2 dλ3dλ̄3

(11)
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where the assoicated Jacobian is computed as follows:

det
∂(s1, s̄1, s2, s̄2, s3, s̄3)

∂(λ1, λ̄1, λ2, λ̄2, λ3, λ̄3)
=

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂s1
∂λ1

∂s1
∂λ̄1

∂s1
∂λ2

∂s1
∂λ̄2

∂s1
∂λ3

∂s1
∂λ̄3

∂s̄1
∂λ1

∂s̄1
∂λ̄1

∂s̄1
∂λ2

∂s̄1
∂λ̄2

∂s̄1
∂λ3

∂s̄1
∂λ̄3

∂s2
∂λ1

∂s2
∂λ̄1

∂s2
∂λ2

∂s2
∂λ̄2

∂s2
∂λ3

∂s2
∂λ̄3

∂s̄2
∂λ1

∂s̄2
∂λ̄1

∂s̄2
∂λ2

∂s̄2
∂λ̄2

∂s̄2
∂λ3

∂s̄2
∂λ̄3

∂s3
∂λ1

∂s3
∂λ̄1

∂s3
∂λ2

∂s3
∂λ̄2

∂s3
∂λ3

∂s3
∂λ̄3

∂s̄3
∂λ1

∂s̄3
∂λ̄1

∂s̄3
∂λ2

∂s̄3
∂λ̄2

∂s̄3
∂λ3

∂s̄3
∂λ̄3

∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣

1 0 1 0 1 0
0 1 0 1 0 1

λ2 + λ3 0 λ1 + λ3 0 λ1 + λ2 0
0 λ̄2 + λ̄3 0 λ̄1 + λ̄3 0 λ̄1 + λ̄2

λ2λ3 0 λ1λ3 0 λ1λ2 0
0 λ̄2λ̄3 0 λ̄1λ̄3 0 λ̄1λ̄2

∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣

1 0 1 0 1 0
0 1 0 1 0 1
0 0 λ1 − λ2 0 λ1 − λ3 0
0 0 0 λ̄1 − λ̄2 0 λ̄1 + λ̄2

0 0 (λ1 − λ2)λ3 0 (λ1 − λ3)λ2 0
0 0 0 (λ̄1 − λ̄2)λ̄3 0 (λ̄1 − λ̄3)λ̄2

∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣

1 0 1 0 1 0
0 1 0 1 0 1
0 0 λ1 − λ2 0 λ1 − λ3 0
0 0 0 λ̄1 − λ̄2 0 λ̄1 − λ̄3

0 0 0 0 (λ1 − λ3)(λ2 − λ3) 0
0 0 0 0 0 (λ̄1 − λ̄3)(λ̄2 − λ̄3)

∣∣∣∣∣∣∣∣∣∣∣∣
= |λ2 − λ1|2|λ3 − λ1|2|λ3 − λ2|2, (12)

Hence

Vol(Γ3) =
1

3!

∫
D

∫
D

∫
D
|λ2 − λ1|2|λ3 − λ1|2|λ3 − λ2|2dλ1dλ̄1 dλ2dλ̄2 dλ3dλ̄3 (13)

By using the polar coordinate, i.e., λj = rje
iθj , j = 1, 2, 3, the above integral becomes

Vol(Γ3) =
1

3!

∫ 2π

0

∫ 1

0

∫ 2π

0

∫ 1

0

∫ 2π

0

∫ 1

0

∣∣r2 − r1e
i(θ1+θ2)

∣∣2 ∣∣r3 − r1e
i(θ1+θ2)

∣∣2 ∣∣r3 − r2e
i(θ1+θ2)

∣∣2
r1dr1dθ1 r2dr2dθ2 r3dr3dθ3

=
1

3

∫ 2π

0

∫ 1

0

∫ 2π

0

∫ 1

0

∫ 2π

0

∫ 1

0

[
r21 + r22 − 2r1r2 cos(θ1 − θ2)

]
r1dr1dθ1 r2dr2dθ2

= π3/3!.

Hence we arrive at our conclusion: ∫
Γ3

dΓ3 =
π2

3!
(14)

which is the same as the volume of the unit ball in R4.
In general, I conject on the following results:

Proposition 5.2: The volume of polydisk Γn is equal to the volume of the unit ball in R2n.
By using the Computor Algebra System - Maple 11, we have verified the above proposi-

tion upto n = 7 which means the conjecture is true, however the analytical way to construct
the proof is still under development.
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3.2 Surface Area of the Symmetrized Polydisc

In mathematics, the Minkowski-Steiner formula is a formula relating the surface area and
volume of compact subsets of Euclidean space. More precisely, it defines the surface area as
the "derivative" of enclosed volume in an appropriate sense.

The Minkowski-Steiner formula can be states as follow:
Let n ≥ 2, and let A ( Rn be a compact set. Let µ(A) denote the Lebesgue measure

(volume) of A. Define the quantity λ(∂A) by the ``Minkowski-Steiner formula''

λ(∂A) , lim inf
δ→0

µ
(
A+Bδ

)
− µ(A)

δ
,

where
Bδ =

{
x = (x1, . . . , xn) ∈ Rn

∣∣∣∣|x| :=√x2
1 + · · ·+ x2

n ≤ δ

}
denotes the closed ball of radius δ > 0, andA + Bδ ,

{
a+ b ∈ Rn

∣∣a ∈ A, b ∈ Bδ

}
is the

Minkowski sum of A and Bδ, so that A+Bδ = {x ∈ Rn ||x− a| ≤ δ for some a ∈ A}.
For "sufficiently regular" sets A, the quantity λ(∂A) does indeed correspond with the

(n− 1)-dimensional measure (surface) of the boundary ∂A of A.
The volume of the unit ball on R2 is πr2, by taking the derivative of r we get the arc-

length: 2πr, and the volume of the unit ball on R3 is
4

3
πr3, we get the surface: 4πr2.

Now we can apply the Minkowski-Steiner formula to calculate surface area, we have

S(Γ2) = 3π2

S(Γ3) = 2π3

Till now we only have the gereral form to evalute the volume of Γn, we calculate V (Γ2)
and V (Γ3) step by step, but still can't find a easy to solve the gereral case. Since the volume
of V (Γ2) and V (Γ3) happen to be the volume of the unit ball on R4 and R6. The general
result is given by

Proposition 5.3: The surface area of polydisk Γn is given by S(Γr
n) = n(n + 1)

πn

n!
which is

much larger than the surface area of the unit ball in R2n.

3.3 The CF interpolation function in the symmetrized bidisc

Problem: To seek an analytic function h : D → G such that h(λ0) = (s0, p0) , z0 ∈ G and
h′(λ0) = (s1, p1) , z1, i.e., find functions s(λ) and p(λ) such that s(λ0) = s0, s′(λ0) = s1,
p(λ0) = p0, and p′(λ0) = p1, and (s(λ), p(λ)) ∈ G, for all λ ∈ D.

First of all we must check the existence of the solution by checking the infinitesimal
Carathéodory distance between these two points[HMY1, Theorem 1]. Suppose for this data
set we obtain

cG(z0, z1) = sup
|ω|=1

∣∣∣∣ s1(1− ω2p0)− ωp1(2− ωs0)

ω2(s0 − s̄0p0)− 2ω(1− |p0|2) + s̄0 − s0p̄0

∣∣∣∣ .
with the extremal argument denoted by ω0. When cG(z0, z1) ≤ 1, then there does exist such
an analytic function.

The derivatives of magic function Φω(s, p) =
2ωp− s

2− ωs
are computed as below:

∂Φω(s, p)

∂s
=

−(2− ωs)− (2ωp− s)(−ω)

(2− ωs)2
= −2

1− ω2p

(2− ωs)2
,

∂Φω(s, p)

∂p
=

2ω

2− ωs
.
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Let f : D → D which maps λ 7→ f(λ) = Φω0 ◦ h(λ), then the interpolation problem from
the unit disk to the symmetrized bidisc, i.e., h : D → G, is then transformed by the magic
function Φω0 and becomes an interpolation problem becomes from the unit disk to unit disk
with the interpolation conditions imposed on f as:

f(λ0) = Φω0 ◦ h(λ0)

=
2ω0p(λ0)− s(λ0)

2− ω0s(λ0)

=
2ω0p0 − s0
2− ω0s0

, c0, (15)

f ′(λ0) =
[

∂Φω0

∂s
(h(λ0))

∂Φω0

∂p
(h(λ0))

]
· h′(λ0)

= −2
1− ω2

0p(λ0)

(2− ω0s(λ0))2
s′(λ0) +

2ω0

2− ω0s(λ0)
p′(λ0)

= −2
1− ω2

0p0
(2− ω0s0)2

s1 +
2ω0p1

2− ω0s0

= 2
ω0p1(2− ω0s0)− s1(1− ω2

0p0)

(2− ω0s0)2
, c1. (16)

Let B denote the Blaschke product

Bα(λ) =
λ− α

1− ᾱλ

and its derivative is
B′

α(λ) =
1− |α|2

(1− ᾱλ)2
.

We know that f must be a Blaschke product of degree less than 2. When cG(z0, z1) = 1, f
is unique up to Mobius transforms, but when cG(z0, z1) < 1, it is not. To find the unique or
any function f , let

q(λ) =
Bc0(f(λ))

Bλ0(λ)
=

f(λ)− c0
1− c0f(λ)

1− λ̄0λ

λ− λ0

then

q(λ0) = lim
λ→λ0

f(λ)− c0
1− c̄0f(λ)

1− λ̄0λ

λ− λ0

=
f ′(λ0)

1− |c0|2
(1− |λ0|2) =

c1
1− |c0|2

(1− |λ0|2) , υ.

Since ∣∣∣∣ c1
1− |c0|2

∣∣∣∣ = ∣∣∣∣ s1(1− ω2
0p0)− ω0p1(2− ω0s0)

ω0(s0 − s̄0p0)− 2(1− |p0|2) + ω̄0(s̄0 − s0p̄0)

∣∣∣∣ = cG(z0, z1) ≤ 1,

i.e., the value of υ is less than or equal to 1 and the function q(λ) is solvable. Since f(λ) is
unique up to Möbius transform, we choose q(λ) = υ and then

f(λ) = B−c0 (Bλ0(λ)υ) =
Bλ0(λ)υ + c0
1 + c̄0Bλ0(λ)υ

=
(υ − λ̄0c0)λ+ (c0 − λ0υ)

(1− λ0c̄0υ) + (c̄0υ − λ̄0)λ
. (17)

Solving the equation Φω0 ◦ h = f for s(λ) gives us

s(λ) = 2
ω0p(λ)− f(λ)

1− ω0f(λ)
. (18)

In order to guarantee the analyticity of s(λ) we must compute the pole of s(λ) by solving

f(λ) = ω̄0,
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here we denoted by λ∗ = B−λ0(Bc0(ω̄0)/υ). When λ∗ is outside the unit disc, then the function
p to satisfy the interpolation condition p(λ0) = p0 and p′(λ0) = p1 is given by

p(λ) = B−p0 (Bλ0(λ)Bζ [Bλ0(λ)p2(λ)]) , p2 ∈ RH∞.

where
ζ =

p1
1− |p0|2

(1− |λ0|2). (19)

For simplicity choose p2(λ) ≡ 0 and then we obtain

p(λ) = B−p0 (Bλ0(λ)ζ) =
Bλ0(λ)ζ + p0
1 + p̄0Bλ0(λ)ζ

=
(ζ − λ̄0p0)λ+ (p0 − λ0ζ)

(1− λ0p̄0ζ) + (p̄0ζ − λ̄0)λ
, (20)

and s(λ) is then given by

s(λ) = 2
ω0B−p0 (Bλ0(λ)ζ)−B−c0 (Bλ0(λ)υ)

1− ω0B−c0 (Bλ0(λ)υ)
. (21)

Alternative, when λ∗ inside the unit disc (when cG(z0, z1) = 1, this always happens) then one
more interpolation condition for p, i.e.,

p(λ0) = p0, p′(λ0) = p1, p(λ∗) = ω̄2
0, λ∗ = B−λ0(Bc0(ω̄0)/υ).

The simplest one is given by

p(λ) = B−p0

(
Bλ0(λ)B−ζ

[
Bλ0(λ)

Bλ0(λ∗)
Bζ

(
Bp0(ω̄

2
0)

Bλ0(λ∗)

)])
, (22)

and associated s(λ) is also determined by (18) with f(λ) from (17) and p(λ) from (22).

3.3.1 Domain extension

When cG(z0, z1) < 1, the associated f(λ) satisfying the interpolation conditions (15) and
(16) is not unique up to Möbius tranforms. We now extend the domain for finding extremal
value of cG(z0, z1) from the unit disk to a large disk with radius r, denoted by rD, such that
the extremal value is cG(z0, z1) = r. And then determine the unique f in this new domain.
Suppose (s1, p1) ̸= (0, 0), the value of r should satisfy the condition

cG(z0, z1) = sup
|ω|=r

∣∣∣∣ s1(1− ω2p0)− ωp1(2− ωs0)

ω2(s0 − s̄0p0)− 2ω(1− |p0|2) + s̄0 − s0p̄0

∣∣∣∣
=

∣∣∣∣ s1(1− ω2
0p0)− ω0p1(2− ω0s0)

ω2
0(s0 − s̄0p0)− 2ω0(1− |p0|2) + s̄0 − s0p̄0

∣∣∣∣ = r,

which gives us cG(z0, z1) = r with corresponding extremal argument ω0. The interpolation
condition for the new f is

f(λ0) = Φω0 ◦ h(λ0) =
2ω0p0 − s0
2− ω0s0

= c0,

f ′(λ0) =
[

∂Φω0

∂s
(h(λ0))

∂Φω0

∂p
(h(λ0))

]
· h′(λ0) = 2

ω0p1(2− ω0s0)− s1(1− ω2
0p0)

(2− ω0s0)2
= c1.

We seek for a Möbius transform M(λ) such that

M(f(λ0)) = M(c0) = λ0,
d

dλ
M(f(λ))

∣∣∣∣
λ=λ0

= 1, M(rD) = rD.
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Assume the function M(λ) is of the form

M(λ) = rB−λ0
r

◦Bα(
λ

r
g(λ)), α =

c0
r
g(c0)

and select an analytic function g(λ) such that d
dλ
M(f(λ))

∣∣
λ=λ0

= 1 holds. Direct differenti-
ation on M(f(λ)) gives us

d

dλ
M(f(λ))

∣∣∣∣
λ=λ0

= M ′(f(λ0))f
′(λ0)

= rB′
−λ0

r

(
Bα

(
f(λ0)g(f(λ0))

r

))
B′

α

(
f(λ0)g(f(λ0))

r

)
f(λ0)g

′(f(λ0)) + g(f(λ0))

r
f ′(λ0)

= rB′
−λ0

r

(
Bα

(
c0g(c0)

r

))
B′

α

(
c0g(c0)

r

)
c0g

′(c0) + g(c0)

r
c1

= B′
−λ0

r

(Bα (α))B
′
α (α) [cg

′(c0) + g(c0)]c1

=

(
1−

∣∣∣∣λ0

r

∣∣∣∣2
)

1− |α|2

(1− ᾱα)2
[c0g

′(c0) + g(c0)]c1

=
1−

∣∣λ0

r

∣∣2
1− |α|2

[c0g
′(c0) + g(c0)]c1

= 1,

and we want to find the function g to satisfy the differential equation

c0g
′(c0) + g(c0) =

1− |α|2

1−
∣∣λ0

r

∣∣2 1

c1
.

Simplest solution is a constant function for g, i.e.,

g(λ) = k =
1

c1

1− |α|2

1−
∣∣λ0

r

∣∣2 =
r2

c1

1− |α|2

r2 − |λ0|2
,

then αmust satisfy α = rc0
c1

1−|α|2

r2−|λ0|2
, i.e., the quantity c1

c0
α = r 1−|α|2

r2−|λ0|2
is a real number which is

the solution of
∣∣∣ c0c1 ∣∣∣2 ( c1

c0
α
)2

+ r2−|λ0|2
r

(
c1
c0
α
)
− 1 = 0. We obtain the parameter α as following

α =
1

2

c0
c1

∣∣∣∣c1c0
∣∣∣∣2
−r2 − |λ0|2

r
±

√(
r2 − |λ0|2

r

)2

+ 4

∣∣∣∣c0c1
∣∣∣∣2


=
1

2

c̄1
c̄0

−r2 − |λ0|2

r
±

√(
r2 − |λ0|2

r

)2

+ 4

∣∣∣∣c0c1
∣∣∣∣2


=
1

2

c̄1
rc̄0

−(r2 − |λ0|2)±

√
(r2 − |λ0|2)2 + 4r2

∣∣∣∣c0c1
∣∣∣∣2


and the parameter k can also be expressed as k = r
c0
α. Thus

M(λ) = rB−λ0
r

◦Bα(
k

r
λ) = rB−λ0

r

◦Bα(
α

c0
λ)

= rB−λ0
r

(
α
c0
λ− α

1− ᾱ α
c0
λ

)
= rB−λ0

r

(
α

λ− c0
c0 − |α|2λ

)
= r

(λ0 − rα)c0 + (rα− λ0|α|2)λ
(r − λ̄0α)c0 + (λ̄0α− r|α|2)λ

.

10



To double check, we see

M(f(λ0)) = M(c0) = λ0,

d

dλ
M(f(λ))

∣∣∣∣
λ=λ0

= M ′(c0)c1

= rα
c0(r

2 − |λ0|2)(1− |α|2)
[(r − λ̄0α)c0 + (λ̄0α− r|α|2)λ]2

∣∣∣∣
λ=c0

c1

= rα
c0(r

2 − |λ0|2)(1− |α|2)
[r(1− |α|2)c0]2

c1

=
1

r

c1
c0
α
(r2 − |λ0|2)
(1− |α|2)

= 1.

Also, since M(λ) = rB−λ0
r

◦ Bα(
k
r
λ), the function Bα(

k
r
λ) maps rD into D and the function

B−λ0
r

(λ) maps D to D, thus M(λ) maps rD into rD. Hence M(λ) is the Mobius tranform
what we want.

To solve for h(λ), i.e., s(λ) and p(λ), we let M(f(λ)) = λ to compute the unique f(t) as
following

f(λ) = Φω0 ◦ h(λ) = M−1(λ)

=
r

k
B−α

(
Bλ0

r

(
λ

r
)

)
=

c0
α
B−α

(
r

λ− λ0

r2 − λ̄0λ

)
=

c0
α

Bλ0
r

(λ
r
) + α

1 + ᾱBλ0
r

(λ
r
)
=

c0
α

r(λ− λ0) + α(r2 − λ̄0λ)

r2 − λ̄0λ+ ᾱr(λ− λ0)

=
c0
α

(r − λ̄0α)λ+ r2α− rλ0

r2 − rᾱλ0 + (rᾱ− λ̄0)λ
. (23)

Note that

f(λ0) =
c0
α

α(r2 − |λ0|2)
r2 − |λ0|2

= c0

and

f ′(λ0) =
c0
α

r(r2 − |λ0|2)(1− |α|2)
[r2 − rᾱλ0 + (rᾱ− λ̄0)λ]2

∣∣∣∣
λ=λ0

=
c0
α
r
(r2 − |λ0|2)(1− |α|2)

(r2 − |λ0|2)2
=

c0
α
r
1− |α|2

r2 − |λ0|2
= c1.

Once the function f(λ) is constructed then we can express s(λ) as a function of f(λ) and
p(λ), i.e.,

s(λ) = 2
ω0p(λ)− f(λ)

1− ω0f(λ)
.

To ensure that s(λ) is analytic, p(λ) satifies the original interpolation condition but also for
those λ∗ inside rD such that f(λ∗) = 1/ω0 = ω̄0/r

2. It follows that

λ∗ = rB−λ0
r

◦Bα(
α

ω0c0
) = rB−λ0

r

(
α

1− ω0c0
ω0c0 − |α|2

)
= r

Bα(
α

ω0c0
) + λ0

r

1 + λ̄0

r
Bα(

α
ω0c0

)
= r

rα(1− ω0c0) + λ0(ω0c0 − |α|2)
r(ω0c0 − |α|2) + αλ̄0(1− ω0c0)

.

Hence p(λ) is construct to satify

p(λ0) = p0, p′(λ0) = p1, p(λ∗) =
1

ω2
0

=
ω̄2
0

r4
.

11



which is given below:

p(λ) = B−p0

(
Bλ0(λ)Bζ

[
Bλ0(λ)

Bλ0(λ∗)
B−ζ

(
Bp0(ω̄

2
0/r

4)

Bλ0(λ∗)

)])
, (24)

where
ζ =

p1
1− |p0|2

(1− |λ0|2).

3.3.2 Example

An example is presented for illustrative purpose.　
To find an analytic function h : D → G such that h(0) = z0 = (1, 1

4
) and h′(0) = z1 =

(0,−1
4
), i.e., find functions s(λ) and p(λ) such that s(0) = 1, s′(0) = 0, p(0) = 1

4
, and

p′(0) = −1
4
, and (s(λ), p(λ)) ∈ G, for all λ ∈ D.

Here λ0 = 0, s0 = 1, s1 = 0, p0 = 1
4
, and p′(0) = −1

4
. One of the solution is given by

h(λ) = (1, 1
4
(1− λ)).

First of all we need to compute cG(z1, z2):

sup
|ω|=1

∣∣∣∣ s1(1− ω2p0)− ωp1(2− ωs0)

ω2(s0 − s̄0p0)− 2ω(1− |p0|2) + s̄0 − s0p̄0

∣∣∣∣
= sup

|ω|=1

∣∣∣∣ ω 1
4
(2− ω)

ω2(1− 1
4
)− 2ω(1− 1

16
) + 1− 1

4

∣∣∣∣
= sup

|ω|=1

∣∣∣∣ ω 1
4
(2− ω)

(1 + ω2)3
4
− 15

8
ω

∣∣∣∣ = sup
|ω|=1

2

∣∣∣∣ ω(2− ω)

6− 15ω + 6ω2

∣∣∣∣
= sup

|ω|=1

2

3

∣∣∣∣ ω(2− ω)

2− 5ω + 2ω2

∣∣∣∣ = sup
|ω|=1

2

3

∣∣∣∣ ω

1− 2ω

∣∣∣∣
= sup

|ω|=1

2

3

∣∣∣∣ ω

2− ω̄

∣∣∣∣ = sup
|ω|=1

2

3

∣∣∣∣ ω

2− ω

∣∣∣∣ = 2

3
≤ 1,

hence there exists an analytic function which satisfy interpolation conditions corresponding
to the given data set. The argument for this extremun is given by ω0 = 1.

Three different methods, direct method, domain extension method, and Schur method,
are presented here for comparison.

Direct method: Let f(λ) = Φω ◦ h(λ), then the interpolation condition on f is given by

f(0) =
2ωp0 − s0
2− ωs0

=
2ω 1

4
− 1

2− ω
= −1

2
, (25)

f ′(0) = −2
1 + ωp0
(2− ωs0)

s1 +
2ω

2− ωs0
p1 =

2ω

2− ωs0
p1 = −1

2

ω

2− ω
. (26)

At ω = ω0 = 1, c0 = f(0) = −1
2
and c1 = f ′(0) = −1

2
, and then υ = c1(1−|λ0|2)/(1−|c0|2) =

−2
3
and ζ = p1(1− |λ0|2)/(1− |p0|2) = − 4

15
. Substituting those values into (17) leeds to

f(λ) = −1

2

4
3
λ+ 1

1 + 1
3
λ
= −1

2

4λ+ 3

3 + λ
. (27)

Solving f(λ) = 1 gives us λ∗ = −3
2
which is outside the unit disc. Then the function p to

satisfy the interpolation condition p(0) = 1
4
and p′(0) = −1

4
is given by (20)

p(λ) = −1

4

16λ− 15

15− λ
,

and from the equation Φω0 ◦ h = f we obtain

s(λ) =
8λ2 − 27λ− 45

−45− 27λ+ 2λ2
.
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By consider the extremal value of the function

sup
λ∈D

|β| = sup
λ∈D

∣∣∣∣s(λ)− s̄(λ)p(λ)

1− |p(λ)|2

∣∣∣∣ = sup
λ∈T

∣∣∣∣s(λ)− s̄(λ)p(λ)

1− |p(λ)|2

∣∣∣∣ ≃ 0.96 < 1

we know the function

h(λ) = (s(λ), p(λ)) =

(
8λ2 − 27λ− 45

−45− 27λ+ 2λ2
,
1

4

16λ− 15

−15 + λ

)
is the required interpolation function into G.

Domain extension method: Since cG(z1, z2) < 1, we extend the domain from D to denoted
by rDsuch that the extremal value is equal to r, i.e.,ld satisfy the condition

sup
|ω|=r

∣∣∣∣ s1(1− ω2p0)− ωp1(2− ωs0)

ω2(s0 − s̄0p0)− 2ω(1− |p0|2) + s̄0 − s0p̄0

∣∣∣∣ = sup
|ω|=r

2

3

∣∣∣∣ ω

2− ω

∣∣∣∣ = sup
|ω|=r

2

3

r

|2− ω|
= r,

which gives us r = 4
3
with corresponding ω0 = r. The interpolation condition for the new f

is

c0 = f(0) =
2ω0

1
4
− 1

2− ω0 · 1
= −1

2
,

c1 = f ′(0) =
2ω0p1

2− ω0s0
=

−2ω0
1
4

2− ω0 · 1
= −1.

And then υ = c1(1− |λ0|2)/(1− |c0|2) = −4
3
, ζ = p1(1− |λ0|2)/(1− |p0|2) = − 4

15
, and

α =
1

2

c1
c0
(−r ±

√
r2 + 4|c0

c1
|2) = −4

3
± 5

3
=

1

3
,−3,

λ∗ = rBα(
α

ω0c0
) = rα

1− ω0c0
ω0c0 − |α|2

= −20

21
,
15

29
.

Here we choose α = 1/3 and λ∗ = −20/21 (inside the disk of rD). The function f is computed
by (23), i.e.,

f(λ) =
c0
α
B−α(

λ

r
) = −3

2
B− 1

3
(
3

4
λ) = −3

2

3
4
λ+ 1

3

1 + 1
3
3
4
λ
= −1

2

9λ+ 4

4 + λ
,

and the function p to satisfy the interpolation condition p(0) = 1
4
, p′(0) = −1

4
, and p(−20

21
) =

9
16
is

p(λ) = B− 1
4

(
λB 4

15

(
−21

20
λB− 4

15

(
−21

20
B 1

4
(
9

16
)

)))
= 4

21λ2 − 43λ+ 39

624− 64λ+ 21λ2
.

Thus the associated s(λ) is then given by

s(λ) = s(λ) = 2
ω0p(λ)− f(λ)

1− ω0f(λ)
=

59λ2 − 64λ+ 624

624− 64λ+ 21λ2
.

Hence the requested interpolation function is

h(λ) = (s(λ), p(λ)) =

(
59λ2 − 64λ+ 624

624− 64λ+ 21λ2
, 4

21λ2 − 43λ+ 39

624− 64λ+ 21λ2

)
.

Schur method [Schur]: Let c0 = f(0) and cj = f (j)(0), j ≥ 1. Now c0 = −1
2
, c1 = −1

2
ω

2−ω
,

and we can choose c2 = c3 = · · · = 0. The corresponding Schur number is given by

γ0 = c0 = −1

2
, γ1 =

c1
1− |γ0|2

=
−1

2
ω

2−ω

1− |1
2
|2

= −2

3

ω

2− ω

γ2 =

c2
1−|γ0|2 + γ̄0γ1

1− |γ1|2
=

2− 2
3
ω

41
9
− 2(ω + ω̄)

, . . . .

13



BCF_s_1.jpg

(a) direct method

BCF_s_2.jpg

(b) domain extension method

BCF_s_3.jpg

(c) Schur method

Figure 1: The plot of s(λ)with the height denoting the real part and the HSV color describing
the image part.

We need check |γ0| ≤ 1, |γ1| ≤ 1, |γ2| ≤ 1, . . .,|γn| ≤ 1,. . .. Unless there exists some m such
that γm+1 = γm+2 = · · · = 0, it is not easy to apply. On the other hand, the analytic function
f satisfy above interpolation condition iff the matrix

C =

[
c0 c1
0 c0

]
is contractive. This condition is equivalent to

1− |c0|2 ≥ 0 ⇔ |γ0| ≤ 1,

1− |c0|2 − |c1|2 − |c0c̄1|
1−|c0|2 ≥ 0 ⇔ |γ1| ≤ 1.

Since (s0, p0) = (1, 1
4
) is located insideG then |γ0| ≤ 1 is always true. And the condition from

Theorem 1 in Ref. [?] is equivalent to the one |γ1| ≤ 1. The power series is given by:

f(λ) = c0 + c1λ =
1

2
− 1

2

ω

2− ω
λ = −1

2

2− ω + ωλ

2− ω
=

2ω 1
4
(1− λ)− 1

2− ω
=

2ωp(λ)− s(λ)

2− ωs(λ)

thus
s(λ) = 1, p(λ) =

1

4
(1− λ).

Therefore the desired function is then defined by

h(λ) = (1,
1

4
(1− λ)).

Remarks: If we can choose other parameters c2, c3, . . . such that the associated matrix C
is contractive, then we can find another function f , e.g. if we select cn = (−1)n 1

2
(1
3
)n−1, then

another function f is given by

f(λ) = −1

2
(1 + λ− 1

3
λ2 +

1

32
λ3 + · · · ) = −1

2
(1 + λ

1

1 + 1
3
λ
) = −1

2

1 + 4
3
λ

1 + 1
3
λ
,

which is the same as the function f(λ) from the direct method given in (27).
The funcitons s(λ) and p(λ) are plotted in the following figures. From the comparision

between direct and domain extension method, it dipicts the domain extension prove a more
smooth function.

3.4 On the Graph of Interpolating Functions

Given two 2× 2 matrices W1 and W2, compute an analytic function such that F (λ1) = W1,
F (λ2) = W2 and r(F (λ)) < 1 , ∀λ ∈ D. SinceΣ2 is a 4-dimensional space which is nonconvex,
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BCF_p_1.jpg

(a) direct method

BCF_p_2.jpg

(b) domain extension method

BCF_p_3.jpg

(c) Schur method

Figure 2: The plot of p(λ)with the height denoting the real part and the HSV color describing
the image part.

NP-6.png

Figure 3: Transformation diagram from Σ2 into Γ2.

nosmooth and unbounded set, thus we transfer the domain from Σ2 into Γ2 which is also
nonconvex and nonsmooth, but a compact set. Therefore we construct the interpolating
function defined in Γ2 first and then transfer it into the original domainΣ2 whose relationship
is shown in Fig3:

In this section, we find the first type of the analytic function f : D → Γ2 such that

f(0) = (0, 0), f(λ0) = (s0, p0);

and then consider the second type of the analytic function f : D → Γ2 satisfying

f(λ1) = (s1, p1), f(λ2) = (s2, p2).

Once the function f is obtained, the original interpolating function F : D → Σ2 is then
computerd.。

3.4.1 First type of interpolating funcitons

Example 3.4.1: To find an analytic function f : D → Γ2 such that

f (0) = (0,0) and f (β) =

(
2β

1 + β
, 0

)
, β ∈ (0, 1) .

Since f (λ) = (s(λ), p(λ)), and f (0) = (0,0), f (β) =
(

2β
1+β

, 0
)
, one obtains

{
s (0) = 0,

s (β) = 2β
1+β

,

{
p (0) = 0,
p (β) = 0.

By using Möbius property, we then arrive at

s (λ) ≡ 2λ(1− β)

1− βλ
, p (λ) ≡ λ (λ− β)

1− βλ
.

That is, f (λ) =
(

2λ(1−β)
1−βλ

, λ(λ−β)
1−βλ

)
whose graph is shown below:
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Figure 4: The graph of f(z) when β = 0.

Figure 5: The graph of f(z) when β = 0.3.
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Figure 6: The graph of f(z) when β = 1.

Example 3.4.2: Given λ1 = 0, λ2 = β ∈ (0, 1) and ∀α ∈ C, F (0) = W1 (α) =

[
0 α
0 0

]
and F (β) = W2 =

[
0 1

0 2β
1+β

]
, to find F (λ) such that r (F (λ)) ≤ 1, ∀λ ∈ D.

SinceW1 (α) =

[
0 α
0 0

]
andW2 =

[
0 1

0 2β
1+β

]
are scalar matrices, there exists a nonsin-

gular matric P (λ) such that

P (λ)F (λ)P−1 (λ) =

[
0 1

−p (λ) s (λ)

]
. (28)

And it follows directly that f (0) = (0, 0)、f (β) =
(

2β
1+β

, 0
)
, that is

s (0) = 0、p (0) = 0；s (β) =
2β

1 + β
、p (β) = 0

which gives us

P (0)

[
0 α
0 0

]
=

[
0 1
0 0

]
P (0) , (29)

P (β)

[
0 1

0 2β
1+β

]
=

[
0 1

0 2β
1+β

]
P (β) . (30)

Suppose let P (0) =

[
1 0
0 α

]
in (29) and P (β) =

[
1 0
0 1

]
in (30), thenby interpolation

P (λ) =

[
1 0
0 α + λ

β
(1− α)

]
with α +

λ

β
(1− α) ̸= 0.

Substituting this P (λ) into (28) leads to the following analytic function

F (λ) =

[
0 α + λ

β
(1− α)

− p(λ)

α+λ
β
(1−α)

s (λ)

]
.

Alternatively by Example 3.4.1, we set f (λ) =
(

2λ(1−β)
1−βλ

, λ(λ−β)
1−βλ

)
which gives us the ana-

lytic function

F (λ) =

[
0 α+ λ

β
(1− α)

− 2βλ(1−β)
(1−βλ)(αβ+λ−αλ)

λ(λ−β)
1−βλ

]
.
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3.4.2 Second type of interpolating funcitons

Given F (0) = W1 =

[
1 2
−3

4
−1

]
and F

(
4
5

)
= W2 =

[
0 1
−1

4
1

]
, to find an analytic function

F (λ) ∈ C2×2 such that

F (0) = W1、F

(
4

5

)
= W2 and r (F (λ)) < 1, ∀λ ∈ D.

It follows that

λ1 = 0, W1 =

[
1 2
−3

4
−1

]
, (s (0) , p (0)) = (s0, p0) =

(
0, 1

2

)
= z0,

λ2 =
4
5
, W2 =

[
0 1
−1

4
1

]
,
(
s
(
4
5

)
, p
(
4
5

))
= (s1, p1) =

(
1, 1

4

)
= z1.

Check the existence of the solution.
Theorem: For any W1, W2 ∈ C2×2 and W1 is nonderagotory , there exists an unique

analytic funciton F (λ) such that

F (λ1) = W1、F (λ2) = W2 and r (F (λ)) < 1,∀λ ∈ D

if and only if

CG (z1, z2) = sup
ω∈T

∣∣∣∣ (s2p1 − s1p2)ω
2 + 2 (p2 − p1)ω + s1 − s2

(s1 − s2p1)ω2 − 2 (1− p1p2)ω + s2 − s1p2

∣∣∣∣ ≤ d (λ1, λ2)

where
z1 = (s1, p1) , z2 = (s2, p2) and si = trWi, pi = detWi, i = 1, 2

G def
= {(ρ1 + ρ2, ρ1ρ2)： |ρ1| < 1, |ρ2| < 1} ⊂ C2

Since

d

(
0,

4

5

)
=

∣∣∣∣ 0− 4
5

1− 4
5
· 0

∣∣∣∣ = 4

5

and

CG (z1, z2) = sup
ω∈T

∣∣∣∣ 1
2
ω2 − 1

2
ω − 1

−1
2
ω2 − 4

7
ω + 1

∣∣∣∣
then CG (z1, z2) =

4
5
= d

(
0, 4

5

)
whose value is shwon in Figure 7. When ω0 = 1, the equality

holds and thus the unique solution F (λ) exists for the given daa set.

18



Figure 7: CG (z0, z1) =
4
5

Suppose there exist functions s (λ) and p (λ) such that{
s (0) = s1 = 0,
s
(
4
5

)
= s2 = 1,

{
p (0) = p1 =

1
2
,

p
(
4
5

)
= p2 =

1
4
,

and {
s (λ) = trF (λ)
p (λ) = detF (λ)

(s, p) ∈ G2,∀λ ∈ D

that is, f (0) =
(
0, 1

2

)
、 f

(
4
5

)
=
(
1, 1

4

)
, s (λ) and p (λ) are computed as following.

Step 1: From Φω (s, p) =
2ωp− s

2− ωs
we have

Φω0

(
0,

1

2

)
=

2ω0 · 1
2
− 0

2− ω00
=

1

2
, Φω0

(
1,

1

4

)
=

2ω0 · 1
4
− 1

2− ω0 · 1
= −1

2
.

Step 2: Solve

p

(
1

2

)
=

1

2
, p

(
−1

2

)
=

1

4
, p (1) = 1.

For the condition
p

(
1

2

)
=

1

2

we have
p (α) = M− 1

2
◦
(
M 1

2
(α)ϕ1 (α)

)
and then

p

(
−1

2

)
= M− 1

2
◦
(
M 1

2

(
−1

2

)
ϕ1

(
−1

2

))
=

1

4
.

Thus the function ϕ1 must satisfy

ϕ1

(
−1

2

)
=

5

14
.

Letting
ϕ1 (α) = M− 5

14
◦
(
M− 1

2
(α)ϕ2 (α)

)
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i.e.,
p (α) = M− 1

2
◦
(
M 1

2
(α)M− 5

14
◦
(
M− 1

2
(α)ϕ2 (α)

))
and

p (1) = 1

gives us the requirement
ϕ2 (1) = 1.

For simplicity, we select
ϕ2 (α) = 1

then
p (α) = M− 1

2
◦
(
M 1

2
(α)M− 5

14
◦ (M (α))

)
i.e.,

p (α) =
12α2 + 5α + 2

2α2 + 5α + 12

and
s (α) =

2 (ω0p (α)− α)

1− αω0

which leads to

s (α) =
4α2 − 10α + 4

2α2 + 5α + 12
.

Step 3: Solve

φ (0) =
1

2
, φ

(
4

5

)
= −1

2
.

By

φ

(
4

5

)
= −1

2

we have
φ (λ) = M 1

2
◦
(
M 4

5
(λ)φ1 (λ)

)
and

φ (0) = M 1
2
◦
(
M 4

5
(0)φ1 (0)

)
=

1

2

which gives us
φ1 (0) = −1

By letting
φ1 (λ) = M1 ◦ (M1 (λ)φ2 (λ))

and choose
φ2 (λ) = 1

we arrive at
φ (λ) = M 1

2
◦
(
M 4

5
(λ)φ1 (λ)

)
=

2λ− 1

λ− 2
= α.

Step 4: Since s (α) = s (φ (λ)) , s (λ); p (α) = p (φ (λ)) , p (λ), i.e.,

s (α) = s (φ (λ)) =
6λ

10λ2 − 27λ+ 20
, p (α) = p (φ (λ)) =

20λ2 − 27λ+ 10

10λ2 − 27λ+ 20
,

and hence s (λ) = 6λ
10λ2−27λ+20

and p (λ) = 20λ2−27λ+10
10λ2−27λ+20

), or equivalently f (λ) =
(

6λ
10λ2−27λ+20

, 20λ
2−27λ+10

10λ2−27λ+20

)
.

The graph of f(λ) is shown as below:
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Figure 8: The graph of f(λ) = ( 6λ
10λ2−27λ+20

, 20λ
2−27λ+10

10λ2−27λ+20
))

By the condition s (λ) = trF (λ) and p (λ) = detF (λ), the characteristic polynomial of
the matrix F (λ) is

f(z, λ) = z2 − s(λ)z + p(λ)

which must satisfy

f(z, 0) = z2 +
1

2
, f(z,

4

5
) = z2 − z +

1

4
.

Using L-shift's invariance to compute F (λ).
Define

f̃(z, λ) = z2f

(
1

z

)
= 1− s (λ) z + p (λ) z2

and
f̃ (0, λ) = 1.{

u1(·,λ)
f̃(·,λ) ,

u2(·,λ)
f̃(·,λ)

}
is the base of the space of second order polynomial P2, hence

L
uj (z, λ)

f̃ (z, λ)
=

2∑
i=1

Fij (λ)
ui (z, λ)

f̃ (z, λ)

Letting u (z, λ) =

[
u1 (z, λ)
u2 (z, λ)

]
then

1

z

[
u (z, λ)

f̃ (z, λ)
− u (0, λ)

f̃ (z0λ)

]
= F (λ)T

u (z, λ)

f̃ (z, λ)
(31)

i.e.,

u (z, λ)− u (0, λ)
f̃ (z, λ)

f̃ (0, λ)
= zF (λ)T u (z, λ)

Since f̃ (z, 0) = 1,
u (z, λ)− u (0, λ) f̃ (z, λ) = zF (λ)T u (z, λ)

which leads to
u (z, λ) =

[
1− zF (λ)T

]−1

u (0, λ) f̃ (z, λ) .

21



When λ = 0,

u (z, 0) =
[
1− zF (0)T

]−1

f̃ (z, 0)u (0, 0)

choose u (0, 0) =
[
α1

β1

]
and it becomes

u (z, 0) =

[
1 + z −3

4
z

2z 1− z

] [
α1

β1

]
=

[
α1 α1 − 3

4
β1

β1 2α1 − β1

] [
1
z

]
where

det

[
α1 α1 − 3

4
β1

β1 2α1 − β1

]
̸= 0 ⇒ α1β1 ̸= 0.

Therefore, select α1 = 1 and β = 0 to give

u (z, 0) =

[
1 + z
2z

]
When λ = 4

5
,

u

(
z,

4

5

)
=

[
1− zF

(
4

5

)T
]−1

f̃

(
z,

4

5

)
u

(
0,

4

5

)

Setting u
(
0, 4

5

)
=

[
α2

β2

]
,

u
(
z, 4

5

)
=

[
1− z −1

4

z 1

] [
α2

β2

]
=

[
α2 −

(
α2 +

1
4
β2

)
β2 α2

] [
1
z

]
where

det

[
α2 −

(
α2 +

1
4
β2

)
β2 α2

]
̸= 0 ⇒ α2 ̸= −1

2
β2.

Select α2 = 1、β2 = 0 which gives us

u

(
z,

4

5

)
=

[
1− z
z

]
.

and u (z, 0) =

[
1 + z
2z

]
、 u

(
z, 4

5

)
=

[
1− z
z

]
, then u (z, λ) is computed by linear interpo-

lation, i.e.,

u (z, λ) =

[
1 + z − 5

2
λz

2z − 5
4
λz

]
=

[
1 1− 5

2
λ

0 2− 5
4
λ

] [
1
z

]
where

det

[
1 1− 5

2
λ

0 2− 5
4
λ

]
=

5

4

(
8

5
− λ

)
̸= 0,∀λ ∈ D.

Substituting u (z, λ) back into (31)[
1− 5

2
λ+ s (λ) −p (λ)

2− 5
4
λ 0

] [
1
z

]
= F (λ)T

[
1 1− 5

2
λ

0 2− 5
4
λ

] [
1
z

]
.
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Hence

F (λ)T =

[
1− 5

2
λ+ s (λ) −p (λ)

2− 5
4
λ 0

] [
1 1− 5

2
λ

0 2− 5
4
λ

]−1

=

[
1− 5

2
λ+ s (λ) −p (λ)

2− 5
4
λ 0

] 1 −1− 5
2
λ

2− 5
4
λ

0
1

2− 5
4
λ


=

[
1− 5

2
λ+ s (λ) −(1− 5

2
λ)[1− 5

2
λ+s(λ)]+p(λ)

2− 5
2
λ

2− 5
4
λ −

(
1− 5

2
λ
)

]
, det

(
2− 5

4
λ

)
̸= 0, ∀λ ∈ D

that is

F (λ) =

 1− 5
2
λ+ s (λ) 2− 5

4
λ

−
(1− 5

2
λ)
[
1− 5

2
λ+ s (λ)

]
+ p (λ)

2− 5
4
λ

−
(
1− 5

2
λ
)  .

Direct substituting the data point into above formulat for verification:

F (0) =

[
1 + s (0) 2

−1+s(0)+p(0)
2

−1

]
=

[
1 2
−3

4
1

]
= V0

F

(
4

5

)
=

[
−1 + s

(
4
5

)
1

−1 + s
(
4
5

)
− p

(
4
5

)
1

]
=

[
0 1
−1

4
−1

]
= V1

trF (λ) = s (λ) ,

detF (λ) = p (λ) .
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Some analysable instances of mu-synthesis

N. J. Young

To Bill Helton, inspiring mathematician and friend

Abstract. I describe a verifiable criterion for the solvability of the 2× 2
spectral Nevanlinna-Pick problem with two interpolation points, and
likewise for three other special cases of the µ-synthesis problem. The
problem is to construct an analytic 2 × 2 matrix function F on the
unit disc subject to a finite number of interpolation constraints and a
bound on the cost function sup

λ∈D
µ(F (λ)), where µ is an instance of

the structured singular value.

Mathematics Subject Classification (2010). Primary 93D21, 93B36; Sec-
ondary 32F45, 30E05, 93B50, 47A57.

Keywords. Robust control, stabilization, analytic interpolation, sym-
metrized bidisc, tetrablock, Carathéodory distance, Lempert function.

1. Introduction

It is a pleasure to be able to speak at a meeting in San Diego in honour
of Bill Helton, through whose early papers (especially [31]) I first became
interested in applications of operator theory to engineering. I shall discuss
a problem of Heltonian character: a hard problem in pure analysis, with
immediate applications in control engineering, which can be addressed by
operator-theoretic methods. Furthermore, the main advances I shall describe
are based on some highly original ideas of Jim Agler, so that San Diego is
the ideal place for my talk.

The µ-synthesis problem is an interpolation problem for analytic ma-
trix functions, a generalization of the classical problems of Nevanlinna-Pick,
Carathéodory-Fejér and Nehari. The symbol µ denotes a type of cost function
that generalizes the operator and H∞ norms, and the µ-synthesis problem is
to construct an analytic matrix function F on the unit disc satisfying a finite
number of interpolation conditions and such that µ(F (λ)) ≤ 1 for |λ| < 1.
The precise definition of µ is in Section 4 below, but for most of the paper we
need only a familiar special case of µ – the spectral radius of a square matrix
A, which we denote by r(A).
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The purpose of this lecture is to present some cases of the µ-synthesis
problem that are amenable to analysis. I shall summarize some results that
are scattered through a number of papers, mainly by Jim Agler and me but
also several others of my collaborators, without attempting to survey all the
literature on the topic. I shall also say a little about recent results of some
specialists in several complex variables which bear on the matter and may
lead to progress on other instances of µ-synthesis.

Although the cases to be described here are too special to have sig-
nificant practical applications, they do throw some light on the µ-synthesis
problem. More concretely, the results below could be used to provide test data
for existing numerical methods and to illuminate the phenomenon (known to
engineers) of the numerical instability of some µ-synthesis problems.

We are interested in citeria for µ-synthesis problems to be solvable. Here
is an example. We denote by D and T the open unit disc and the unit circle
respectively in the complex plane C.

Theorem 1.1. Let λ1, λ2 ∈ D be distinct points, let W1,W2 be nonscalar 2×2
matrices of spectral radius less than 1 and let sj = trWj , pj = detWj for

j = 1, 2. The following three statements are equivalent:

(1) there exists an analytic function F : D → C
2×2 such that

F (λ1) = W1, F (λ2) = W2

and

r(F (λ)) ≤ 1 for all λ ∈ D;

(2)

max
ω∈T

∣

∣

∣

∣

(s2p1 − s1p2)ω
2 + 2(p2 − p1)ω + s1 − s2

(s1 − s̄2p1)ω2 − 2(1− p1p̄2)ω + s̄2 − s1p̄2

∣

∣

∣

∣

≤

∣

∣

∣

∣

λ1 − λ2

1− λ̄2λ1

∣

∣

∣

∣

;

(3)
[

(2− ωsi)(2− ωsj)− (2ωpi − si)(2ωpj − sj)

1− λ̄iλj

]2

i,j=1

≥ 0

for all ω ∈ T.

The paper is organised as follows. Section 2 contains the definition of
the spectral Nevanlinna-Pick problem, sketches the ideas that led to Theo-
rem 1.1 – reduction to the complex geommetry of the symmetrized bidisc G,
the associated “magic functions” Φω and the calculation of the Carathéodory
distance on G – and fills in the final details of the proof of Theorem 1.1 us-
ing the results of [11]. It also discusses ill-conditioning and the possibility of
generalization of Theorem 1.1. In Section 3 there is an analogous solvability
criterion for a variant of the spectral Nevanlinna-Pick problem in which the
two interpolation points coalesce (Theorem 3.1). In Section 4, besides the def-
inition of µ and µ-synthesis, there is some motivation and history. Important
work by H. Bercovici, C. Foiaş and A. Tannenbaum is briefly described, as is
Bill Helton’s alternative approach to robust stabilization problems. In Sec-
tion 5 we consider an instance of µ-synthesis other than the spectral radius.
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Here we can only obtain a solvability criterion in two very special circum-
stances (Theorems 5.1 and 5.2). The paper concludes with some speculations
in Section 6.

We shall denote the closed unit disc in the complex plane by ∆.

2. The spectral Nevanlinna-Pick problem

A particularly appealing special case of the µ-synthesis problem is the spec-

tral Nevanlinna-Pick problem:

Problem SNP Given distinct points λ1, . . . , λn ∈ D and k × k matrices

W1, . . . ,Wn, construct an analytic k × k matrix function F on D such that

F (λj) = Wj for j = 1, . . . , n (2.1)

and

r(F (λ)) ≤ 1 for all λ ∈ D. (2.2)

When k = 1 this is just the classical Nevanlinna-Pick problem, and it
is well known that a suitable F exists if and only if a certain n × n matrix
formed from the λj and Wj is positive (this is Pick’s Theorem). We should
very much like to have a similarly elegant solvability criterion for the case
that k > 1, but strenuous efforts by numerous mathematicians over three
decades have failed to find one.

About 15 years ago Jim Agler and I devised a new approach to the
problem in the case k = 2 based on operator theory and a dash of several
complex variables [5] to [13]. Since interpolation of the eigenvalues fails, how
about interpolation of the coefficients of the characteristic polynomials of the
Wj , or in other words of the elementary symmetric functions of the eigen-
values? This thought brought us to the study of the complex geometry of
a certain set Γ ⊂ C

2, defined below. By this route we were able to analyse
quite fully the simplest then-unsolved case of the spectral Nevanlinna-Pick
problem: the case n = k = 2. For the purpose of engineering application this
is a modest achievement, but it nevertheless constituted progress. It had the
merit of revealing some unsuspected intricacies of the problem, and may yet
lead to further discoveries.

2.1. The symmetrized bidisc Γ

We introduce the notation

Γ = {(z + w, zw) : z, w ∈ ∆}, (2.3)

G = {(z + w, zw) : z, w ∈ D}.
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Γ and G are called the closed and open symmetrized bidiscs respectively. Their
importance lies in their relation to the sets

Σ
def
= {A ∈ C

2×2 : r(A) ≤ 1},

Σo def
= {A ∈ C

2×2 : r(A) < 1}.

Σ and its interior Σo are sometines called “spectral unit balls”, though the
terminology is misleading since they are not remotely ball-like, being un-
bounded and non-convex. Observe that, for a 2× 2 matrix A,

A ∈ Σ ⇔ the zeros of the polynomial λ2 − trAλ+ detA lie in ∆

⇔ trA = z + w, detA = zw for some z, w ∈ ∆.

We thus have the following simple assertion.

Proposition 2.1. For any A ∈ C
2×2

A ∈ Σ if and only if (trA, detA) ∈ Γ,

A ∈ Σo if and only if (trA, detA) ∈ G.

Consequently, if F : D → Σ is analytic and satisfies the equations (2.1)

above, where k = 2, then h
def
= (trF, detF ) is an analytic map from D to Γ

satisfying the interpolation conditions

h(λj) = (trWj , detWj) for j = 1, . . . , n. (2.4)

Let us assume that none of the target matrices Wj is a scalar multiple of the
identity. On this hypothesis it is simple to show the converse [16] by similarity
transformation of the Wj to companion form.

Proposition 2.2. Let λ1, . . . , λn be distinct points in D and let W1, . . . ,Wn be

nonscalar 2 × 2 matrices. There exists an analytic map F : D → C2×2 such

that equations (2.1) and (2.2) hold if and only if there exists an analytic map

h : D → Γ that satisfies the conditions (2.4).

We have therefore (in the case k = 2) reduced the given analytic inter-
polation problem for Σ-valued functions to one for Γ-valued functions (the
assumption on the Wj is harmless, since any constraint for which Wj is scalar
may be removed by the standard process of Schur reduction).

Why is it an advance to replace Σ by Γ? For one thing, of the two sets,
the geometry of Γ is considerably the less rebarbative. Σ is an unbounded,
non-smooth 4-complex-dimensional set with spikes shooting off to infinity in
many directions. Γ is somewhat better: it is compact and only 2-complex-
dimensional, though Γ too is non-convex and not smoothly bounded. But
the true reason that Γ is amenable to analysis is that there is a 1-parameter
family of linear fractional functions, analytic on G, that has special properties
vis-à-vis Γ. For ω in the unit circle T we define

Φω(s, p) =
2ωp− s

2− ωs
. (2.5)

We use the variables s and p to suggest “sum” and “product”. The Φω de-
termine G in the following sense.
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Proposition 2.3. For every ω ∈ T, Φω maps G analytically into D. Conversely,

if (s, p) ∈ C
2 is such that |Φω(s, p)| < 1 for all ω ∈ T, then (s, p) ∈ G.

Both statements can be derived from the identity

|2− z − w|2 − |2zw − z − w|2 = 2(1− |z|2)|1− w|2 + 2(1− |w|2)|1− z|2.

See [11, Theorem 2.1] for details.
There is an analogous statement for Γ, but there are some subtleties.

For one thing Φω is undefined at (2ω̄, ω̄2) ∈ Γ when ω ∈ T.

Proposition 2.4. For every ω ∈ T, Φω maps Γ \ {(2ω̄, ω̄2)} analytically into

∆. Conversely, if (s, p) ∈ C
2 is such that |Φω(rs, r

2p)| < 1 for all ω ∈ T and

0 < r < 1 then (s, p) ∈ Γ.

In the second statement of the proposition the parameter r is needed:
it does not suffice that |Φω(s, p)| ≤ 1 for all ω ∈ T (in the case that p = 1 the
last statement is true if and only if s ∈ R, whereas for (s, p) ∈ Γ, of course
|s| ≤ 2).

We found the functions Φω by applying Agler’s theory of families of
operator tuples [5, 6]. We studied the family F of commuting pairs of op-
erators for which Γ is a spectral set, and its dual cone F⊥ (that is, the
collection of hereditary polynomials that are positive on F). Agler had pre-
viously done the analogous analysis for the bidisc, and shown that the dual
cone was generated by just two hereditary polynomials; this led to his cele-
brated realization theorem for bounded analytic functions on the bidisc. On
incorporating symmetry into the analysis we found that the cone F⊥ had
the 1-parameter family of generators 1−Φ∨

ωΦω, ω ∈ T. From this fact many
conclusions follow: see [13] for more on these ideas.

Operator theory played an essential role in our discovery of the functions
Φω. Once they are known, however, the geometry of G and Γ can be developed
without the use of operator theory.

2.2. A necessary condition

Suppose that F is a solution of the spectral Nevanlinna-Pick problem (2.1),
(2.2) with k = 2. For any ω ∈ T and 0 < t < 1 the composition

D
tF
−→ Σo (tr,det)

−→ G
Φω−→ D

is an analytic self-map of D for which

λj 7→ Φω(t trWj , t
2 detWj) =

2ωt2 detWj − t trWj

2− ωt trWj

for j = 1, . . . , n.

Thus, by Pick’s Theorem,
[

1− Φ̄ω(t trWi, t
2 detWi)Φω(t trWj , t

2 detWj)

1− λ̄iλj

]n

i,j=1

≥ 0. (2.6)

On conjugating this matrix inequality by diag{2− ωt trWj} and letting α =
tω, we obtain the following necessary condition for the solvability of a 2× 2
spectral Nevanlinna-Pick condition [5, Theorem 5.2].
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Theorem 2.5. If there exists an analytic map F : D → Σ satisfying the

equations (2.1) and (2.2) then, for every α ∈ ∆,
[

(2− αsi)(2− αsj)− |α|2(2αpi − si)(2αpj − sj)

1− λ̄iλj

]n

i,j=1

≥ 0 (2.7)

where

sj = trWj , pj = detWj for j = 1, . . . , n.

This condition is less simple than the classical Pick condition in that it
comprises an infinite collection of algebraic inequalities, but it is nevertheless
checkable in practice with the aid of standard numerical packages. Its ma-
jor drawback is that it is not sufficient for solvability of the 2 × 2 spectral
Nevanlinna-Pick problem.

Example 2.6. Let 0 < r < 1 and let

ϕ(λ) =

(

2(1− r)
λ2

1 + rλ3
,
λ(λ3 + r)

1 + rλ3

)

.

Pick any three distinct points µ1, µ2, µ3 ∈ D and let ϕ(µj) = (sj , pj) for
j = 1, 2, 3. There exists t > 1 such that the inequality (2.7) holds for all
α ∈ ∆ with n = 3 and λj = tµj but that there is no analytic map h : D → Γ
such that h(λj) = (sj , pj) for j = 1, 2, 3.

Hence, if we choose nonscalar 2 × 2 matrices W1,W2,W3 such that
(trWj , detWj) = (sj , pj), then the spectral Nevanlinna-Pick problem with
data λj 7→ Wj satisfies the necessary condition of Theorem 2.5 and yet has
no solution.

The statement in the example will be proved in a future paper [3]; see
also [22].

2.3. Two points and two-by-two matrices

When n = k = 2 the condition in Theorem 2.5 is sufficient for the solvability
of the spectral Nevanlinna-Pick problem.

We shall now prove the main theorem from Section 1. Recall the state-
ment:
Theorem 1.1. Let λ1, λ2 ∈ D be distinct points, let W1,W2 be nonscalar 2×2
matrices of spectral radius less than 1 and let sj = trWj , pj = detWj for

j = 1, 2. The following three statements are equivalent:

(1) there exists an analytic function F : D → C
2×2 such that

F (λ1) = W1, F (λ2) = W2

and

r(F (λ)) ≤ 1 for all λ ∈ D;

(2)

max
ω∈T

∣

∣

∣

∣

(s2p1 − s1p2)ω
2 + 2(p2 − p1)ω + s1 − s2

(s1 − s̄2p1)ω2 − 2(1− p1p̄2)ω + s̄2 − s1p̄2

∣

∣

∣

∣

≤

∣

∣

∣

∣

λ1 − λ2

1− λ̄2λ1

∣

∣

∣

∣

; (2.8)



Analysable instances of µ-synthesis 7

(3)
[

(2− ωsi)(2− ωsj)− (2ωpi − si)(2ωpj − sj)

1− λ̄iλj

]2

i,j=1

≥ 0 (2.9)

for all ω ∈ T.

The proof depends on some elementary notions from the theory of invariant
distances. A good source for the general theory is [35], but here we only need
the following rudiments.

We denote by d the pseudohyperbolic distance on the unit disc D:

d(λ1, λ2) =

∣

∣

∣

∣

λ1 − λ2

1− λ̄2λ1

∣

∣

∣

∣

for λ1, λ2 ∈ D.

For any domain Ω ∈ C
n we define the Lempert function δΩ : Ω×Ω → R

+ by

δΩ(z1, z2) = inf d(λ1, λ2) (2.10)

over all λ1, λ2 ∈ D such that there exists an analytic map h : D → Ω such
that h(λ1) = z1 and h(λ2) = z2. We define1 the Carathéodory distance CΩ :
Ω× Ω → R

+ by

CΩ(z1, z2) = sup d(f(z1), f(z2)) (2.11)

over all analytic maps f : Ω → D. If Ω is bounded then CΩ is a metric on Ω.
It is not hard to see (by the Schwarz-Pick Lemma) that CΩ ≤ δΩ for

any domain Ω. The two quantities CΩ, δΩ are not always equal – the punc-
tured disc provides an example of inequality. The question of determining
the domains Ω for which CΩ = δΩ is one of the concerns of invariant distance
theory.

Proof. Let zj = (sj , pj) ∈ G.
(1)⇔(2) In view of Proposition 2.2 we must show that the inequality (2.8)
is equivalent to the existence of an analytic h : D → Γ such that h(λj) = zj
for j = 1, 2. By definition of the Lempert function δG, such an h exists if and
only if

δG(z1, z2) ≤ d(z1, z2).

By [11, Corollary 5.7] we have δG = CG, and by [11, Theorem 1.1 and Corol-
lary 3.4],

CG(z1, z2) = max
ω∈T

d(Φω(z1),Φω(z2)) (2.12)

= max
ω∈T

∣

∣

∣

∣

(s2p1 − s1p2)ω
2 + 2(p2 − p1)ω + s1 − s2

(s1 − s̄2p1)ω2 − 2(1− p1p̄2)ω + s̄2 − s1p̄2

∣

∣

∣

∣

.

Thus the desired function h exists if and only if the inequality (2.8) holds.

(2)⇔(3) By equation (2.12), the inequality (2.8) is equivalent to

d(Φω(z1),Φω(z2)) ≤ d(λ1, λ2) for all ω ∈ T.

1Conventionally the definition of the Carathéodory distance contains a tanh−1 on the right
hand side of (2.11). For present purposes it is convenient to omit the tanh−1.
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By the Schwarz-Pick Lemma, this inequality holds if and only if, for all ω ∈ T,
there exists a function fω in the Schur class such that fω(λj) = Φω(zj) for
j = 1, 2. By Pick’s Theorem this in turn is equivalent to the relation

[

1− Φ̄ω(zi)Φω(zj)

1− λ̄iλj

]2

i,j=1

≥ 0.

Conjugate by diag{2− ωs1, 2− ωs2} to obtain (2)⇔(3). �

Remark 2.7. If one removes the hypothesis that W1,W2 be nonscalar from
Theorem 1.1 one can still give a solvability criterion. If both of the Wj

are scalar matrices then the problem reduces to a scalar Nevanlinna-Pick
problem. If W1 = cI and W2 is nonscalar then the corresponding spectral
Nevanlinna-Pick problem is solvable if and only if

r((W2 − cI)(I − c̄W2)
−1) ≤ d(λ1, λ2)

(see [7, Theorem 2.4]). This inequality can also be expressed as a somewhat
cumbersome algebraic inequality in c, s2, p2 and d(λ1, λ2) [7, Theorem 2.5(2)].

2.4. Ill-conditioned problems

The results of the preceding subsection suggest that solvability of spectral
Nevanlinna-Pick problems depends on the derogatory structure of the target
matrices – that is, in the case of 2 × 2 matrices, on whether or not they
are scalar matrices. It is indeed so, and in consequence problems in which a
target matrix is close to scalar can be very ill-conditioned.

Example 2.8. [7, Example 2.3] Let β ∈ D \ {0} and, for α ∈ C let

W1(α) =

[

0 α
0 0

]

, W2 =

[

0 β

0 2β
1+β

]

.

Consider the spectral Nevanlinna-Pick problem with data 0 7→ W1(α), β 7→
W2. If α = 0 then the problem is not solvable. If α 6= 0, however, by Proposi-
tion 2.2 the problem is solvable if and only if there exists an analytic function
f : D → Γ such that

f(0) = (0, 0) and f(β) =
2β

1 + β
.

It may be checked [8] that

f(λ) =

(

2(1− β)λ

1− βλ
,
λ(λ− β)

1− βλ

)

is such a function. Thus the problem has a solution Fα for any α 6= 0. Consider
a sequence (αn) of nonzero complex numbers tending to zero: the functions
Fαn

cannot be locally bounded, else they would have a cluster point, which
would solve the problem for α = 0. If α is, say, 10−100 then any numeri-
cal method for the spectral Nevanlinna-Pick problem is liable to run into
difficulty in this example.
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2.5. Uniqueness and the construction of interpolating functions

Problem SNP never has a unique solution. If F is a solution of Problem
SNP then so is P−1FP for any analytic function P : D → C

k×k such that
P (λ) is nonsingular for every λ ∈ D and P (λj) is a scalar matrix for each
interpolation point λj . There are always many such P that do not commute
with F , save in the trivial case that F is scalar. Nevertheless, the solution of
the corresponding interpolation problem for Γ can be unique. Consider again
the case n = k = 2 with W1,W2 nonscalar. By Theorem 1.1, the problem
is solvable if and only if inequality (2.8) holds. In fact it is solvable uniquely

if and only if inequality (2.8) holds with equality. This amounts to saying
that each pair of distinct points of G lies on a unique complex geodesic of
G, which is true by [12, Theorem 0.3]. (An analytic function h : D → G is
a complex geodesic of G if h has an analytic left-inverse). Moreover, in this
case the unique analytic function h : D → G such that h(λj) = (sj , pj) for
j = 1, 2 can be calculated explicitly as follows [11, Theorem 5.6].

Choose an ω0 ∈ T such that the maximum on the left hand side of (2.8)
is attained at ω0. Since equality holds in (2.8), we have

d(Φω0
(z1),Φω0

(z2)) = d(λ1, λ2),

where zj = (sj , pj). Thus Φω0
is a Carathéodory extremal function for the

pair of points z1, z2 in G. It is easy (for example, by Schur reduction) to find
the unique Blaschke product p of degree at most 2 such that

p(λ1) = p1, p(λ2) = p2 and p(ω̄0) = ω̄2
0).

Define s by

s(λ) = 2
ω0p(λ)− λ

1− ω0λ
for λ ∈ D.

Then h
def
= (s, p) is the required complex geodesic.

Note that h is a rational function of degree at most 2. It can also be
expressed in the form of a realization: h(λ) = (trH(λ), detH(λ)) where H is
a 2× 2 function in the Schur class given by

H(λ) = D + Cλ(1−Aλ)−1B

for a suitable unitary 3× 3 or 4× 4 matrix

[

A B

C D

]

given by explicit formulae

(see [4], [12, Theorem 1.7]).

2.6. More points and bigger matrices

Our hope in addressing the case n = k = 2 of the spectral Nevanlinna-Pick
problem was of course that we could progress to the general case. Alas, we
have not so far managed to do so. We have some hope of giving a good
solvability criterion for the case k = 2, n = 3, but even the case n = 4
appears to be too complicated for our present methods.

The case of two points and k × k matrices, for any k, looks at first
sight more promising. There is an obvious way to generalize the symmetrized
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bidisc: we define the open symmetrized polydisc Gk to be the domain

Gk = {(σ1(z), . . . , σk(z)) : z ∈ D
k} ⊂ C

k

where σm denotes the elementary symmetric polynomial in z = (z1, . . . , zk)
for 1 ≤ m ≤ k. Similarly one defines the closed symmetrized polydisc Γk. As
in the case k = 2, one can reduce Problem SNP to an interpolation problem
for functions from D to Γk under mild hypotheses on the target matrices Wj

(specifically, that they be nonderogatory). However, the connection between
Problem SNP and the corresponding interpolation problems for Γk are more
complicated for k > 2, because there are more possibilities for the rational
canonical forms of the target matrices [37]. The analogues for Γk of the Φω

were described by D. J. Ogle [39] and subsequently other authors, e.g. [23,
29]. Ogle generalized to higher dimensions the operator-theoretic method of
[6] and thereby obtained a necessary condition for solvability analogous to
Theorem 2.5.

The solvability of Problem SNP when n = 2 is generically equivalent to
the inequality

δGk
(z1, z2) ≤ d(λ1, λ2)

where zj is the ktuple of coefficients in the characteristic polynomial of Wj .
All we need is an effective formula for δGk

. It turns out that this is a much
harder problem for k > 2. In particular, it is false that δGk

= CGk
when

k > 2. This discovery [38] was disappointing, but not altogether surprising.
There is another type of solvability criterion for the 2 × 2 spectral

Nevanlinna-Pick problem with general n [10, 14], but it involves a search
over a nonconvex set, and so does not count for the purpose of this paper as
an analytic solution of the problem. Another paper on the topic is [24].

It is heartening that the study of the complex geometry and analysis
of the symmetrized polydisc has been taken up by a number of specialists
in several complex variables, including G. Bharali, C. Costara, A. Edigarian,
M. Jarnicki, L. Kosinski, N. Nikolov, P. Pflug, P. Thomas and W. Zwonek.
Between them they have made many interesting discoveries about these and
related domains. There is every hope that some of their results will throw
further light on the spectral Nevanlinna-Pick problem.

3. The spectral Carathéodory-Fejér problem

This is the problem that arises from the spectral Nevanlinna-Pick problem
when the interpolation points coalesce at 0.
Problem SCF Given k × k matrices V0, V1, . . . , Vn, find an analytic function

F : D → C
k×k such that

F (j)(0) = Vj for j = 1, . . . , n (3.1)

and

r(F (λ)) ≤ 1 for all λ ∈ D. (3.2)
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This problem also can be converted to an interpolation problem for ana-
lytic functions from D into Γk [34, Theorem 2.1], [37]. However, the resulting
problem is again hard when k ≥ 2, and the only truly explicit solution we
have is in the case k = 2, n = 1 [34, Theorem 1.1].

Theorem 3.1. Let

Vm = [vmij ]
2
i,j=1 for m = 0, 1

and suppose that V0 is nonscalar. There exists an analytic function F : D →
C

2×2 such that

F (0) = V0, F ′(0) = V1 and r(F (λ)) < 1 for all λ ∈ D (3.3)

if and only if

max
|ω|=1

∣

∣

∣

∣

(s1p0 − s0p1)ω
2 + 2ωp1 − s1

ω2(s0 − s̄0p0)− 2ω(1− |p0|2) + s̄0 − s0p̄0

∣

∣

∣

∣

≤ 1, (3.4)

where

s0 = trV0, p0 = detV0,

s1 = trV1, p1 =

∣

∣

∣

∣

v011 v
1
12

v021 v
1
22

∣

∣

∣

∣

+

∣

∣

∣

∣

v111 v
0
12

v121 v
0
22

∣

∣

∣

∣

.

The proof of this theorem in [34] again depends on the calculation in
[11] of the Carathéodory metric on G, but this time on the infinitesimal
version cG of the metric: the left hand side of inequality (3.4) is the value
of cG at (s0, p0) in the direction (s1, p1). This fact is [11, Corollary 4.4], but
unfortunately there is an ω missing in the statement of Corollary 4.4. The
proof shows that the correct formula is as in (3.4). An important step is
the proof that the infinitesimal Carathéodory and Kobayashi metrics on G

coincide.
The ideas behind Theorem 3.1 can be used to find solutions of Problem

SCF: see [34, Section 6]. The ideas can also be used to derive a necessary
condition for the spectral Carathéodory-Fejér problem (3.1), (3.2) in the case
that n = 1 and k > 2 [34, Theorem 4.1], but there is no reason to expect this
condition to be sufficient.

4. The structured singular value

The structured singular value of a matrix relative to a space of matrices was
introduced by J. C. Doyle and G. Stein in the early 1980s [25, 26] and was
denoted by µ. It is a refinement of the usual operator norm of a matrix
and is motivated by the problem of the robust stabilization of a plant that is
subject to structured uncertainty. Initially, in theH∞ approach to robustness,
the uncertainty of a plant was modelled by a meromorphic matrix function
(on a disc or half plane) that is subject to an L∞ bound but is otherwise
completely unknown. The problem of the simultaneous stabilization of the
resulting collection of plant models could then be reduced to some classical
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analysis and operator theory, notably to the far-reaching results of Adamyan,
Arov and Krein from the 1970s [30].

In practice one may have some structural information about the uncer-
tainty in a plant – for example, that certain entries are zero. By incorporating
such structural information one should be able to achieve a less conservative
stabilizing controller. The structured singular value was devised for this pur-
pose. A good account of these notions is in [27, Chapter 8]. Unfortunately,
the behaviour of µ differs radically from that of the operator norm – for one
thing, µ is not in general a norm at all, and none of the relevant classical
theorems (such as Pick’s theorem) or methods appear to extend to the cor-
responding questions for µ. This provides a challenge for mathematicians:
we should help out our colleagues in engineering by creating an AAK-type
theory for µ.

For any A ∈ C
k×ℓ and any subspace E of Cℓ×k we define the structured

singular value µE(A) by

1

µE(A)
= inf{‖X‖ : X ∈ E, 1−AX is singular} (4.1)

with the understanding that µE(A) = 0 if 1−AX is always nonsingular.

Two instances of the structured singular value are the operator norm
‖.‖ (relative to the Euclidean norms on C

k and C
ℓ) and the spectral radius

r. If we take E = C
ℓ×k then we find that µE(A) = ‖A‖. On the other hand,

if k = ℓ and we choose E to be the space of scalar multiples of the identity
matrix, then µE(A) = r(A). These two special µs are in a sense extremal: it
is always the case, for any E, that µE(A) ≤ ‖A‖. If k = ℓ and E contains
the identity matrix, then µE(A) ≥ r(A). A comprehensive discussion of the
properties of µ can be found in [40].

Here is a formulation of the µ-synthesis problem [26, 27].

Given positive integers k, ℓ, a subspace E of Cℓ×k and analytic functions

A,B,C on D of types k× ℓ, k×k and ℓ× ℓ respectively, construct an analytic

function F : D → C
k×ℓ of the form

F = A+BQC for some analytic Q : D → C
k×ℓ (4.2)

such that

µE(F (λ)) ≤ 1 for all λ ∈ D. (4.3)

The condition (4.2), that F be expressible in the form A + BQC for
some analytic Q, can be regarded as an interpolation condition on F . In the
event that k = ℓ, B is the scalar polynomial

B(λ) = (λ− λ1) . . . (λ− λn)I

with distinct zeros λj ∈ D and C is constant and equal to the identity, then
F is expressible in the form A+BQC if and only if

F (λ1) = A(λ1), . . . , F (λn) = A(λn).
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With this choice of B and C, if we take E to be the space of scalar matrices,
we obtain precisely the spectral Nevanlinna-Pick problem. If we now replace
B by the polynomial λn, we get the spectral Carathéodory-Fejér problem.

In engineering applications µ-synthesis problems arise after some anal-
ysis is carried out on the plant model to produce the A,B and C in condition
(4.2), and the resulting B and C will not usually be scalar functions. Never-
theless, explicit pointwise interpolation conditions provide a class of easily-
formulated test cases, and it is arguable that such problems are the hardest

cases of µ-synthesis.

Conditions of the form (4.2) are said to be of model matching type [30].

The most sustained attempt to develop an AAK-type theory for the
structured singular value in full generality is due to H. Bercovici, C. Foiaş and
A. Tannenbaum ([15] to[21]). They have a far-reaching theory: inter alia they
have constructed many illuminating examples, found properties of extremal
solutions and obtained a type of solvability criterion for µ-synthesis problems.
The criterion results from a combination of the Commutant Lifting Theorem
with the application of similarity transformations. To apply the criterion to
a concrete spectral Nevanlinna-Pick problem one must solve an optimization
problem over a high-dimensional unbounded and non-convex set. We can
certainly hope that this is not the last word on the subject of solvability.
Despite the achievements of Bercovici, Foiaş and Tannenbaum, there is still
plenty of room for further study of µ-synthesis.

One of their examples [18, Section 7, Example 5] exhibits an important
fact about the spectral Nevanlinna-Pick problem: diagonalization does not

work. It shows that diagonalization of the target matrices Wj in Problem
SNP by similarity transformations, even when possible, does not help solve
the problem. One could hope that if the Wj were diagonal one might be able
to decouple the problem into a series of scalar interpolation problems, but
they show that such a hope is vain.

Bill Helton himself, along with collaborators, has developed an alter-
native approach to the refinement of H∞ control; his viewpoint is set out
in [32]. His part in the introduction of the results of Adamyan, Arov, Krein
and other operator-theorists into robust control theory in the early 1980s
is well known. He subsequently worked extensively (with Orlando Merino,
Trent Walker and others) during the 1990s on the more delicate optimization
problems that arise from refinements of the basic H∞ picture of modelling
uncertainty. As in the µ approach, the aim is to incorporate more subtle
specifications and robustness conditions into methods for controller design.
He developed a very flexible formulation of such problems as optimization
problems over spaces of vector-valued analytic functions on the disc, and de-
vised an algorithm for their numerical solution – see [33] and several other
papers. The authors proved convergence results and described numerical tri-
als. However, the spectral Nevanlinna-Pick problem cannot be satisfactorily
treated by the Helton scheme. Although it can be cast in the basic problem
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formulation [32, Chapter 2], solution algorithms require smoothness proper-
ties (of the function “Γ”) which the spectral radius does not possess.

5. The next case of µ

After the two extremes µ = ‖.‖H∞ and µ = r the next natural case to
consider is the one in which, in (4.1), k = ℓ and E is the space Diag(k) of
diagonal matrices. For the rest of this section µ will denote µDiag(2) and we
shall study the following problem:

Given distinct points λ1, . . . , λn ∈ D and 2 × 2 matrices W1, . . . ,Wn,

construct an analytic function F : D → C
2×2 such that

F (λj) = Wj for j = 1, . . . , n (5.1)

and

µ(F (λ)) ≤ 1 for all λ ∈ D. (5.2)

For the 2 × 2 spectral Nevanlinna-Pick problem we had some modest
success through reduction to an interpolation problem for Γ-valued functions.
In the present case we tried an analogous approach, with still more modest
success [1, 2, 41]. The following result is [2, Theorem 9.4 and Remark 9.5(iii)].

Theorem 5.1. Let λ0 ∈ D, λ 6= 0, let ζ ∈ C and let

W1 =

[

0 ζ
0 0

]

, W2 =

[

a ∗
∗ b

]

. (5.3)

Suppose that |b| ≤ |a| and let p = detW2. There exists an analytic function

F : D → C
2×2 such that

F (λ1) = W1, F (λ2) = W2 and µ(F (λ)) ≤ 1 for all λ ∈ D (5.4)

if and only if |p| < 1 and














|a− b̄p|+ |ab− p|

1− |p|2
≤ |λ0| if ζ 6= 0

|λ0|
4 − (|a|2 + |b|2 + 2|ab− p|)|λ0|

2 + |p|2 ≥ 0 if ζ = 0.

The stars in the formula for W2 in (5.3) denote arbitrary complex num-
bers.

What is the analog of Γ for this case of µ? To determine whether a 2×2
matrix A = [aij ] satisfies r(A) ≤ 1 one needs to know only the two numbers
trA and detA; this fact means that the spectral Nevanlinna-Pick problem
can generically be reduced to an interpolation problem for Γ. To determine
whether µ(A) ≤ 1 one needs to know the three numbers a11, a22, detA. This
led us to introduce a domain E which we call the tetrablock:

E = {x ∈ C
3 : 1− x1z − x2w + x3zw 6= 0 whenever |z| ≤ 1, |w| ≤ 1}. (5.5)

Its closure is denoted by Ē. The name reflects the fact that the intersection
of E with R

3 is a regular tetrahedron. The domain E is relevant because
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µ(A) < 1 if and only if (a11, a22, detA) ∈ E. There exists a solution of the 2-
point µ-synthesis problem (5.4) if and only if the corresponding interpolation
problem for analytic functions from D to E is solvable [2, Theorem 9.2], and
accordingly the solvability problem for this µ-synthesis problem is equivalent
to the calculation of the Lempert function δE. As far as I know no one has yet
computed δE for a general pair of points of E, but we did calculate it in the
case that one of the points is the origin in C

3, that is, we proved a Schwarz
lemma for E. The result is Theorem 5.1.

Observe that ill-conditioning appears in this instance of µ-synthesis too
[2, Remark 9.5(iv)]. If, in Theorem 5.1, a = b = p = 1

2 then there exists a
solution Fζ of the problem if and only if

|λ0| ≥







2
3 if ζ 6= 0

1√
2

if ζ = 0

Thus if 2
3 < |λ0| <

1√
2
, the Fζ are not locally bounded as ζ → 0, and so are

sensitive to small changes in ζ near 0.
The complex geometry of E has also proved to be of interest to re-

searchers in several complex variables. To my surprise, it was recently shown
[28] that the Lempert function and the Carathéodory distance on E coincide.
This might be a step on the way to the derivation of a formula for δE. It
would suffice to compute δE in the case that one of the two points is of the
form (0, 0, λ) for some λ ∈ [0, 1), since every point of E is the image of such
a point under an automorphism of E [41, Theorem 5.2].

The fourth and final special case of µ-synthesis in this paper is the
µ-analog of the 2× 2 Carathéodory-Fejér problem:

Given 2×2 matrices V0, . . . , Vn, construct an analytic function F : D →
C

2×2 such that

F (j)(0) = Vj for j = 0, . . . , n and µ(F (λ)) ≤ 1 for all λ ∈ D.

Again the problem can be reduced to an interpolation problem for E,
but the resulting problem has only been solved in an exceedingly special case.

Theorem 5.2. Let V0, V1 be 2× 2 matrices such that

V0 =

[

0 ζ
0 0

]

for some ζ ∈ C and V1 = [vij ] is nondiagonal. There exists an analytic

function F : D → C
2×2 such that

F (0) = V0, F ′(0) = V1 and µ(F (λ)) ≤ 1 for all λ ∈ D

if and only if

max{|v11|, |v22|}+ |ζv21| ≤ 1.

This result follows from [41, Theorem 2.1].
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6. Conclusion

Although µ-analysis remains a useful tool, it is fair to say that µ-synthesis,
as a major technique for robust control system design, has been something of
a disappointment up to now. The trouble is that the µ-synthesis problem is
difficult. It is a highly non-convex problem. There do exist heuristic numerical
methods for addressing particular µ-synthesis problems, notably a Matlab
toolbox [36] based on the “DK algorithm” [27, Section 9.3], but there is no
practical solvability criterion, no fast algorithm nor any convergence theorem
for any known algorithm. For these reasons engineers have largely turned to
other approaches to robust stabilization over the past 20 years. If, however, a
satisfactory analytic theory of the problem is developed, engineers’ attention
may well return to µ-synthesis as a promising design tool. We are still far
from having such a theory, but perhaps these special cases and the interest
of the several complex variables community may yet lead to one.

References

[1] A. A. Abouhajar, Function theory related to H∞ control, Ph.D. thesis, New-
castle University, 2007.

[2] A. A. Abouhajar, M. C. White and N. J. Young, A Schwarz lemma for a domain
related to mu-synthesis, J. Geometric Analysis 17 (2007) 717-750.

[3] J. Agler, Z. A. Lykova and N. J. Young, in preparation.

[4] J. Agler, F. B. Yeh and N. J. Young, Realization of functions into the sym-
metrized bidisc, in Reproducing Kernel Spaces and Applications, ed. D. Alpay,
Operator Theory: Advances and Applications 143, Birkhäuser Verlag (2003),
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Abstract—Unlike traditional entropy in information theory, 

this work uses the normalized energy instead of probability to 

obtain a low-frequency amplitude transform (LAT) on 

coefficients of discrete wavelet transform (DWT). The 

watermark is embedded based on the properties and 

characteristics of this transform. Finally, performance of the 

proposed scheme is assessed by signal-to-watermark (SWR) 

and bit error rate (BER). Experimental results demonstrate 

that the embedded data are robust against most signal 

processing and attacks, such as re-sampling, low-pass filtering, 

and amplitude-scaling. 

Keywords-entropy; low-frequency amplitude transform; discrete 

wavelet transform 

I.  INTRODUCTION  

In recent years, many watermarking techniques have been 
proposed [1-8]. For music copyright protection, audio 
watermarking has the following requirements: 1) The 
watermark should be imperceptible in embedded audio. 2) 
The embedding technique should offer more than 20 dB 
signal to watermark ratio (SWR). 3) The watermark should 
prevent common attacks, including filtering, re-sampling, 
and mp3 compression, etc.  

Wu et al. [2] used quantization index modulation to 
embed information into the low-frequency sub-band 
coefficients of discrete wavelet transform (DWT). This 
technique has good watermarked audio quality and strong 
robustness against common signal processing and noise 
corruption. However, this method is vulnerable to amplitude 
and time scaling. Xiang et al. [3] proposed a DWT-based 
audio watermarking algorithm robust against the DA/AD 
conversions. The relative energy relation among different 
groups of the DWT coefficients in the low-frequency sub-
band are utilized in embedding by adaptively controlling the 
embedding strength. However, the method has low capacity 

and SNR. Chen et al. [4] proposed an optimization-based 
watermarking scheme robustly against many attacks. 

Unlike traditional entropy, this work uses normalized 
energy instead of probability to form a novel entropy. Based 
on this concept, this work presents a new technique that 
embeds information by using low-frequency amplitude 
transform (LAT). Some properties and characteristic curve 
of LAT are analyzed and proved to investigate the 
relationship between LAT and DWT coefficients. Finally, 
the performance of the proposed scheme is assessed by 
signal-to-watermark ratio (SWR) and bit error rate (BER). 
Experimental results demonstrate that the embedded data 
are robust against most signal processing and attacks.  

The remainder of this paper is organized as follows. 
Section II introduces DWT and LAT. Section III derives the 
properties and characteristic curve of LAT to analyze the 
relationship between LAT and DWT coefficients. The 
proposed embedding and extraction processes are described 
in Section IV. Experiments are conducted to test the 
performance of our proposed method in Section V. Finally, 
conclusions are summarized in Section VI. 

II. DWT  AND LAT 

Discrete wavelet transform (DWT) is first reviewed in 

this section. Based on the low-frequency DWT coefficients 

in level seven, which is also referred as the lowest-

frequency DWT coefficients, traditional entropy is redefined 

as a novel low-frequency amplitude transform (LAT). 

A. Discrete-time wavelet transform (DWT) 

Since the conventional fast Fourier transform (FFT) 

efficiently decomposes a signal into uniform-resolution 

analysis, it is suitable to analyze the wide-sense-stationary 

condition but not in non-stationary signal. In this paper, the 

discrete wavelet transform (DWT) is adapted to decompose 

the signal into the time-frequency domain. According to the 

H
文字方塊
附錄1



multi-resolution property of DWT, it leads to low-frequency 

but high-temporal resolution in high frequency bands and 

low-temporal but high-frequency resolution in low 

frequency bands. Therefore, we let the low frequency bands 

enhance the periodic property by only decomposing low-

frequency band in each level. In [9], a method to implement 

DWT by using filter bank decomposition is proposed. 

B. LAT 

Before to introduce the proposed watermarking technique, 

the LAT must be defined and discussed. If there are N non-

negative random samples that are shown 

as { | 0 1}
N i

X c i N= ≤ ≤ −ɶ , the corresponding probabilities 

are
0 0

( )P c p= , 
1 1

( )P c p= ,…,
1 1

( )
N N

P c p− −= . Based on 

information theory, the entropy of these samples is defined 

as follows: 
1

0

( ) log ,  0 -1
N

r N i r i

i

H X p p i N
−

=

= − ≤ ≤∑ɶ               (1) 

where r is a base number of the logarithm function log . 

This work adopts 10r = . Unlike the traditional way, this 

work uses the normalized energy instead of probability in 

wavelet domain as follows. 

Definition 1. Suppose that {| || 0 1}
N i

X c i N= ≤ ≤ −  is a set 

of low-frequency coefficients in DWT, low-frequency 

amplitude transform (LAT) of 
N

X  is then defined as 

          
1
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N
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where 
1

0

N

k j

j

c c
−

=

∑  is the normalized energy of coefficient 
k

c . 

From this definition, if the variation of low-frequency 

coefficients 
N

X  is small, the corresponding ( )
N

LAT X  is 

big. For an example with 20N =  as shown in Figure 1, 

when 
20

X  varies slowly, 
20

( )LAT X  is 1.2998. However, 

when the variation of low-frequency coefficients 
N

X  is 

large, the corresponding ( )
N

LAT X  is small. Figure 2 

depicts that when 
20

X  ( 20N = ) varies markedly, the 

corresponding 
20

( )LAT X  is 1.1589. In this paper, we adopt 

2N =  to have high embedding payload. Moreover, the 

standard deviations of this function for 2N =  before and 

after various attacks are approximately invariant. It is 

expected that the proposed low-frequency amplitude 

transform is robust against common attacks.  
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Fig. 1  When 

20
X  varies slowly, 

20
( )LAT X  is 1.2998. 
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Fig. 2  When 

20
X  varies markedly, 

20
( )LAT X  is 1.1589. 

Finally, the performance of our method is measured by 

signal-to-watermark ratio (SWR) and Bit-error-rate (BER) 

mathematically. They are defined as follows. 
2

10 2

( ( ))

SWR=10log
( ( ) ( ))

n

n

S n

S n S n

 
 
 

− 
 

∑

∑
,                (3) 

where ( )S n  and ( )S n  denote the original and the modified 

audio, respectively; 

( )BER= 100%
error total

B B × ,                 (4) 

where 
error

B  and 
total

B  denote the number of error bits and 

the number of total bits, respectively.  

III. PROPERTIES OF THE CHARACTERISTIC CURVE OF LAT 

This section discusses some properties of the 

characteristic curve of LAT (CCL). Based on these 

properties and the characteristic curve, this work presents a 

novel watermarking  scheme. 

A. Properties of  CCL 

In the proposed watermarking scheme, the host digital 

audio signal ( )S n is cut into segments. Then, every two low-

frequency DWT coefficients in each segment are grouped 

and sorted according to their absolute value into a vector 

form [ ]2 0 1
| |,| |X c c= , where 

0 1
| | | |c c< . Since the value of 



2
( )LAT X  in (2) is a function of 

2
X , a weighting matrix W  

is used to control the variation of 
2

( )LAT X  as follows: 
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In other words, only the smallest value 
0| |c  will be 

modified. Hence, the corresponding 
2

ˆ( )LAT X  is shown as 

follows. 
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with the following property: 

Lemma 1. 
2

ˆ( )LAT X  has an unique critical point (CP) 

0 1 0
w c c= . 

B. The Characteristic curve of  CCL 

Based on the previous discussion, the relation between 

2
ˆ( )LAT X and 0w  can be described as a CCL. For example, 

0 100c = , 
1 370c = . Their relation is shown in Fig. 3. Based 

on this CCL, 
2

ˆ( )LAT X  has a CP at 
0 3.7w =  according to 

Lemma 1. In other words, the maximum of 
2

ˆ( )LAT X  should 

occur at 
0 1 0w c c=  with it value given by 
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Since the minimum of 
2

ˆ( )LAT X  should be attained when 

0
0w → , i.e., 

0

00

0 0 0 0 1 1

2 0

0 0 1 0 0 1 0 0 1 0 0 1

ˆ( )| log log

w

w

w c w c c c
LAT X

w c c w c c w c c w c c
→

→

  
=− + 

+ + + +  

 

min
0LAT≡ → ,                                                 (8) 

And we set 
min

0.05LAT =  to sufficiently approximate the 

smallest value of LAT  for computational purpose. During 

the watermarking process, we also set 
mid

LAT  to be 

                     ( )mid max min 2LAT LAT LAT= +                        (9) 

By Lemma 1, 
2

ˆ( )LAT X  has two monotone subintervals 

which are called segment 1 and 2, referred to Fig. 3 as a 

typical example. In this work, we adopt the range 

0 1 00.05,w c c ∈    of 
2

ˆ( )LAT X  in segment 1 to embed data. 

The detail process will be introduced in the next section. 

IV. THE PROPOSED WATERMARKING TECHNIQUE 

In this section, the novel watermarking technique by 

using segment 1 in the characteristic curve of CCL is 

proposed. It contains embedding and extraction processes. 

These processed are introduced as follows. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3  The characteristic curve of LAT  for 

0| | 100c = ,
1| | 370c = . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4  The flowchart of watermark embedding process. 

A. The embedding process 

First of all, the synchronization codes and watermark are 

arranged into a binary pseudo-noise (PN) sequence B , for 

example, { }0,1,10,1,...B = . Secondly, as shown in Figure 4, 

the original audio ( )S n  is split into proper segments, and 

DWT is applied to each segment. Then the synchronization 

codes and watermark are embedded into the lowest-

frequency DWT coefficients. In this step, we group every 

two consecutive coefficients into { }2 0 1,X c c=  with 

0 1
| | | |c c< . The proposed embedding process is described as 

follows. 

 

Embedding  

process            

Grouping every 2 coefficients & sorting 

{ }2 0 1 0 1
, ,  w here .X c c c c= <  

( )S n

IDWT

Combining 

DWT 

Segmenting 

Original audio ( )S n

Synchronization code

Inform ation data

W atermark    0101......B

2
X

2
X̂

K ey ε

 

C P

max
LAT

min
LAT

weight 
i

w

2ˆ
(

)
L

A
T

X

 1segment  2segment



• If the binary bit “1 B∈ ” is embedded, we choose 
0w  

such that 

2 2 max mid
ˆ( ) ( ) ( ) / 2LAT X W LAT X LAT LAT ε= = + +   (10) 

• If the binary bit “ 0 B∈ ” is embedded, we choose 
0w  

such that 

2 2 min mid
ˆ( ) ( ) ( ) / 2LAT X W LAT X LAT LAT ε= = + −   (11) 

where [0,0.3]ε ∈  is a small positive number which can be 

used as a secret key. 

B. The extraction process 

The flowchart of watermark extraction is given in Figure 

5. Every two consecutive lowest-frequency DWT 

coefficients is grouped into { }2 0 1,X c c= . To extract the 

watermark { }ˆ ˆB β= , we apply (2) with N = 2 as follows. 

• If 
2 mid

( )LAT X LAT> , the extracted value ˆ 1β = . 

• If 
2 mid

( )LAT X LAT< , the extracted value ˆ 0β = . 

 

 

 

 
 

 

 

                                                 

                                                                   

                                                                    

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5  The flowchart of watermark extraction. 

V. EXPERIMENTAL RESULTS 

The performance of the proposed audio watermarking 

technique is tested by using 16-bit mono audio signal 

sampled at 44.1 kHz. The length of each audio is about 11.6 

seconds. We use two kinds of music which are symphony 

and popular. By setting the parameter ε  to be 0.05, the 

synchronization code and watermark are embedded into the 

low-frequency DWT coefficients in level seven. 

Accordingly, the embedding capacity is 2000bits/11.6 secs. 

The SWR for the two audios are 20.8 dB (symphony) and 

21.1 dB (popular). Moreover, we apply three types of attack 

to test the robustness: (1) re-sampling, (2) amplitude scaling, 

(3) low-pass filtering. The testing results are listed in 

TABLES I-III. 

TABLE I. BER(%) after Re-Sampling 

Rate (Hz) 22050 11025 8000 

symphony 3.6   7.5   7.3 

popular 9.2 12.9 14.7 

 

TABLE II. BER(%) after Amplitude Scaling 

Scaling factor 0.2 0.8 1.1 1.2 

symphony 0.5 0.4 0.4 0.4 

popular 0.5 0.5 0.4 0.4 

 

TABLE III. BER(%) after Low-Pass Filter 

Cut-off frequency(kHz) 3 

symphony 24.1 

popular 26.8 

VI. CONCLUSIONS 

A novel audio watermarking technique is proposed to 

embed the information by using LAT. When embedding the 

watermark, an analytical formula is provided to determine 

the weight on DWT coefficients. The experimental results 

show that the embedded data are robust against some attacks. 
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Continuous Arterial Pulse Waveforms
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Abstract—Arterial blood pressure is one of the important 
biomedical waveforms that possess lots of important clinical and 
pathological information.  This paper aims in designing a 
technique, which is called characteristic compression method, to 
perform almost lossless data compression for the continuous 
arterial blood pressure waveforms.  This method uses the spline 
function to interpolate the original waveform at preselected 
sample points first.  A fourth order spline function is considered 
with associated formulas in describing the coefficients of the 
function.  A second stage compression is accompanied by using 
12-bit digital data representation to store sample points and 
coefficients for each interval.  Numerical simulation confirms 
that the proposed technique is feasible and does provide a very 
high compression rate and almost lossless reconstruction for the 
continuous arterial pulse wave. 

Keywords—blood pressure, pulse wave, spline interpolation, 
sample point, jerk

I. INTRODUCTION

According to the 2008 Factsheet WHO [1] “Top ten causes 
of death” divides countries into three groups: high-income, 
middle-income and low-income.  The death due to ischaemic 
and hypertension heart diseases have already leapt into the top 
ten causes of death in high-income and middle-income
countries and they occupy over 13% of the world’s population.  
Thus the heart disease becomes the most mentioned disease in 
the whole world and monitoring the continuous arterial pulse 
waveforms becomes one of effective way for preventing this 
disease.  

The measurement on the continuous blood pressure of the 
artery can not only provide the SBP and DBP as well as the 
MBP information, but also obtain the full waveform of the 
continuous blood pressure for each heart stoke.  Based on the 
arterial pulse waveform, physiologists can determine the 
corresponding type of heart disease such as hypertension, 
heart rate volatility (HRV), mitral value regurgitation, etc..  
According to the analysis of Windkessel model [2-4] on the 
continuous arterial pulse wave, one can compute various 
cardiovascular parameters such as arterial compliance, cardio 
output, blood volume, and left ventricular ejection time, etc. to 
aiming for prevention or early treatment on the heart disease. 

Though the continuous blood pressure monitoring can 
reveal exhaustive pathologic information, but the amount of 
the acquired data is much larger than the static blood pressure 
obtained by using the traditional sphygmomanometer. With 

the sampled frequency at 500Hz and storage with 32-bit 
representation, the blood pressure monitoring system requires 
at least 168MB hard disk storage every day for round-the-
clock monitor on each individual.  At the same time, some 
special pathologic characteristics (such as sudden HRV, 
autonomic dysfunction, etc.) need a record of long-time 
measurement in revealing their significances.  For some 
patients with serious disease or just after medical surgery, a 
long-term continuous blood pressure monitor is required.  
Therefore, it becomes important to have very high 
compression rate for storing the recorded continuous blood 
pressure waveform.  In addition, with the rapid development 
of electric devices such as hand-carrying type continuous 
blood pressure instruments (for example, Portapres), novel 
technology in storing and compressing the continuous blood 
pressure can lighten the new measuring device and accelerate 
the wirelessly signal transmission speed which make the 
realization of the physiological monitoring system for home 
care possible. 

The blood pressure reflects the operating status of the 
cardiovascular system which can assist physiologists in 
diagnosing the heart disease.  Thus the compression 
technology should guarantee that the reconstruction of the 
blood pressure waveform from the compressed data is lossless 
to avoid inadequate judgments on the disease status.  Under 
the lossless requirement, the compression technique seeks for 
the data compression ratio as higher as possible.  The 
mainstream in compressing the pulse pressure waveform is 
mainly utilizing the method developed for the 
electrocardiogram (ECG/EKG) [5-6], such as Turning Point 
(TP) algorithm [7], Amplitude Zone Time Epoch Coding 
(AZTEC) algorithm [8-9], Reduction Time Encoding System 
(CORTES) algorithm [10], and Fan algorithm [11-13].  The 
compression rate (CR) of these methods lies between 2 and 5; 
the percent root-mean-square difference (PRD) around 5 to 
29%. These methods do not provide high compression rate 
and their compression is also not lossless.  In 2004, Chen 
etc.[14] classifies the continuous blood pressure signal 
according to the similarity for this kind of physiological 
signals, and then proposes to use Huffman coding [15], run-
length coding [16] and vector quantization [17-18] for further 
data compression.  Although the compression ratio of their 
method lies between 14.17 and 34.40, which is apparently 
higher than traditional algorithms, like TP, AZTEC, CORTES 
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etc., however it is still not a lossless compression algorithm 
for the continuous blood pressure data. 

This paper aims in proposing a characteristic compression 
method (CCM) which is an almost lossless technology to 
compress the continuous blood pressure data. It consists of 
two operational stages: the first one use the spline function to 
interpolate the original waveform at some specified sample 
points; the second stage uses 12-bit digital data representation 
to store the coordinates of sample points and the associated 
spline coefficients for each interval.  Our proposed method 
can reduce the PRD value under 0.5% and maintains good 
compression efficiency. 

The remaining parts of the paper are organized as follows: 
Section II will introduce mathematical formula in describing 
coefficients of the spline function.  Due to the mismatching 
between the original and reconstructed waveforms, we add 
more sample points and derive the corresponding spline 
function such that to reduce their mismatching.  Section III 
describes the digital data representation to store the selected 
sample points and computed spline coefficients in each 
interval.  Also the length of binary representation for data 
storage is determined for second stage compression.  Section 
IV shows our experimental results and their comparison with 
the previous researches.  Finally, some concluding remarks 
are stated in last section. 

II. SPLINE FUNCTION FOR SAMPLE POINTS

The main idea in the characteristic compression method is 
to locate certain points inside the signal which possess special 
characteristics such that the original waveform of the signal 
can be lossless reconstructed by utilizing the designed 
mathematical function passing to interpolate the wave through 
these data points.  Thus, we only need to store coordinates of 
these characteristic points (which is referred as sample points 
in our paper) together with the coefficients or parameters of 
the designed mathematical function in each interval for the 
signal reconstruction. That is, the original waveform of the 
signal can be represented by a small amount of data which 
means the original signal is compressed at all.  To implement 
this idea, two questions are raised in advance.  The first one is 
how to select the so-called sample points inside the waveform 
of the signal?  The other is how to design the mathematical 
function for lossless reconstruction of the original waveform 
based on the selected sample points? 

To answer these two questions, we review the data 
interpolation theory from calculus and numerical analysis. 
Since the continuous waveform of the blood pressure is 
continuous and almost smooth everywhere, the peak/valley 
points, inflection points and jerk points are considered to 
possess most important features of the waveform. Thus we 
select the sample point to be the peak/valley point, inflection 
point or jerk point on the waveform of the signal.  In our case, 
we consider the jerk point as the vanished third derivative 
occurs.  In order to capsulate the smoothness property of the 
waveform, a nature choice is to pick the spline function, as 
described typically in equation (1), as our candidate for 
mathematical function for data reconstruction. 

3 2( ) ( ) ( ) ( ) , 1, 1.,i i i i i i i iS x b x x c x x d x x e i n� � � � � �� � � � (1) 
For the jerk point we obtain 0ib � .  Although there is the 
possibility for two jerk points adjacent to each other, the 
computation error is too high and we neglect the point 
transition in this type.  As we move on the index for sample 
points from )( ,i iP x y  to 1 1,( )i iyQ x � � , six possible 
relationships between coefficients are listed below: 
1. From peak/valley point P to inflection point Q: 

We obtain the following relationship for coefficients: 
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3. From inflection point P to peak/valley point Q: 
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4. From inflection point P to jerk point Q: 
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5. From jerk point P to peak/valley point Q: 
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6. From jerk point P to inflection point Q: 
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Based on previous discuss, not only the parameters 
ia ,

ib
and 

ic  are obtained from (2) ~ (7) for the spline in the given 
interval, but also the parameters 

1ic �
 and/or 

id  for next interval.
Fig. 1 gives us the comparison between the original waveform 
and the reconstruction wave by using the fourth order spline 
function.  The PRD is 0.127%, and compression ratio is 
5.4515.  It indicates that the fourth order spline function can 
almost reconstruct the original waveform, i.e., the data 
compression of continuous blood pressure by utilizing the 
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fourth order spline function together with sample points is 
almost lossless.  But in comparison to the previous method, 
the compression ratio is not particularly remarkable.  In order 
to raise the compression rate, a so-called digital data 
representation (DDR) is applied to compress the stored data 
again, i.e., DDR is adopted to represent sample points and 
interval coefficients of the fourth order spline. 

(a)                                                          (b) 
Fig. 1.  Comparison between the original waveform and its recon-

struction by a fourth order spline function: (a) a typical cycle, 
(b) enlarged portion around the peak at time 2.8 sec. 

III. DIGITAL DATA REPRESENTATION

Traditionally, the digital data with decimal point can be 
stored in the binary form with two different types of 
realizations: fixed-point representation system and floating-
point representation system.  As shown in Fig. 2, the first one 
uses 16 bits to represent the data with 8 bits for integer part 
before decimal point and other 8 bits for the fraction part after 
decimal point; while the second one uses 32 bits to represent a 
floating point number according to ANSI standard.  Since 
there are only 8 bits use in Fig. 2(a) in representing the integer 
part of the data value, hence only 0~255 of the data range is 
allowed which may not be adequate for hypertension disease.  
Although the second one given in Fig. 2(b) has the resolution 
about 1/224 (≈5.96 10-7) but it uses 32 bits for one numerical 
data representation such that the compression rate can’t be 
reduced further.

1 0 0 1 1 1 0 1 1 1 0 0 0 0 0 0
27 26 25 24 23 22 21 20 2-1 2-2 2-3 2-4 2-5 2-6 2-7 2-8

Integer
(8 bits)

floating point
(8 bits) sign

(1 bit)
exponent

(7 bits)
mantissa
(24 bits)

0 0 0 0 1 1 0 1 1 1 0 0
26 25 24 23 22 21 20 2-1 2-2 2-3

Fig. 2.  Binary representation of a decimal number:(a) the fixed-point 
representation system, (b) the floating-point representation 
system according to the ANSI  standard. 

We conduct a survey on using how many digits to represent 
the data will be sufficient to provide the required performance 
for data compression.  For the 32-bit float point number, we 
take its log value first and then store the rounding value into 
an n-bit long representation with its corresponding binary 
value.  The reconstruction process is the same but with reverse 
order of operations to reconstruct the original waveform. 

Our experiment selects 30 young people aged 25±5 years 
old.  Their continuous arterial blood pressures are recorded for 
450 sec long at the sampling frequency 500Hz by the Millar 
Instruments PCU-2000 Pressure Control Unit and SPT-301 
pressure sensor.  A 10Hz low-pass filter is utilized for data 
preprocessing.  As shown in Figs. 3 and 4, both the PDR and 
the CR are decreasing as the number of bits   increases.  The 

PDR value seems to be stable when   is greater or equal to 12.  
At the same time, the CR is still decreasing linearly as   
increases beyond 12.  In conclusion, we select 12 bits for our 
numerical data representation, and the corresponding PRD is 
0.1270% with standard deviation 0.0629% and the CR value 
is 18.4577 with standard deviation 2.5680. 

Fig. 3.  The variation of PDR vs. the length n used in binary data 
representation. As increasing, the PDR is reduced as well and 
reaches a stable value when 12n � . 

Fig. 4.  The CR decreases proportionally to the length n used in 
binary data representation 

The effect of using DDR with 12-bit representation for data 
storage is shown in Fig. 5 for the fourth order spline function.  
It clearly indicates that the compression rate increases 
dramatically from 5.4515 to 16.8780 and at the same time the 
error between reconstruction and original waves is almost 
remain the same, i.e., it changes from 0.1212% to 0.1313%.  
These results confirm the usage of DDR is a good strategy for 
the second stage compression of the arterial continuous pulse 
waveform. 

(a)                                                          (b) 
Fig. 5.  Comparison between the continuous pulse waveform and its 

reconstruction by a fourth order spline function and DDR 
representation: (a) the typical cycle, (b) enlarged portion 
around the peak at time 2.8 sec. 

IV. RESULTS AND COMPARISON

Fig.6 describes the computational flow chart of our CCM 
method for both the data compression with spline function and 
DDR data representation and data reconstruction processes.  
Table 1 shows the comparison of the experimental result of 
CCM method and previous studies.  Although two different 
spline functions by CCM without DDR has a very small PRD 
(<0.5%) than other methods, their CR’s are not so good as 
VLC, VLC in DCT domain, and VQ coding.  But after we use 
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the 12-bit DDR for further compression,  the CR of 4th order 
CCM increases from 5.96 to 18.46.  We want to mention that 
when the measured data without preprocessing by a 10Hz 
low-pass filter, the CR is increased to 24.4799±2.3643 and the 
associated PRD is 0.0793±0.0238%.  Therefore the proposed 
technique does not have the lowest CR but have the lowest 
PRD which is very small when compared with other 
approaches.  Based on these discussion we confirm that the 
proposed CCM is a good technique to provide not only the 
adequate CR but also a very small PRD. 

(a) Data compression                             (b) Data reconstruction 
Fig. 6.  The flow chart of the proposed algorithm 

Table 1.  Comparison between the proposed method and other 
compression approaches 

Method CR PRD (%)
TP 2 7.7
AZTEC 5 29.0
CORTES 4.6 8.4
Fan 2.5 5.9
VLC 14.17 3.90
VLC in DCT domain 26.42 7.02
VQ coding 34.40 5.99
4 order CCM 5.96±0.83 0.12±0.06 
4 order CCM with12-bit DDR 18.46 ±2.58 0.13 ±0.06

V. CONCLUDING REMARKS

An almost lossless compression technique for continuous 
blood pressure pulse waveforms is proposed in the present 
study.  The key idea is utilizing the spline function to 
interpolate the original waveform at the preselected sample 
points.  At the same time, we can iteratively compute all the 
coefficients for each interval instead of solving a system of 
equations.  This result reduces the computational complexity 
in evaluating spline coefficients.  Another advantage of the 
proposed CCM method is that the stored data size depends 
only on the shape variation of the waveform and is 
independent of the sampling frequency for data acquisition.  
Thus, if the data are sampled at a higher frequency, the CR of 
applying CCM to this data set will also increase as well. 

Our experimental result confirms that the CCM method can 
provide almost lossless compression effect (PRD<1%), and 
the CR will reach 18 when CCM with 12-bit DDR for data 
storage.  Therefore the proposed CCM with 12-bit DDR is 

indeed a high compression technique for the lossless data 
reconstruction of the continuous arterial blood pressure. 
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Abstract�—In this article, we use a self-synchronized watermark 
technology [7], to achieve the purpose of protection of 
electrocardiogram (ECG) signal. A Harr wavelet transform with 7 
levels decomposition is adopted to transform the ECG signal and the 
synchronization code, combined with watermark, are quantized 
embedded in the low-frequency sub-band of level 7.  The signal to noise 
ratio (SNR) between the embedded ECG and original one is greater 
than 30 such that the difference between these two ECG signals is very 
small and negligible in general.  To test the robustness under the 
network transfer of ECG data, a white noise attack with various 
strengths is simulated that the bit error rate is quite small unless the 
SNR of the noise is very large.  This study confirms the use of wavelet-
based quantization watermarking scheme on ECG signal for patient 
protection is adequate. 

Index Terms- Electrocardiogram; watermarking; wavelet; data 
transmission; self-synchronization. 

I.  INTRODUCTION 
Nowadays in the society, we pay more attention to a 

variety of copyright protection and the emphasis on personal 
information.  Due to the change in landscape of medical 
environment, the delivery and transfer of medical data 
between hospitals or clinics do occur very frequently. 

In the past, the patient data was randomly stored inside 
the hospital without any protection.  However, with the 
development of science and technology, it is found that the 
patient data contains important private information, and 
villains even can use some information. Therefore, 
protection measures should be taken in the process of 
storing, transmitting, or browsing the information.  Thus the 
protection of medical data through data hiding technique is 
undoubted an important issue. 

Although some data hiding algorithms can embed data 
into medical data, the original information may be distorted 
permanently.  But in medical diagnosis, these changes are 
not allowable.  Thus we are only concerned on data hiding 
method for which the lossless original media can be restored 
from marked media. 

Watermarking technology is the most widely used data 
hiding technology in the field of multimedia.  Digital 
watermarking technology refers to directly embedding some 
identification information (watermark) into the carrier 
(including multimedia, documents, software, etc.). It does 
not affect the usage of the original carrier and is hard to be 
perceived by ordinary perception system such as visual or 
auditory system.  The hidden information in the carrier can 
help us to confirm the content creators, buyers, carrier�’s 
transmission secret information to determine whether the 
carrier is altered or not during its transmitting process. 

Digital watermarking is an important research direction of 
information hiding technology. 

Electrocardiogram (ECG) reflects the process of the 
electrical activity of our heart, which can be taken as a 
reference for the study of cardiac pathology and 
cardiovascular system diagnostics. With ECG signals, we 
can analyze and identify various heart diseases, such as 
arrhythmias, myocardial damage etc.  ECG has high 
requirements for accuracy.  Thus ECG is one of the very 
important bio-information to be protected. 

In 1998, application of watermarking technique in 
medical image was proposed by Anand and Niranjan [1] to 
embed the patient information.  In 2005, Engin et al. [2] 
proposed a very elementary watermarked technique for ECG 
signal to resist the white noise attack. At present, the 
research on the protection of ECG information with 
watermarking technique is still in its infancy stage, there are 
few related researches. All these works utilize wavelet-based 
digital watermarking encryption technology  

Nambakhsh et al. [3] proposes a novel blind 
watermarking method combined with the EZW-based 
wavelet coder to embed ECG signals as secret key into 
medical CT and MRI images.  Zheng and Qian [4] developed 
a wavelet-based algorithm to watermark ECG signals in non-
QRS complex region to guarantee the restore of almost un-
distorted ECG signals.  Kaur et al. [5] constructed a blind 
digital watermarking to ensure the safe transmission of ECG 
signals in wireless network that the embedded watermark 
can be fully removed by the receiver.  Ibaida [6] developed 
an watermarked algorithm such that the ECG signals are 
watermarked with patient biomedical information to confirm 
patient/ECG linkage integrity and is suitable for a wearable 
sensor-net health monitoring system.   

In this paper we preliminarily study the effect of applying 
wavelet-based quantization watermarking scheme on ECG 
signal with self-synchronization mechanism [7].  Although 
this type of watermarking technique is not a reversible 
technique, but if the change in ECG signal is small, then it is 
acceptable.  The organization of this paper is as follows. 
Section 2 describes the proposed algorithm of this paper.  
Section 3 describes the experimental result of the proposed 
algorithm by utilizing the MIT-BIH database.  Some 
conclusions are drawn in the last section. 

II. PROPOSED ALGORITHM 
Since ECG signals are one-dimensional, various 

watermarked techniques for audio signals can be considered 
as the candidate.  Consideration on the safety transmission of 
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ECG data through the network, the self-synchronized audio 
watermarking technique [7] is adopted here.  The embedding 
and extraction process is described in Fig. 1. 
 

 
(a) watermark embedding 

 

 
(b) watermark extraction 

Fig.1.  Watermark embedding and extraction process 
 

In this process, we use the synchronization code.  It can 
be used to locate hidden information, to prevent the 
unpredictable attacks. Supposing  is a source-
synchronous code and  is an unknown code with the 
same length of .  If the difference between  and  are 
less than the determined threshold, then  will be 
identified as the synchronization code.  
 
 

 
 Fig. 2.  Wavelet decomposition 

 
Let  denote the ECG signal with total 

length  sample points. Fig. 2 illustrates the DWT 
decomposition process and we use 7 levels DWT on ECG 
signals.  The watermark together with the synchronization 
code (which is called PN sequence ) will be embedded 
into 7th level low- frequency sub-band (denoted by ), i.e., 
the coefficients A7.  

The rule of embedding is as follows. 
 

            (1) 

 
where  and  are the level 7 low-frequency DWT 
coefficients before and after embedding, respectively, and  
is the embedding strength.  By applying the IDWT, the 
corresponding watermarked ECG signal is obtained and 

denoted by . The insertion of watermark 
will affect the original signal and we use the signal to noise 
ratio (SNR) to measure the effect: 
 

                                               (2) 
 

When extracting the data, we divide the ECG signal  
, which have been embedded with 

watermark, into several sections, of which at least includes 
one synchronization code segment. Then we performed 
DWT transform on each section.  Suppose  is the 
coefficient of level 7 low-frequency sub-band, we use the 
following rules extract sequence  from : 
 

            (3) 

III. EXPERIMENTAL RESULTS 
We selected four sets of data from the MIT-BIH 

Arrhythmia Database [8], i.e., data 100-103.  The sampling 
rate of the ECG signal is 360Hz.  In each data set, we select a 
fragment of length 4096 to be tested.  The PN sequence 
consists of 8 bits synchronization code and 32 bits 
watermark.  The Haar wavelet transform is applied to the 
signal down with 7 levels decomposition.  Then we utilize 
the quantization in (1) to embed the PN sequence into the 
ECG signal with the embedding strength .  It is 
noted that the ECG signal is adjusted to have zero mean first, 
and then is scaled to the resolution with 16-bit representation.   

Fig. 3 shows the original and watermarked signals for 
data 100 look almost distinguishable.  And we enlarge the 
portion in Fig. 3 around the first second and plot both on the 
same graph as drawn in Fig. 4.  The difference is quite small, 
i.e., the PQRST complex from the watermarked ECG signal 
is almost the same as the original one.  Figs. 5-7 compare the 
original and watermarked signals for data 101-103.  Table I 
gives us the SNR of the watermarked signals for data 100-
103, which are all larger than 30.  And the relative error due 
to watermark is around 3% under 2-norm measure.  
Although this quantization technique is not a reversible 
scheme, but the change due to watermark is negligible.  On 
the other hand, we can adjust the embedding strength to 
increase the SNR and whence the relative error is reduced.  
But the robustness of the watermark will be reduced. 
 

 
Fig. 3.  Original and watermarked signals for data 100 

222333444



 
Fig. 4.  Original and watermarked signals for data 100 in [0.09,1.09] 

 

 
Fig. 5.  Original and watermarked signals for data 101 

 

 
Fig. 6.  Original and watermarked signals for data 102 

 

 
Fig. 7.  Original and watermarked signals for data 103 

 
TABLE I  

IMPACT OF WATERMARK ON ECG SIGNAL 
 

Data ID SNR  
100 30.3960 0.0299 
101 30.6291 0.0354 
102 31.7761 0.0327 
103 32.0753 0.0269 

Since the ECG data may be transferred using network, 
we consider the white noise attack to test the robustness of 
the watermark technique, i.e., 

 
where  is the watermarked signal and  is the attacked 
signal which is influenced by the white noise  with zero 
mean and standard deviation one. Here  is considered as the 
strength of the white noise, i.e.,  is zero-mean white 
noise with standard deviation .  

The bit error rate (BER) is used to measure the 
correctness of watermark after some attack is presented 
which is an indication of the robustness of the watermark. 

 
  

 
Table II describes the robustness of the watermarked 

ECG signal under the attack of white noise with different 
standard deviation.  For all data set, the white noise with  
less or equal to 500 does not change the watermark and only 
when  is greater than 500 it will produce error bits in 
watermark extraction.  The corresponding SNR for  
is around 15 which means the noise is very large which will 
not happen for the normal network transfer. 

 
TABLE II. 

ROBUSTNESS TEST VIA WHITE NOISE ATTACK 
 

Data ID White Noise deviation  (SNR) Error Bits BER(%)
100 1 (72.6337) 0 0
100 500 (18.6543) 0 0
100 750 (15.1325) 4 12.5000
100 1000 (12.6337) 7 21.8750
101 1 (71.8875) 0 0
101 50 (17.9081) 0 0
101 500 (14.3873) 4 12.5000
101 1000 (11.8875) 7 21.8750
102 1 (73.9786) 0 0
102 500 (19.9992) 0 0
102 500 (16.4773) 4 12.5000
102 1000 (13.9786) 7 21.8750
103 1 (73.7127) 0 0
103 500 (19.7333) 0 0
103 750 (16.2115) 4 12.5000
103 1000 (13.7127) 7 21.8750

IV. CONCLUSION 
In this paper, we apply the self-synchronized 

quantization watermarked scheme [7] to embed watermark 
into the ECG signal. After tested with four data set from 
MIT-BIH arrhythmia database, the difference between the 
watermarked ECG and original one is very small and 
negligible.  We also use the white noise with various 
standard deviations to test the watermarked ECG which 
shows a very strong robustness. This confirms that the 
application of wavelet-based quantization scheme to ECG 
signal is successful. In the future, not only more data set 
should be used to verify our conclusion and the detail 
influence of the watermarking technique on the features like 
QPRST complex should be examined as well.  
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Abstract�—Electrocardiogram (ECG) as a biological 
information, it has some special feature. Different people will 
have different ECG information, even one person has different 
ECG when he is under different body state. In this paper we 
use the Electrocardiogram (ECG) to identify disease or to 
detect different person. Firstly, we collect the ECG information 
form different body state of the different people. Secondly we 
will preprocess the ECG data by using a method of statistical. 
Thirdly we can use the support vector machine to train the 
data, and then classify different people�’s data into different 
class. And finally when there are one new ECG data, we can 
also use SVM to identify the new data. Because even one people 
have several ECG signal, with our statistical method, the 
classifier may gets better robust. 

Keywords - ECG; human identification; SVM 

I.  INTRODUCTION 
A lot of biological information has been widely used for 

clinical application. Electrocardiogram (ECG) is one of the 
very important biological signals.  ECG signal is one-
dimensional data to represent the time electrical change of 
the voltage variation, which is detected on the skin.  Besides 
of utilizing ECG to identify the human physiological status, 
it has been recently adopted in human identification.  As 
ECG is so special than the other biological information that 
the ECG signal varies from time to time, and even for the 
same person different waveforms of ECG signal will be 
presented at different body state.  Thus the biometric 
designed based on ECG signal will be dynamical which is 
different from the other identification method by utilizing 
the static features of fingerprint, face and iris etc..  This 
dynamical property indicates that the ECG biometric is hard 
to be copied than the other biometrics.  Thus various 
research works [1-10] reveals that ECG biometric is the 
realizable and reliable. 

The SVM algorithm is proposed by Boser, Guyon and 
Vapnik in 1992 [11].  SVM has a good performance on 
classifying.  It�’s base on the statistic theory of machine 
learning algorithm.  SVM could automatically look for those 
support vector who has a good ability on distinguishing 
different classes.  The classifier base on SVM can maximize 
the distance between different classes.   

Fig. 1 is our taxonomy of related researches of using 
support vector machine (SVM) to analyze ECG signals.  
There are three aspects: applications, type of SVM, and 
feature extraction. 

 

�
Fig. 1.  Related studies of ECG analysis via SVM 

 
ECG signals contain many important bio-information 

and scientists have using ECG in many applications with 
disease detection as a typical one.  Moavenian and 
Khorrami [12] use ECG signal for arrhythmias classification 
for patients.  Beat classification was introduced by Acir [13] 
to classify various types of beat.  Mehta and Lingayat [14, 
15] proposed two SVM methods on QRS classification of 
ECG signals; the SVM was applied as a classifier to 
delineate QRS and non-QRS regions.  Polat and Gunes [16] 
developed an algorithm to find the heart disease.  

Different types of SVM have been applied in ECG 
analysis.  Moavenian and Khorrami [12] use the kernel-
adaption algorithm to aid SVM for ECG arrhythmias 
classification. The SVM is much faster than MLP (multi-
layered-perception) in training stage, and several times 
higher in performance. But MLP�’s mean square error is 
three times less than SVM.  In the paper of Acr[13], they 
have used perturbation method to extract the feature the 
ECG data, and then apply SVM with PCA to classify four 
types of ECG beats.  Polat and Gunes [16] develop an 
algorithm base on PCA (principle component analysis) and 
least square SVM.  Zhang and Zhang [17] extract the 
principle characteristic of the ECG signal by using PCA 
technique and then SVM is used to classify the ECG data 
into four categories of heart disease.  A method combining 
SVM and genetic algorithm is proposed by Nasiri and 
Naghibzadeh etc [18] where twenty-two features were 
extracted from the ECG signal, and then using SVM with 
genetic algorithm to searching for the best value of the 
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parameters, and looking for the best subset of the feature 
that optimizes the classification function.  Ubeyli [19] 
combined the wavelet coefficients and multiclass SVM 
method as a classifier for four types of the ECG beats are 
obtained. 

In this paper, the human identification using SVM 
classifier is developed based on the rank order statistical 
feature of the ECG signals.  The organization of this paper is 
as follows. Section 2 describes the proposed algorithm of this 
paper including the frequency and rank order statistics and 
support vector machine.  Section 3 describes the 
experimental result of applying the proposed algorithm to 
classify individual by utilizing the MIT-BIH database.  Some 
conclusions are drawn in the last section. 

II. PROPOSED ALGORITHM  
    Fig. 2 shows the structure of utilizing SVM in ECG 
human identification, which consists of two steps. Firstly we 
transfer the input ECG signals into reduced binary pattern, 
and counting and ranking the appearance of patterns, which 
is regarded as features of ECG signals. Secondly, the feature 
data for various persons are used to training the SVM 
classifier and then for matching test to identify an unknown 
input ECG signal.  These steps are described in detail as 
following. 

 
Fig. 2.  Structure of SVM classifier in ECG identification 

 

1) Frequency and Rank order Statistics 
Consider an ECG signal as  

where real-valued  corresponds to the  input data.  
Compare each pair of consecutive input signal and 
categorize the data into one of the two cases: decrease or 
increase in .  A preliminary reduced function then maps 
these two cases to 0 or 1, respectively, according to the rule: 
 

                          (1)

 
That is, this procedure converts the ECG signal of length  
to a binary sequence  of length .  
Group every  bits in  into a reduced binary sequence of 
length , referred as an m-bit word; collect all such words 
to form a reduced binary pattern  

 where . We then convert 
each -bit word  to its decimal expansion . 

Next, count the occurrences of all and then sort them 
in the order of descending frequency. For 

, define .  It is obvious that, values of  range 0 
over .  Let be the corresponding relative 
frequency of ,  and .  
Next, rank  according to its frequency , from the largest 
to the smallest.  For instance, if  corresponds to a 
specific , it mean that the -bit words  who convert to the 
same decimal expansion  are those appear the most in the 
reduced binary pattern. 

The relative frequency array  and the rank array  are 
considered as the features of ECG signals, and will be the 
input to the SVM classifier for training purpose and person 
identification.  The process is described in Fig. 3. 

 

 
Fig. 3.  Process of ECG human identification with statistical support vector 

machine 

2) SVM classification 
The purpose of SVM is to find a hyperplane, which can 

separate the training data set and get a maximal distance 
against the direct of the edge orthogonal to the hyperplane. 
SVM has good performance on small number of samples. 

Given a training data set  
where  and  is either  or  indicating the class to 
which the point  belongs.  Let .  The 
construction of the hyperplane for a linearly separable 
problem is  where  is the normal vector to the 
hyperplane and the parameter  determines the offset of 
the hyperplane from the origin along the normal vector . 
Thus the margin between the hyperplane and the nearest 
point is maximized and can be posed as following problem: 
 

,     (1) 

Matching

Calculate features of 
input ECG signals  SVM Classifier 

Identify the 
person 
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where  is a user define constant as the penalty parameter of 
the error term.  The SVM requires the optimal solution.  We 
use the LIBSVM [21] to solve this optimization problem 
with its user�’s guide given in [22]. 

III. EXPERIMENTAL RESULT AND DISCUSSION 
In real application, the ECG data should be collected 

from persons under various body states.  For simplicity, we 
select the MIT-BIH Arrhythmia Database [23]. This 
database includes 48 groups, within two-lead ECG 
recordings for half an hour, a total of up to 24 hours of 
information.  The data contains 47 individuals�’ ECG 
information (dataset ID 201 and 202 are duplicated); subjects 
consist of 25 men aged between 32 to 89 and 22 women 
aged from 23 to 89.  These ECG data has a sampling rate of 
360Hz and a 12-bit binary representation. 

For each individual, 8 segments of 10 sample periods 
long are obtained from the record of its ECG signal in the 
database. Thus 3600 sample points in each segment are 
selected for frequency and rank order statistics.  We set 

, i.e., the reduced binary pattern consists of 8-bit 
words and there are in total 256 different 8-bit words for 
frequency and rank order calculation.  Afterward, for each 
individual there are 8 data sets and 256 features for each data 
set to training via SVM.  The input file for the LIBSVM 
program consists of a matrix with 8×48 rows and 256 
columns; each row stores 256 statistic features of the 
corresponding person and each individual has eight rows 
with the same label to represent the frequency and rank order 
of each segment in his/her ECG signal.  The process in 
training the SVM for MIT-BIH database is shown in Fig. 4. 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
Fig. 4.  Training SVM classifier for MIT-BIH database 

 
After training the SVM with the statistical features of 

ECG signals, we get a SVM classifier to identify individuals. 
The test data for identification are also acquired from the 
same MIT-BIH database.  For each individual, we recapture 

10 segments of 3600 sample points long.  Note that these 10 
segments are obtained at different location of the ECG 
waveform, i.e., none of them are overlapped with previous 
selected segments in training process.  Each segment is pass 
through SVM classifier for matching test.  Thus there are 10 
matching tests for each individual. 

Table I shows some result of matching test.  The second 
row in Table I denotes that 10 segments for individual No. 1 
(denoted by ID1 for simplicity) are all identified correctly, 
thus it is 100% accurate.  But for the third row, it indicates 
that the 2nd, 6th, 8th, and 9th segments of ID2 are identified as 
ID6, while the last segment is identified as ID3.  Thus only 4 
segments of ID2 are identified correctly, i.e., the accuracy is 
40%.  In summary, the accuracy for some individuals are 
very high but for some of others are very low.  We set the 
population size M to denote the first M individuals from 48 
individuals and take their average as the group accuracy.  Fig 
5 summarizes the group accuracy of various group 
population sizes.  It shows that the group accuracy for 
matching test lies between 60-80%, which is moderately 
acceptable.  The possible reason is 256 features are too large 
for SVM.  Even an alternative ECG signal not from MIT-
BIH database is pass through the SVM, the classifier will 
identify it as one of the 48 individuals.  One of the advantage 
is the proposed algorithm is executed very fast and has less 
computational complexity. 

TABLE I 
RESULT OF MATCHING TEST FOR INDIVIDUAL IDENTIFICATION 

 
indiv.\data 1 2 3 4 5 6 7 8 9 10 Accuracy 

1 1 1 1 1 1 1 1 1 1 1 100% 
2 2 6 2 2 2 6 3 6 6 3 40% 
3 3 1 3 3 3 3 3 1 3 3 80% 
4 4 4 4 4 4 4 4 4 4 4 100% 
5 25 32 40 21 2 32 1 5 5 25 20% 
6 6 6 6 6 6 6 6 6 6 6 100% 
7 35 35 35 6 5 7 6 11 32 7 20% 
8 8 8 8 8 8 8 37 8 8 8 90% 
9 9 9 1 3 1 3 1 31 1 31 20% 

10 10 10 10 10 10 10 10 10 10 10 100% 
11 11 7 11 11 7 7 11 11 11 11 70% 
12 12 18 12 12 12 39 12 12 12 12 80% 
13 11 13 13 13 13 13 13 13 13 13 90% 
14 14 14 14 14 41 14 14 14 14 14 90% 
15 15 15 15 15 15 15 23 15 15 15 90% 
16 16 16 16 16 16 16 16 16 16 16 100% 
17 17 17 17 17 17 22 17 17 17 17 90% 
18 46 46 46 46 48 48 18 46 46 48 10% 
19 19 45 19 19 17 17 19 19 19 19 70% 
20 20 15 20 20 20 20 20 20 15 20 80% 
21 21 21 21 21 21 21 21 21 21 9 90% 
22 22 17 22 17 22 17 17 22 22 22 60% 
23 23 17 22 39 23 23 23 17 23 39 50% 
24 21 43 24 21 24 21 21 24 24 24 50% 
25 1 1 32 1 1 1 3 32 25 1 10% 
26 26 26 26 40 26 40 40 26 26 26 70% 
27 27 36 36 36 27 35 30 10 27 10 30% 
28 28 28 28 28 28 28 28 28 28 28 100% 
29 4 9 36 36 21 25 4 25 4 36 0% 
30 13 30 33 35 33 10 27 35 13 30 20% 
31 31 46 43 43 31 31 31 31 31 31 70% 
32 32 32 32 32 32 32 35 32 32 32 90% 
33 36 31 31 36 43 43 36 24 24 24 0% 
34 34 34 34 34 34 34 34 34 34 34 100% 
35 13 35 35 35 35 35 35 13 11 13 60% 
36 36 36 36 43 36 36 36 36 21 36 80% 
37 37 37 37 37 37 37 37 37 10 37 90% 
38 38 38 38 38 38 38 38 38 38 19 90% 
39 22 22 39 48 48 18 39 39 39 39 50% 
40 40 40 40 40 40 40 40 40 40 40 100% 
41 41 14 14 14 14 41 41 14 41 41 50% 

Acquire ECG Signals 
(MIT-BIH Arrhythmia 

Compute the reduced 
binary pattern 

Obtain 8 segments of 10 
sample periods long each

Count and ranking the pattern 
frequencies as the feature 

Use statistic features of 48 
person�’s ECG to train SVM 

SVM classifier 
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42 42 12 42 42 42 42 18 12 18 12 50% 
43 46 21 21 21 21 43 21 25 46 43 20% 
44 12 17 12 12 17 12 18 12 39 45 0% 
45 17 17 19 45 15 23 15 20 20 15 10% 
46 22 46 39 48 48 22 46 48 46 48 30% 
47 34 34 37 34 34 34 47 37 47 37 20% 
48 48 48 48 48 48 48 48 48 48 48 100% 

 
 
 
 
 
 
 
 
 
 

 
In the future, some statistical method like PCA, ICA can 

be applied to reduce the feature size and then use SVM for 
identification. 
 

Fig. 5.  Group accuracy for various group population sizes 

IV. CONCLUSIONS 
In this paper, a statistical based support vector machine 

algorithm is applied to ECG signal for human identification. 
We first convert the ECG signal into reduced binary pattern 
and count the frequency and rank the order. A 48 individuals 
ECG data are used to training the SVM classifier, which is 
utilized for matching test of the unknown input ECG signal.  
The performance of the proposed method is around 60-80%, 
which is moderately acceptable.  Thus the proposed method 
in the present stage can be used in some situations that not 
require high accuracy. The main advantage of the proposed 
algorithm is executed very fast and has less computational 
complexity. 
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